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MULTI-COMPONENT ALLEN-CAHN EQUATION FOR
ELASTICALLY STRESSED SOLIDS

THOMAS BLESGEN, ULRICH WEIKARD

Abstract. The vector-valued Allen-Cahn equations are combined with elas-
ticity where a linear stress-strain relationship is assumed. A short physical

derivation of the generalised model is given and global existence and unique-

ness of the solution are shown under suitable growth conditions on the non-
linearity.

1. Introduction

The Allen-Cahn equation, introduced in [2], provides a well-established frame-
work for the mathematical description to free boundary problems for phase transi-
tions. Unlike sharp interface models, it postulates a diffuse interface with a small
thickness γ > 0. The equations have been the subject of intense mathematical in-
vestigations, see for instance [27, 5, 1, 9, 14, 15]; and adequate numerical methods
have been developed for their solution, see [25, 23], that contain also references to
other numerical work.

The Allen-Cahn equation has been generalised in many directions, see [10, 24]
for a generalisation to the phase field equations; [21], where also the vector-valued
system of Allen-Cahn equations is derived; [6], where a statistical framework is
considered, and finally [27] for a mixed Allen-Cahn/Cahn-Hilliard formulation.

The physical applications of the Allen-Cahn system are numerous. An overview
over the Allen-Cahn and phase field equations is [11], in [20] an overview over the
Cahn-Hilliard equation with elasticity is found. Furthermore we mention [26] and
[22] with applications to dislocations and lattice instabilities, [3], where droplet
motion is described, [5] for the study of travelling waves, [28] for applications to
crystallisation, and [7] for diffusion induced segregation phenomena.

In this article we consider a generalisation of the vector-valued system of Allen-
Cahn equations to linear elasticity. To this end we will first give a short physical
derivation of the complete model, then show existence and uniqueness of a solution
to the generalised system.

The existence proof can be roughly split into two parts. Part I, presented in
sections 2 to 4, treats the case of polynomial free energy densities that fulfill the
mild growth conditions stated in Section 2.3. The second part, starting in Section 6,
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treats the physically relevant case of logarithmic free energy densities and makes
use of the results shown in Part I. The employed mathematical methods consist in
starting from the time-discrete formulation and finding suitable uniform estimates
independent of the time step τ > 0 which by well-known compactness results allow
to pass to the limit τ → 0. A former version of this argument can be found in
[4] and is classical by now. Our approach will follow closely [17, 18, 19] where the
elastic Cahn-Hilliard model is treated.

1.1. Derivation of the Model. Let Ω ⊂ RD, 1 ≤ D ≤ 3 be a bounded do-
main with Lipschitz boundary. We introduce the vector u := (u1, . . . , un) of non-
conserved order parameters. Depending on the physical context, ui can be either
the concentration, or the density, or the volume fraction of the i-th phase.

These quantities fulfill for 1 ≤ i ≤ n

ui ≥ 0, ui ∈ H1,2(Ω),
n∑

i=1

ui = 1.

By Hm,2(Ω) we denote the Sobolev space of m-times weakly differentiable functions
in the Hilbert space L2(Ω), by Hm,2

0 (Ω) the closure of C∞0 (Ω) w.r.t. ‖ · ‖H1,2(Ω).
By ‖ · ‖H1 we always mean ‖ · ‖H1,2(Ω). C∞0 (Ω) := ∩∞m=0C

m
0 (Ω) where Cm

0 (Ω)
is the space of m-times continuously differentiable functions over Ω with compact
support.

In order to describe elastic effects we consider the displacement field v(x) which
describes the position of a material point x in the undeformed body after defor-
mation. We assume that the displacement gradient is small, such that the strain
tensor can be approximated by

E = E(v) = Eij(v) :=
1
2
(
∂ivj + ∂jvi

)
.

We postulate that the system free energy is of the generalised Landau-Ginzburg
form

F (u(t), E(v(t))) = F out(E(v(t)))+
∫

Ω

(γ2

2

n∑
i=1

|∇ui(x, t)|2+f(u(x, t), E(v(x, t)))
)
dx.

(1.1)
In this formulation, the first term represents energy effects due to applied outer
forces,

F out(E(v)) :=
∫

Ω

W (E(v)).

We assume that there are no external body forces and that the tractions applied to
∂Ω are dead loads and equal S~n, where ~n is the unit outer normal to ∂Ω. We assume
that the symmetric tensor S defined by this property is constant, i.e. independent
of time t. The work necessary to transform the undeformed body into the state
with corresponding displacement vector v(t) is therefore

−
∫

∂Ω

v · S~n = −
∫

Ω

∇v : S = −
∫

Ω

E(v) : S

and we find that W (E(v)) := −E(v) : S describes the energy density of the applied
outer forces.
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The term γ2

2

∑n
i=1 |∇ui|2 in (1.1) represents the interfacial energy of the tran-

sition layers. Here we assume for simplicity that the contributions enter with the
same weight for every interface between any two phases.

The last term f(u, E(v)) in (1.1) represents the free energy density. The compu-
tations in this article are based on the equality

f(u, E(v)) = f̄(u) +W el(u, E(v))

with suitable structure and growth conditions on f̄ , see Section 2.3. W el is the
contribution of the elastic energy to f . It was first studied by Eshelby, [16]. By
Hooke’s law, a possible ansatz for W el is

W el(u, E) :=
1
2
(E − ε(u)) : C(u)(E − ε(u)). (1.2)

We assume the linear relationship (Vegard’s law)

ε(u) :=
n∑

i=1

uiεi, (1.3)

where εi := ε(ei) and ei is the i-th basis vector of Rn. This means ε(ei) is the
eigenstrain when the system is equal to the ith pure component. C(u) is the
elasticity tensor that maps symmetric tensors in RD×D onto itself. We assume
that C is symmetric and positive definite. Instead of (1.2) other forms of W el are
permitted as long as Assumption (A4) in Section 2.3 remains valid.

We define the time evolution of the unconserved order parameter u as gradient
flow of the free energy, ∫

Ω

∂tu = − δ

δu
F (u(t), E(v(t))).

Thus for large time t, u(t) tends to a local minimiser of F .
The mechanical equilibrium is attained on a much faster time scale than the

time scale significant for diffusion. Therefore we will assume a quasi-static elastic
equilibrium, i.e. the displacement v is obtained by solving the elliptic equation

div(S) = 0 in Ω

with the stress tensor
S := ∂εW

el(u, E(v)).
Hence, for a given stop time T > 0 we end up with the following model:

Find for t ≥ 0 a solution pair (u, v) such that in ΩT := Ω× (0, T )

∂tu = γ24u− P (∂uf(u, E(v))), (1.4)

div(S) = 0, (1.5)

S = ∂εW
el(u, E(v)), (1.6)

with the initial data for t = 0 in Ω

u(·, 0) = u0(·) (1.7)

and the boundary conditions for t > 0 in ∂Ω

u = ud, S · ~n = S · ~n. (1.8)

The projection operator P in (1.4) is due to algebraic constraints on ∂uf(u, E(v)).
This is explained in the subsequent section.
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The boundary condition S ·~n = S ·~n on ∂Ω determines v only up to infinitesimal
rigid displacements (these are translations and infinitesimal rotations). This fact
is well-known for formulations that depend on a linearised strain tensor E . The
resulting non-uniqueness in v is of no importance as v only enters through the
symmetric term E(v).

2. Preliminaries to existence theory

In this section we discuss the existence theory to the sharp interface model (1.4)-
(1.8). We will show that under suitable growth conditions on the free energy density,
stated for polynomial f in Section 2.3 and for logarithmic energies in Section 6,
discrete solutions to the implicit time discretisation exist. A-priori estimates allow
to pass to the limit showing the existence of solutions to the model first with
polynomial free energy. This result is then used to generalise to logarithmic free
energies.

We will carry out the proof for classical Dirichlet boundary data, i.e. set w.l.o.g.
ud = 0 in (1.8). Other boundary conditions are shortly discussed in the remark at
the end of this section. We begin by collecting general properties of the model and
necessary tools that will be needed in the sequel.

The vector of order parameters lies inside the simplex Σ,

u ∈ Σ :=
{
u′ = (u′1, . . . , u

′
n) ∈ Rn :

n∑
i=1

u′i = 1
}
. (2.1)

Notice that the condition 0 ≤ ui ≤ 1 in Ω may be violated for polynomial free
energies considered in the first part of this section.

If we write (1.4) as ∂tu = w, as a consequence of (2.1), w fulfills
∑n

i=1 wi = 0.
Thus, with e := (1, . . . , 1) ∈ Rn, the right hand side w satisfies w = P (z) for some
z ∈ Rn, where

P (z) := z − 1
n

(z · e)e

is the projection of Rn to

TΣ :=
{
u′ = (u′1, . . . , u

′
n) ∈ Rn :

n∑
i=1

u′i = 0
}
,

the tangent space to Σ. Let

X1 := {u′ ∈ H1
0 (Ω; Rn) : u′ ∈ Σ almost everywhere in Ω},

X2 := {v′ ∈ H1(Ω,RD) : (v′, w)H1 = 0 for all w ∈ Xird},

where

Xird = {v ∈ H1(Ω,RD) : there exist b ∈ RD, A ∈ RD×D such that v(x) = Ax+ b}

is the space of all infinitesimal rigid displacements.
Since we have (classical) Dirichlet boundary conditions for the equations of con-

servation of mass, we consider the space of test functions

Y := H1,2
0 (Ω; Rn)

and its dual
(H1,2

0 (Ω; Rn))′ = H−1,2(Ω; Rn).
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Remark: If we replace the Dirichlet conditions for u by a Neumann boundary
condition or periodic boundary conditions, a (generalised) Poincaré inequality holds
in H1,2(Ω) and all the results found below continue to hold.

2.1. The weak formulation. A pair (u, v) ∈ L2(0, T ; H1,2
0 (Ω; Rn))×L2(0, T ; X2)

is called a weak solution of (1.4)-(1.8) if

−
∫

ΩT

∂tξ · (u− u0) + γ2

∫
ΩT

∇u : ∇ξ +
∫

ΩT

P (∂uf(u, E(v))) · ξ = 0 (2.2)

for all ξ ∈ L2(0, T ; H1
0 (Ω; Rn)) ∩ L∞(ΩT ; Rn) with ∂tξ ∈ L2(ΩT ), ξ(T ) = 0, and∫

ΩT

W el(u, E(v)) : ∇ζ =
∫

ΩT

S : ∇ζ. (2.3)

for all ζ ∈ L2(0, T ; H1(Ω,RD)).

2.2. The implicit time discretisation. We fix an M ∈ N and set h := T
M . For

m ≥ 1 and given um−1 ∈ X1 consider

um − um−1

h
= γ24u− P (∂uf(um, E(vm))), (2.4)

div(Sm) = 0, (2.5)

Sm = ∂εW
el(um, E(vm)). (2.6)

2.3. Structural Assumptions. To establish the existence of weak solutions in
the sense of Section 2.1, the following assumptions are made:

(A1) Ω ⊂ RD is a bounded domain with Lipschitz boundary.
(A2) The free energy density f can be written as

f(u′, E(v′)) = f1(u′) + f2(u′) +W el(u′, E(v′)) for all u′ ∈ Rn, v′ ∈ RD

with f1 ∈ C1(Rn; R) and convex. Additionally we postulate
(A2.1) f1 ≥ 0.
(A2.2) For all δ > 0 there exists a constant Cδ > 0 such that

|∂uf
1(u′)| ≤ δf1(u′) + Cδ for all u′ ∈ Σ.

(A2.3) There exists a constant C1 > 0 such that

|∂uf
2(u′)| ≤ C1(|u′|+ 1) for all u′ ∈ Σ.

(A3) The initial datum u0 fulfills f(u0, E(v0)) < ∞, where v0 is the solution of
(2.3).

(A4) The elastic energy density W el ∈ C1(Rn × RD×D; R) satisfies
(A4.1) W el(u′, E ′) only depends on the symmetric part of E ′ ∈ RD×D, i.e.

W el(u′, E ′) = W el(u′, (E ′)t) for all u′ ∈ Rn and E ′ ∈ RD×D.

(A4.2) ∂εW
el(u′, ·) is strongly monotone uniformly in u′, i.e. there exists a c1 > 0

such that for all symmetric E ′1, E ′2 ∈ RD×D,

(∂εW
el(u′, E ′2)− ∂εW

el(u′, E ′1)) : (E ′2 − E ′1) ≥ c1|E ′2 − E ′1|2.
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(A4.3) There exists a constant C1 > 0 such that for all u′ ∈ Σ and all symmetric
E ′ ∈ RD×D,

|W el(u′, E ′)| ≤ C1(|E ′|2 + |u′|2 + 1),

|∂uW
el(u′, E ′)| ≤ C1(|E ′|2 + |u′|2 + 1),

|∂εW
el(u′, E ′)| ≤ C1(|E ′|+ |u′|+ 1).

(A5) The energy density of the applied outer forces is given by W (E ′) = −E ′ : S
where S is a symmetric constant tensor.

For the rest of this article, we assume without further stating that the assumptions
(A1)-(A5) hold.

3. Existence of solutions to the time discrete scheme

For each time step m ≥ 1 in the implicit time discretisation (2.4)-(2.6), given
time step size h > 0, and given um−1 ∈ X1 we define the discrete energy functional

Fm,h(u′, v′) := F (u′, E(v′)) +
1
2h
‖u′ − um−1‖2L2 .

Lemma 3.1 (Existence of a minimiser). For given um−1 ∈ X1 and any h > 0 the
functional Fm,h possesses a minimiser (um, vm) in X1 ×X2.

Proof. The proof is an application of the direct method in the calculus of variations.
Combined, (A4.2), (A4.3) imply thatW el(u′, E ′) ≥ C(|E ′|2−|u′|2)−C for a constant
C > 0. With Korn’s inequality, see for instance [12], this guarantees the coercivity
of F with respect to v ∈ X2. Similarly, the term γ2

∫
Ω

∑n
i=1 |∇ui|2 in the definition

of F guarantees with the Poincaré inequality the coercivity of F w.r.t. u ∈ X1.
Using (A2) on f1 and f2 we thus find that the functional Fm,h is weakly lower
semicontinuous and coercive in X1 ×X2 and hence possesses a minimiser. �

The following lemma shows that the energy functional Fm,h is the correct one
and corresponds to the implicit time discretisation (2.4)-(2.6).

Lemma 3.2 (Euler-Lagrange equations). The minimiser (um, vm) ∈ X1 × X2 of
Fm,h fulfills∫

Ω

um − um−1

h
· ξ +

∫
Ω

γ2∇um : ∇ξ +
∫

Ω

P (∂uf(um, E(vm))) · ξ = 0

for all ξ ∈ Y ∩ L∞(Ω; Rn),
(3.1)

∫
Ω

∂εW
el(um, E(vm)) : ∇ζ =

∫
Ω

S : ∇ζ for all ζ ∈ H1(Ω,RD). (3.2)

Proof. We choose directions ξ ∈ Y ∩ L∞(Ω; Rn) with
∑n

i=1 ξi = 0, ζ ∈ X2 ∩
L∞(Ω; RD) and determine variations of Fm,h(u, v) with respect to u and v for ξ, ζ.
The variation w.r.t. u is

lim
s→0

(
(Fm,h(um + sξ, vm)− Fm,h(um, vm))s−1

)
. (3.3)

Since f1 is convex, we have

f1(um) ≥ f1(um + sξ)− s∂uf
1(um + sζ) · ξ.
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This implies

f1(um + sξ) ≤ f1(um) + |s∂uf
1(um + sξ)| ‖ξ‖L∞

≤ f1(um) + |s| f1(um + sξ) ‖ξ‖L∞ + C|s|.

The last is by Assumption (A2.2) with δ = 1. Hence, for s small enough, we find∣∣∣f1(um + sξ)− f1(um)
s

∣∣∣ ≤ C(f1(um) + 1).

Lebesgue’s dominated convergence theorem and Assumption (A2.3) imply

lim
s→0

1
s

( ∫
Ω

(f1 + f2)(um + sξ)− (f1 + f2)(um)
)

=
∫

Ω

(∂uf
1 + ∂uf

2)(um) · ξ.

With the help of (A4.3) we find

lim
s→0

∫
Ω

s−1
(
W el(um + sξ, E(vm + sζ))−W el(um, E(vm))

)
=

∫
Ω

(
∂uW

el(um, E(vm))ξ + ∂εW
el(um, E(vm)) : ∇ζ

)
.

The variation of the quadratic form u 7→ 1
2h‖u

m − um−1‖2L2 yields

lim
s→0

(
s−1(2h)−1

(
‖um + sξ − um−1‖2L2 − ‖um − um−1‖2L2

))
=

(um − um−1

h
, ξ

)
L2 .

Taking into account that um − um−1 as well as ∇um : ∇ξ for every ξ lie on TΣ,
this finally yields (3.1). To derive (3.2) we vary Fm,h with respect to v. From the
symmetry of ∂εW

el and S we find (3.2). �

3.1. Uniform estimates. In the preceding section we proved the existence of a
discrete solution (um, vm) for 1 ≤ m ≤ M and arbitrary M ∈ N. We define the
piecewise constant extension (uM , vM ) of (um, vm)1≤m≤M by

(uM (t), vM (t)) := (um
M , vm

M ) := (um, vm) for t ∈ ((m− 1)h,mh]

with uM (0) = u0, and vM (0) given by Equation (2.6).
The piecewise linear extension (uM , vM ) for t = (βm + (1 − β)(m − 1))h with

appropriate β ∈ [0, 1] is given by the interpolation

(uM , vM )(t) := β(um
M , vm

M ) + (1− β)(um−1
M , vm−1

M ).

Lemma 3.3 (A-priori estimates). The following a-priori estimates are valid.

(a) For all M ∈ N and all t ∈ [0, T ] we have the dissipation inequality

F (uM , E(vM ))(t) +
1
2

∫
Ωt

|∂tuM |2 ≤ F (u0, E(v0)).

(b) There exists a constant C > 0 such that

sup
0≤t≤T

{
‖uM (t)‖H1 + ‖vM (t)‖H1

}
≤ C, (3.4)

sup
0≤t≤T

∫
Ω

f1(uM (t)) + ‖∂tuM‖L2(ΩT ) ≤ C. (3.5)
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Proof. Since (um, vm) is a minimiser of Fm,h, it holds for every m ≥ 1

F (um, E(vm)) +
1
2h
‖um − um−1‖2L2 ≤ F (um−1, E(vm−1)). (3.6)

After writing um − um−1 as a time derivative, iterating (3.6) yields

F (um
M , E(vm

M )) +
1
2

∫ mh

0

‖∂tuM‖2L2 dτ ≤ F (u0, E(v0)).

Using the assumptions (A2)-(A4) and with the help of the inequalities of Poincaré
and Korn, this proves the lemma. �

For the linear interpolation uM of um
M , the Euler-Lagrange equation (3.1) can be

rewritten as∫
Ω

∂tuM (t) · ξ +
∫

Ω

γ2∇uM (t) : ∇ξ +
∫

Ω

P (∂uf(uM (t), E(vM (t)))) · ξ = 0 (3.7)

for all ξ ∈ Y ∩ L∞(Ω; Rn), which holds for almost all t ∈ (0, T ). Equation (3.7)
controls the variation of uM in time and, together with the uniform estimates of
Lemma 3.3, allows to show compactness in time.

The following theorem is the first main result as it can also be used to proof
convergence of numerical solution schemes. In the next part we will show that this
limit is in fact a solution to (1.4)-(1.8).

Theorem 3.4 (Compactness of (uM , vM )). There exists a constant C > 0 such
that for all t1, t2 ∈ [0, T ]

‖uM (t2)− uM (t1)‖L2 ≤ C|t2 − t1|1/4.

Furthermore, there are subsequences (uM )M∈N and (vM )M∈N with N ⊂ N and
there are u ∈ L∞(0, T ; H1

0 (Ω)) and v ∈ L∞(0, T ; H1(Ω)) such that

(i) uM → u in C0,α([0, T ]; L2(Ω; Rn)) for all α ∈ (0, 1
4 ),

(ii) uM → u in L∞(0, T ; L2(Ω; Rn)),
(iii) uM → u almost everywhere in ΩT ,
(iv) uM

∗
⇀ u in L∞(0, T ; H1

0 (Ω; Rn)),
(v) vM → v in L2(0, T ; H1(Ω)),
(vi) ∂uf

k(uM ) → ∂uf
k(u) in L1(ΩT ) for k = 1, 2

as M ∈ N tends to infinity.

Proof. For chosen constant L > 0 let

PL(u′) :=

{
u′ if |u′| ≤ L,
u′

|u′|L if |u′| > L.
(3.8)

In (3.7) we test with ξ := PL(uM (t2) − uM (t1)), where t1, t2 ∈ [0, T ] with t1 < t2.
After integration in time from t1 to t2 we obtain

‖uM (t2)− uM (t1)‖2L2 +
∫ t2

t1

∫
Ω

γ2∇uM (t) : ∇(uM (t2)− uM (t1)) dt

+
∫ t2

t1

∫
Ω

P (∂uf(uM (t), E(vM (t))))PL(uM (t2)− uM (t1)) dt = 0.
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The um
M are uniformly bounded in H1(Ω; Rn), therefore the linear interpolants uM

are uniformly bounded in L∞(0, T ; H1(Ω; Rn)). Thus we obtain

‖uM (t2)− uM (t1)‖2L2

≤ C‖uM‖L∞(H1)

∫ t2

t1

(
γ2‖∇uM (t)‖L2 + ‖(∂uf

1 + ∂uf
2)(uM (t))‖L2

)
dt

+ C‖PLuM‖L∞(ΩT )

∫ t2

t1

‖∂uW
el(uM (t), vM (t))‖L1 dt

≤ C‖uM‖L∞(H1) (t2 − t1)1/2
(
‖∇u‖L2(ΩT ) + ‖(∂uf

1 + ∂uf
2)(u)‖L2(ΩT )

)
+ C‖PLuM‖L∞(ΩT )(t2 − t1)‖∂uW

el(u,v)‖L∞(L1).

Employing the a-priori estimate (3.4) and with the help of (A2.2), (A2.3) and (A4.3)
we have proved

‖uM (t2)− uM (t1)‖L2 ≤ C|t2 − t1|1/4 for all t1, t2 ∈ [0, T ]

for a positive constant C. This is the equicontinuity of (uM )M∈N.
The boundedness of (uM ) in L∞(0, T ; H1(Ω)) together with the fact that H1 is

compactly embedded in L2 yields with the Arzelà-Ascoli theorem statement (i).
The claims (ii), (iii) and (iv) are shown as follows. Choose for t ∈ [0, T ] values

m ∈ {1, . . . ,M} and β ∈ [0, 1] such that t = (βm + (1 − β)(m − 1))h. From the
definition of u we get at once

‖uM (t)− uM (t)‖L2 = ‖βum
M + (1− β)um−1

M − um
M‖L2

= (1− β)‖um
M − um−1

M ‖L2 ≤ Ch1/4.

This tends to zero as M becomes infinite. With the help of (i), this proves (ii).
Since for a subsequence we have convergence almost everywhere, (iii) is proved, too.
Claim (iv) is a direct consequence of Estimate (3.4) which gives the boundedness
of uM in L∞(0, T ; H1(Ω; Rn)).

The proof of (v) is contained in [17, Lemma 3.5].
To prove (vi), we first notice that by Assumption (A2), ∂uf

1 is a continuous
function. Hence, by (iii),

∂uf
1(uM ) → ∂uf

1(u) almost everywhere in ΩT .

The growth condition of Assumption (A2.2) on f1 now yields that for arbitrary
δ > 0 and all measurable E ⊂ Ω∫

E

|∂uf
1(uM )| ≤ δ

∫
E

f1(uM ) + Cδ|E| ≤ δC + Cδ|E|.

Therefore,
∫

E
|∂uf

1(uM )| → 0 as |E| → 0 uniformly in M and by Vitali’s theorem
we find ∂uf

1(uM ) → ∂uf
1(u) in L1(ΩT ) as M ∈ N tends to infinity.

Assumption (A2.3) yields with Lebesgue’s dominated convergence theorem ac-
cordingly

∂uf
2(uM ) → ∂uf

2(u).

�
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4. Global existence of solutions I

Theorem 4.1 (Global existence of solutions for polynomial free energy). Let the
assumptions of Section 2.3 hold. Then there exists a weak solution (u, v) of (1.4)-
(1.8) in the sense of Section 2.1 such that

(i) u ∈ C0, 1
4 ([0, T ]; L2(Ω; Rn)),

(ii) ∂tu ∈ L2(ΩT ; Rn),
(iii) v ∈ L2(0, T ; H1(Ω)).

Proof. We are going to prove that (u, v) introduced in Theorem 3.4 is the desired
weak solution in the sense of Section 2.1. From Equation (3.7) we learn

−
∫

ΩT

∂tξ · (uM − u0) +
∫

ΩT

γ2∇uM : ∇ξ +
∫

ΩT

P (∂uf(uM , E(vM ))) · ξ = 0

for all ξ ∈ L2(0, T ; Y ) with ∂tξ ∈ L2(ΩT ) and ξ(T ) = 0. In this equation we
pass to the limit M →∞ and exploit Theorem 3.4. The convergence of the linear
expressions is clear. The convergence∫

ΩT

∂uf(uM , E(vM )) · ξ →
∫

ΩT

∂uf(u, E(v)) · ξ

follows similar to the proof of Theorem 3.4 with Vitali’s theorem by using the growth
condition (A2.2) on f1, (A2.3), Estimate (3.5), the almost everywhere convergence
of uM and the boundedness of ξ. The generalised Lebesgue convergence theorem,
the growth condition (A4.3), and the strong convergence of ∇vM and uM in L2(Ω)
yield that we can pass to the limit in

∫
Ω
∂uW

el(uM , E(vM )) · ξ. This implies (2.2).
Similarly we can pass to the limit in (3.2) and obtain (2.3). This is done in the

same way as before by using once more growth condition (A4.3) and the strong
convergence of ∇vM and uM in L2(Ω). �

5. Uniqueness of the solution

We show uniqueness of a solution to (1.4)-(1.6) under the simplifying assumption
that

W el(u′, E ′) =
1
2
(E ′ − ε(u′)) : C(E ′ − ε(u′)), (5.1)

with a symmetric constant positive definite tensor C and with ε(u′) defined by
(1.3).

The proof of the following theorem is straightforward and uses an integration in
time method and a Gronwall argument.

Theorem 5.1 (Uniqueness of solutions to the elastic Allen-Cahn system). Let W el

be given by (5.1). Then the solution pair (u, v) obtained in Theorem 4.1 is unique
in the spaces stated in this theorem.

Proof. If there are two pairs of solutions (u1, v1), (u2, v2) to the equations (1.4)-
(1.6), it holds for k = 1, 2

∂tu
k = γ24uk − P (∂uf

1(uk) + ∂uf
2(uk))− P ((εi : C(ε(vk)− ε(uk)))1≤i≤n),

0 = div(C(E(vk)− ε(uk))).
(5.2)
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Let u := u2 − u1 and v := v2 − v1. Then (u, v) solves the weak equation∫
ΩT

∂tu · ξ = −
∫

ΩT

γ2∇u : ∇ξ −
∫

ΩT

(∂u(f1 + f2)(u2)− ∂u(f1 + f2)(u1)) · Pξ

−
∫

ΩT

(εi : C(E(v)− ε(u)))1≤i≤n · Pξ

(5.3)
for every ξ ∈ L2(0, T ; Y ) ∩ L∞(ΩT ; Rn) with ∂tξ ∈ L2(ΩT ) and ξ(T ) = 0. Let
t0 ∈ (0, T ). We choose PL(u2 − u1)X(0,t0) as a test function in the difference of the
weak formulations of (5.2), where L > 0 and PL(u) is defined as in (3.8). In the
limit L→∞ the terms with PL(u) are replaced by u and we find∫

Ωt0

C(E(v)− ε(u)) : E(v) = 0. (5.4)

Similarly we choose ξ := PL(u2−u1)X(0,t0) as test function in (5.3) and in the limit
L→∞ we obtain with the help of (5.4)

1
2

∫
Ωt0

d

dt
|u|2 = −

∫
Ωt0

γ2∇u : ∇u−
∫

Ωt0

(E(v)− ε(u)) : C(E(v)− ε(u))

−
∫

Ωt0

(∂u(f1 + f2)(u2)− ∂u(f1 + f2)(u1)) · (u2 − u1).

The convexity of f1 yields

∂u(f1(u2)− f1(u1)) · (u2 − u1) ≥ 0

and due to u(t = 0) = 0 we end up with

1
2

∫
Ωt0

d

dt
|u|2 =

1
2
‖u(t0)‖2L2 ≤

∫
Ω

(∂uf
2(u2)− ∂uf

2(u1)) · u.

With Gronwall’s inequality, as f2 is Lipschitz continuous, and since t0 was arbitrary,
we find u ≡ 0 in ΩT which leads to∫

ΩT

E(v) : CE(v) = 0.

With Korn’s inequality this yields v ≡ 0 in the whole of ΩT . �

6. Logarithmic free energy

In the upcoming three sections we are going to extend Theorem 4.1 to logarithmic
free energies. The results will in particular be valid for the free energy functional,

f(u′, E(v′)) = kBθ
n∑

j=1

u′j lnu′j +
1
2
u′ ·Au′ +W el(u′, E(v′)) (6.1)

where θ denotes the (fixed) temperature and kB the Boltzmann constant. We will
exploit this particular structure of f in the sequel.

As is well known the mathematical discussion is much more subtle, f becomes
singular as one uj approaches 0. To show that 0 < uj < 1 for every j, we approxi-
mate f for δ > 0 by some fδ that fulfills the requirements of Section 2.3 and find
suitable a-priori estimates that allow to pass to the limit δ → 0.
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Despite of the mathematical difficulties, the logarithmic free energy guarantees
that the vector u of order parameters lies in the transformed Gibbs simplex

G := Σ ∩
{
u′ ∈ Rn : u′j ≥ 0 for 1 ≤ j ≤ n and

n∑
i=1

u′i = 1
}

and is therefore physically meaningful.
The assumptions (A2) and (A3) of Section 2.3 are replaced by the following

assumptions:
(A2’) f is of the form (6.1), where A ∈ Rn×n is a symmetric positive definite

matrix and θ > 0 the constant temperature.
(A3’) The initial value u0 = (u01, . . . , u0n) ∈ X1 fulfills u0 ∈ G almost everywhere

and ∫
Ω

u0j > 0 for 1 ≤ j ≤ n.

The other assumptions are unchanged and continue to hold.
To proceed, we define for d ∈ R and given δ > 0 the regularised free energy

functional

ψδ(d) :=

{
d ln d for d ≥ δ,

d ln δ − δ
2 + d2

2δ for d < δ.

The regularised free energy functional is defined in such a way that ψδ ∈ C2 and
the derivative (ψδ)′ is monotone. This definition goes back to the work [13] by
Elliott and Luckhaus.

Due to Assumption (A2’), this leads to

fδ(u, E(v′)) = f1,δ(u) + f2(u) +W el(u′, E(v′)), (6.2)

f1,δ(u′) := kBθ

n∑
j=1

ψδ(u′j), (6.3)

f2(u′) :=
1
2
u′ ·Au′. (6.4)

As can be easily checked, f1,δ, f2 fulfill the assumptions of Section 2.3.

6.1. Uniform estimates. The following lemma was first stated and proved in [13]
for logarithmic free energies typical for the Cahn-Hilliard system. The proof of
Elliott and Luckhaus can be directly transferred to the situation considered here
with the regularised free energy defined by (6.1).

Lemma 6.1 (Uniform bound from below on fδ). There exists a δ0 > 0 and a
K > 0 such that for all δ ∈ (0, δ0)

f1,δ(u) + f2(u) ≥ −K for all u ∈ Σ.

Now we summarise the results for the regularised problem proved in Lemma 3.3
and Theorem 3.4. Lemma 6.2 also states the boundedness and convergence of the
numerical solutions as δ ↘ 0.

Lemma 6.2 (A-priori and compactness results for regularised problem).
(a) For all δ ∈ (0, δ0) there exists a weak solution (uδ, vδ) of (1.4)-(1.8) with a loga-
rithmic free energy that satisfies (A2’), (A3’), (A4)-(A6) in the sense of Section 2.1.
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(b) There exists a constant C > 0 independent of δ such that for all δ ∈ (0, δ0)

sup
t∈[0,T ]

{
‖uδ(t)‖H1 + ‖vδ(t)‖H1

}
≤ C,

sup
t∈[0,T ]

∫
Ω

f1,δ(uδ(t)) + ‖∂tu
δ‖L2(ΩT ) ≤ C,

‖uδ(t2)− uδ(t1)‖L2 ≤ C|t2 − t1|1/4 for all t1, t2 ∈ [0, T ].

(c) One can extract a subsequence (uδ)δ∈R, where R ⊂ (0, δ0) is a countable set
with zero as the only accumulation point such that

(i) uδ → u in C0,α([0, T ]; L2(Ω; Rn)) for all α ∈ (0, 1
4 ),

(ii) uδ → u in L∞(0, T ; L2(Ω; Rn)),
(iii) uδ → u almost everywhere in ΩT ,
(iv) uδ ∗

⇀ u in L∞(0, T ; H1
0 (Ω; Rn)),

(v) vδ → v in L2(0, T ; H1(Ω))
as δ ∈ R tends to zero.

Proof. Using Lemma 6.1, the regularised problem satisfies the assumptions of Sec-
tion 2.3 and by Theorem 4.1, a weak solution for fixed δ ∈ (0, δ0) exists. This
proves (a). Lemma 3.3 and Theorem 3.4 imply directly (b). From Lemma 3.3 it
follows that F δ(u0, E(v0)) does not depend on δ, hence the constant on the right
hand side does not depend on δ. Theorem 3.4 leads to Assertion (c). �

7. Higher integrability for the logarithmic free energy

Since ϕδ := (ψδ)′ will be singular as δ → 0 we introduce for r > 0

ϕδ
r(d) :=

{
ϕδ(d)|ϕδ(d)|r−1 if ϕδ(d) 6= 0,
0 if ϕδ(d) = 0.

By definition, ϕδ
r ∈ C0(R).

For 0 < r < 1, ϕδ
r is not differentiable at the zero point of ϕδ. To overcome

this difficulty, for u > 0 we introduce the function ϕδ,%
r with ϕδ,%

r = ϕδ
r in R \ [0, 1]

and define ϕδ,%
r in [0, 1] such that ϕδ,%

r is a C1 function, monotone increasing and
ϕδ,%

r → ϕδ
r in C0(R) as u↘ 0.

First we need a regularity result on the strain tensor. The following Lemma is
taken from [17] where it is also proved.

Lemma 7.1 (Higher integrability of the strain tensor). Suppose that u ∈ Lσ(Ω,Rn)
for a σ > 2. Then there exists a p ∈ (2, σ] independent of u such that for all
v ∈ H1(Ω,Rn) which fulfill for all ζ ∈ H1(Ω,Rn) the identity∫

Ω

∂uW
el(u, E(v)) : ∇ζ =

∫
Ω

S : ∇ζ

the integrability property ∇u ∈ Lp(Ω,RD×D) holds. In particular,

‖∇v‖Lp(Ω,RD×D) ≤ C
(
‖∇v‖L2(Ω,RD×D) + ‖u‖Lp(Ω,Rn) + 1

)
independent of u.

Even though by construction 0 < uj < 1 almost everywhere, it might still happen
that for the limit the sets {x ∈ Ω |uj(x) = 0} and {x ∈ Ω |uj(x) = 1} have non-zero
Lebesgue measure and that the entropic terms in the free energy density become
singular. To show that this is not the case we need the following
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Lemma 7.2 (Integrability of the regularised free energy). There exists a q > 1 and
a constant C > 0 such that for all δ ∈ (0, δ0)

‖ϕδ(uδ
j)‖Lq(ΩT ) ≤ C for all 1 ≤ j ≤ n. (7.1)

Proof. Starting point is the weak formulation (2.2)∫
ΩT

kBθP (ϕδ(uδ
i ))1≤i≤n · ξ

= −
∫

ΩT

∂tu
δ · ξ −

∫
ΩT

γ2∇uδ : ∇ξ −
∫

ΩT

PAuδ · ξ −
∫

ΩT

P∂uW
el(uδ, E(vδ)) · ξ

(7.2)
which holds for all ξ ∈ L2(0, T ; H1

0 (Ω; Rn)) with ∂tξ ∈ L2(ΩT ), ξ(T ) = 0. We
want to use Lemma 7.1 and notice that due to the Sobolev embedding theorem
uδ ∈ L∞(0, T ; Ls(Ω)), where s = 2D

D−2 if D ≥ 3 and s ∈ [1,∞) if D = 2 and
uδ ∈ L∞(ΩT ) for D = 1. So we find ∇uδ ∈ L∞(0, T ; Lp(Ω)) for some p > 2. We
choose p such that p ∈ (2, 4] and such that p ∈ (2, 2D

D−2 ) if D ≥ 3. This means that
also test functions ξ ∈ L2(0, T ; H1(Ω,RD))∩L

p
p−2 (ΩT ,Rn) are allowed. So we can

test (7.2) with ξ := [ϕδ,%
r (uδ

j)]1≤j≤n for 0 < r ≤ 1. A reformulation of the left hand
side yields

kBθP (ϕδ(uδ
i )1≤i≤n) · (ϕδ,%

r (uδ
i )1≤i≤n)

= kBθ
n∑

j=1

(
ϕδ(uδ

j)−
1
n

n∑
i=1

ϕδ(uδ
i )

)
ϕδ,%

r (uδ
j)

= kBθ
1
n

n∑
i,j=1

(
ϕδ(uδ

i )− ϕδ(uδ
j)

)
ϕδ,%

r (uδ
i )

= kBθ
1
n

[ n∑
i<j

(
ϕδ(uδ

i )− ϕδ(uδ
j)

)
ϕδ,%

r (uδ
i ) +

n∑
i>j

(
ϕδ(uδ

i )− ϕδ(uδ
j)

)
ϕδ,%

r (uδ
j)

]
= kBθ

1
n

n∑
i<j

(
ϕδ(uδ

i )− ϕδ(uδ
j)

)(
ϕδ,%

r (uδ
i )− ϕδ(uδ

j)
)
.

Due to (ϕδ,%
r )′ ≥ 0 we furthermore find

−γ2

∫
ΩT

n∑
i=1

∇uδ
i · ∇ϕδ,%

r (uδ
i ) ≤ 0.

Using the Hölder inequality, (7.2) implies

kBθ
1
n

n∑
i<j

(
ϕδ(uδ

i )− ϕδ(uδ
j)

)(
ϕδ,%

r (uδ
i )− ϕδ(uδ

j)
)

≤ C
(
‖∂tu

δ‖L2(ΩT ) + ‖uδ‖L2(ΩT )

)
max

1≤i≤n
‖ϕδ,%

r (uδ
i )‖L2(ΩT )

+ C
( ∫

ΩT

|∂uW
el(uδ, E(vδ))|p/2

) 2
p
(

max
1≤i≤n

∫
ΩT

|ϕδ,%
r (uδ

i )|
p

p−2

)1− 2
p

.

Now we let %↘ 0 and employ the estimates of Lemma 6.2 and the regularity result
of Lemma 7.1. With Young’s inequality we can deduce for any α > 0 the existence
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of a constant Cα with

kBθ
1
n

n∑
i<j

(
ϕδ(uδ

i )− ϕδ(uδ
j)

)(
ϕδ(uδ

i )− ϕδ(uδ
j)

)
≤ α

(
max

1≤i≤n

∫
ΩT

|ϕδ(uδ
i )|

p
p−2

)
+ Cα.

(7.3)
A direct computation exploiting the monotonicity of ϕδ and ϕδ,%

r finally yields
1
2

max
1≤i≤n

|ϕδ(uδ
i )|1+r ≤ C

∑
i<j

(
ϕδ(uδ

i )− ϕδ(uδ
j)

)(
ϕδ,%

r (uδ
i )− ϕδ,%

r (uδ
j)

)
.

This last result in combination with (7.3), after choosing α sufficiently small and
setting r = p−2

p ends the proof. �

8. Global existence of solutions II

Theorem 8.1 (Global existence of solutions for logarithmic free energy). Let the
assumptions of Section 6 hold. Then there exists a weak solution (u, v) in the
sense of Section 2.1 of the sharp interface equations (1.4)-(1.8) with logarithmic
free energy such that

(i) u ∈ C0, 1
4 ([0, T ]; L2(Ω; Rn)),

(ii) ∂tu ∈ L2(ΩT ; Rn),
(iii) v ∈ L∞(0, T ; H1(Ω,RD)),
(iv) lnuj ∈ L1(ΩT ) for 1 ≤ j ≤ n and 0 < uj < 1 almost everywhere.

Proof. We pass to the limit δ ↘ 0 in the weak formulation (2.2), (2.3) with f
defined by (6.2) and have to show that (u, v) found in Lemma 6.2 is a solution.
The limit for (2.3) can be justified in the same way as in the proof of Theorem 4.1.
It remains to control the limit δ ↘ 0 in (2.2),

−
∫

ΩT

∂tξ · (uδ − u0) + γ2

∫
ΩT

∇uδ : ∇ξ +
∫

ΩT

kBθP (ϕδ(uδ
i )1≤i≤n) · ξ

+
∫

ΩT

P (Auδ + ∂uW
el(uδ, E(vδ))) · ξ = 0.

The arguments of Theorem 4.1 can be reused except for kBθP (ϕδ(uδ
i )1≤i≤n) · ξ.

Now we will show that ϕδ(uδ
k) converges to ϕ(uk) almost everywhere in ΩT .

From the almost everywhere convergence of uδ
k to uk, (7.1) and the Lemma of

Fatou we find ∫
ΩT

lim inf
δ↘0

|ϕδ(uδ
k)|q ≤ lim inf

δ↘0

∫
ΩT

|ϕδ(uδ
k)| ≤ C.

Next we show that

lim
δ↘0

ϕδ(uδ
k) =

{
ϕ(uk) if limδ↘0 u

δ
k = uk ∈ (0, 1),

∞ if limδ↘0 u
δ
k = uk /∈ (0, 1)

(8.1)

almost everywhere in ΩT . For a point (x, t) ∈ ΩT with limδ↘0 u
δ
k(x, t) = uk(x, t)

we obtain from ϕδ(d) = ϕ(d) for d ≥ δ that ϕδ(uδ(x, t)) → ϕ(u(x, t)) as δ ↘ 0. In
the second case of a point (x, t) ∈ ΩT with limδ↘0 u

δ
k(x, t) = uk(x, t) ≤ 0, we have

that for δ small enough,

|ϕδ(uδ
k(x, t))| ≥ ϕ(max{δ, uδ

k(x, t)}) →∞ for δ ↘ 0.

This proves (8.1).



16 T. BLESGEN, U. WEIKARD EJDE-2005/89

From (8.1) and the higher integrability (7.1) we deduce 0 < uk < 1 almost
everywhere,

∫
ΩT
|ϕ(uk)|q ≤ C and ϕδ(uδ

k) → ϕ(uk) almost everywhere. Since
q > 1, with Vitali’s theorem we find

ϕδ(uδ
k) → ϕ(uk) in L1(ΩT ).

So we can pass to the limit in (2.3). �
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