
Electronic Journal of Differential Equations, Vol. 2007(2007), No. 163, pp. 1–14.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

NON-OSCILLATORY BEHAVIOUR OF HIGHER ORDER
FUNCTIONAL DIFFERENTIAL EQUATIONS

OF NEUTRAL TYPE

RADHANATH RATH, NIYATI MISRA,
PRAYAG PRASAD MISHRA, LAXMI NARAYAN PADHY

Abstract. In this paper, we obtain sufficient conditions so that the neutral

functional differential equationˆ
r(t)[y(t)− p(t)y(τ(t))]′

˜(n−1)
+ q(t)G(y(h(t))) = f(t)

has a bounded and positive solution. Here n ≥ 2; q, τ, h are continuous func-

tions with q(t) ≥ 0; h(t) and τ(t) are increasing functions which are less than
t, and approach infinity as t → ∞. In our work, r(t) ≡ 1 is admissible, and

neither we assume that G is non-decreasing, that xG(x) > 0 for x 6= 0, nor

that G is Lipschitzian. Hence the results of this paper generalize many results
in [1] and [4]–[8].

1. Introduction

In this paper we find sufficient conditions for the neutral delay differential equa-
tion (NDDE in short), of order n ≥ 2,[

r(t)[y(t)− p(t)y(τ(t))]′
](n−1) + q(t)G(y(h(t))) = f(t) (1.1)

to have a bounded positive solution which does not tend to zero as t → ∞. Here
q, h, τ ∈ C([0,∞), R) such that q(t) ≥ 0, h(t) and τ(t) are increasing functions which
are less thatn or equal to t, and approach ∞ as t →∞, r ∈ C(n−1)([0,∞), (0,∞)),
p ∈ C(n)([0,∞), R), G ∈ C(R, R).

We need some of the following assumptions in the sequel.
(H1) There exists a bounded function F (t) such that F (n−1)(t) = f(t).
(H2)

∫∞
t0

tn−2q(t)dt < ∞.
(H3)

∫∞
t0

dt
r(t) = ∞.

(H4)
∫∞

t0
dt

r(t) < ∞.
(H5)

∫∞
t0

( 1
r(t)

∫∞
t

(s− t)n−2q(s)ds)dt < ∞.

Remark 1.1. Since r(t) > 0, it follows that
(i) either (H3) or (H4) holds exclusively.
(ii) If (H3) holds then (H5) implies (H2) but not conversely.
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(iii) If (H4) holds then (H2) implies (H5) but not conversely.

The study of oscillation and non-oscillation properties of neutral delay differential
equations has attracted the attention of many authors all over the world during the
last two decades.In [1, 4, 5, 6, 7, 8] the authors have proved the existence of a
bounded positive solution of neutral delay differential equations

(y(t)− p(t)y(t− β))′ + q(t)G(y(t− δ)) = f(t), (1.2)

(y(t)− p(t)y(t− β))′′ + q(t)G(y(t− δ)) = f(t), , (1.3)

(y(t)− p(t)y(t− β))(n) + q(t)G(y(t− δ)) = f(t), (1.4)

where β and δ are constants. For that purpose the authors assume the following
hypothesis.

(H6) There exists a function F (t) such that F (t) → 0 as t →∞ and Fn(t) = f(t).
(H7)

∣∣ ∫∞
t0

tn−1f(t)dt
∣∣ < ∞.

(H8) G is Lipschitzian in every interval of the form [a, b], with 0 < a < b.
(H9) xG(x) > 0 for x 6= 0, and G is non-decreasing.

It is obvious that (H6) ⇔ (H7) and (H1) is weaker than both (H6) and (H7).In
(1.1) if we put r(t) = 1 , τ(t) = t− β, h(t) = t− δ then it reduces to (1.4). We find
almost no result with the NDDE (1.1) in the literature. For example if τ(t) = t/2
and h(t) = t/3 then the existing results fail to answer any thing. Since we formulate
our results with (H1) and do not assume either (H8) or (H9), therefore our work
extends, improves and generalizes some of the results of [1, 4, 5, 6, 7, 8]. While
studying the existence of a positive solution of neutral delay differential equation
(1.4) for n ≥ 2, the authors take p(t) in different ranges. But some how we find no
result when p(t) ≡ −1, in these papers. However, in this work we consider p(t) in
different ranges including p(t) = ±1. Our results hold good when n is both odd or
even but ≥ 2.

Let Ty > 0 and T0 = min{h(Ty), τ(Ty)}. Suppose φ ∈ C([T0Ty], R). By a
solution of (1.1), we mean a real valued continuous function y ∈ C(n)([T0,∞), R)
such that y(t) = φ(t) for T0 ≤ t ≤ Ty and y(t) − p(t)y(t − τ) is differentiable,
r(t)(y(t)− p(t)y(t− τ))′ is (n− 1) times further differentiable and then for t ≥ Ty

the neutral equation (1.1) is satisfied.Such a solution is said to be oscillatory if it
has arbitrarily large zeros, otherwise it is called non-oscillatory.

So far as existence and uniqueness of solutions of (1.1) are concerned one may
refer [3], but in this work we assume the existence of solutions of (1.1) and study
its non-oscillatory behaviour.

2. Main Results

In this section we assume that there exists positive real numbers p, c, and d such
that p(t) satisfies one of the following conditions.

(A1) 0 ≤ p(t) ≤ p < 1.
(A2) −1 < −p ≤ p(t) ≤ 0.
(A3) −d < p(t) ≤ −c < −1.
(A4) 1 < c ≤ p(t) < d.
For our work we need the following Lemma from [3].

Lemma 2.1 (Krasnoselskiis Fixed point Theorem [2]). Let X be a Banach space.
Let Ω be a bounded closed convex subset of X and let S1, S2 be maps of Ω into X



EJDE-2007/163 NON-OSCILLATORY BEHAVIOUR 3

such that S1x + S2y ∈ Ω for every pair x, y ∈ Ω. If S1 is a contraction and S2 is
completely continuous, then the equation

S1x + S2x = x

has a solution in Ω.

Theorem 2.2. Let (A1), (H1), (H4), (H5) hold. Then there exists a bounded
solution of (1.1) which is bounded below by a positive constant i.e there exists a
solution of (1.1) which neither oscillates nor tends to zero as t →∞.

Proof. Since G ∈ C(R, R), then let

µ = max{G(x) :
3
5
(1− p) ≤ x ≤ 1}. (2.1)

From (H1) , we find α > 0 and t1 > t0 > 0 such that

|F (t)| < α for t ≥ t1. (2.2)

Then using (H4) we find t2 > t1 such that t ≥ t2 implies∫ ∞

t

1
r(s)

ds <
1− p

10 α
. (2.3)

From (2.2) and (2.3) it follows that for t > t3 > t2∫ ∞

t

|F (s)|
r(s)

ds <
1− p

10
. (2.4)

From (H5) we find t4 > t3 such that t > t4 implies

µ

(n− 2)!

∫ ∞

t

1
r(s)

∫ ∞

s

(u− s)n−2q(u)du ds <
1− p

10
. (2.5)

Let T > t4 and T0 = min{τ(T ), h(T )}. Then for t ≥ T , (2.4) and (2.5) hold.
Let X = C([T0,∞), R) be the set of all continuous functions with norm ‖x‖ =
supt≥T0

|x(t)| < ∞. Clearly X is a Banach space. Let

S =
{
u ∈ BC([T0,∞), R) :

3
5
(1− p) ≤ u(t) ≤ 1

}
, (2.6)

with the supremum norm ‖u‖ = sup{|u(t)| : t ≥ T0}. Clearly S is a closed, bounded
and convex subset of C([T0,∞), R). Define two maps A and B : S → X as follows.
For x ∈ S,

Ax(t) =

{
Ax(T ), t ∈ [T0, T ];
p(t)x(τ(t)) + 4(1−p)

5 , t ≥ T,
(2.7)

and

Bx(t) =


Bx(T ), t ∈ [T0, T ];
(−1)n−1

(n−2)!

∫∞
t

1
r(s)

∫∞
s

(u− s)n−2q(u)G(x(h(u)))du ds

−
∫∞

t
F (s)
r(s) ds, t ≥ T.

(2.8)
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First we show that if x, y ∈ S then Ax + By ∈ S. In fact, for every x, y ∈ S and
t ≥ T , we get

(Ax)(t) + (By)(t) ≤ p(t)x(τ(t)) +
4(1− p)

5
−

∫ ∞

t

F (s)
r(s)

ds

+
(−1)n−1

(n− 2)!

∫ ∞

t

1
r(s)

∫ ∞

s

(u− s)n−2q(u)G(y(h(u)))du ds

≤ p +
4(1− p)

5
+

1− p

10
+

1− p

10
≤ 1.

On the other hand for t ≥ T ,

(Ax)(t) + (By)(t) ≥ 4(1− p)
5

−
∫ ∞

t

F (s)
r(s)

ds

+
(−1)n−1

(n− 2)!

∫ ∞

t

1
r(s)

∫ ∞

s

(u− s)n−2q(u)G(y(h(u)))du ds

≥ 4(1− p)
5

− α

∫ ∞

t

1
r(s)

ds

− µ

(n− 2)!

∫ ∞

t

1
r(s)

∫ ∞

s

(u− s)n−2q(u)du ds

≥ 4(1− p)
5

− 1− p

10
− 1− p

10
=

3
5
(1− p).

Hence
3
5
(1− p) ≤ (Ax)(t) + (By)(t) ≤ 1

for t ≥ T . So that Ax + By ∈ S for all x, y ∈ S.
Next we show that A is a contraction in S. In fact, for x, y ∈ S and t ≥ T , we

have

|(Ax)(t)− (Ay)(t)| ≤ |p(t){x(τ(t))− y(τ(t))}|
≤ |p(t)||x(τ(t))− y(τ(t))|
≤ p ‖ x− y ‖ .

Since 0 < p < 1, we conclude that A is a contraction mapping on S.
We now show that B is completely continuous. First, we shall show that B is

continuous. Let xk = xk(t) ∈ S for k = 1, 2, . . . . be such that supt≥T |xk(t) −
x(t)| → 0 as k →∞.Because S is closed, x = x(t) ∈ S. For t ≥ T , we have

|(Bxk)(t)− (Bx)(t)|

≤ 1
(n− 2)!

∫ ∞

t

1
r(s)

∫ ∞

s

(u− s)n−2q(u)|G(x(h(u)))−G(xk(h(u)))|du ds.

Since for all t ≥ T, xk(t), k = 1, 2..., tend uniformly to x(t) as t → ∞ and G is
continuous, therefore |G(x(h(u)))−G(xk(h(u)))| → 0 as k →∞. We conclude that
limk→∞ |(Bxk)(t)− (Bx)(t)| = 0. This means that B is continuous.

Next, we show that BS is relatively compact. It suffices to show that the family
of functions {Bx : x ∈ S} is uniformly bounded and equicontinuous on [T0,∞).
The uniform boundedness is obvious. For the equicontinuity, according to Levitan’s
result we only need to show that, for any given ε > 0, [T0,∞) can be decomposed
into finite subintervals in such a way that on each subinterval all functions of the
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family have change of amplitude less than ε. From (H5) and (H4), it follows that
for any ε > 0,we can find T ∗ ≥ T large enough so that

µ

(n− 2)!

∫ ∞

T∗

1
r(s)

∫ ∞

s

(u− s)n−2q(u)du ds <
ε

4
,

and

α

∫ ∞

T∗

ds

r(s)
<

ε

4
.

Then for x ∈ S and t2 > t1 ≥ T ∗,

|(Bx)(t2)− (Bx)(t1)|

=
∣∣∣ (−1)n

(n− 2)!

∫ ∞

t2

1
r(s)

∫ ∞

s

(u− s)n−2q(u)G(x(h(u)))du ds−
∫ ∞

t2

F (s)
r(s)

ds

− (−1)n

(n− 2)!

∫ ∞

t1

1
r(s)

∫ ∞

s

(u− s)n−2q(u)G(x(h(u)))du ds +
∫ ∞

t1

F (s)
r(s)

ds
∣∣∣

≤ µ

(n− 2)!

∫ ∞

t1

1
r(s)

∫ ∞

s

(u− s)n−2q(u)du ds + α

∫ ∞

t1

ds

r(s)

+
µ

(n− 2)!

∫ ∞

t2

1
r(s)

∫ ∞

s

(u− s)n−2q(u)du ds + α

∫ ∞

t2

ds

r(s)

< 4
ε

4
= ε.

For x ∈ S and T ≤ t1 < t2 ≤ T ∗,

|(Bx)(t2)− (Bx)(t1)|

≤ µ

(n− 2)!

∫ t2

t1

1
r(s)

∫ ∞

s

(u− s)n−2q(u) du ds + α

∫ t2

t1

1
r(s)

ds

≤ max
T≤s≤T∗

[ µ

(n− 2)!r(s)

∫ ∞

s

(u− s)n−2q(u) du +
α

r(s)

]
(t2 − t1).

Thus there exists a δ > 0 such that

|(Bx)(t2)− (Bx)(t1)| < ε if 0 < |t2 − t1| < δ.

For any x ∈ S, T0 ≤ t1 < t2 ≤ T , it is easy to see that

|(Bx)(t2)− (Bx)(t1)| = 0 < ε.

Therefore, {Bx : x ∈ S} is uniformly bounded and equicontinuous on [T0,∞) and
hence BS is relatively compact. By Lemma 2.1, there is an x0 ∈ S such that
Ax0 +Bx0 = x0. It is easy to see that x0(t) is the required non oscillatory solution
of the equation (1.1), which is bounded below by the positive constant 3(1−p)

4 . �

Corollary 2.3. Let (A1), (H1), (H2), (H4) hold. Then there exists a bounded
solution of (1.1) which is bounded below by a positive constant.

Proof. By remark 1.1(iii) (H2) and (H4) imply (H5). Hence the proof follows from
the proof of the above theorem,. �

Theorem 2.4. Let (A1), (H3), (H5) hold. Suppose there exists α > 0 such that
for large t

r(t) >
1
α

, (2.9)
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and ∣∣ ∫ ∞

0

F (t)dt
∣∣ < ∞ with Fn−1(t) = f(t). (2.10)

Then there exists a bounded solution of (1.1) which is bounded below by a positive
constant.

Proof. Using (2.9) and (2.10) we can get (2.4). Rest of the proof is similar to that
of the Theorem 2.2. �

Corollary 2.5. Let (A1), (H5), (2.9), (2.10) hold. Then there exists a bounded
solution of (1.1) which is bounded below by a positive constant.

Proof. By Remark 1.1(i) we have either (H3) holds or (H4) holds. If (H3) holds
then we proceed as in the proof of Theorem 2.4. On the other hand if (H4) holds
then from (2.9) and (2.10) we get (2.4) and then proceed as in the proof of Theorem
2.2 to get the desired result. �

Remark 2.6. If in (H5) we take r(t) ≡ 1 then it reduces to∫ ∞

t0

∫ ∞

t

(u− t)n−2q(u)du < ∞. (2.11)

The above condition is required for our next result which follows from Corollary
2.5 when r(t) ≡ 1.

Corollary 2.7. Inequality (2.11) is a sufficient condition for the nth order NDDE(
y(t)− p(t)y(τ(t))

)n + q(t)G(y(h(t))) = f(t) (2.12)
to have a solution bounded below by a positive constant under the assumptions (A1),
(2.9) and (2.10).

Remark 2.8. We claim that the condition∫ ∞

t0

un−1q(u)ds < ∞ (2.13)

implies (2.11). It is clear that (2.13) is equivalent to
∫∞

s
(u − s)n−1q(u)du < ∞.

Let
K(s) =

∫ ∞

s

(u− s)n−1q(u)du.

This implies lims→∞K(s) = 0. Differentiating, we get

K ′(s) = −(n− 1)
∫ ∞

s

(u− s)n−2q(u)du.

From this integrating between s=t and s=T ,we obtain∫ T

t

K ′(s)ds = −(n− 1)
∫ T

t

∫ ∞

s

(u− s)n−2q(u) du ds.

Hence

−(n− 1)
∫ T

t

∫ ∞

s

(u− s)n−2q(u) du ds = K(T )−K(t).

In the limit as T →∞, we obtain∫ ∞

t

∫ ∞

s

(u− s)n−2q(u) du ds =
K(t)

(n− 1)
=

1
(n− 1)

∫ ∞

t

(u− t)n−1q(u)du < ∞.

Hence the claim holds.
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Remark 2.9. Corollary 2.7 improves [1, Theorem 1] and [4, Theorem 4.3] because
the authors assumed G to satisfy (H9) and to be Lipschizian.

It may be noted in view of the Remark2.8 that the condition (2.11) used in
Coprollary2.7 is weaker than the condition (2.13) used in [1, 4].

Theorem 2.10. Let (A2), (H1), (H4), (H5) hold. Then there exists a bounded
solution of (1.1) which is bounded below by a positive constant.

Proof. We proceed as in the proof of the Theorem 2.2 with the following changes

µ = max{|G(x)| : 1− p

10
≤ x ≤ 1}.

By (H1), (H4), (H5), we find T such that for t ≥ T

µ

(n− 2)!

∫ ∞

t

1
r(s)

∫ ∞

s

(u− s)n−2q(u)du ds <
1− p

10
,

and ∫ ∞

t

|F (t)|
r(t)

dt < α

∫ ∞

t

dt

r(t)
<

1− p

10
.

Let S = {y ∈ X : 1−p
10 ≤ y(t) ≤ 1, t ≥ T0}.

(Ay)(t) =

{
7p+3
10 + p(t)y(t− τ)−

∫∞
t

F (s)
r(s) ds, for t ≥ T ;

Ay(T ), for T0 ≤ t ≤ T.

(By)(t) =

{
By(T ), for T0 ≤ t ≤ T ;
(−1)n−1

(n−2)!

∫∞
t

1
r(s)

∫∞
s

(u− s)n−2q(u)G(y(h(u)))du ds for t ≥ T.

Then as in Theorem2.2 we prove (i) Ax + By ∈ S (ii) A is a contraction, and
finally (iii) B is completely continuous. Then by Lemma 2.1 there is a fixed point
x0 in S such that Ax0 + Bx0 = x0 which is the required solution bounded below
by a positive constant. �

Remark 2.11. The above theorem substantially improves [8, Theorem 3.1] where
the authors obtained a positive bounded solution of (1.1) with assumptions (A2),
(H2), (H4), (H6), (H8), (H9). It may be noted that (H6) implies (H1) and (H2)
with (H4)implies (H5). Further we did not require (H8) and (H9).

Theorem 2.12. Let (A2), (H3), (H5), (2.9) and (2.10) hold. Then there exists a
bounded solution of (1.1) which is bounded below by a positive constant.

The proof of the above Theorem is similar to that of Theorem 2.10.

Definition 2.13. For any t > t0, define

τ−1(t) = {s is a real number : s ≥ t and τ(s) = t}.

Remark 2.14. The function τ−1 defined above is the inverse function of τ(t). Since
τ(t) is increasing it is one-one.Clearly τ−1(τ(t)) = t for t > τ−1(t0).

Theorem 2.15. Let (A3), (H1), (H4), (H5) hold. Then there exists a bounded
solution of (1.1) which is bounded below by a positive constant.
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Proof. If necessary increment d such that d > 1 + 2
c . Choose positive numbers

ε < c−1
2 , h = (c− 1)− ε and H = d− 1 + 2ε

c . Then H > h > 0. Set

µ = max{|G(x)| : h ≤ x ≤ H}.

From (H4) and (H5) one can find T > 0 such that t ≥ T implies∫ ∞

τ−1(t)

F (s)
r(s)

<
ε

2
,

and
µ

(n− 2)!

∫ ∞

τ−1(t)

1
r(s)

∫ ∞

s

(u− s)n−2q(u)du ds <
ε

2
.

Define
S = {y(t) ∈ X : h ≤ y(t) ≤ H, t ≥ T0}.

Define

Ax(t) =

{
Ax(T ), if t ∈ [T0, T ];
x(τ−1(t))
p(τ−1(t))

− cd−1
p(τ−1(t))

+ 1
p(τ−1(t))

∫∞
τ−1(t)

F (s)
r(s) ds, if t ≥ T.

Bx(t) =

{
Bx(T ), if t ∈ [T0, T ];

(−1)n

(n−2)! p(τ−1(t))

∫∞
τ−1(t)

1
r(s)

∫∞
s

(u− s)n−2q(u)G(y(h(u)))du ds, if t ≥ T.

We show that if x, y ∈ S, then Ax + By ∈ S. For t ≥ T we obtain

Ax + By =
−1

p(τ−1(t))

[
− x(τ−1(t))−

∫ ∞

τ−1(t)

F (s)
r(s)

ds + (cd− 1)

+
(−1)n−1

(n− 2)!

∫ ∞

τ−1(t)

1
r(s)

(
∫ ∞

s

(u− s)n−2q(u)G(y(h(u)))du)ds
]

≤ 1
c

[
− h +

ε

2
+

ε

2
+ (cd− 1)

]
=

1
c

[
2ε + c(d− 1)

]
= (d− 1) +

2ε

c
≤ H.

Further,

Ax + By =
−1

p(τ−1(t))

[
− x(τ−1(t))−

∫ ∞

τ−1(t)

F (s)
r(s)

ds + (cd− 1)

+
(−1)n−1

(n− 2)!

∫ ∞

τ−1(t)

1
r(s)

∫ ∞

s

(u− s)n−2q(u)G(y(h(u)))du ds
]

≥ 1
d

[
−H − ε

2
+ (cd− 1)− ε

2
]

=
1
d

[
d(c− 1)− ε

(c + 2)
c

]
> c− 1− ε = h.

Thus Ax + By ∈ S. Next we show that A is a contraction in S.In fact for x, y ∈ S
and t ≥ T we have

‖Ax−Ay‖ ≤ | 1
p(τ−1(t))

||x(τ−1(t))− y(τ−1(t))| ≤
1
c
‖x− y‖.
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Hence A is a contraction because, 0 < 1
c < 1.Next we prove B is completely

continuous as in the proof of Theoren2.2. Then by Lemma 2.1 there is a fixed point
x0 in S such that

Ax0 + Bx0 = x0.

Writing x0 = y(t) and multiplying both sides of the above equation by p(τ−1(t))
we obtain,

p(τ−1(t))y(t) = y(τ−1(t)) +
∫ ∞

τ−1(t)

F (s)
r(s)

ds− (cd− 1)

+
(−1)n

(n− 2)!

∫ ∞

τ−1(t)

1
r(s)

∫ ∞

s

(u− s)n−2q(u)G(y(h(u)))du ds.

Then we replace t by τ(t) ,use the fact that τ−1(τ(t)) = t and finally with some
rearrangement of terms, obtain

y(t)− p(t)y(τ(t)) =−
∫ ∞

t

F (s)
r(s)

+ (cd− 1)

+
(−1)n−1

(n− 2)!

∫ ∞

t

1
r(s)

∫ ∞

s

(u− s)n−2q(u)G(y(h(u)))du ds.

First differentiating the above equation once and then multiplying bothsides by r(t)
and finally differentiating n − 1 times ,we see that, x0 is the required solution of
(1.1), which is bounded below by a positive constant.

�

Theorem 2.16. Let (A3), (H3), (H5), (2.9), (2.10) hold. Then there exists a
bounded solution of (1.1) which is bounded below by a positive constant.

The proof of the above theorem is similar to that of the above theorem.

Corollary 2.17. Let (A3), (H5), (2.9), (2.10) hold. Then there exists a bounded
solution of (1.1) which is bounded below by a positive constant.

Proof. In view of Remark 1.1 (i) the proof follows lines similar to those in Theorem
2.15 and 2.16.

The results for the range (A4) are similar to those under condition (A3). Hence
we skip all proofs except the following one. �

Theorem 2.18. Let (A4), (H1), (H4), (H5) hold. Then there exists a bounded
solution of (1.1) which is bounded below by a positive constant.

Proof. We proceed as in the proof of the Theorem2.15 with the following changes.
Choose

µ = max{|G(x)| : c− 1
d

≤ x ≤ 2}.

S = {y ∈ X :
c− 1

d
≤ y ≤ 2}.

From (H1), (H4) and (H5) we can find T > 0 such that t ≥ T implies∫ ∞

τ−1(t)

|F (s)|
r(s)

<
c− 1

2
,

and
µ

(n− 2)!

∫ ∞

τ−1(t)

1
r(s)

∫ ∞

s

(u− s)n−2q(u)du ds <
c− 1

2
.
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Define

Ax(t) =

{
Ax(T ), if t ∈ [T0, T ];
x(τ−1(t))
p(τ−1(t))

− 2c−2
p(τ−1(t))

+ 1
p(τ−1(t))

∫∞
τ−1(t)

F (s)
r(s) ds, if t ≥ T.

Bx(t) =


Bx(T ), if t ∈ [T0, T ];

(−1)n

(n−2)! p(τ−1(t))

∫∞
τ−1(t)

1
r(s)

×
∫∞

s
(u− s)n−2q(u)G(y(h(u)))du ds, if t ≥ T.

For the rest of the proof we may refer the proofs of the Theorems 2.2 and 2.15. �

3. Positive solution for p(t) = ±1

In this section we find sufficient condition for the NDDE

(r(t)(y(t) + y(τ(t)))′)n−1 + q(t)G(y(h(t))) = f(t), (3.1)

or
(r(t)(y(t)− y(τ(t)))′)n−1 + q(t)G(y(h(t))) = f(t), (3.2)

to have a bounded positive solution.
The results with NDDE (3.1) are rare in the literature. We dont find such a

result in [1] or [4, 5, 6, 7, 8]. To achieve our result we need the following Lemma.

Lemma 3.1 (Schauder’s Fixed Point Theorem [2]). Let Ω be a closed convex and
nonempty subset of a Banach space X. Let B : Ω → Ω be a continuous mapping
such that BΩ is a relatively compact subset of X. Then B has at least one fixed
point in Ω. That is there exists an x ∈ Ω such that Bx = x.

For t ≥ t0, define τ0
−1(t) = t, τ1

−1(t) = τ−1(t), τ2
−1(t) = τ−1(τ−1(t)). For any

positive integer i > 2, we define

τ i
−1(t) = τ−1(τ i−1

−1 (t)).

Theorem 3.2. Suppose (H1), (H4), (H5) hold. Then there exists a solution of
(3.1) which is bounded below by a positive constant, that is, it neither oscillates nor
tends to zero as t tends to ∞.

Proof. We proceed as in the proof of Theorem 2.2 with the following changes. Let

µ = max{|G(x)| : 1 ≤ x ≤ 5}.
From (H1), (H4) and (H5) there exists T > 0 such that for t ≥ T implies

µ

(n− 2)!

∣∣ ∫ ∞

t

1
r(s)

∫ ∞

s

(u− s)n−2q(u)du ds
∣∣ < 1, (3.3)

and ∣∣ ∫ ∞

t

F (s)
r(s)

ds
∣∣ < 1. (3.4)

For any continuous function g(t), it is clear that
∞∑

l=1

∫ τ2l
−1(t)

τ2l−1
−1 (t)

g(s)ds <

∫ ∞

t

g(s)ds. (3.5)

Hence using the above inequality in (3.3) and (3.4), we conclude that for t ≥ T

µ

(n− 2)!

∞∑
l=1

∫ τ2l
−1(t)

τ2l−1
−1 (t)

1
r(s)

∫ ∞

s

(u− s)n−2q(u)du ds < 1, (3.6)
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and
∞∑

l=1

∫ τ2l
−1(t)

τ2l−1
−1 (t)

|F (s)|
r(s)

ds < 1. (3.7)

Set S = {y ∈ X : 1 ≤ y(t) ≤ 5, t ≥ T0}. Next we define the mapping B : S → X
as

By(t) =


By(T ), T0 ≤ t ≤ T ;

3−
∑∞

l=1

∫ τ2l
−1(t)

τ2l−1
−1 (t)

F (s)
r(s) ds + (−1)n−1

(n−2)!

∑∞
l=1

∫ τ2l
−1(t)

τ2l−1
−1 (t)

(
1

r(s)

×
∫∞

s
(u− s)n−2q(u)G(y(h(u))

)
du

)
ds, t ≥ T.

Then using (3.6) and (3.7) we find that By < 5 and By > 1. Hence By ∈ S for
y ∈ S.Next we show BS is relatively compact as in the proof of Theorem 2.2. Then
by Lemma 3.1 there is a fixed point y0 in S such that By0 = y0.Hence for t ≥ T ,
we obtain

y0(t) =3 +
(−1)n−1

(n− 2)!

∞∑
l=1

∫ τ2l
−1(t)

τ2l−1
−1 (t)

1
r(s)

∫ ∞

s

(u− s)n−2q(u)G(y0(h(u)))du ds

−
∞∑

l=1

∫ τ2l
−1(t)

τ2l−1
−1 (t)

F (s)
r(s)

ds.

In the above we replace t by τ(t) and note that τm
−1(τ(t)) = τm−1

−1 (t) and τ0
−1(t) = t.

Then It follows for t ≥ T that

y0(τ(t)) =3 +
(−1)n−1

(n− 2)!

∞∑
l=1

∫ τ2l−1
−1 (t)

τ2l−2
−1 (t)

1
r(s)

∫ ∞

s

(u− s)n−2q(u)G(y0(h(u)))du ds

−
∞∑

l=1

∫ τ2l−1
−1 (t)

τ2l−2
−1 (t)

F (s)
r(s)

ds.

Then for t ≥ T we have

y0(t) + y0(τ(t)) =6 +
(−1)n−1

(n− 2)!

∫ ∞

t

1
r(s)

∫ ∞

s

(u− s)n−2q(u)G(y0(h(u)))du ds

−
∫ ∞

t

F (s)
r(s)

ds.

Differentiating the above equation first and then multiplying by r(t) to both sides
and after that differentiating again for n − 1 times, we see that y0 is the required
solution of (3.1) which is bounded below by a positive constant.Hence this solution
neither oscillates nor tends to zero as t →∞. Hence the theorem is proved. �

Corollary 3.3. If (H1), (H2), (H4) hold, then there exists a positive solution of
(3.1) which is bounded below by a positive constant.

Proof. The proof follows from Remark 1.1 and the above Theorem. �

Theorem 3.4. Let (H3), (H5), (2.9) and (2.10) hold. Then there exists a positive
solution of (3.1) which is bounded below by a positive constant that is, it neither
oscillates nor tends to zero as t tends to ∞.

The proof of the above theorem is similar to that of Theorem 3.2.
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Theorem 3.5. Suppose (H1) hold. Assume for t ≥ t0

∞∑
i=1

∫ ∞

τ i
−1(t)

1
r(s)

∫ ∞

s

(u− s)n−2q(u)du ds < ∞, (3.8)

and
∞∑

i=1

∫ ∞

τ i
−1(t)

1
r(s)

ds < ∞. (3.9)

Then (3.2) has a solution bounded below by a positive constant.

Proof. We proceed as in the proof of Theorem 3.2 with the following changes. Let

µ = max{|G(x)| : 1 ≤ x ≤ 5}.

Then from (H1), (3.8) and (3.9), there exists T > 0 such that for t ≥ T

µ

(n− 2)!

∞∑
i=1

∫ ∞

τ i
−1(t)

1
r(s)

∫ ∞

s

(u− s)n−2q(u)du ds < 1,

and
∞∑

i=1

∫ ∞

τ i
−1(t)

F (s)
r(s)

ds < 1.

Let S = {y ∈ X : 1 ≤ y ≤ 5, t ≥ T0}. Then define

By(t) =


By(T ), for t ∈ [T0, T ];
3 + (−1)n

(n−2)!

∑∞
i=1

∫∞
τ i
−1(t)

1
r(s)

∫∞
s

(u− s)n−2

×q(u)G(y(h(u)))du ds +
∑∞

i=1

∫∞
τ i
−1(t)

F (s)
r(s) ds, for t ≥ T.

Then as in Theorem 2.2 we prove (i) By ∈ S for y ∈ S, and (ii) BS is relatively
compact. Then by lemma 3.1 there exists a fixed point y0 ∈ S such that By0 = y0,
Putting y0 = y(t), we get

y(t) = 3− (−1)n−1

(n− 2)!

∞∑
i=1

∫ ∞

τ i
−1(t)

1
r(s)

∫ ∞

s

(u− s)n−2q(u)G(y(h(u)))du ds

+
∞∑

i=1

∫ ∞

τ i
−1(t)

F (s)
r(s)

ds.

Then replacing t by τ(t) in the above and using τ i
−1(τ(t)) = τ i−1

−1 (t), we may obtain
y(τ(t)). Consequently for t ≥ T , we find

y(t)− y(τ(t)) =
(−1)n−1

(n− 2)!

∫ ∞

t

1
r(s)

∫ ∞

s

(u− s)n−2q(u)G(y(h(u)))du ds

−
∫ ∞

t

F (s)
r(s)

ds.

We may differentiate the above and then multiply by r(t) and then again differen-
tiate n − 1 times to arrive at (3.2). This solution is bounded below by a positive
constant. �
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Remark 3.6. It is not difficult to verify that the above theorem still holds, if we
replace (3.9) and (H1) by the following assumption

∞∑
i=1

∫ ∞

τ i
−1(t)

1
r(s)

∫ ∞

s

(u− s)n−2f(u)du ds < ∞. (3.10)

Of course, in that case we have to modify the definition of the mapping B as follows.

By(t) =


By(T ), for t ∈ [T0, T ];

3− (−1)n−1

(n−2)!

∑∞
i=1

∫∞
τ i
−1(t)

1
r(s)

∫∞
s

(u− s)n−2

×q(u)G(y(h(u)))du ds

+ (−1)n−1

(n−2)!

∑∞
i=1

∫∞
τ i
−1(t)

1
r(s)

∫∞
s

(u− s)n−2f(u)du ds, for t ≥ T.

If we put r(t) = 1 in (3.8) and (3.10) then we obtain

∞∑
i=1

∫ ∞

τ i
−1(t)

∫ ∞

s

(u− s)n−2q(u)du ds < ∞, (3.11)

and
∞∑

i=1

∫ ∞

τ i
−1(t)

∫ ∞

s

(u− s)n−2f(u)du ds < ∞. (3.12)

Then from the above theorem the following result follows directly.

Corollary 3.7. If (3.11) and (3.12) hold for t > t0, then the NDDE

(y(t)− y(t− τ))(n) + q(t)G(y(t− σ)) = f(t) (3.13)

has a solution, bounded below by a positive constant.

The above corollary improves and generalizes [5, Theorem 3.1] and [7, Theorem
2.5], because in these papers, the authors assume the following additional conditions
that we don’t require.

(i) n is odd.
(ii) G is non-decreasing and xG(x) > 0 for x 6= 0.

Before we close this article we present an interesting example which illustrates
most of the results of this paper.

Example 3.8. Consider NDDE

(r(t)(y(t)− py(t/2))′)n−1 +
1

tn+2
G(y(t/3)) = 0 for t ≥ t0. (3.14)

In this example suppose that p is any constant and r(t) ≡ 1 or r(t) ≡ 1
t2 . If

we compare this equation (3.14) with NDDE (1.1) then τ(t) = t
2 , h(t) = t

3 and
q(t) = 1

tn+2 . It is not difficult to verify that q(t) satisfies (H2), (H5) and (3.8).
Suppose that G(u) = 1 − u3 and it is decreasing. Clearly the NDDE (3.14) has
a positive solution y(t) ≡ 1. Hence this example illustrates all the results of this
paper. However since G is decreasing and τ(t) is not of the form t− k, the existing
results of [1, 4, 5, 6, 7, 8] are not applicable to (3.14).
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