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GLOBAL WELL-POSEDNESS OF NLS-KDV SYSTEMS FOR
PERIODIC FUNCTIONS

CARLOS MATHEUS

ABSTRACT. We prove that the Cauchy problem of the Schrédinger-Korteweg-
deVries (NLS-KdV) system for periodic functions is globally well-posed for
initial data in the energy space H! x H!. More precisely, we show that the non-
resonant NLS-KdV system is globally well-posed for initial data in H*(T) x
H3(T) with s > 11/13 and the resonant NLS-KdV system is globally well-
posed with s > 8/9. The strategy is to apply the I-method used by Colliander,
Keel, Staffilani, Takaoka and Tao. By doing this, we improve the results by
Arbieto, Corcho and Matheus concerning the global well-posedness of NLS-
KdV systems.

1. INTRODUCTION

We consider the Cauchy problem of the Schrodinger-Korteweg-deVries (NLS-
KdV) system
i0u + 0%u = auv + Blul*u,
o + 3o + %81(1)2) = 70, (|ul?), (1.1)
u(z,0) = uo(x), v(z,0)=wvo(x), teR.
This system appears naturally in fluid mechanics and plasma physics as a model of
interaction between a short-wave u = u(x,t) and a long-wave v = v(z,t).

In this paper we are interested in global solutions of the NLS-KdV system for
rough initial data. Before stating our main results, let us recall some of the recent
theorems of local and global well-posedness theory of the Cauchy problem (1.1]).

For continuous spatial variable (i.e., z € R), Corcho and Linares [5] recently
proved that the NLS-KdV system is locally well-posed for initial data (ug,vo) €
HE(R) x H*(R) with k >0, s > —3/4 and

k—1<s<2k—1/2 ifk<1/2,
k—1<s<k+1/2 ifk>1/2.

Furthermore, they prove the global well-posedness of the NLS-KdV system in the
energy H' x H! using three conserved quantities discovered by Tsutsumi [7], when-
ever ay > 0.
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Also, Pecher [6] improved this global well-posedness result by an application of
the I-method of Colliander, Keel, Stafillani, Takaoka and Tao (see for instance [3])
combined with some refined bilinear estimates. In particular, Pecher proved that,
if ay > 0, the NLS-KdV system is globally well-posed for initial data (ug,vg) €
H*® x H® with s > 3/5 in the resonant case § =0 and s > 2/3 in the non-resonant
case 3 #£ 0.

On the other hand, in the periodic setting (i.e., « isn the space of periodic
functions T), Arbieto, Corcho and Matheus [I] proved the local well-posedness of
the NLS-KdV system for initial data (ug,vo) € H* x H® with 0 < s < 4k — 1 and
—1/2 < k—s < 3/2. Also, using the same three conserved quantities discovered by
Tsutsumi, one obtains the global well-posedness of NLS-KdV on T in the energy
space H' x H! whenever ary > 0.

Motivated by this scenario, we combine the new bilinear estimates of Arbieto,
Corcho and Matheus [I] with the I-method of Tao and his collaborators to prove
the following result.

Theorem 1.1. The NLS-KdV system (1.1) on T is globally well-posed for initial
data (ug,vo) € H*(T) x H*(T) with s > 11/13 in the non-resonant case 3 # 0 and
s> 8/9 in the resonant case 3 = 0, whenever ay > 0.

The paper is organized as follows. In the section [2| we discuss the preliminar-
ies for the proof of the theorem [1.1} Bourgain spaces and its properties, linear
estimates, standard estimates for the non-linear terms |u|?u and 9, (v?), the bilin-
ear estimates of Arbieto, Corcho and Matheus [I] for the coupling terms uv and
0. (Ju|?), the I-operator and its properties. In the Section we apply the results of
the section to get a variant of the local well-posedness result of [I]. In the section
we recall some conserved quantities of and its modification by the intro-
duction of the I-operator; moreover, we prove that two of these modified energies
are almost conserved. Finally, in the section[5] we combine the almost conservation
results in section [f] with the local well-posedness result in section [3]to conclude the
proof of the theorem

2. PRELIMINARIES

A successful procedure to solve some dispersive equations (such as the nonlinear
Schrodinger and KdV equations) is to use the Picard’s fixed point method in the
following spaces:

N 1/2
£k = ([ S (021 Fn nlar) " = 100 Sy

neZ
R 1/2
oo = ([ S04~y lar) " = V0 e
neL
where (-) := 1+ |-|, U(t) = €% and V(t) = e %2, These spaces are called

Bourgain spaces. Also, we introduce the restriction in time norms
[fllxrecry == dnf [[fllxee  and  |[gllyesy == inf [[g]ly.e
= gli=g
where I is a time interval.

The interaction of the Picard method has been based around the spaces Y *1/2,
Because we are interested in the continuity of the flow associated to (1.1]) and the
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Y#1/2 norm do not control the L H? norm, we modify the Bourgain spaces as
follows:

lull xx == llull xr/2 + [[{m) *(n, 7) | L2 21
[ollys := [[ollysn/z + [(n)*0(n, 7) |2 L1

nr

and, given a time interval I, we consider the restriction in time of the X* and Y*
norms

lullxxry = inf flullxx and - follysr = _inf {7y
1=

Furthermore, the mapping properties of U(t) and V (¢) naturally leads one to
consider the companion spaces

(n)*t(n, )

el 7o == ull - + H—+ rnl
o v(n, 1)

ollwe = lfolly« /2 + \\7n3> s

In the sequel, ¥ denotes a non-negative smooth bump function supported on [—2, 2]
with ¢ =1 on [—1,1] and ¢5(t) := ¥(¢/9) for any 6 > 0.

Notation. Fix (k,s) a pair of indices such that the local well-posedness of the
periodic NLS-KdV system holds. Given two non-negative real numbers A and B, we
write A < B whenever A < C-B, where C = C(k, s) is a constant which may depend
only on (k,s). Also, we write A > B if A > ¢- B, where ¢ = c¢(k, s) is sufficiently
small (depending only on (k,s)), and A ~ B if A < B < A. Furthermore, we use
A < B to mean A < ¢B where ¢ = c(k, s) is a small constant (depending only on
(k,s)), and A > B to denote A > C- B with C = C(k, s) a large constant. Finally,
given, for instance, a function ¢ and a number b, we put also A Sy p B to mean
A < C - B where C = C(k,s,1,b) is a constant depending also on the specified
function ¥ and number b (besides (k, s)).

Next, we recall some properties of the Bourgain spaces:
Lemma 2.1. X%3/8([0,1]), Y*/3(]0,1]) € L*(T x [0,1]). More precisely,
[0 fllzs, S fllxosrs  and [[9(t)glirs, S llgllyoars.

For the proof of the above lemma see [2]. Another basic property of these spaces
are their stability under time localization:

Lemma 2.2. Let X7, o) i= {f : (7 = h(€))"(©)*|f(.€)| € L*}. Then
O lxer,  Ses e,

h(&)
for any s,b € R. Moreover, if —1/2 < b’ < b < 1/2, then for any 0 < T < 1, we
have

Ofllger Sowrn T 1f ]
[z f e Swwo I xee,

Proof. First of all, note that (7 — 79 — h(€))? <p (10)1P1 (1 — h(€))?, from which we
obtain

le™™ fllxse  Sb (7o) 1F o

Shee)
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Using that ¢(t) = [ 1/1 7o)€t dry, we conclude

h(&)

98z, 5o ([ )17l

Since 1 is smooth with compact support, the first estimate follows.

Next we prove the second estimate. By conjugation we may assume s = 0 and,
by composition it suffices to treat the cases 0 < b < b or < ¥ < b < 0. By duality,
we may take 0 < b’ < b. Finally, by interpolation with the trivial case b’ = b, we
may consider b’ = 0. This reduces matters to show that

Ier(®) 112 S T fllos

=h(&)

for 0 < b < 1/2. Partitioning the frequency spaces into the cases (7 — h(§)) > 1/T
and (T — h(§) < 1/T, we see that in the former case we’ll have

1 lxo0 < TSl o0

=h(&) =h(&)

and the desired estimate follows because the multiplication by 1 is a bounded
operation in Bourgain’s spaces. In the latter case, by Plancherel and Cauchy-
Schwarz

1Oz S 1FEE)] 22

< F(7.)ld7)]
(r—h(€))<1/T

S 1) [ = oy frnoPan |,

Tb 1/2
e,

Integrating this against ¥ concludes the proof of the lemma. (I

Also, we have the following duality relationship between X* (resp., Y*) and Z*
(resp., W*#):

Lemma 2.3. We have
| / xiou (O F (@, gl ) drde| < [[f]lx-
| / o (OF (@, Dg(z, 1) dz di| < | flly-

gHZ*%

gHW*S

for any s and any f,g on T x R.

Proof. See [4, p. 182-183] (note that, although this result is stated only for the
spaces Y and W, the same proof adapts for the spaces X* and Z¥). (I

Now, we recall some linear estimates related to the semigroups U(t) and V (¢):
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Lemma 2.4 (Linear estimates). It holds
[P@OU (Buollze < lluoll
[P @)V ()vollwe S llvollae;

t
lor () / Ut — ¢)F (@)t | < ||Fll e,

t
lr(t) / V(t— )G )t v+ < [IGllw.

For a proof of the above lemma, see [3], [4] or [I]. Furthermore, we have the
following well-known multiinear estimates for the cubic term |u|?u of the nonlinear
Schrédinger equation and the nonlinear term 9, (v?) of the KAV equation:

Lemma 2.5. ||uvw]|zr < Hu||Xk% ||U||Xk% Hw||Xk% for any k > 0.

For the proof of the above lemma, see See [2] and [IJ.

Lomma 2.6. 0,(v,02)we < Jonl,. sl g+ orl g sl g for any s >
—1/2, if v1 = v1(x,t) and vy = va(x,t) are z-periodic functions having zero x-mean

for all t.

The proof of the above lemma can be found in [2], [3] and [I]. Next, we revisit the
bilinear estimates of mixed Schrodinger-Airy type of Arbieto, Corcho and Matheus
[1] for the coupling terms uv and 8, (|u|?) of the NLS-KdV system.

1 whenever s > 0 and

Lemma 2.7. ||uv||zr < ||ull yod

k—s<3/2.

o]

g lvlley +llull (g llof

Lemma 2.8. ||0;(u1@2)|lws S il xrsss|luzl| xei2 + ||ugl xw1/2||uel| xrs/s when-
ever 1 + s <4k and k —s > —1/2.

Remark 2.9. Although the lemmas and are not stated as above in [I], it
is not hard to obtain them from the calculations of Arbieto, Corcho and Matheus.

Finally, we introduce the I-operator: let m(£) be a smooth non-negative symbol
on R which equals 1 for |¢| < 1 and equals [£|7! for || > 2. For any N > 1 and
o € R, denote by I the spatial Fourier multiplier

RO =m(3) 7©).

For latter use, we recall the following general interpolation lemma.
Lemma 2.10 ([4, Lemma 12.1]). Let ap > 0 and n > 1. Suppose Z,X1,..., X,

are translation-invariant Banach spaces and T is a translation invariant n-linear
operator such that

n
12T (ur, - un)llz S T I,

j=1
foralluy,...,u, and 0 < a < ag. Then

n
”I]%/T(ula cee 7un)||Z S/ H ”IJ%/UJ'”XJ‘
j=1

foralluy, ... ,uy, 0 <a < agand N > 1. Here the implicit constant is independent
of N.
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After these preliminaries, we can proceed to the next section where a variant of
the local well-posedness of Arbieto, Corcho and Matheus is obtained. In the sequel
we take N > 1 a large integer and denote by I the operator I = I}\fs for a given
s eR.

3. A VARIANT LOCAL WELL-POSEDNESS RESULT

This section is devoted to the proof of the following proposition.

Proposition 3.1. For any (ug,vo) € H*(T) x H*(T) with [vo =0 and s >1/3,
the periodic NLS-KdV system (1.1) has a unique local-in-time solution on the time
interval [0,0] for some § <1 and

[l + Twslly) %=, if 0,
(ITuollxr + [[Tvolly) %", if B=0.
Moreover, we have ||[Tul|x1 + ||[Tv|lyr S |[Tuollx1 + |[Tvolly:-
Proof. We apply the I-operator to the NLS-KdV system (1.1} so that
iTug 4 Tugy = al(uv) + BI(|ul*u),
Tvy + Tvgas + I(vvy) = YI(|u)?),
Tu(0) = Tug, Iv(0) = Twp.

(3.1)

To solve this equation, we seek for some fixed point of the integral maps

& (Tu, Iv) := U(t)[ug — i/o Ut —t"){ad(u(t)v(t") + BI(Ju(t")|*u(t’))}dt’,

Oy(Tu, Iv) := V (t)Tvy — /O Vit — Y {I (0t Yoa (') — vI(Ju(t)]?)s }dt.

The interpolation lemma [2.10| applied to the linear and multilinear estimates in the

lemmas and [2.8) yields, in view of the lemma
@1 (T, Iv) || x2S [ uol| + @85~ || Tul| x1 || Tv]|yr + 8857 || Tu)|%:
[®2(Lu, I)|ly1 < [[Tvoll e + 087 | To|[3 + 785 || Tul| %

In particular, these integrals maps are contractions provided that 36~ (|| Tug ||z +
[ Tvol| )% < 1 and 65~ (|| Tug| g1 + ||Tvo|| 1) < 1. This completes the proof. [

4. MODIFIED ENERGIES

We define the following three quantities:

M(u) = |[ul| 2, (4.1)
L(u,v) := a||vH%2 + ZW/S(MTm)dx, (4.2)
B(u,v) = cw/v|u|2dx FlualZa + S el - %/v%la: + % / lufide. (4.3)

In the sequel, we suppose ay > 0. Note that
|L(u, )| S [Jvll72 + Mz 2,
[ol|72 S LI+ Mlug]| 2
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Also, the Gagliardo-Nirenberg and Young inequalities implies
el + loallFe S 1B+ |23 + M5 +1,
B| S luallfe + lvallfe + |5 + M5+ 1
In particular, combining the bounds and ,
IB] S llusll3e + loalZe + o]l 2 + MY + 1.
Moreover, from the bounds and ,
lvll7 S 1L+ MIE[Y? + M® +1

and hence

i+ lollF S [B]+ LIP3 + M® 41

%L(Iu,h))
= 204/[1)([11[111 — I(vvg))dz + 2a7/lv(1(|u|2) — |Tu|?)dx

+ 4a7%/]ﬂx(lulv — I(uwv))dx + 4ﬁ7%/((lu)21ﬂ — I(v?n))Itu,dx

=: ZLj.

j=1
and
d
aE(Iu, Iv)

= a/(I(vvm) — Ivlvg) v de + % /(Iv)g(l(vvw) — Ivlv,)dz+
+ 2673 / (I(Juf2u)s — ((Tu)2T0),) TTade
+ oz’y/ |[Tu*(IvIv, — I(vv,))dx + ay /(|Iu|2 — I(ju*) IvIv,dz
+ay / T ([Tuf2 — I(juf2))sdz — 2073 / Tug(I(@v) — Ialv).ds
+ ay? /(I(|u\2) — |[Tu)®), |[Tu?dz + 20°~S / TvIu(I(wv — Iulv))dz

+ 2527%/Iu(1ﬂ)2(1(|u|2u) — (Iu)?IT)dx

(4.11)

- 2a6’y%/[@]u([(|u|2ﬂ) — Tu(Iu))*dx — 2aﬁ’y%/(1u)21ﬂ(l(ﬂv) — Iulv)dx

(4.12)
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4.1. Estimates for the modified L-functional.

Proposition 4.1. Let (u,v) be a solution of (1.1) on the time interval [0, 6]. Then,
forany N >1 and s > 1/2,

|L(Tu(6), Iv(d)) — L(Iu(0), Iv(0))]

4.13
S N71+(5£7(”IU||X1,1/2 + ||IU||Y1,1/2)3 + N72+5%7”IUH§(1»1/2' ( )

Proof. Integrating with respect to t € [0, d], it follows that we have to bound
the (integral over [0,4] of the) four terms on the right hand side. To simplify
the computations, we assume that the Fourier transform of the functions are non-
negative and we ignore the appearance of complex conjugates (since they are ir-
relevant in our subsequent arguments). Also, we make a dyadic decomposition of
the frequencies |n;| ~ N, in many places. In particular, it will be important to get
extra factors N JQ ~ everywhere in order to sum the dyadic blocks.

We begin with the estimate of f05 Lq. Tt is sufficient to show that

171(”17t)‘”Q‘@(HQat),ﬁé(n:g?t)

/ Z ‘m(nl +ng) — m(ny)m(ng)

ni+nz+n3z=0 m(nl)m(n2)
(4.14)
SNTlgEo H [villy1ar2
j=1
o |ny| < |na| ~ |ns|, |n2| 2 N. In this case, note that
‘m(nl + nz2) — m(ny)m n2)| < |Vm(n2) - 1< M Jif [ni| < N,
m(ny)m(nz) m(ng) Ny’
— N
|m(n1+n2) m(ny)m(ng |<( 1)1/2 if [ny| > N.
m(ni)m(nz) N
Hence, using the lemmas [2.1] and 2:2] we obtain
\/ Li| 5 *||Ul\|L4H (v2)e| pallvsl 2 S N72F68- maxH [villy1.a/2

if In1] < N, and

1/2 1 5
|/ Ll s ()" 5ot Huvznyl e S N-THgEe maXHHvznyl 2

o |ng| < |ny| ~ |ns|, |[n1| 2 N. This case is similar to the previous one.
e |ny| ~ |na| = N. The multiplier is bounded by

m(ny + na) — m(ny)m(ng Nyt
} m(ny)m(nz) ‘ S (N)

In particular, using the lemmas [2.1] and 2:2]

N
[ 5 G sl £ N7 5E- maanvzuwz.
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Now, we estimate foé Ly. Our task is to prove that

[n1 + nofur(na, t)uz(ne, t)03(ns, t)

J m(ny + ng) — m(ng)m(ng)
/0 m+n;n320 m(n1)m(nz)

SNTIHOE T |fug || o2 [Juzl| x 12 ][vs]ly1a2

(4.15)
o |na| < |ny| ~ |n3| = N. We estimate the multiplier by
‘m(nl + n2) — m(ny)m(ns) ‘ < <(&)1/2>
m(ny)m(nz) ~ YN '
Thus, using L2,L%, L2, Hélder inequality and the lemmas [2.1 and
0
Nay1/2 1 o
PTG R T o £ Y PRV P P P P
RS T I
S NTHOE NG oz o xave s lysare.

e |n1| < |ng| ~ |ns|. This case is similar to the previous one.
e |ny| ~ |na| = N. Estimating the multiplier by

‘m(nl + ng) — m(ng)m(ne) ’ < (&)1,

m(ni)m(ng) ~AN
we conclude
5
Noy1—- 1
| s (@ mm ksl
S NI TN allxnsellusl o/ [oslly e,
Next, let us compute f06 Ls. We claim that
5
m(ni +ng) —m(ny)m(ng) |~ ~ —~
[ (2) : (( ;) (2) | (i, ) (2, 1) s [ . )
0 ni+ns+nz=0 minL)mns (416)

SNTHOE T |ug || xrs2 oy sz fus xi2

o |ng| < |n1| ~ |ns|, |n1| 2 N. The multiplier is bounded by

m(ny)

(Nz) 12, if |no| > NV.

i +ng) — m{nymng) | | Ymlrdnz | < N2 if |ny| < N,
m(ny)m(nz) ~

So, it is not hard to see that

)
_ 19 _
/ Ly S N72H65 N lua [l xrs2 [vallyraz [[usll x1./2
0

e |ny| < |na| ~ |nsl, |ne| = N. This case is completely similar to the previous one.
e |ny| ~ |na| 2 N. Since the multiplier is bounded by No/N, we get

5
_ 19 _
/ Ly S N72H65 7 N0 Jlua [l vz [[vally 12wl xi/2-
0
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Finally, it remains to estimate the contribution of f05 Ly. Tt suffices to see that

J m(ny + ng + ng) — m(ny)m(nz)m(nsg) 1 N
I 3 : \mjr_[luj(nm

ni+nz+nz+ns=0 m(nl)m(n2)m(n3)

4
SN2 T gl xnase
j=1

(4.17)
e Ny, Ny, N3 2 N. Since the multiplier verifies

’m(nl + ng + ng) — m(ny)m(nz)m(ns) ’ < (NlNzN3> 1/2
m(n1)m(nz)m(ns) ~\N NN ’

appliying L%, L4, L2, L, Holder inequality and the lemmas we have
4 1/2 1_ 4
Ny N3 N3 02
L,< (Dad2 oz |
/o e ( NNN) NN, I:I el 1072

4
—_ 1_ _
SN 3+52 NI?laxHHujHXl’l/Q'
j=1

e N; ~ Ny 2 N and N3, Ny < Ni,Ns. Here the multiplier is bounded by
(350" (3)""). Hence,

S~

N1 No 1/2 N3 1/2 (5%_ 4
Ly (L2 Ssyrzy 0 A
5 (RR) (B ey L ol

4
_ 1_ —
SN 2+52 NronaXH”uj”Xl!l/z'
j=1

e Ny ~ Ny 2 N and N3, N3 < N1, Ny. In this case we have the following estimates
for the multiplier

‘m(m + ng + ng) — m(ny)m(nz)m(ng)
m(ni)m(nz)m(ns)

vm(nl)(n2+n3)| < Mot Na - if Ny N3 < N

m(n1) ~ N

S ()22 i N, > N,

(20 2) 172 (Do y1/2y, if N3 > N.
Therefore, it is not hard to see that, in any of the situations Na, N3 < N, Ny > N

or N3 > N, we have
s 4
1
/ Ly S NP6 N T lwgllnare
0 .
j=1

e Ny ~ Ny~ Ny 2 N and N3 < Ny, Ny, Ny. Here we have the following bound
4

J 1/2 1_
N N N3 1/2 J2
L, < (2122 _ 6 T ‘ |
/0 e (N N) ) MmN ]«Izll sl x1a/2

At this point, clearly the bounds (4.14)), (4.15)), (4.16) and (4.17)) concludes the
proof of the proposition 4.1 [
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4.2. Estimates for the modified E-functional.

Proposition 4.2. Let (u,v) be a solution of (L.1) on the time interval [0,0] such
that [v=0. Then, for any N > 1, s >1/2,

| E(Tu(6), 1v(d)) — E(1u(0), Tv(0))]
S (N71atm 4 N EreR s N (lula + 1 Telly)?

_ 1_ _ 1_
+ N7 (|| Lull e+ [[Tolly)* + N72F02 [ Tull 5 (| Tul 30 + [[To]ly).
(4.18)

Proof. Again we integrate (4.12) with respect to ¢ € [0, §], decompose the frequen-
cies into dyadic blocks, etc., so that our objective is to bound the (integral over
[0,0] of the) E; for each j =1,...,12.

For the expression f06 FE4, apply the lemma We obtain

I/ Er| S Hvaally -1 [[TvIve — I(vva)llwr S Hvlly+[[TvIve — I(vvg)|lwe
0

Writing the definition of the norm W1, it suffices to prove the bound

’ 3_n 1/2/2 n1+n2 i ((m)m(nz)ﬁ(nl’ﬁ) no @(nQ’TZ)‘Lz

n2) n3,73

T3 . n /Z ’Ill + 7’7,2 (S/;i)m(nQ)’&\l(nth) ng @(n277_2)’

L2 L1,
< N_“%_Hvlllym/z ||vzlly171/2-
(4.19)
Recall that the dispersion relation Zj’:l Tj — ng’ = —3ningong implies that, since

ningng # 0, if we put L; = |1; — nj| and Lmax = max{L;;j = 1,2,3}, then
Lmax Z <n1><n2><n3>
e [na| ~ |nsg| = N, |n1| < |nz|. The multiplier is bounded by

’m(m + n) —m(m)m(nz)’ < {%;7 if [n1| < N,

m(ni)m(n) N2 | > N

Thus, if |73 — n3| = Lumax, we have

(n1 + n2) — m(ny)m(ng) - .
‘ = 1/2/2 1 2 (n1)m( 2)Ul(n1,ﬁ) na ’UQ(TLQ,T2)H )
T3 —

ni)m(nz) 2, s

N sy oz, | (UQ):E”Lit

SN N vt lly s lvellyrasz,  if [ng] < N,

1/2
() " ey vl o, (v2)ell

SN NG ol g loellage i fml 2 N

A



12 C. MATHEUS

EJDE-2006/07

and
/Z (1 +n2 m(m)m(nz)ﬁ(nhﬁ) g @(n2,7-2)’
7-3 - n3 ) (’I’Lg) L72‘03 L}'3
NQW” 1||L4 ||(U2) ||L§t
S SN M85 Nimellodly s lfoallyrae, i | < N,
L s e [ Y
2 1(NNN)7_ Y 2 Y 2
SN TNl g ozl g s if [na| > N.

If either |7 — n:f| = Lmax OT |72 — ”§’| =

Linax, we have

(n2)

H oy 1/2/2 n1+n2 L ((nl)m

) 01(n1,71) M2 vz(nz,Tz)H -
% g A ol ol
o) SN max”Ul”Yl’l/zHUQHYLUQ? if [ma| < N,
~ 1/2 1_
(%) L LMY L N
S N_ +53 max”leYl,%HUQH)/l,%? lf |TL1| Z N
and
(n +n —m(ni)m(ng) - ~
/Z - 2 () 2)v1(n1,ﬁ)nz Uz(nzﬂ'z)’ .
T3 - n3 )m(nQ) LigLzs
N1 N3
N i el el
< gN 1+6 ma.xHUl”Y1 1/ZHUQHY1 1/2, if |n1| SNa
~ N1\ 1/2 N, 56
(3%) NTWHMH vl
3 .
SN N ol w2l if |n1| > N.
e |ny| ~ |na| 2 N. Estimating the multiplier by
’m(nl + n2) — m(ny)m(n ‘ (&)1_
m(ny)m(nz) ~MANT T
we have that, if |73 — n3| = Lpax,
(n1 + ng —m(ni)m(ng) . N ‘
H Tg—n 1/2/2 n1)m(ng) G1(m1, 1) 2 Ba(ng, 72) 2.
(n1+ nz m(ni)m(na) - ~ ‘
01(n ng U2(n
+H s /Z e i) w2 G|,
Ni1— N: 55~ Niy1- N: 55~
AR mTaaarE v ) v gl
N1N2N3) Nl N (N1N2N3)2

SN Nl loall,.
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and, if either |71 — n$| = Lyax or |72 — 13| = Liax,

(nq —l—ng —m(ny)m(ng) - ,\

H (T3 — nj 1/2 /Z ny)m(ns) O, ) U2(n2’72)‘ 2, .,
(nq —|—n2 —m(ni)m(ng) - . ’

+ H P /Z 1 )m(na) 01(n1, 1) ng U2(n2, T2) 13,11

Niyi- N 55—  Niyi- N 55
AR e mi (7)o el el
(N1N2N3)/2 Ny N7 (NyN3N3)2— Ny Y2 L

SNTHSNG ol g el s -

For the expression f05 FEs, it suffices to prove that

| / 57 e ) = ) 0 0, )6 ) 0 )

’I’L4)
(4.20)
< NT2HSE- H||Uj||Y1>1/2~
j=1

Since at least two of the N; are bigger than N/3, we can assume that Ny > Ny > N3
and N; 2 N. Hence,

1 3- 4 Lot e2_ A0 T4
(%) Nf]fszB Hj:l [vjllyra2 S N72H657 Ny Hj:l [vlly1.1/2,
if Ing| ~ |ng| 2 N

b

s : 2_ 4 _ 2_ _ 4
/ Ey S Nvowew; o lvjllyrae S N72657 NOL Tz lvjlly e,
0 if [n3| < |n4l, [ns] < Ning| 2 N,

1/2 4 _ 2_ ar0— 4
(WS) N161372N3 Hj:l ||”jHY1,% SN#ESTNDL Hj:l HUJ'”YL%;
if [n3| < |nal, ns| = N, |na| Z N.

Next, we estimate the contribution of f05 FE5. We claim that

30 ) O ma 0) s, 1) s )

ng)m(ngs)

< N5 T gl
j=1

(4.21)

o |nq| ~ |na| ~ |n3| ~ |n4| 2 N. Since the multiplier satisfies

m(ningng) — m(ny)m(nz)m(ns) _ (Nl)%
m(ni)m(na)m(ns) ~ON

we obtain

3

2 N4
/ B3 S (— 2 W H Jujllxraz SN Sk Nriax H lJwjll xrar2-
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e Exactly two frequencies are bigger than N/3. We consider the most difficult case
|ng| 2 N, |n1| ~ |ng| and |na|, |ns| < |n1l, |n4|. The multiplier is estimated by

AL/20 N\ 1/2
( Ny ) , if |na| > N,
m(ningng) — m(ni)m(ng)m(ns) _ (1@’ )1/2 (11\}’ )1/2 .
SANR) (R iffngl > N,
m(n1)m(nz)m(ns) NN .
250, if |ng|, |ns| < N.

Thus,
5 4
/asw“éMgﬂmmmm
0

e Exactly three frequencies are bigger than N/3. The most difficult case is |n;| ~
|na| ~ |n4| = N and |ns| < |n1], |nal|, |n4|. Here the multiplier is bounded by

m(ninang) — m(niy)m(nz)m(ns) Ny Ny 1/2 Ny 12
m(ni)m(ng)m(ns) S (N N) (( N) )-

Hence,

5 1/2
N1 N2 N3 1/2
E < —_— - 1,1
/0 3~ <N N) <(N) >N1N2N HH”JHX 2
< N~ 1+5 max I | ||uj||X1 1/2.

The contribution of fo FE, is controlled if we are able to show that

3 e a) S ) g 1) 6, 5 s, D11 &

N-1t§=— H |l xa/2 |lvjlyrare.

j=1

(4.22)
We crudely bound the multiplier by

|m(nl + n2) — m(nl)m(nQ) ‘ < (Nmax)l_
m(ni)m(ns) ~Y N '
The most difficult case is |na| > N. We have two possibilities:

e Exactly two frequencies are bigger than N/3. We can assume N3 < Nj. In
particular,

mx1 2
[ s Moy NNNIHM@WM@

<Nlﬂmzw—11wmfémww%

max

e At least three frequencies are bigger than N/3. In this case,

/@<Nﬂa mJwauww
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The expression f(f FE5 is controlled if we are able to prove

/ Z (n1 +n2 )m((nl)m(nQ)ﬂI(nht)@(ng,t)ﬁ},(nsat) [na| 0a(na, 1)

TLQ)
(4.23)

SN 1+512 H||Uj||X1,1/2||’Uij1,1/2.
j=1

This follows directly from the previous analysis for (4.22]).
For the term f05 FEg, we apply the lemma to obtain

/ Es S (T0)aally -2 1(17ul* = I(ul))allws < vl ([ Tul® = I(1uf*)z lw:-

So, the definition of the W' norm means that we have to prove

H<T (ns) 1/2‘n3|/z (n1 + n9) )m(nl)m(nz)Ul(nl,Tl)UQ(nQ,7'2)‘

m(na)

H 1/2|n3|/z (nq —|—n2 . m(nl)m(n2>u/\1(nl,7'1)@(712,7'2)

m3:73

(n2) L3 L,
< {N*EJFJE’ + N*§5T} ||u1||X1,1/2 [zl /-
(4.24)
Note that > 7; =0 and > n; = 0. In particular, we obtain the dispersion relation
T3 —n%—&—m—!—n%—i—ﬁ —I—n% = —ng—l—nf—&—n%.
e [n1| = N, |n2| < |n1|. Denoting by Ly := |1y + n2|, Ly := |r + n3| and
L3 := |73 — nj|, the dispersion relation says that in the present situation Lyay :=

max{L;} > N3. Since the multiplier is bounded by

) ) (S 5 el S X
m(n)m(ns) ()2, i o] > NV,

we deduce that
H< (n3) 1/2|n3|/z (n +n2 - ﬂziz;)m(nz)ul(nl,Tl)uQ(nQ,TQ)’
X H 1/2 EN /Z (nq +n2 - —m(ny)m(ng) Ti(n1, 71)T3 (12, 72)

m(ns)

n3,7T3

L2 Lt

n3 T3
]\72 5’_

S halesalul:
3

SN2 Nl e fus | x e
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o |ny| ~ |[na| 2 N, |n3|® > |na|?. In the present case the multiplier is bounded by
(%) ~ and the dispersion relation says that L., > N3. Thus,

H( 3_n 1/2| 3|/Z (n1 +n2 - m(m)m(m)fﬁ(m,T1)ﬂ§(n2,7'2)’

m(ng) 20
(nq + ng m(ni)m(ng) — e
+H 1/2| 3|/Z )m(ng) ui(na, 71)uz(ng, 72) .,
N2 Nl 1— (5§
S N:;_ ( N) WHUIHXLM\|U2||x1,1/2

SN2 Ny e fusl x e

o [ny| ~ |n2] = N and |n3|®> < |nol?. Here the dispersion relation does not give

useful information about Ly.x. Since the multiplier is estimated by ( )1/ 2, we
obtain the crude bound

H< (n3) 1/2|ng|/2 (n4 +n2 )m((m) m(na) 1(n1,71)u2(n2,72)H 2

nQ) n3,73
(ny —|— ng —m(ny)m(ng) — .y
"‘H 1/2|n3|/z ny)m(ns) uy(ny, 71 )uz(n2, 2) L2
Ny, 1/2 68~

S Naz(ﬁ) NN, ] x1a/2lluzll 112

S NTERS TNl e fJuz e,

Next, the desired bound related to f05 E; follows from

/ > )m ny + n2 — m(ny)m(nz) ‘|n1 o [TE(n, £)53 (12, )\ns [T (s, )

n1)m(nz)

SN IIU1IIX1,1/2||v2||y1,1/z||u3||x1,1/2

(4.25)

e |n1| < |n2| 2 N. The multiplier is < (|ng|/N)'/2 so that

é §
1 _ ~ e
| B s s [ S i el 2, ) s 0
_1cl9_
< NI e feally sl e

e |ny| ~ |na| = N. The multiplier is < |ny|/N. Hence,

)
_ 19
/ Er S N7Y5E [luy|| /2 [[oally1 e [us]| x /o
0

[ni| 2 N, |ng] < N. The multiplier is again < Na/N, so that it can be estimated
as above.

Now we turn to the term f06 Es. The objective is to show that

/ ’m ny + nz —m(ny)m(nz) ‘

n1)m(nz)

4
In1 + na| H uj(ng,t) S N~tHea- H [l xrare

=1

(4.26)
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o At least three frequencies are bigger than N/3. We can assume |n1| > |ng|. The
multiplier is bounded by Ny ax /N so that

1

max 577
[ N S H||“J||X11/2<N 25h manu]an/z

e Exactly two frequencies are bigger than N/3. Without loss of generality, we
suppose |n1| ~ |n2| 2 N and |ng|, |n4] < N. Since the multiplier satisfies

m(ni + na) — m(ny)m(nsg) ‘ < Nmax)l_
m(ny)m(nz) N ’
we get the bound

1

) 1 4 4
Nuyaxy1- 02 - _
/0 B2 mwm, jI:|1 lujllxnae S NTHOENRL, | [ lluslixiare.

The contribution of f05 FEy is estimated if we prove that

/ ’m ny + nz m(n1)m(ns) ‘ﬂ\

mns) 1(n1,t)02(ng, t)us(ns, t)vg(ng, t)

SN ||u1||X1=1/2||U2||Y1v1/2||u3||X1=1/2||U4||Y1v1/2~

(4.27)

This follows since at least two frequencies are bigger than N/3 and the multiplier
is always bounded by (Nmyax/N)'™, so that

5

N, 1—

| Ba s (Co=)" funll sl e ol
0

Nmaxy1- 5%+%_
S (=) N1N2N3N4Hu1||X1,1/2||v2||y1,1/z\|u3||X1,1/2||v4||y1,1/2

SN ur | xrasellvzllyae us e logllyae.

Now, we treat the term foé FEqp. It is sufficient to prove

6
[y | TT 1)

TL4)

6
marall | 7P
J=1

This follows easily from the facts that the multiplier is bounded by (Npax/N)3/2,
at least two frequencies are bigger than N/3, say |n;,| > |ni,| 2 N, the Strlchartz
bound X%3/8 C L* and the inclusio Xzt c L. Indeed, if we combine these
informations, it is not hard to get

§ 6
Ninax\ 2 1 \ 1
By S (—=)® 52 [T 11l
/0 03 () Niy Niy NigNiy (N Nig ) /2~ j:lH il

< N~ 2+§ max H HU‘JHX1

(4.28)

IThis inclusion is an easy consequence of Sobolev embedding.
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For the expression f06 Ey,, we use again that the multiplier is bounded by
(Nmax/N)3/2, at least two frequencies are bigger than N/3 (say [, | > |ni,| 2 N),
the Strichartz bounds in lemma and the inclusions X 2+ vt c L23 to obtain

[/t

’I’L1)

n]v US n57t)

u:]u;

Nmax 3 1 27
5 ( N )2 NilNizNi3Ni4 N,l/z_ H ||Uj||X1||US||Yl (429)
i5 j=1

4
_ 1_
SN T llwsllxlloslly--
Jj=1

The analysis of f05 E15 is similar to the f05 E11. This completes the proof. O

5. GLOBAL WELL-POSEDNESS BELOW THE ENERGY SPACE

In this section we combine the variant local well-posedness result in proposition
[3.3] with the two almost conservation results in the propositions[4.1] and [£.2] to prove
the theorem [I11

Remark 5 1. Note that the spatial mean fT (t,z)dx is preserved during the evo-
lution . Thus, we can assume that the initial data vy has zero-mean, since
otherwise we make the change w = v — fT vodx at the expense of two harmless
linear terms (namely, u [, vodz and d,v [} vo).

The definition of the I-operator implies that the initial data satisfies ||Tug||%;: +
[ Tvo)|% < N20=%) and ||Tugl|2 + |[ITvo]|2. < 1. By the estimates and ,
we get that |L(Tug, Tvg)| < N'=% and |E(Tug, Tvg)| < N2(1=5),

Also, any bound for L(Iu, Iv) and E(Iu, Iv) of the form |L(Iu, Iv)| < N1~ and
|E(Iu, Iv)| £ N?1=%) implies that |[Tul|2, < M, ||[Iv|2. < N and |[Tu?%, +
[0l2, S N2G-9),

Given a time T, if we can uniformly bound the H!'-norms of the solution at times
t =48, t = 24, etc., the local existence result in proposition 3.I]says that the solution
can be extended up to any time interval where such a uniform bound holds. On
the other hand, given a time T, if we can interact 76! times the local existence
result, the solution exists in the time interval [0, T]. So, in view of the propositions

and it suffices to show
(N~1tg2i— N3(=s) 4 N—2+53— N4-s)yps—1 < N1-s (5.1)

and

[(N71+65~ ¢ N=3+53— ¢ N—H+gam)N30—9)
5.2
+N’1+5%*N4(1’5) +N—2+5%—N6(175)}g < N2(-s) (5.2)

At this point, we recall that the proposition says that § ~ N-50-9)— jf B8#£0
and § ~ N—8(1=9) 1fﬂ*0 Hence,
e 3 # 0. The condition ) holds for

5 16

,1+ﬂ§(175)+3(1—5) (1-1s), ie. ,s>19/28
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and 116
—24 55(1 —s)+4(1—-s)<(1—3s), ie. ,s>11/17;

Similarly, condition (5.2)) is satisfied if

—1+g§(1—5)—|—3(1—5)<2(1—s), ie. ,s>40/49;

—%—Fg?(l—s)—kiﬁ(l—s)<2(1—s), ie. ,s>11/13;

*g+g§(175)+3(175)<2(175), ie. ,s>25/34;

71+%§(175)+4(175)<2(175), ie. ,s>11/14;
16

-2+ 53(1 —5)+6(1—s)<2(1—s), ie ,s>7/10.
Thus, we conclude that the non-resonant NLS-KdV system is globally well-posed
for any s > 11/13.
e 3 =0. Condition (5.1) is fulfilled when

5
14 ﬂgﬂ —5)+3(1—s)<(1—3s), ie ,s>8/11

and )
-2+ 58(1 —-s)+4(1—s)<(1—s), ie ,s>5/T;
Similarly, the condition ([5.2)) is verified for

5
-1+ 68(1 —$)+3(1—s)<2(1—s), ie ,s>20/23;
2 5
-3 + 68(1 —5)+3(1—s8)<2(1—3s), ie ,s>8/9;
3 7
-5 + g8(1 —s)+3(1—s)<2(1—3s), ie. ,s>13/16;

1
-1+ 58(1 —8)+4(1—-s)<2(l—s), ie ,s>5/6;

1
-2+ 58(1 —8)+6(l—s)<2(1l—s), ie ,s>3/4

Hence, we obtain that the resonant NLS-KdV system is globally well-posed for any
s> 8/9.
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