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Multiple positive solutions for equations involving
critical Sobolev exponent in RV *

C. O. Alves

Abstract

This article concerns with the problem
—div(|Vu|" " ?Vu) = Al + 0™ 1, in RV,

Using the Ekeland Variational Principle and the Mountain Pass Theorem,
we show the existence of \* > 0 such that there are at least two non-
negative solutions for each A in (0, \*).

1 Introduction

In this work, we study the existence of solutions for the problem
P) —Apu = Mt +u™ 1 RN
u>0, u#0, ue DL™(RY)

where Apu = div (|[Vu|" > Vu), A >0, N >m >2, m* = Nm/(N —m), 0 <
g < m—1, h is a nonnegative function with L®(RY) with © = W,

and

DUm(RY) = fue L ()| 5L € LM(RY))

endowed with the norm [|u|| = ([ [Vu|™) tm,

The case ¢ = 0, m = 2 was studied by Tarantello [20], and a more general
case with m > 2 by Cao, LI & Zhou [5]. In these two references, [5] and [20], it
is proved that (P) has multiple solutions. In the case m = 2, h € LP(RY) with
p1 <p<pyand 1 < ¢g < 2* — 1, Pan [18] proved the existence of a positive
solution for (P). In the more general case, m > 2, h € L®(RY), Gongalves &
Alves [10] proved the existence of a positive solution for (P).
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By a solution to (P), we mean a function u € DV™(RY), 4 > 0 and u # 0
satisfying

/le’"*2 VuVd = A/huqq>+/W*—1q>, v® € DV™(RY).

Hereafter, [, D'™, L? and ||, stand for [y, DY™(RY), LP(RY) and |.|L»
respectively.

In the search of solutions we apply minimizing arguments to the energy
functional

I(u) _ %/|Vu|m . q_'_% h (u+)q+1 - % / (u+)m* (1>

associated to (P), where ut (z) = max{u(z),0}. Note that the condition h € L®
implies that I € C! (Dl’m,R).

To show the existence of at least two critical points of the energy functional,
we shall use the Ekeland Variational Principle [8], and the Mountain Pass Theo-
rem of Ambrosetti & Rabinowitz [2] without the Palais-Smale condition. Using
the Ekeland Variational Principle, we obtain a solution w; with I(u1) < 0, and
by the Mountain Pass Theorem we prove the existence of a second solution us
with I(ug) > 0. Techniques for finding the solutions u; and uy are borrowed
from Cao, Li & Zhou [5]. Then we combine these techniques with arguments
developed by Chabrowski [6], Noussair, Swanson & Jianfu [17], Jianfu & Xip-
ing [12], Azorero & Alonzo [9], Gongalves & Alves [10] and Alves, Gongalves &
Miyagaki [1] to obtain the following result

Theorem 1 There exists a constant \* > 0, such that (P) has at least two
solutions, uy and us, satisfying

I(uy) <0< I(ug) VA€ (0,X%).

2 Preliminary Results

In this section we establish some results needed for the proof of Theorem 1.

Definition. A sequence {u,} C D™ is called a (PS).. sequence, if I(u,) — ¢
and I'(uy) — 0.

Lemma 1 If {u,} is a (PS). sequence, then {u,} is bounded, and {u;} is a
(PS). sequence.
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Proof. Using the hypothesis that {u,} is a (PS). sequence, there exist n,
and M > 0 such that

1
I(up) — —T'(un)un < M+ |lun]| Vn>n,. (2)
m
Now, using (1) and the Holder’s inequality, we have
Hun) =~ 1 (un)uin > = ™ + e [lun [ 3)

where ¢; is a constant depending of N, m,q, ||h]le and ©. It follows from (2)
and (3) that {u,} is bounded. Now, we shall show that {u;}} is a also (PS).
sequence. Since {u,} is bounded, the sequence u, = u, — u;’ is also bounded.
Then

I'(up)u, —0

and we conclude that
lun || = O. (4)

From (4) we achieve that

lun | = [Just]] + 0n(1)- ()
Therefore, by (4) and (5)

I(up) = I(uy) + 0n(1)

and
I/(un) = I'(UI) +on(1),

which consequently implies that {u;} is a (PS). sequence. O
From Lemma 1, it follows that any (P.S). sequence can be considered as a
sequence of nonnegative functions.

Lemma 2 If {u,} is a (PS). sequence with u, — u in D™, then I'(u) = 0,
and there exists a constant M > 0 depending of N,m,q, |h|le and ©, such that

I(u) > —MMN®
Proof. If {u,} is a (PS), sequence with u,, — u, using arguments similar to

those found in [10], [12] and [17], we can obtain a subsequence, still denoted by
Uy, satisfying

un(z) — wu(zr) ae in RN (6)
Vun(z) — Vu(z) ae in RY (7)
u(z) > 0 ae in RY, (8)
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From (6), (7) and using the hypothesis that {u,} is bounded in D™, we get
I'(u) =0, 9)

which in implies I'(u)u = 0, and

||u|\m:)\/hu‘1+1+/um*.
1 1 1 .
I — - = qg+1 _/ m.
(u) A(m q+1>/hu +N u

Using Holder and Young Inequalities, we obtain

Consequently

1 * 1 «
I(u) 2 = lulme = MA® + S Jul. = —MA®

where M = M(N,m,q, 0, |hlle). O
For the remaining of this article, we will denote by S the best Sobolev
constant for the imbedding D™ — L™,

Lemma 3 Let {u,} C D™ be a (PS). sequence with
1
—SN/m — MA®
c < N ,

where M > 0 is the constant given in Lemma 2. Then, there exists a subsequence
{un,} that converges strongly in D*™.

Proof By Lemmas 1 and 2, there is a subsequence, still denoted by {u,} and
a function uw € DV™ such that u, — u. Let w,, = u, — u. Then by a lemma in
Brezis & Lieb [3], we have

lwnl™ = llual™ = llul™ + on(1) (10)

lwnllms = [unlme = lulg- +on(1). (11)
Using the Lebesgue theorem (see Kavian [13]), it follows that
/hu‘jfl — /huq+1. (12)
From (10), (11) and (12), we obtain

lwnl™ = wnlp- 4 0n(1) (13)

and 1 1
™ = — walp = ¢ = () + 0,(1). (14)
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Using the hypothesis that {w,,} is bounded in D™ there exists [ > 0 such that
[Jwn ™ — 1> 0. (15)

From (13) and (15), we have
lw, | =1, (16)

and using the best Sobolev constant S and recalling that

. m/m”*
|mum25(/mMm) , a7)

we deduce from (15), (16) and (17) that
1> Sm/im, (18)
Now, we claim that [ = 0. Indeed, if [ > 0, from (18)
1> 8§N/m, (19)
By (14), (15) and (16), we have
1
lec—[(u). (20)
From (19), (20) and Lemma 2 we get
1
> —GN/m _ pA®
¢z ,
but this result contradicts the hypothesis. Thus, [ = 0 and we conclude that

Up —u in D™,

3 Existence of a first solution (Local Minimiza-
tion)

Theorem 2 There exists a constant A} > 0 such that for 0 < A < A} Problem
(P) has a weak solution uy with I(uy) < 0.

Proof. Using arguments similar to those developed in [5], we have
1

1> (2 =€) Il +o (™ = Cream/ e,
m

where C(e) is a constant depending on € > 0. The last inequality implies that
for small €, there exist constants v, p and A7 > 0 such that

Iu)>~v>0, Jull=p, and 0<A<A].
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Using the Ekeland Variational Principle, for the complete metric space EP(O)
with d(u,v) = ||u — v||, we can prove that there exists a (P.S),, sequence {u,} C
B,(0) with

Yo = inf{I(u) | u € B,(0)}.

Choosing a nonnegative function ® € DV™\{0}, we have that I(t®) < 0 for
small ¢t > 0 and consequently 7, < 0.
Taking A7 > 0, such that

1
0< NSN/’" —MX® WA (0,))

from Lemma 3, we obtain a subsequence {un,} C {u,} and uy € D™, such
that
Up, — U in Dbv™ .

Therefore,
I'(u1) =0 and I(u1)=1,<0,

which completes this proof. |

4 Existence of a second solution (Mountain Pass)

In this section, we shall use arguments similar to those explored by Cao, Li &
Zhou [5], Chabrowski [6], Noussair, Swanson & Jianfu [17], Jianfu & Xiping [12]
and Gongalves & Alves [10] to obtain the following

Theorem 3 There exists a constant X5 > 0 such that for 0 < A < A5 Problem
(P) has a weak solution ug with I(ug) > 0.

Proof. By arguments found in [5] and [10], we can prove that there exists
01 > 0 such that for all A € (0,d1), the functional I has the Mountain Pass
Geometry, that is:

(i) There exist positive constants 7, p with I(u) > r > 0 for |Jul| = p
(ii) There exists e € D™ with I(e) < 0 and |le| > p .
Then by [16], there exists a (P.S),, sequence {v,} with

Y= 911611; Jnax I(g(t))

where
I'={geC(0,1],D"™) | g(0) =0 and g(1)=e}.

Using the next claim, which is a variant of a result found in [5], we can complete
the proof of this theorem.
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Claim. There exists A5 > 0 such that for the constant M given by Lemma 2,
1
0<y < NSN/’” — MX® YA€ (0,)).

Assuming this claim, by Lemma 3 there exists a subsequence {v,,} C {vn}
and a function us € DV such that Un, — uz. Therefore,

I'(uz) =0 and I(uz)=v >0.

Which concludes the present proof. a
Verification of the above claim. For z € RV, let

()™

[+ fo] /(D] Ao

m

(N—m)/m?

U(z) =

Then it is well known that (see [7] or [19])
o)™ = e = sV (21)
Let 2 > 0 such that
1
NSN/’“ —MX® >0 VYA€ (0,62).
Then from (1) and (21), we have
tm
I(t®) < —8§N/m .
m
and there exists t, € (0,1) with

sup I(t¥) < %SN/’" — MX® VYA€ (0,67).

0<t<t,
Moreover, from (1) and (21), we have
tmm Attt
I(tW) = <— - —> gN/m _ —/h\lﬂ“ :
m m* qg+1

and remarking that

we obtain
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therefore,

sup I(t¥) < L gnm AT /hqu“
o2t N g+1 '

Now, taking A > 0 such that

)\t8+1

" /h\yq“ < —MX®
q

that is,

t‘l-‘rl th/q+1 1/(6-1)
O<i< | 21— =03
M(qg+1)

we deduce that

sup I(t¥) < %SN/’” — MX® YA€ (0,63).

t>t,

Choosing A5 = min{d;, d2,d3}, we have

1
sup I(t®) < —SN/™ — MX® VA€ (0,)}).
£>0 N

and consequently
1
0<m < NSN/’” — MX® WA e (0,)))

which proves the claim.

Proof of Theorem 1. Theorem 1 is an immediate consequence of Theorems 2
and 3.

Remark. Using Lemma 3 and the same arguments explored by Azorero &
Alonzo, in the case 0 < ¢ < p [9], we can easily show that for small A the
following problem has infinitely many solutions with negative energy levels.

(P) —Amu = )\h|u|q_1u+ |u|m*—2 u, in RN

* u € Db™
This result is obtained using the concept and properties of genus, and working
with a truncation of the energy functional associated with (P)..
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