

NETWORK OPTIMIZATION APPROACHES TO SOLVE THE STOCHASTIC AND

DYNAMIC FACILITY LAYOUT PROBLEMS AND

REDUCE SUPPLY CHAIN COSTS

 by

Gowtham Balachandran. B.E.

A thesis submitted to the Graduate Council of

Texas State University in partial fulfillment

of the requirements for the degree of

 Master of Science

with a Major in Industrial Engineering

May 2018

Committee Members:

 Clara Novoa, Chair

 Tongdan Jin

 Apan Qasem

COPYRIGHT

by

Gowtham Balachandran

2018

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,

section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations

from this material are allowed with proper acknowledgment. Use of this material for

financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Gowtham Balachandran, authorize duplication of

this work, in whole or in part, for educational or scholarly purposes only.

.

DEDICATION

 I must express my very profound gratitude to my parents, and to my friends and

family for providing me with unfailing support and continuous encouragement throughout

my years of study and through the process of researching and writing this thesis. This

accomplishment would not have been possible without them.

v

 ACKNOWLEDGEMENTS

 First, I would like to thank my thesis advisor Dr. Clara Novoa, Ph.D., Associate

Professor in the Ingram School of Engineering at Texas State University. The way she

worked with me was exceptional. The time she spent in clearing all my doubts was the way

it helped me to complete this thesis. The door to Dr. Novoa’s office was always open

whenever I had a question about my research or about writing this document. She

consistently allowed this paper to be my own work but steered me in the right direction

whenever she thought I needed it. I also would like to thank the professors who were

involved in the experimental phase of this research project: Dr. Tongdan Jin, Ph.D.,

Associate Professor in the Ingram School of Engineering and Dr. Apan Qasem, Ph.D.,

Associate Professor in the Department of Computer Science at Texas State University. The

passionate participation and input of Dr. Qasem and Dr. Jin was very helpful on the

successful development of this project. I also like to acknowledge Dr. Vishu

Viswanathan, Ph.D., Ingram Professor in the Ingram School of Engineering at Texas State

University as the second reader of this thesis. I am gratefully indebted for his valuable

comments. I would like to thank Dr. Jaydeep Balakrishnan, Professor at the Operations and

Supply Chain Management area at the Haskayne School of Business at the University of

Calgary and director of the Canadian Centre for Advanced Supply Chain Management and

Logistics for providing to my advisor the datasets for experimenting with the Dynamic

Facility Layout Problem (DFLP).

vi

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS ...v

LIST OF TABLES ... ix

LIST OF FIGURES ... xiv

LIST OF ABBREVIATIONS .. xvi

ABSTRACT ... xviii

CHAPTER

1. INTRODUCTION ...1

2. MATHEMATICAL MODELS FOR THE DFLP AND THE SDFLP6

2.1 Non-linear-programming formulation for the DFLP6

2.2 Graphical explanation of the DFLP ..8

2.3 DFLP formulated as a network problem ..11

2.4 DFLP with a budget constraint modeled as a network problem 14

2.5 SDFLP formulated as a network problem ..14

 3. LITERATURE REVIEW ...18

3.1 Surveys on recent advancements on solving facility layout problems

(FLP) ...18

3.2 Heuristics derived from exact methods to solve static or single-period

Quadratic Assignment Problems (QAP) ..19

3.3 Dynamic Programming (DP) to solve the DFLP ...19

3.4 Heuristic and meta-heuristic approaches to solve the DFLP21

3.5 Simulation approaches to solve the DFLP ...23

3.6 Stochastic and Dynamic Facility Layout Problems (SDFLP)24

3.7 Dealing with planning horizon and other practical considerations that

should be included when solving the DFLP ...26

3.8 Dynamic Warehouse Location Problem (DWLP) ... 27

vii

 4. METHODOLOGY ..30

4.1 Parallel Shortest Path (PSP) algorithm for solving the DFLP30

4.2 Solving DFLP using Dynamic Programming(DP) ...33

4.3 Network simplex algorithm for solving DFLP modeled as a network

 problem ...34

4.3.1 Network simplex method (NSM) procedure ...35

4.3.2 Example 1: solving a Shortest Path Problem using the NSM36

4.3.3 Example 2: solving a Transshipment Problem using the NSM 39

 4.4 Modeling the DFLP and the SDFLP as a linear network problem with

AMPL ...43

 5. NUMERICAL RESULTS ...46

5.1 DFLP datasets ...46

5.2 SDFLP datasets ..46

5.3 DFLP experimental setting ...47

5.4 SDFLP experimental setting ..50

5.5 DFLP Cost Results PSP vs. LNM ..51

5.5.1 No-sorting ..51

5.5.2 Sorting ...53

5.6 DFLP computational time results PSP vs. LNM ..56

5.6.1 No-sorting ..56

5.6.2 Sorting ...58

5.7 Sorting vs. no-sorting costs comparison ..62

5.8 Sorting vs. no-sorting computational time comparison62

5.9 Cost and computational time differences between PSP and LNM 66

5.10 DFLP costs and computational times comparisons between proposed

methods and previous works ..68

5.11 Analysis of the results for the DFLP ..75

5.12 SDFLP results ...77

 6. PRACTICAL CASE STUDY ..80

6.1 Micro Power facility layout problem ...80

6.2 Results ..82

 7. CONCLUSION ..86

APPENDIX ..90

viii

REFERENCES ..114

ix

LIST OF TABLES

Table Page

1. Model Notation for the NLP Formulation of the DFLP ..7

2. Hypothetical Layout or Permutation of Departments in Period 110

3. Distances between Locations ..10

4. Flows between Departments ...10

5. Example on Computing Material Handling Cost for a given Layout10

6. Notation for the Network Problem in Figure 4 ...12

7. Cost Results for DFLP PSP 6 Departments - No-Sorting51

8. Cost Results for DFLP LNM 6 departments - No-Sorting.......................................52

9. Cost Results for DFLP PSP and LNM 12 Departments - No-Sorting52

10. Cost Results for DFLP PSP for 15 Departments - No-Sorting52

11. Cost Results for DFLP LNM for 15 Departments - No-Sorting52

12. Cost Results for DFLP PSP for 30 Departments - No-Sorting53

13. Cost Results for DFLP LNM for 30 departments - No-Sorting53

14. Cost Results for DFLP PSP for 6 Departments – Sorting54

15. Cost Results for DFLP LNM for 6 Departments – Sorting54

16. Cost Results for DFLP PSP for15 Departments – Sorting55

17. Cost Results for DFLP LNM for 15 Departments – Sorting55

18. Cost Results for DFLP PSP for 30 Departments – Sorting55

19. Cost Results for DFLP LNM for 30 Departments – Sorting56

x

20. Computational Time (Seconds) results for PSP for 6 Departments – No-Sorting.. 56

21. Computational Time (Seconds) for LNM for 6 Departments – No-Sorting57

22. Computational Time (Seconds) Results for PSP for 12 Departments

–No-Sorting ...57

23. Computational Time (Seconds) for LNM for 12 Departments – No-Sorting57

24. Computational Time (Seconds) for PSP for 15 Departments – No-Sorting57

25. Computational Time (Seconds) for LNM for 15 Departments – No-Sorting58

26. Computational Time (Seconds) for PSP for 30 Departments – No-Sorting58

27. Computational Time (Seconds) for LNM for 30 Departments – No-Sorting58

28. Computational Time (Seconds) for SP 6 Departments – Sorting60

29. Computational Time (Seconds) for LNM 6 Departments – Sorting60

30. Computational Time (Seconds) for SP 15 Departments – Sorting60

31. Computational Time (Seconds) for LNM 15 Departments – Sorting61

32. Computational Time (Seconds) for SP 30 Departments – Sorting61

33. Computational Time (Seconds) for LNM 30 Departments – Sorting61

34. Difference in Cost and Computational Time for PSP and LNM - Sorting (S) vs.

No-Sorting (NS) - 6 Departments ...63

35. Difference in Cost and Computational Time for PSP and LNM - Sorting (S) vs.

No- Sorting (NS) - 15 Departments ...64

36. Difference in Cost and Computational Time for PSP and LNM - Sorting (S) vs.

No- Sorting (NS) - 30 Departments ...65

37. Cost and Computational Time Differences between PSP and LNM - 6

xi

Departments ...67

38. Cost and Computational Time Differences between PSP and LNM - 15

Departments ...67

39. Cost and Computational Time Difference between PSP and LNM - 30

Departments ...67

40. Cost, Computational Time and Percentage (%) of Cost Difference PSP and

LNM – Sorting (S) and No-Sorting (NS) vs. Best Known Cost (BKC) -

6 Departments ..69

41. Cost, Computational Time and Percentage (%) of Cost Difference PSP

and LNM – Sorting (S) and No-Sorting (NS) vs. Best Known Cost (BKC) -

15 Departments ..70

42. Cost, Computational Time and Percentage (%) of Cost Difference PSP

and LNM–Sorting (S) and No-Sorting (NS) vs. Best Known Cost (BKC) - 3071

43. DFLP Average Costs presented by Other Authors for 6-15-30 Departments72

44. Performance of PSP and LNM vs. Previous Authors Solutions77

45. Results from Solving the SDFLP - 6 Departments ...79

46. Distances (in Feet) between Locations at the Micro Power Facility81

47. Flows of Material between Micro Power Departments for Year 1

(in Trips/Year) ...82

48. Flows of Material between Micro Power Departments for Year 2 and Year 3

(in Trips/Year) ...82

xii

49. Departments Relocation Costs at Micro Power ..82

50. Summary of Literature Reviewed on DFLP ..90

51. Summary of Literature Reviewed on SDFLP ...92

52. AMPL Model File for DFLP without Budget ...93

53. AMPL Data File for DFLP without Budget ..93

54. AMPL Model File for DFLP with Budget ..94

55. AMPL Data File for DFLP with Budget ...94

56. AMPL Model File for SDFLP with Budget ..95

57. AMPL Data File for SDFLP with Budget ...97

58. Relevant Information about the Computational Environments109

59. Costs, Computational Times and Percentage Difference (% Diff) for PSP

and LNM – Sorting (S) vs. No-Sorting (NS) - 15 Departments - Times

Shortest Path Sorting (SP-S) are only for doing the variant of the Dijkstra’s

Algorithm ..110

60. Costs, Computational Times and Percentage Difference (% Diff) for PSP

 and LNM – Sorting (S) vs. No-Sorting (NS) - 30 departments - Times

Shortest Path Sorting (SP-S) are only for doing the variant of the Dijkstra’s

Algorithm ..110

61. Times to Perform only the Variant of the Dijkstra Algorithm for SP

Sorting (S) - 15 and 30 departments ..111

62. Times to Perform LNM Sorting – 15 and 30 Departments including

xiii

Percentage Difference (% Diff) for LNM Sorting (S) vs SP Sorting (S)

as reported in Appendix O ...112

xiv

LIST OF FIGURES

Figure Page

1. The logistics triangle ..2

2. A representation of a segment of a physical distribution system3

3. DFLP graphical example ...9

4. The constrained dynamic plant layout problem ...12

5. A network representation of the DFLP ..30

6. Initial network example 1 ..36

7. First step to solve the shortest path problem in example 137

8. Steps 2 and 3 NSM to solve the shortest path problem in example 138

9. Optimal solution for the shortest path problem in example 139

10. Initial network example 2 ..40

11. Network simplex method steps for the iteration in example 241

12. Second iteration of the network simplex method for example 242

13. Optimal network for example 2 four iterations..43

14. Flow chart to solve the DFLP using the PSP implementation...............................49

15. Flow chart to solve the DFLP under the Linear Network Model50

16. Flow chart to solve the SDFLP under the Linear Network Model 51

17. Cost for PSP and LNM under the sorting and no-sorting variants studied74

18. Cost PSP sorting and LNM sorting vs. previous authors.......................................74

19. Cost for PSP and LNM (sorting and no-sorting) vs best known cost75

xv

20. Numerical labels for the locations in the Micro Power STAR Park facility81

21. New layout suggested for Micro Power after solving with PSP and LNM

methods ..83

22. Mirror image for new layout suggested for Micro Power after solving with

PSP and LNM methods ..84

xvi

LIST OF ABBREVIATIONS

Abbreviation Description

ACO Ant Colony Optimization

AHP Analytic Hierarchy Process

AIS Artificial Immune System

ANN Artificial Neural Networks

BFS Basic Feasible Solution

BSA Backtracking Search Algorithm

CNC Computer Numerical Control

CONGA Conway and Venkataraman’s Genetic Algorithm

CPM Cutting Plane Method

CRAFT Computerized Relative Allocation of Facilities Technique

CSA Chaotic Simulated Annealing

CSP Constrained Shortest Path

DEA Data envelopment analysis

DFLP Dynamic Facility Layout Problem

DP Dynamic Programming

DWLP Dynamic Warehouse Location Programming

ES Expert System

FA Firefly Algorithm

FLP Facility Layout Problem

FS Fuzzy System

GA Genetic Algorithm

GRASP Greedy Randomized Adaptive Search Procedure

GT Graph Theoretic models

HAS Hybrid Ant Systems

IP Integer Programming

IRP Interpretive Ranking Process

LP Linear Programming

LNM Linear network model

LNP Linear network problem

MADM Multiple attribute decision making

MCNFP Minimum-Cost Network Flow Problem

MHC Material Handling Cost

MILP Mixed Integer Linear Programming

MIP Mixed Integer Programming

MTEL Minimize the Total Expected Loss

NLGA Nested Loop Genetic Algorithm

NLIP Non-Linear Integer Programming

NLP Non-Linear Program

xvii

NP hard Non-Deterministic Polynomial Time hard

NSA Network Simple Algorithm

NSM Network Simplex Method

PSP Parallel Shortest Path

PSO Particle Swarm Optimization

QAP Quadratic Assignment Problem

QSP Quadratic Set Covering

RC Relocation Cost

SA Simulated Annealing

SDFLP Stochastic Dynamic Facility Layout Problem

SFLP Static Facility Layout Problem

SPP Shortest Path Problem

TACC Texas Advanced Computing Center

TOPSIS Technique for Order Preference by Similarity to Ideal

Solution

TS Tabu Search

xviii

ABSTRACT

This thesis researches on the Dynamic Facility Layout Problem (DFLP) and the

Stochastic and Dynamic Facility Layout Problem (SDFLP). The problems are extensions

to the static or single-period facility layout problem (SFLP). They assume that there are

fluctuations in the products’ demands and consequently in the flows of material (and/or

final products) between facilities in a given planning horizon. Fluctuations in flows of

material are also due to the introduction of new products, disasters, and other production

and marketing changes impacting the supply chain. In the DFLP, the flows of material

between facilities vary over time but they are assumed known. In the SDFLP, the flows

between facilities are uncertain and may follow different random distributions. The

objective of these problems is to find an assignment of facilities to locations at each period

that optimizes the material handling cost and the facilities relocation cost. This thesis has

three contributions. First, it assesses the accuracy and efficiency of a Parallel Shortest Path

(PSP) algorithm developed by Kolla (2015) to solve the DFLP. Second, it tests the

efficiency on formulating a linear network model (LNM) for the DFLP and solving it with

the network simplex algorithm implemented in AMPL, a commercial mathematical

programming language, through numerical experimentation. Third, this thesis proposes a

constrained shortest path network model to solve the SDFLP and experiments with small

size instances. The SDFLP network model is an extension of the DFLP model in

Balakrishnan et al. (1992).

1

1. INTRODUCTION

Tompkins et al. (2010) highlight the relevance of facilities planning from the point

of view of size of the investment. They mention that U.S. businesses invested over a trillion

dollars per year over the last five years in capital goods and from this amount, over 30%

was spent on structures with a large part of this percentage spent on new constructions. In

addition, Tompkins et al. (2010) state that over 8% of the United States gross national

product has been annually spent on new facilities and that over $300 billion will be spent

annually on facilities planning or re-planning.

Between 20%-50% of the total operating expenses in manufacturing in the US are

attributed to material handling. Facilities planning deals with the reduction of this

significant supply chain expenditure. Effective facilities planning can reduce material

handling cost by 10-30% (Tomkins et al., 2010).

According to Ballou (2003), Logistics/Supply Chain embraces four major areas:

customer service, inventory, location and transportation (see Figure 1). The facility layout

problem (FLP) is a strategic planning problem that falls in the Location Strategy side of

the triangle in Figure 1. The FLP occurs every time there is a need to plan for the

arrangement of the facilities. The time horizons for the plan range typically from 3 to 10

years. Besides material handling cost, facilities relocation costs and improper location of

facilities affect the performance of the supply chain. Reduction of material handling costs

is crucial since it is incurred if routing all materials (raw materials, parts, sub-assemblies

and assemblies) inside facilities or between them. A good location strategy has a positive

impact on inventory levels, entire transportation costs, and customer service by reducing

delays.

2

Figure 1. The logistics triangle (Ballou, 2003)

Ballou (1968) mentions that a physical distribution system can be conceptualized

as several inventory storage points (nodal points) interconnected by a transportation

network (links) (See Figure 2). Location and arrangement of inventories and warehouse

facilities, transportation service choices, and inventory levels are major decision areas that

concern managers designing distribution systems especially when demand and economic

conditions change over time. This thesis researches on solution methodologies for solving

two facility layout problems (FLP’s): the Dynamic Facility Layout Problem (DFLP) and

the Stochastic and Dynamic Facility Layout Problem (SDFLP).

3

Figure 2. A representation of a segment of a physical distribution system (Ballou, 1968)

In the Dynamic Facility Layout Problem (DFLP), the flows of material/products

between facilities (or departments) are known but vary over the time horizon. In the

Stochastic Dynamic Facility Layout Problem (SDFLP), the flows of products between

facilities are known only through probability distributions and vary over time. The

objective of these problems is to find an assignment of facilities to physical locations for

every period that optimizes the trade-off between material handling cost and facilities

relocation cost. For these problems, the flows of material/products between facilities may

vary because of fluctuations in product demand, introduction of new products, changes in

product design, updates in production processes, new machinery, breakdowns and/or

unexpected disruptions in the supply chain. The SDFLP is an extension to the DFLP and

the Single-period or Static Facility Layout Problem (SFLP). The SFLP models as a

Quadratic Assignment Problem (QAP) if the facilities are of equal size and the layout is

divided into equal size locations. A practical example of facilities (machines or

4

departments) of equal size occurs in flexible manufacturing settings using multiple

automated and multifunctional equipment such as Computer Numerical Control (CNC)

machines (Moslemipour & Lee, 2012).

This thesis has three contributions. First, it assesses the accuracy and efficiency of

an algorithm to solve the DFLP through numerical experimentation. The algorithm coded

by Kolla (2015) is a variation of the Dijkstra’s shortest path algorithm (1959), also

presented by Tarjan (1983), and adapted to solve the DFLP. The instances selected for the

computational study have 6, 10, 12, 15, and 30 departments and 5 years and they come

from the Balakrishnan’s repository (Balakrishnan & Cheng, 2000). The solutions from

running Djikstra’s implementation are compared to those published by Conway &

Venkataramanan (1994), Balakrishnan & Cheng (2000), Baykosaglu & Gindy (2001),

Balakrishnan et al. (2003), and McKendall & Shang (2006). Second, this thesis

experiments with a linear programming model for the DFLP proposed in Balakrishnan et

al. (1992) and assess its efficiency if solving it with the network simplex algorithm in

AMPL, a commercial mathematical programming language, through extensive numerical

experimentation. Third, this thesis devises a constrained network model to solve the

SDFLP and solves this as a stochastic program. The SDFLP model extends the

deterministic DFLP model in Balakrishnan et al. (1992). This works assesses the feasibility

of solving the proposed model using a set of generated instances. This will be the first work

in the literature modeling a constrained SDFLP under the network modeling approach.

The thesis consists of 7 chapters. Chapter 2 presents the mathematical models for

the DFLP and SDFLP and a small example to understand the terminology and

computations to evaluate the objective function for the DFLP. Chapter 3 presents a

5

literature review that summarizes the contributions under the solution approaches

researched by previous authors. Chapter 4 presents the two solution methodologies studied

in this thesis, the variation of the Dijkstra’s Algorithm and the Network Simplex

Algorithm. The examples presented on using the Network Simplex Algorithm illustrate at

a small scale the solution steps performed by the AMPL software. Chapter 5 describes the

experiments conducted to find the numerical results and an analysis of them. Chapter 6

applies the devised solution methods to solve a practical case study and Chapter 7 presents

the conclusions of the thesis.

6

 2. MATHEMATICAL MODELS FOR THE DFLP AND THE SDFLP

The Quadratic Assignment Problem (QAP) is a facility layout problem that models

as a non-linear integer programming (NLP) problem with quadratic objective function. It

aims to find an assignment of n facilities of about equal size to n layout locations that

minimizes only the cost of material handling incurred in a single period.

2.1 Non-linear-programming formulation for the DFLP

The DFLP can be modeled as an extension to the QAP. The NLP formulation for

the DFLP presented below is the one in Moslemipour & Lee (2012). Let F and D be two

given matrices that can be asymmetric. F = [ftkl] contains the flows between any facilities

or departments k and l at time t and D = [dij] has the distances between any locations i and

j. An optimal solution to the DFLP is to find the values for the decision variables, x and y,

that minimize the cost of material handling (first term in equation 1) and facilities

relocation cost (second term equation 1) and satisfy constraints (equations 2 - 5) over T

periods of time. Table 1 summarizes the model notation.

min 𝑧 = ∑ ∑ ∑ ∑ ∑ 𝑓𝑡𝑘𝑙𝑑𝑖𝑗𝑥𝑡𝑘𝑖𝑥𝑡𝑙𝑗

𝑛

𝑗=1

𝑛

𝑖=1

𝑛

𝑙=1

𝑛

𝑘=1

𝑇

𝑡=1

+ ∑ ∑ ∑ ∑ 𝑎𝑡𝑘𝑖𝑗

𝑛

𝑗=1

𝑦𝑡𝑘𝑖𝑗

𝑛

𝑖=1

𝑛

𝑘=1

 (1)

𝑇

𝑡=2

𝑠. 𝑡 ∑ 𝑥𝑡𝑘𝑖

𝑛

𝑖=1

= 1, 𝑡 = 1, … , 𝑇; 𝑘 = 1,2, … , 𝑛 (2)

𝑠. 𝑡 ∑ 𝑥𝑡𝑘𝑖

𝑛

𝑘=1

= 1, 𝑡 = 1, … , 𝑇; 𝑖 = 1,2, … , 𝑛 (3)

 𝑥𝑡𝑘𝑖 Є {0,1} ∀𝑡, 𝑘, 𝑖 (4)

 𝑦𝑡𝑘𝑖𝑗 = 𝑥(𝑡−1)𝑘𝑖 ∗ 𝑥𝑡𝑘𝑗 ∀𝑘, 𝑖, 𝑗, 𝑡 ≥ 2 (5)

7

Table 1. Model Notation for the NLP Formulation of the DFLP

Decision variables:

xtki Binary decision variable that takes the value of one if department

k is assigned to location i in period t and zero otherwise

ytkij Binary decision variable that takes the value of one if department

k is shifted from location i in period t − 1 to location j in period t

and zero otherwise

Parameters:

T Length of the planning horizon, usually given in years

n Total number of departments, which is also the total number of

locations

𝑓𝑡𝑘𝑙 Flows of material between facilities or departments k and l at time

t

dij Distances between any physical locations i and j

atkij Cost of relocating department k from location i to j in period t

Constraints (2) and (3) are assignment constraints that guarantee every department

is assigned to one location and every location has exactly one department. Constraints (3)

and (4) state that the decision variables are binary. Thus, xtki takes the value one if

department k is assigned to location i in period t and zero otherwise. The decision variable

ytkij is one if the department k is shifted from location i in period t − 1 to location j in period

t and zero otherwise.

The parameter atkij representing the cost of relocating a single department can be

modified to represent: (1) a fixed cost and independent of the department arranged or (2) a

variable cost that depends on the department being moved but not on its locations.

Rosenblatt (1986) and most other authors since then have considered a variable

rearrangement costs (case 2). However, in many practical situations, the primary cost

associated with the rearrangement of a facility is the fixed cost that results from the

disruption, or possible shutdown, of its operations.

8

The right-hand side in Table 14.1 in Rardin (2017) lists a series of classical

optimization problems that are believed not to be solvable in polynomial time, but this has

not been proven. One of these problems is the QAP. The QAP and extensions of it such as

the DFLP have been labeled as non-deterministic polynomial time hard (NP-hard)

problems (Loiola, 2007). Rardin, 2017 states in its Principle 14.18 that if any single

problem in NP-Complete or NP-Hard can be solved in polynomial time, then very member

of NP is polynomially solvable, and P=NP. Consequently, unless P=NP, there can exist no

polynomial time algorithm for any NP-Complete or NP-Hard Problem.

Because of the large size of the solution space for the DFLP formulated as a NLP

(i.e. n!t), exact solution approaches to DFLP’s have been limited to instances with sizes

about 6 departments and locations and 3 years. These works have used mostly Dynamic

Programming (DP). Other solution approaches have solved the problem approximately

using metaheuristics such as tabu search (TS), genetic algorithm (GA) and simulated

annealing (SA).

The NLP model for the DFLP that was presented above can be extended to model

the SDFLP where flows and relocation cost parameters are unknown with certainty and

just the probability distribution for them is known. However, by introducing scenarios that

represent forecasted values for these unknown parameters the NLP formulation gets easily

intractable even for very small problem instances. This thesis researches in other

methodologies different than NLP to solve the DFLP and SDFLP.

2.2 Graphical explanation of the DFLP

Figure 3 is a graphical example of a solution for a small size DFLP in which 3

departments had to be assigned to 3 locations in 3-time periods (i.e., years). The given

9

departments’ relocation costs are presented in the small table on the top left side of the

figure. T denotes the periods (i.e. years), MHC represents material handling cost, RC stands

for the relocation cost to transition from one layout in a year to another layout in a

consecutive year, and the layouts or permutations of departments are notated by the letter

Lxxx where xxx is a permutation number.

 Figure 3. DFLP graphical example

The solution depicted in the Figure, indicates that in year T=1 the departments 2,

3, and 1 are in locations 1, 2, and 3, respectively. In year T=2, department 1 is shifted to

location 2, department 2 is shifted to location 3 and department 3 is shifted to location 1.

Similarly, relocation of departments occurs if comparing layout L145 in year two vs. layout

L289 in year 3. RC will be added to the MHC to compute the total cost of this solution to

the DFLP.

 Locations

 Departments

 T=1 T=2 T=3

 Loc 1 Loc 2 Loc3 Loc 1 Loc 2 Loc3 Loc 1 Loc 2 Loc3

Departments
relocation cost

1 $40

2 $40

3 $50

 2 3 1 3 1 2 3 2 1

MHC11 + RC111452 L145 L289 L1 MHC1452 + RC14522893

10

The MHC computation for L1 is calculated in Table 5. It results from the product

of flows between departments, distances between locations and cost per unit of distance

given the hypothetical layout, flow and distance matrixes presented in Table 2, 3, and 4.

Table 2. Hypothetical Layout or Permutation of Departments in Period 1

Department number 2 3 1

Location number 1 2 3

Table 3. Distances between Locations

Locations/Locations 1 2 3

1 0 3 2

2 2 0 7

3 5 6 0

 Table 4. Flows between Departments

Departments/Departments 1 2 3

1 0 40 60

2 40 0 20

3 60 20 0

From Table 3, the distance between location 1 to 2 is 3 feet and from Table 4, the

number of times product flows between departments 2 and 3 is 20. Thus, the flow-distance

is 20*3 = 60. Similarly, the flow-distance computation is repeated for each pair of

departments (taken from left to right and from right to left since the matrix of distance is

non-symmetric). The MHC is the sum of all the flow-distance calculations (see Table 5)

and it is equal to, 1160*0.25= $290 assuming the material handling cost is $0.25/feet.

Table 5. Example on Computing Material Handling Cost for a given Layout

Pairs of departments Flows Locations Distance Flows*Distance

2 3 20 1 2 3 60

2 1 40 1 3 2 80

11

Table 5. (Continued)

3 1 60 2 3 7 420

1 3 60 3 2 6 360

1 2 40 3 1 5 200

3 2 20 2 1 2 40

 Total = 1160

From one period to another the departments change to different locations and a new

MHC for the new layout is computed in a similar way as in table 5. The computed MHC

of $290 for year 1 is added with the RC incurred to transition from period 1 to period 2

(from L1 to L145). If comparing L1 from period 1 to L145 in period 2, department 2 was

moved from location 1 to location 3 and it costs of $50. Department’s 3 and 1 were also

moved and therefore RC is $130 (adding all numbers in the given departments’ relocation

cost table). Then the total cost incurred to go from L1 in period one to L145 in period two

is $290 + $130=$420. The computation of MHC and RC is repeated for the lapse between

years 2 and 3 using L145 and L289. The total cost of the solution in Figure 3 will result

from adding this cost to the $420 computed for the lapse between years one and two. In

general, a department is shifted when due to the high flow between it and other(s)

department(s) not currently close to it the MHC may be reduced given that the increase in

RC’s do not exceed those savings.

2.3 DFLP formulated as a network problem

Balakrishnan et al. (1992) indicated that the DFLP can be modeled as a linear

network problem (LNP). The network proposed by Balakrishnan et al. (1992) to represent

the DFLP as a LNP is in Figure 4 and its notation is in Table 6. Decisions occur at the end

of the period. L11 represents layout number 1 in the first period. L22 represents a

rearranged layout for the next period (layout 2 in period 2). Edges of the network connect

12

layouts from different periods and have costs, C, equal to the sum of the material handling

cost of the layout in the previous period plus the relocation cost incurred from going from

one layout to the next. The problem is to find the lowest cost dynamic layout plan as shown

in the figure 4 by the red colored arcs. In Balakrishnan et al. (1992), the edges are also

selected in such a way that the sum of the relocation cost incurred does not exceed a total

amount of budget allocated to the rearrangements. The linear network model (LNM) and

its notation, as in Balakrishnan et al. (1992), are presented below Table 6.

Figure 4. The constrained dynamic plant layout problem (Balakrishnan et al., 1992)

Table 6. Notation for the Network Problem in Figure 4

Lit Static layout i in period t

S, E Source and end nodes, respectively (dummy layouts)

P Possible number of layouts in each period which is constant across

periods

13

Table 6. (Continued)

N Number of time periods in the planning horizon

Linear Network Model (LNM) to solve the DFLP:

𝑀𝑖𝑛 𝑧 = ∑ ∑ 𝐶𝑖𝑡,𝑘(𝑡+1)

𝑘(𝑡+1)

𝑥𝑖𝑡,𝑘(𝑡+1) (6)

𝑖𝑡

Subject to

∑ 𝑥𝑆,𝑖1 = 1,

𝑖1

 (7)

∑ 𝑥𝑖𝑁,𝐸 = 1

𝑖𝑁

 (8)

∑ 𝑥𝑖𝑡,𝑘(𝑡+1) − ∑ 𝑥𝑘(𝑡+1),𝑚(𝑡+2) = 0,

𝑚(𝑡+2)𝑖𝑡

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘, 𝑡 (9)

Model decision variables:

𝑥𝑖𝑡,𝑘(𝑡+1): The arc representing the sum of the 𝑀𝐻𝐶 in layout 𝑖 in period t and the RC

incurred from layout i in period t to layout k in period t+1. The variable 𝑥𝑖𝑡,𝑘(𝑡+1) is binary.

It will be 1 if layout i is selected in period t and layout k is selected in period (t+1) and 0

otherwise.

𝑥𝑆,𝑖1 ∶ Arc connecting the source node 𝑆 to layout 𝑖 in period 1.

𝑥𝑖𝑁,𝐸 ∶ Arc connecting layout 𝑖 in period 𝑁 to end node 𝐸.

Model parameters:

𝐶𝑖𝑡,𝑘(𝑡+1): The sum of the MHC in layout 𝑖 in period 𝑡 and the RC incurred from moving

from layout i in period t to layout k in period t+1.

14

In the model, the objective function (6) minimizes sum of the RC and MHC.

Constraint (7) guarantees that one unit is sent from the source node, S to one layout in

period 1, constraint (8) assures that one unit arrives to the destination node, E and constraint

(9) represents the flow conservation for all nodes. Note the difference in the meaning of

the model decision variables for this model and the NLP presented in Section 2.1.

2.4 DFLP with a budget constraint modeled as a network problem

Balakrishnan et al. (1992) introduced the network model for the DFLP with the

following additional budget constraint:

∑ ∑ 𝑅𝐶𝑖𝑡,𝑘(𝑡+1)𝑥𝑖𝑡,𝑘(𝑡+1)

𝑘(𝑡+1)𝑖𝑡

≤ 𝐵 (10)

In this model, B is a parameter that represents the total available budget for relocations in

the planning horizon.

2.5 SDFLP formulated as a network problem

This thesis proposes the following extension of the models in Sections 2.3 and 2.4

to solve a constrained SDFLP under a deterministic equivalent formulation (Birge, 2010)

considering a total of S’ scenarios and N time periods. The model is constrained because it

considers limited budget. The three stochastic parameters in the model are the budget

available for relocations (A), the cost of relocating the departments (and thus RC is

stochastic), and the matrices containing the flow of material between departments (and thus

C is stochastic since C is the sum of MHC and RC). The model and its notation are

presented below. Given that this model is proposed by the author of this thesis the notation

has been slightly changed vs. the one in Balakrishnan et al. (1992). To have a clearer

notation, indexes i and k that represent a layout number and index s that represents a

15

scenario are notated as subscripts and the time indexes (i.e. t, t+1, N-1) are notated as sub-

subscripts.

𝑚𝑖𝑛 𝑧𝑠𝑡𝑜𝑐 = ∑ ∑ ∑ 𝑝𝑠𝐶𝑠𝑖𝑡𝐾𝑡+1
𝑥𝑖𝑡𝐾𝑡+1

−

𝐿𝑡+1

𝐾𝑡+1

𝐿𝑡

𝑖𝑡

𝑆′

𝑠=1

 ∑ 𝑝𝑠𝑦𝑠(𝑁−1)
(1 + 𝑟)−(𝑁−1)

𝑆′

𝑠=1

 (11)

∑ 𝑥𝑆𝑡𝑎𝑟𝑡 𝑖1=1

𝑖1

 (12)

∑ 𝑥𝑖𝑁 𝐸=1

𝑖𝑁

 (13)

∑ 𝑥𝑖𝑡 𝐾𝑖+1

𝑖𝑡

− ∑ 𝑥𝐾𝑡+1𝑚𝑡+2

𝑚𝑡+2

= 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘, 𝑡 (14)

∑ ∑ 𝑅𝐶𝑠𝑖𝑡 𝐾𝑡+1
𝑥𝑖𝑡𝐾𝑡+1 + 𝑦𝑠𝑡

 = 𝐵𝑠𝑡
 ∀𝑠, 𝑡 = 1, … 𝑁 − 1

𝐿𝑡+1

𝑘𝑡+1

𝐿𝑡

𝑖𝑡

(15)

𝐵𝑆1
= 𝐴𝑠1

 ∀𝑠 (16)

𝐵𝑆𝑡+1
= 𝐴𝑠𝑡+1

+ 𝑦𝑠𝑡
∗ (1 + 𝑟) ∀𝑠, 𝑡 = 1, … , 𝑁 − 2 (17)

𝐵𝑆𝑡
≥ 0 ∀𝑠, t = 1,…,N - 1 (18)

𝑦𝑠𝑡
 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑖𝑛 𝑠𝑖𝑔𝑛 (𝑢𝑟𝑠) ∀𝑠, 𝑡 = 1, … , 𝑁 − 1 (19)

Model decision variables:

𝑥𝑖𝑡𝑘𝑡+1
: The arc representing the sum of MHC in layout 𝑖 in period t and the RC

incurred if changing from layout i in period t to layout k in period t+1. The variable

x𝑖𝑡,𝑘𝑡+1
 is binary. It will be 1 if layout i is selected in period t and layout k is selected in

period (t+1) and 0 otherwise.

𝑥𝑆𝑡𝑎𝑟𝑡 𝑖1
∶ Arc connecting source or start node (Start) to layout 𝑖 in period 1.

𝑥𝑖𝑁,𝐸 ∶ Arc connecting layout 𝑖 in period 𝑁 to end node 𝐸.

16

𝑦𝑠𝑡
: If positive, it represents the amount of budget not used for relocations occurring

between year t and t+1 under scenario s. If negative, it represents the extra money to

borrow to do relocations occurring between period t to t+1 under scenario s.

𝐵𝑠𝑡
 : Total available money for relocations between year t and t+1 under scenario s.

Model parameters:

𝐶𝑠𝑖𝑡𝑘𝑡+1
: The sum of the MHC in scenario 𝑠 for layout 𝑖 in period 𝑡 and the cost of

rearranging layout i in period t to layout k in period t+1.

𝑝𝑆 : Probability of scenario 𝑠.

𝑅𝐶𝑠𝑖𝑡 𝐾𝑡+1
∶ Cost of rearranging from layout i in period t to layout k in period t+1 under

scenario s.

𝐴𝑆𝑡
: Available or allocated budget for the relocations occurring between period t and t+1

under scenario s

r: Annual interest rate

In the SDFLP model above, equation (11) minimizes the cost of material handling

and relocations and considers the earnings or loses resulting from money not used for

relocations or borrowed for doing those relocations assuming an interest rate r. Constraints

(12) to (14) are the same as for the DFLP model with budget constraint proposed by

Balakrishnan et al. (1992). Constraints (15) to (17) correspond to flow conservation

constraints. Constraint (15) says that for a given period, the amount used in relocations plus

any money borrowed or left (decision variable y can be negative or positive as explained

in the decision variables list) should be equal to the total available money for relocations

in such period and scenario. Constraint (17) indicates that the total available money for

relocations in a period other than the first one is equal to the available or allocated budget

17

for relocations in such period plus money (considering interest) that could have been left

from the previous period or that must be repaid. Constraint (16) is a border constraint and

indicates that the total available money for relocations in period 1 is equal to the available

or allocated budget since there is no money left from a previous period to be brought to the

period 1. Thus, the model assumes 𝑌𝑠0
= 0.

18

3. LITERATURE REVIEW

This chapter presents relevant work on facility layout problems (FLP’s) besides the

work in Balakrishnan et al. (1992) mentioned in the previous chapter. The chapter reviews:

(a) seminal works on solving FLP’s, (b) approaches to solve DFLP and SDFLP’s, (c) and

a problem arising in supply chain known as the dynamic warehouse location problem

(DWLP) which is closely related to the DFLP. The focus of this review is on problems that

model as extensions of the Quadratic Assignment Problem (QAP) and consequently

assume that the facilities are about the same size.

3.1 Surveys on recent advancements on solving facility layout problems (FLP)

Balakrishnan & Cheng (1998) mainly discuss approaches to solve DFLP’s with

equal sized departments. The approaches are Dynamic Programming, Computerized

Relative Allocation of Facilities (CRAFT) heuristic, Genetic Algorithms, Tabu Search,

Cutting Planes, Branch and Bound and Cut Trees. The authors also review contributions

that deal with stochastic material flow in DFLP. The last section of their paper reviews the

DFLP with unequal size departments.

Kulturel-Konak (2007) emphasizes on the uncertainty surrounding production

environments and on the relevance of designing robust and flexible facilities. Her work

reviews previous work on DFLP and SDFLP’s and mentions two types of uncertainties: (i)

internal disturbances, such as equipment breakdowns, variable task times, queuing delays,

rejects and reworks and (ii) external forces, such as uncertainties in the level of demand,

product prices, and product mix. She discusses exact, heuristics, meta-heuristics and hybrid

solution methods and indicates that the future research direction is moving to address the

uncertainties and changing scenarios in the production environment.

19

Moslemipour, Lee, & Rilling (2012) focus on discussing dynamic and robust

layouts, mathematical models and solution approaches for the FLP. The mathematical

models presented are Quadratic Assignment Problem (QAP), Quadratic Set Covering

Problem (QSP), Mixed Integer Programming (MIP) and Graph Theoretic Models (GT).

The reviewed intelligent solution approaches are Genetic Algorithm (GA), Simulated

Annealing (SA), Tabu Search (TS), Ant Colony Optimization (ACO), Greedy Randomized

Adaptive Search Procedure (GRASP), Particle Swarm Optimization (PSO), Artificial

Immune System (AIS), Expert System (ES), Fuzzy System (FS), Artificial Neural

Networks (ANN). The advantages and disadvantages of these solution approaches are

summarized in detail.

3.2 Heuristics derived from exact methods to solve static or single-period Quadratic

Assignment Problems (QAP)

Burkard & Bonniger (1983) propose a cutting plane algorithm without Bender’s

decomposition as an update to the methods proposed by Balas and Mazzola (1980). The

authors differentiate their cutting plane method (CPM) by proposing another linearization

technique. They further improve the solution given by the CPM by doing pairwise

exchanges. In this thesis, the approach to solve the DFLP is through a Linear Network

Model (LNM) instead of using the NLP formulation used by these authors.

3.3 Dynamic Programming (DP) to solve the DFLP

This section presents different previous works using DP to solve the DFLP. The

DP approach has high resemblance with the approaches used in this thesis. As stated in the

introduction, this thesis solves the DFLP with a variation of the Dijkstra algorithm and

compare such solution approach to the one using a LNM (section 2.3). Rosenblatt, (1986)

20

presents a formulation for the static facility layout problem (SFLP) as a non-linear integer

program (NLIP). In the formulation, the number of locations is equal to the number of

departments. The author mentions that problems where the number of locations is different

than the number of departments can be solved with this model by introducing dummy

departments or locations. He obtains an exact solution for a six departments DFLP using

exact DP and derives lower and upper bounds on the optimal solution. For DFLP’s with

more than 6 departments and 3 periods, Rosenblatt, (1986) suggest a heuristic that selects

random layouts from solving the SFLP using CRAFT. The layouts are the input for each

stage of the DFLP algorithm.

Lacksonen & Enscore (1993) benchmark the exchange algorithm, cutting planes,

branch and bound, DP, and cut trees to solve a quadratic assignment formulation of the

DFLP. The authors generate the instances to test the algorithms. The instances have 6 to

30 departments and 3 to 5 periods. The cutting plane algorithm provided the best solution

with a reasonable computational time.

Urban (1998) applies the incomplete DP concept to solve the DFLP with fixed

rearrangement costs incurring in low computational times. For a T-period DFLP, the

incomplete method solves only T(T+1)/2 static facility layout problems (SFLP’s) that

correspond to the cases where relocation cost is incurred. Using these layouts, a solution is

found using DP. The author also solves the DFLP using GRASP and Initialized Multi

Greedy Algorithms and compares those results to the ones from the incomplete DP method.

The work presents also an improved lower and upper bound to the DFLP.

21

3.4 Heuristic and meta-heuristic approaches to solve the DFLP

This section presents seminal contributions regarding heuristics methods to solve

the DFLP. In the Numerical Results chapter, the methodologies proposed in this thesis will

be compared to results from some of authors mentioned in this section. Conway &

Venkataramanan (1994) are the first authors using GA to solve the DFLP with a budget

constraint. GA is a meta-heuristic that applies concepts and terminology brought from

genetics to find a near optimal solution. GA most relevant elements are generation,

chromosomes, population, survival of the fitness, crossover, and mutation. The GA

proposed is tested in an n=6 departments (and locations) and t=5 periods problem. The

chromosome size is n×t, or 30 digits, representing the location of every department in each

period. Also, for each period there are n!=720 chromosome strings in the population. Based

on the fitness function (i.e. the cost function), two strong chromosomes are selected, split

and swapped. It may end up in infeasible solutions like repeating a department in one

period. Replacement of the invalid chromosome digits produces feasible solutions. The GA

repeats the process of selecting pairs of chromosomes, splitting and swapping to produce

new feasible solutions at each iteration of the algorithm.

Kaku & Mazzola (1997) use Tabu Search (TS), a technique that does pairwise

interchanges between departments in the local neighborhood of a solution and keeps a tabu

list to avoid cycling. A diversification strategy is used to ensure that different regions of

the search space are explored. Their TS heuristic is a two-stage procedure. In the first stage,

diversification allows to get several different solutions. The best solutions generated are

fed into the second stage for intensification of the search and determine a final solution.

22

Problems from Lacksonen & Enscore (1993) repository with up to 30 departments and 5

periods took 3 hours, on average, to run on a Pentium 200 MHz PC.

Balakrishnan & Cheng (2000) propose a GA method that outperforms the one in

Conway & Venkataraman (1994). Later, Balakrishnan et al. (2003) and Balakrishnan &

Cheng (2006) produce a hybrid algorithm that combines GA and DP. DP is used at the

crossover step to find the best multi-period layout based in fitness. This hybrid algorithm

takes advantage of DP and GA without being computationally prohibitive.

Baykasoglu & Gindy (2001) propose a SA algorithm with a simple, but effective,

data structure and neighborhood generation mechanism. Solutions are in a two-

dimensional matrix (periods in the rows, locations in the columns, and departments are

entries of the matrix). Neighborhood solutions result from swapping elements in the rows

of the matrix. The algorithm is applied to small test problems from the literature. It finds

the optimal solutions and performs better than the DP from Rosenblatt, (1986) and the GA

of Conway & Venkataraman, (1994). Additional computational experimentation is done

with the data set from Balakrishnan & Cheng, (2000) which contains problems for 6, 15,

30 departments for 5 and 10 periods. Comparisons made with the GA in Balakrishnan &

Cheng, (2000) show that the proposed SA performs considerable well. However,

computational time increases considerably as problem size gets bigger.

McKendall & Shang (2006) are the first ones to apply Hybrid Ant Systems (HAS)

to the DFLP and develop three different versions of the heuristic (HAS I, HAS II, and HAS

III). Results show that the proposed versions perform well on Lacksonen & Enscore (1993)

and Balakrishnan & Cheng, (2000) data sets. A pairwise exchange technique is used in

HAS I to improve the initial and updated solutions from using the pheromone trail matrix.

23

HAS II uses SA as the local search heuristic and the ideas in HAS I. HAS III adds a look-

ahead/look-back strategy to the pairwise exchange heuristic within the HAS I heuristic.

HAS I, II, III obtained the best solutions for 19, 30, and 36 problems from Balakrishman

& Cheng (2000) repository, respectively.

Baykasoglu et al. (2006) propose an ant colony heuristic for solving complex

combinatorial optimization problems like DFLP. The authors came out with competitive

solutions however, Mckendall & Shang (2006) gave a few better results.

Sahin et al. (2010) propose a simulated annealing algorithm to solve the DFLP with

a constraint on the budget available for relocations. They compare the proposed heuristic

with the one in Baykasoglu et al. (2006) because they state that Baykasoglu et al. (2006)

and Balakrishnan et al. (1992) are the only two previous studying the DFLP with budget

constraints. The problems compared have 5, 15 and 30 departments and 5 and 10 periods.

The average improvements obtained by Sahin et al (2010). vs. Baykasoglu et al. (2006) are

1.27& for the instances of size 5, 6.19% for the instances of size 15 and 5.59% for the

instances of size 30.

3.5 Simulation approaches to solve the DFLP

A novel perspective to solve DFLP’s is introduced by Azimi & Charmchi (2012).

They proposed a heuristic algorithm to solve a DFLP with budget constraint combining

linear/integer programming and simulation. After solving a linear relaxation of the non-

linear model for the DFLP, the decision variable is interpreted as the probability of

assigning a department to a location. In the experiments, the budget is split equally for each

period and for some problems the budget was set equal to the rearrangement costs. This

work proved to be efficient in computational time and was tested in problems of up to 30

24

departments. They are the second authors after Sahin et al. (2010) to research on a DFLP

model with two constraints that limit the expenditure on relocations and tie the leftover

budget from a previous period to the total available budget in a current period.

3.6 Stochastic and Dynamic Facility Layout Problems (SDFLP)

Palekar et al. (1992) use exact methods based on DP and heuristics to solve for the

first time an SDFLP under fixed and rolling horizons options. The work provides lower

and upper bounds to the problem optimal solution. In the exact approach, this work

exemplifies the combination of the use of integer programming (IP) and DP. The author

found exact solutions for problems with up to 12 departments and 8 periods. Also, the

approximate methods tested successful for problems with up to 40 departments and 8

periods. Using a rolling horizon produced good results if compared to fixed horizon. The

main contribution of this work is a drastic reduction on computational time since heuristics

reduced the number of layout combinations explored in the DP procedure.

Benjaafar & Sheikhzadeh (1997) find the most flexible layout over a set of demand

scenarios. In addition to variability of product mix and product demand, the authors allow

duplication of the same department type within the facility. In fact, disaggregation and

distribution of a department throughout the facility is not a new idea. Earlier, Montreuil et

al. (1993) introduced the concept of holographic layouts for systems operated in high

volatile environments. A holographic layout allows the spreading of machines in a facility.

The authors assume that: (1) each sub department may consist of more than one machine,

(2) all sub departments of the same type may not necessarily have the same capacities and

(3) material flow between departments is a decision variable. The material handling cost is

reduced, and the solution adjusts to the fluctuations in flow patterns and volumes. The

25

authors use a heuristic method to solve the problem. It is an extension to the CRAFT

algorithm where a flow volume allocation problem is solved first in an exact way. They

show that duplicates of the same departments can significantly reduce material handling

cost while effectively coping with fluctuations in flow patterns and volumes. However,

most of the cost reduction occurs with relatively few duplicates.

Krishnan et al. (2008) work on minimizing uncertainties from multiple demand

scenarios in single and multi-period facility layout problems. The problems are solved

under minmax approach and minimize the total expected loss (MTEL) approaches. Under

the minmax approach, the objective is to minimize the maximum loss considering all

possible scenarios. The common layout to be used under all scenarios is found using GA.

The results show that these models are effective in reducing the risks that are associated

with facility layout design under uncertain environments.

Tayal et al. (2016) propose a methodology to solve a sustainable stochastic demand

flow facility layout problem. They integrate meta-heuristic techniques such as SA, chaotic

simulated annealing (CSA) and hybrid firefly algorithm (FA/CSA) to generate the layouts.

The best layouts among the generated layouts are filtered using data envelopment analysis

(DEA) and applying multiple attribute decision making (MADM) approaches such as

TOPSIS, IRP and AHP in association with aggregate ranking methods and integer linear

programming (ILP).

Vitayasak et al. (2017) solve SDFLP’s assuming product demands follow

exponential, normal, and uniform distributions and using GA and the Backtracking Search

algorithm (BSA) as solution methods. The novel modified BSA consists of five processes:

initialization, selection-I, mutation, crossover and selection-II. The computational

26

experiments compared five algorithms GA, BSA and modified BSA’s (mBSA1, mBSA2,

mBSA3). Results show that GA performs much better than BSA in terms of minimizing

the cost. However, BSA took 55% less time than GA and thus the authors suggest that BSA

is suitable for large, computationally intensive optimization problems.

 Tayal et al. (2018) propose Simulated Annealing (SA) and Chaotic Simulated

Annealing (CSA) meta-heuristics to solve a Multi Objective Stochastic Dynamic Facility

Layout Problem (MO-SDFLP) to solve the location-based demand problem on the facility

during disasters. The main aim is to find a layout that responds to the sudden demand

variations occurring in disaster relief situations faced by supply chains. The two considered

objectives are to minimize the flow times distance while maximizing the department’s

closeness or adjacency desirability, which is in many cases subjective information related

to noise, heat, dust, flow of material, etc. Tayal et al. (2018) test their proposed methods

on the Moslemipour & Lee (2012) problem with 12 Departments and 5 periods and

Gaussian (i.e. normal) distribution product demand. For further testing the capabilities of

MO-SDFLP on a high-demand disaster situation the SA and CSA algorithms are used to

solve a problem with 30 Departments and 5 periods. The results showed that CSA

performed better than SA.

3.7 Dealing with planning horizon and other practical considerations that should be

included when solving the DFLP

Azadivar & Wang (2000) solve a single-period FLP by considering other dynamic

characteristics and operational constraints such as the time involved in moving the material

and number of transporters. The objective function is not to minimize material handling

cost but to minimize average cycle time. GA is used to optimize the facility layout for cycle

27

time and productivity. Simulation is used to evaluate the performance of the system. The

method proved very effective to find near-optimal solutions. However, the time consumed

by the computer simulation is significant.

Balakrishnan & Cheng (2009) compare the Urban heuristic (1998) and approximate

DP to solve a DFLP starting from layouts generated with the CRAFT heuristic and

randomly. The comparisons were done under fixed vs. rolling horizons options. The

authors mention that algorithms developed for the fixed horizon case are not as effective

as those developed for rolling horizons. They also indicate that it is hard to pick up an

algorithm that runs effectively under both fixed and rolling horizons. The effectiveness of

the rolling plan horizon algorithm is compared under various scenarios. The authors

conclude that further research is needed to coin an effective self-adjusting algorithm under

rolling horizons.

Appendix A presents a table that summarizes the DFLP works reviewed in this

Sections 3.1-3.5 and 3.7. Appendix B presents a table that summarizes the SDFLP works

reviewed in Section 3.6. The current gaps in the literature are to: (1) find more efficient

and accurate ways to solve DFLP for instances with more than 10 departments (10

locations) with 3-5 periods and (2) provide a stochastic model and a solution approach for

the SDFLP that does not rely on DP or meta-heuristics. This thesis attempts to fill this gap.

In the last part of this section, we briefly review the Dynamic Warehouse Location Problem

(DWLP), a supply chain problem that closely relates to the DFLP.

3.8 Dynamic Warehouse Location Problem (DWLP)

Ballou (1968) mentions that in a rapidly changing economy, warehouse location-

relocation is also a dynamic decision problem, yet most existing location models used to

28

solve the problem are static. Ballou applies the DP technique to find a location-relocation

plan for a single warehouse that will maximize total profit in a given planning period of

five years. This DWLP involves the tradeoff between expected profit and time to relocate

warehouses. Relocation profit depends on decision makers periodical review of new input

data about the location of the warehouse. When future demand and economic data can be

forecasted only for a short time horizon and the forecasted demand is high, it is not a good

idea to relocate since at the time of relocation the demand might have changed, and the

company may end up with a profit much lower than predicted. Accurate long-term

forecasts provide the best scenario for the decision makers because it gives them enough

time to relocate warehouses. As relocation is also concerned with land purchase,

construction, lease negotiation, financing, closing and starting operations, accurate long-

term forecasts put relocation as risk free, because of the ample time, and low chances of

changes for demand and economic data after relocating.

Sweeney and Tatham’s (1976) propose an approximate method to solve a DWLP

that combines DP and Mixed Integer Linear Programming. They opt for a computationally

efficient DP algorithm that consists of using as states in each period only the R best static

configurations for the warehouse on each period. The generation of the best configurations

involves solving the MILP multiple times by adding constraints that avoid repetition of the

previous static solution. This approach was illustrated in a problem with five-year planning

horizon, two plants, five warehouse locations, and 15 customer zones.

DWLP could be extended to include the identification of the best layout for

products inside the warehouse. High demand of a product makes a product of high priority.

The warehouse will save in relocation and material handling costs by finding the optimal

29

location for the products. Furthermore, products can be grouped by using inventory

stratification methods, such as ABC and weighted linear optimization. Such extended

DWLP could include multiple objectives such as maximize the overall profits in the

warehouse location decision and achieve top-notch customer service over the time horizon.

30

4. METHODOLOGY

This chapter consist of 4 sections. Section 4.1 explains a variation of the Dijkstra’s

algorithm used in this thesis to solve the DFLP modeled as a network and presented in

Chapter 2 (Section 2.3). Section 4.2 briefly presents Dynamic Programming (DP), a closely

related methodology. Section 4.3 explains and exemplifies the simplex for networks

algorithm (SNA), the second methodology used in this thesis. Section 4.4 briefly discusses

how these methodologies were implemented for developing the computational study.

4.1 Parallel Shortest Path (PSP) algorithm for solving the DFLP

This thesis experiments with the parallel implementation to solve the DFLP as a

shortest path problem developed by Kolla (2015). This implementation is notated as

Parallel Shortest Path (PSP). It is a slight variation of the Dijkstra’s algorithm (Dijkstra,

1959), also presented in Tarjan (1983) and Rardin (2017). Following is a presentation of

the variation of the Dijkstra’s algorithm implemented by Kolla (2015) to solve the DFLP.

Figure 5. A network representation of the DFLP

31

Figure 5 presents the DFLP modeled as a network problem in a directed weighted

graph G. To make Figure 5 simple, the DFLP presented has three facilities, three locations

and T time periods. In general, G has T*n! + 2 vertexes or nodes where T is the total number

of periods and n! is the total number of layouts considered in each period if the problem

has n departments and n locations. G has (T-1)*(n!*n!) + 2n! arcs. Two dummy nodes vo

and vf are added to the network and they represent the single origin and the destination.

Node v in the graph define a layout of facilities (i.e. assignment of facilities to

locations), represented as a permutation π of integers, {1 … n}. Material handling cost

(MHC) for node v is computed using the permutation π, the flow (F={ftkl}) and distance

(D={dij}) matrices as exemplified in Section 2.2. MHC is the sum of all feasible products

of flow between departments and distances between locations. There is a unidirectional

edge ers from node vr to vs if vr and vs are in two different periods (i.e. r is in t-1 and s is in

t, this means vr precedes vs). The weight W(ers) on each edge can be computed as W(ers) =

RCers + MHCvs where RC represents the relocation cost. The value for RCers results from

comparing the permutations in vr and vs and adding the relocation costs for all departments

that have shifted their locations from one period to the next one.

The length of a path in G is the sum of its edge weights. The cost to travel from a

node vr to a node vs is the minimum length of a path from vr to vs. However, note that in

the DFLP, the only interest is to find the shortest path or minimum-cost path from vo to vf.

The shortest path DFLP algorithm uses a tentative cost function C[v] such that when the

algorithm ends C[vf] has the total cost to travel (i.e. to go) from vo to vf. The steps in the

variation of the Dijkstra’s algorithm implemented by Kolla (2015) to solve the DFLP are

listed below.

32

Variation of the Dijkstra’s algorithm to solve the DFLP:

Initialization Step

• Each vertex or node is in one of three states: unlabeled (and with infinite cost),

labeled (i.e. temporary labeled) or scanned (i.e. permanently labeled).

• At the beginning vo is the only vertex labeled and C[vo]= 0. The vertexes vs that

connect directly to node vo are temporarily labeled with a cost C[vs] equal to the

sum of RCos + MHCvs which is equal to MHCvs since RCos is zero. All other nodes

are unlabeled and have infinite cost. The index i is set equal to 1 and the scan step

is performed.

Scan or Processing Step

• Select vertex vi and change it from labeled to scanned. For each edge ers such that

𝐶𝑣𝑖
+ 𝑅𝐶𝑣𝑖𝑣𝑠

+ 𝑀𝐻𝐶𝑣𝑠
< 𝐶𝑣𝑠 replace 𝐶𝑣𝑠

by 𝐶𝑣𝑖
+ 𝑅𝐶𝑣𝑖𝑣𝑠

+ 𝑀𝐻𝐶𝑣𝑠
and make vs

labeled. If C[vs] was replaced, set the predecessor node of s, p[s], as vertex.

Increase i to i+1 and repeat the scan step until no temporary nodes remain.

Comments about the algorithm

Storing the predecessor node information permits to find the shortest path from vo

to vf when the algorithm ends. This is done by going backwards from vf to v0 and using the

information in p[s]. There are a couple of differences to highlight between this variant of

the Dijkstra’s algorithm to solve the DFLP and the algorithms originally proposed by

Tarjan (1983) and Dijkstra’s (1959). In the PSP implementation, finding the shortest

distance corresponds to finding one layout for each period that minimizes the total cost in

equation (1) of the model presented in section 2.1 or equivalently the total cost in equation

(6) of the model presented in 2.3. Besides, in each iteration, the selection of the node to

33

label as scanned (Tarjan, 1983) or permanent (Taha, 2013) among the temporary nodes

does not require to loop over the temporary labeled nodes to find the one of minimum cost

(i.e. distance). It is because there is no interest in identifying the nodes that are closer to

the source node vo in increasing order of cost. It reduces the computational time of the PSP

implementation. Besides, the DFLP network has no edges between nodes that belong to

the same period or are separated by more than one period. It also simplifies the number of

comparisons to perform by the PSP implementation.

In the DFLP the problem size rapidly grows for instances with more than n = 6

departments and t = 3 periods. To cope with this issue, the PSP implementation generates

a large number N of layouts for each period t where (N<n!) and proceeds to execute the

shortest path algorithm previously described. Since the problem exemplified in figure 5 is

small (3 departments, 3 locations, T periods), all n! layouts are in the network.

Consequently, the reader sees a repetition in the layouts (or permutations) in the nodes over

the periods.

Regarding the parallelization implemented by Kolla (2015), it focused on

computing the MHC of the nodes in a parallel fashion using two reduction operations

available in OpenMP. Kolla also observed that the computation of MHC and RC are

independent and can be executed in parallel. However, the time to compute MHC is

significantly larger than the time to compute RC. Then, there was no great reduction in

computational times when implementing the last parallelization idea.

4.2. Solving DFLP using Dynamic Programming (DP)

Alternatively, the shortest path problem can be modeled and solved with the

Dynamic Programming (DP) methodology. However, this approach still will have the curse

34

of dimensionality mentioned in the previous section. The main idea in a DP approach is to

decompose the problem into sub-problems (Taha, 2013). Computations are performed

recursively in such a way that the optimum solution of one stage (i.e., a sub-problem) is

used as an input to the next stage. The optimum solution is obtained when the last stage is

reached. In the DFLP a stage represents a period. Using the DFLP notation introduced in

the previous paragraphs, the forward recursive equation to solve the DFLP under a DP

approach is given by equation (6).

𝐶𝑣𝑠 =
𝑡 {𝐶𝑣𝑟

𝑡−1 + 𝑅𝐶𝑣𝑟𝑣𝑠
} + 𝑀𝐻𝐶𝑣𝑠

𝑡 𝑣𝑟 ∈ (𝑠𝑡𝑎𝑔𝑒 𝑡−1)
min (6)

The recursive equation (6) express the shortest cost to state or node vs in the next

stage t. It links successive stages in a way that permits optimal decision for every state or

node vs in a future stage t independently of the decisions already made in all preceding

stages. DP is an operations research approach appropriate for exactly solving multi-period

or multi-stage problems.

4.3 Network simplex algorithm for solving DFLP modeled as a network problem

The network simplex method (NSM) is an adaptation of the bounded variable

primal simplex algorithm. It can be used to solve Minimum-Cost Network Flow Problems

MCNFP such as shortest path, maximum flow, transportation, assignment, transshipment

and critical path problem. The primal and the dual for the MCNFP are:

Primal:

𝒎𝒊𝒏 𝑪𝑻𝑿

𝒔. 𝒕. , 𝑨𝒙 = 𝒃

𝒙 ≥ 𝟎

35

Dual:

𝑴𝒂𝒙 𝒃𝑻𝑾

𝒔. 𝒕. , 𝑾𝑻𝑨 ≤ 𝑪𝑻

𝑾 𝒖𝒏𝒓𝒆𝒔𝒕𝒓𝒊𝒄𝒕𝒆𝒅 𝒊𝒏 𝒔𝒊𝒈𝒏 (𝑼𝑹𝑺)

The MCNFP variables are the arcs. Iterations are done until the optimal solution is

achieved, this means when no non-basic variable (i.e., arc) is eligible to enter to the basis.

The first iteration starts by arbitrarily selecting a spanning tree. Second iteration and the

rest of the iterations identify the non-basic arc to enter. The arc with the maximum violation

of the optimality condition causes the maximum decrease in the objective function per unit

change in the value of flow on the selected arc. It will enter to the basis in the next iteration

and a new objective function cost will be computed. The detailed steps for the NSM as

discussed in Winston (2004) are presented below.

4.3.1 Network simplex method (NSM) procedure

Step 1: Determine the initial basic feasible solution (bfs) by selecting a spanning tree

arbitrarily. Indicate non-basic variables at their upper bound by dashed arcs.

Step 2: Compute W1 ,W2, … Wn (simplex multipliers or dual values) by solving Wi -Wj =

Cij for all basic variables Xij and giving the value W= 0 to one of the Wi’s. For all non-basic

variables, determine the reduced cost coefficient 𝐶̅ij from 𝐶̅ij = Wi- Wj - Cij. The current bfs

is optimal if 𝐶̅ij ≤ 0 for all Xij.= Lij and 𝐶̅ij ≥ 0 for all Xij = Uij . If the bfs is not optimal,

choose the non-basic variable that most violates the optimality conditions as the entering

basic variable.

Step 3: Identify the cycle (there will be exactly one!) created by adding the arc

corresponding to the entering variable to the current spanning tree of the current bfs. Use

36

conservation of flow to determine the new values of the variables in the cycle. The basic

variable that exits the basis will be the variable that first hits its upper or lower bound as

the value of the entering non-basic variable is changed.

Step 4: Find the new bfs by changing the flows of the arcs in the cycle found in step 3. Go

to step 2.

Following are two examples on the network simplex method. Example 1 show

some of the steps for solving small size Shortest Path Problem. Example 2 show the steps

for solving a Transshipment Problem without bounds on the variables.

4.3.2 Example 1: solving a Shortest Path Problem (SPP) using the NSM

Figure 6 depicts a Shortest Path Problem. In this network, the costs are given in $.

As a first step, one feasible solution (i.e. arbitrarily chosen spanning tree with n-1 arcs) is

identified as shown Figure 7. A spanning tree is a tree that connects all nodes and does not

form a cycle. All the five arcs represent basic variables (X13 and X56 are at its lower bound

and the others at its upper bound). The omitted arcs (X25 and X35) represent non-basic

variables.

Figure 6. Initial network example 1

37

Figure 7. First step to solve the shortest path problem in example 1

In Step 2, the complementary slackness theorem on the dual constraints is applied.

It means to solve the following system of equations for the primal basic variables. The

system has one redundant W variable that can be set equal to zero to solve for the other

variables. If W1=0 the values of the W’s are computed below and depicted in Figure 8.

W1 - W2 = C12 = 4

W2 - W4 = C24 = 3

W4 - W6 = C46 = 2

W1 - W3 = C13 = 3

W5 - W6 = C56 = 2

Now, the optimality of the non-basic variables is checked by using the dual

constraints and the complementary slackness theorem.

𝐶̅25 = [W2 - W5 - C25] [-4 - (-7) - 2] 1 (Violates optimality condition)

𝐶̅35 = [W3 - W5 - C35] [-3 - (-7) -3] 1 (Violates optimality condition)

Since 𝐶̅25 and 𝐶̅35 violate the optimality conditions with a value 1, arbitrarily 𝐶̅25 is

taken. Step 3 of the NSM is also shown in Figure 8. X25 will enter the basis with an

38

allocation of Ө equal to 1 because beyond this value, arcs (2,4) and (4,6) will become

negative. X46 will leave the basis as shown by the cycle formed by arcs X24, X46, X25 and

X56.

Figure 8. Steps 2 and 3 NSM to solve the shortest path problem in example 1

The lighter arcs in Figure 8 indicate basic variables at the lower level of 0 and the

thicker arcs represent the remaining basic variables. The new basic arcs are (1,2) (2,4) (2,5)

(1,3) and (5,6). A new iteration of the NSM starts by repeating step 2. The new W values

are:

W2 – W5 = C25 = 2

W2 - W4 = C24 = 3

W5 - W6 = C56 = 2

W1 - W3 = C13 = 3

W1 - W2 = C12 = 4

39

Now, the optimality of the non-basic variables is checked by using the dual

constraints and the complementary slackness theorem.

𝐶̅35 = [W3 - W5 – C35] [-3 - (-6) -3] 0 (Satisfies optimality condition)

𝐶̅46 = [W4 - W6 – C46] [-7 - (-8) -2] -1 (Satisfies optimality condition)

Since both non-basic variables satisfy the optimality condition, the algorithm stops. Figure

9 shows the optimal shortest path solution.

Figure 9. Optimal solution for the shortest path problem in example 1

4.3.3 Example 2: solving a Transshipment Problem using the NSM

Figure 10 presents the problem. Node 1 and 3 are supply nodes, while node 2 is a

transshipment node and node 4 and 5 are demand nodes. The B values indicate the amount

of demand (-) and/or supply (+) on each node. The cost associated with each arc are along

the arrows. Figure 11 shows the status of the algorithm after the first step is completed.

40

Figure 10. Initial network example 2

In the first step, the arcs (1,2) (2,4) (3,4) and (3,5) are arbitrarily selected as the bfs.

Figure 11 has the allocated values for these basic variables (i.e. arcs). See values after the

x’s. Figure 11 also shows the W’s resulting after solving the system of equations in step 2

of the NSM. The system results from applying the complementary slackness theorem on

the dual constraints. The system has one redundant W variable that can be set equal to zero

to solve for the other variables. If W5=0 the values of the W’s are the ones listed below and

depicted in Figure 11.

41

 Figure 11. Network simplex method steps for the first iteration in example 2

W1 - W2 = C12 = 8

W2 - W4 = C24 = 5

W3 - W4 = C34 = 6

W4 - W5 = C45 = 4

Now, the optimality of the non-basic variables is checked by using the values of

the dual constraints and the complementary slackness theorem.

𝐶̅25 = [W2 - W5 - C25] [9 - 0 - 7] 2 (Violates optimality condition)

𝐶̅13 = [W1 - W3 – C13] [17 – 10 -1] 6 (Violates optimality condition)

𝐶̅35 = [W3 - W5 - C35] [10 – 0 -3] 7 (Violates optimality condition)

𝐶̅35 is the maximum violating arc and it enters to the bfs. In Step 3 of the NSM, an

allocation of Ɵ =4 is given to the new entering arc 3-5 because in the cycle formed by arcs

X34, X45, and X35, a value larger than 4 will give a negative value to the basic variable X34.

The variable X34 then leaves the basis. Figure 11 shows with bolded color the current bfs

after completing one iteration of the steps in the NSM. The second iteration starts with

42

arcs (1,2), (2,4), (4,5) and (3,5) as basic variables. Figure 12 shows the values for the W’s

computed in the second step at the second iteration. They result from solving the equations

below Figure 12, setting W5=0 and using the complementary slackness theorem again.

 Figure 12. Second iteration of the network simplex method for example 2

W1 - W2 = C12 = 8

W2 - W4 = C24 = 5

W4 - W5 = C45 = 4

W3 - W5 = C35 = 3

Now, the optimality of the non-basic variables is checked.

𝐶̅34 = [W3 –W4 - C34] [3 - 4 - 3] = -4 (Satisfies optimality condition)

𝐶̅13 = [W1 - W3 - Cij] [17 - 3 - 6] = 8 (Violates optimality condition)

𝐶̅25 = [W2 - W5 - Cij] [9 - 0 - 7] = 2 (Violates optimality condition)

 𝐶̅13 is the maximum violating arc and it enters into the bfs. In step 3, an allocation

of Ɵ=1 is given for the new entering arc 1-3 because in the cycle formed by arcs X12, X24,

43

X45, X13 and X35 it is the maximum value that permits the arc 4-5 to stay above its lower

value of zero. Then X45 leaves the basis. The iterations of the NSM continue until the

optimum is achieved. In example 2, the optimum is achieved in 4 iterations. Figure 9 shows

the optimal network.

Figure 13. Optimal network for example 2 after four iterations

4.4 Modeling the DFLP and the SDFLP as a linear network problem with AMPL

AMPL stands for Advanced Mathematical Programming Language. It is an

algebraic modelling language to describe and solve highly complex problems occurring in

large scale optimization and scheduling-type problems. Network linear programs can be

modeled in AMPL using standard AMPL formulations that include definition of sets,

parameters, variables, objective function and constraints. AMPL also permits network

models to be described more directly in terms of their network structure using what is

known as node and arc declarations. The advantage of modeling the problem using node

44

and arc declarations is that AMPL automatically communicates the network structure to

the solver and any special network algorithms in the solver are applied automatically.

(Fourer, 2003).

In this thesis, the solver selected to work with AMPL is CPLEX. CPLEX

incorporates an optional heuristic procedure that identifies “pure network” constraints in a

linear program. The CPLEX procedure looks for these constraints and if the model has

many of them CPLEX applies a fast network simplex algorithm. If the CPLEX solver finds

non-network constraints, CPLEX uses the network solution as a start for solving the

problem by the general primal or dual simplex algorithm. The optional heuristic is active

by default but the user can suppress it or force its use in all cases. CPLEX’s network

simplex algorithm can achieve dramatic reductions in optimization time for “pure” network

linear programs defined entirely in terms of node and arc declarations (Fourer,2003).

The node-and-arc declaration makes it easy to define a linear program for a

network that has several different kinds of nodes and arcs. The DFLP problem in this thesis,

modeled as presented in Section 2.3, is solved in AMPL using node and arc declarations.

Consequently, the various steps and iterations that such formulation undergoes to find a

solution are the ones described and depicted in the Section 4.3 Network Simplex Algorithm

for solving DFLP modeled as a network problem. Examples 4.3.2 & 4.3.3 illustrated the

procedure AMPL/CPLEX follows by using a small-sized problem. Because the models for

solving the DFLP with budget constraint and the SDFLP model presented in sections 2.4

and 2.5 have additional constraints they are considered as variants to the regular shortest

path problem. Thus, they are not solved with the simplex network algorithm.

45

 The AMPL model and a skeleton sample data file used for solving the DFLP

proposed in Section 2.3 using node and arc declarations are presented in Appendix C and

D, respectively. The AMPL model and a skeleton sample data file for solving the DFLP

with budget proposed in Section 2.4 are in Appendix E and F. The AMPL model and a

skeleton sample data file for solving the SDFLP proposed in Section 2.5 are presented in

Appendix G and H.

46

5. NUMERICAL RESULTS

In this chapter, the DFLP Parallel Shortest Path (PSP) variation of the Dijkstra

algorithm and the Linear Network Model (LNM) methodology are compared and contrasted

to several heuristic approaches proposed by previous authors. The comparison is done in

terms of computational time and overall cost of the solution.

5.1 DFLP Datasets

Balakrishnan & Cheng (2000) generated DFLP instances that the research

community have been using to test their proposed methodologies. The instances have 6, 15

and 30 departments and 5 and 10-time periods. Under each combination of department and

period, there are eight different problems that differ by the matrixes of flow between

departments and distance between locations. In this thesis, all problems with 6, 15 and 30

departments and 5-time periods were selected and tested. The fixed time horizons of 5

periods seemed to make more practical sense. Due to volatility in the economy, fixed

periods of 10-years length seemed less practically implementable. In addition,

Moslemipour & Lee (2012) present a randomly generated problem with 12 departments

and 5-time periods. In this thesis, this 12 departments instance is also used for

experimentation.

5.2 SDFLP Datasets

Since there is no library of instances for the SDFLP, 4 problems were generated

with Excel inspired by the methodology Balakrishnan et al (1992) followed to generate

instances for the DFLP. The instances considered five-time periods, six departments and

locations and three scenarios for the market that will affect the matrices of flows between

departments and the vectors of costs of relocating the departments. The flows between

47

departments necessary to compute the material handling cost (MHC) and to obtain the

values for the 𝐶𝑆𝑖𝑡,𝑘(𝑡+1) parameters were randomly generated from a uniform distribution

(U[a,b]) with parameters a=100 and b=200. For each problem, the total material flow

between departments was kept constant over the time periods. Then, the flows for three

departments were increased by a factor of 5 in three departments (departments 1,4, and 6).

In this way, flow dominance from some departments would motivate relocations and the

flow matrixes end asymmetric. The distance (feet) matrix between locations was about the

same order of magnitude than the ones provided from the library (d6l5) in Balakrishnan &

Cheng (2000).

The vectors of costs for relocating each department, named uRC in the codes, were

generated randomly from a uniform distribution (U[a,b]) with a=100 and b=500 in each

of the three scenarios considered. The procedure to generate flow matrices and vectors of

cost of relocating each department was repeated for the 4 problems, and for the 3 scenarios

and 5-time periods in each.

5.3 DFLP experimental Setting

The number of different DFLP problems studied is 25 (8 problems with 6, 15 and

30 departments and 1 problem with 12 departments). Each DFLP problem was also run 5

times. The multiple runs are necessary to see the variability of the results to selecting

different sets of layouts or permutations to include in the DFLP network.

The number of runs equals to 125 (25*5) for the variant of no-sorting the layouts

randomly generated to input to the network. This variant is labeled as no-sorting through

this document. A total of 120 (24*5) runs were done for the sorting layouts variant (since

the 12 instances was not studied). This variant is labeled as sorting through this document.

48

Since this thesis compares two methodologies, PSP and LNM, 250 runs were executed for

the non-sorting variant and 240 for the sorting variant.

The first PSP algorithm implemented was the one that does not sort the

permutations or layouts to enter in the network nodes based on its MHC. This PSP was

implemented in C language by Kolla (2015) under the supervision of Dr. Apan Qasem and

Dr. Clara Novoa. This implementation had some OpenMP calls. Later, Dr. Apan Qasem

developed an implementation of the PSP that sorts the permutations to enter to the network

nodes in each year based on the annual MHC incurred.

 The first C implementation (i.e. the no-sorting variant) was run using the Stampede

and Maverick clusters from the Texas Advanced Computing Center (TACC),

https://portal.tacc.utexas.edu/. The cluster that was used the most was Stampede (100

runs). Each one of the 6400 Stampede nodes runs under the CentOS 6.4 Operating system

and has the following characteristics: CPU Intel Xeon E5-2680 v2 Ivy Bridge, 2.80 GHz,

20 CPU’s/node, 12.8 GB memory/core. Also, 25 runs were done in the Maverick cluster

equipped with 132 nodes each one with the following characteristics: CentOS, Dell C8220,

Intel PQI, C610 Chipset, 2/8 Xeon E5-2680 2.7GHz (turbo, 3.5) 1/61 Xeon Phi SE10P

1.1GHz, 10 CPU cores with 32 GB 8x4G DDR3-1600 MHZ 8GB GDDR5. One input to

the PSP implementation was the number of permutations to randomly generate for each

period. This number was set to 85,000. As shown in Figure 14, the C program uses flow

and distances data from the instances, generates a number of permutations per period equal

to min (n!, 85,000), assign them to the nodes in the PSP network, computes MHC at the

nodes or vertices and RC at the edges, and performs the PSP, a variant of the Dijkstra

algorithm described in detail in Chapter 4.

https://portal.tacc.utexas.edu/

49

Figure 14. Flow chart to solve the DFLP using the PSP implementation

For the experimentation under sorting (i.e. the sorting variant), a larger memory

machine named CAPI was used. CAPI (Coherent Accelerator Processor Interface) is

available at the Computer Science department at Texas State. The machine was donated

by IBM. CAPI runs under CentOS. It has 160 CPU’s, min speed 2.061 Ghz and max speed

3.690 Ghz. CAPI has an additional functionality for PCIe slots on CAPI enabled systems.

It uses 16 PCIe slots and is layered on top of PCIe Gen 3. CAPI port is determined by the

underlying PCIe 3.0 x16 technology, peaking at ca 16 GB/s, bidirectional. PCI Express

3.0's 8 GT/s bit rate effectively delivers 985 MB/s per lane, nearly doubling the lane

bandwidth relative to PCI Express 2.0 Latest versions of CAPI have been consistently

updated. They have more capabilities and can be used in the future research. A comparison

of the computational environments used in this thesis is in Appendix M.

To solve the problems under the LNM, the PSP implementation in C was modified

by deleting the variant of the Dijkstra procedure and introducing additional lines in C code

to print the input data files for AMPL following specific syntax required by AMPL under

the node and arc declaration style. The C modified implementation was asked to randomly

generate only 2,000 permutations to feed the network nodes in each year. This relatively

small number of permutations was used, if compared to 85,000 used in the PSP

implementation, because when solving larger input data problems there were computer

50

memory issues and AMPL was unable to provide a solution. The steps to solve under the

LNM are presented in Figure 15.

 Figure 15. Flow chart to solve the DFLP under the Linear Network Model

To generate the LNM solutions, the 8 problems with 6 departments were run in a

personal laptop, Dell studio XPS 1645, Core i7-720QM 1.6 GHz Processor, windows 7

professional, 64-bit OS, 4GB Ram. The rest of the problems were run in the SOLAR lab at

Texas State University, http://www.engineering.txstate.edu/Facilities/IE-labs/RFM-

4244.html, using a Dell Optiplex 5040, Intel Core i5-6500 CPU @3.20 GHZ, 16GB Ram,

Quad-Core (i.e. 4 cores), 64 Bit OS, Windows 10 Enterprise.

5.4 SDFLP experimental setting

The data generated in Excel for each of the 4 SDFLP problems studied was saved

in text files that were fed to a C program which is another variation of the one described in

the previous section. It generates 6! random layouts per period and computes MHC and

RC for each scenario and period. The C program was run 20 times (4 problems, 5 runs in

each) in Leap, a high-performance computing cluster at Texas State University managed

by the Division of Information Technology. Leap, http://www.vpit.txstate.edu/rc/leap.html

has 120, Intel Xeon E5-2680v4 nodes each one with 28 CPU cores running at 2.4 GHz

speed, 128 GB memory running under CentOS. The output of the C program is the input

data file to the AMPL model created to solve the SDFLP problem. Figure 16 presents the

steps described above.

http://www.vpit.txstate.edu/rc/leap.html

51

Figure 16. Flow chart to solve the SDFLP under the Linear Network Model

5.5 DFLP cost results PSP vs. LNM

5.5.1 No-sorting

Final costs for both PSP and LNM were collected and averaged over the five runs

done on each problem. The standard deviation was also computed. Tables 7-13 show the

resulting costs for the variant in which the permutations were randomly generated and not

sorted. In the tables, the abbreviation “PN” stands for problem number, the abbreviation

“Std Dev” stands for standard deviation and the abbreviation “R” stands for run. The costs

for the 6-departments problems are the same for PSP and LNM while for the 12, 15 and 30

departments problems PSP gave slightly better results. However, the LNM gave very

competitive results considering that this method has considerably less permutations in the

network. LNM costs are no more that 2.17% above those from PSP.

Table 7. Cost Results for DFLP PSP 6 Departments - No-Sorting

PN R1 R2 R3 R4 R5 Average Std Dev

1 106419 106419 106419 106419 106419 106419 0

2 105341 105341 105341 105341 105341 105341 0

3 102989 102989 102989 102989 102989 102989 0

4 106399 106399 106399 106399 106399 106399 0

5 105628 105628 105628 105628 105628 105628 0

6 103985 103985 103985 103985 103985 103985 0

7 106439 106439 106439 106439 106439 106439 0

8 103771 103771 103771 103771 103771 103771 0

52

Table 8. Cost Results for DFLP LNM 6 Departments - No-Sorting

PN R1 R2 R3 R4 R5 Average Std Dev

1 106419 106419 106419 106419 106419 106419 0

2 105341 105341 105341 105341 105341 105341 0

3 102989 102989 102989 102989 102989 102989 0

4 106399 106399 106399 106399 106399 106399 0

5 105628 105628 105628 105628 105628 105628 0

6 103985 103985 103985 103985 103985 103985 0

7 106439 106439 106439 106439 106439 106439 0

8 103771 103771 103771 103771 103771 103771 0

Table 9. Cost Results for DFLP PSP and LNM 12 Departments - No-Sorting

PN R1 R2 R3 R4 R5

1 PSP 1273487 1252704 1278564 1278994 1259654

1 LNM 1501492 1501176 1418920 1455610 1350250

 Average Std Dev

 1268681 11873

 1431489 63759.6

Table 10. Cost Results for DFLP PSP for 15 Departments - No-Sorting

PN R1 R2 R3 R4 R5 Average Std Dev

1 502383 503061 501022 501945 499324 501,547.0 1446.3

2 502968 501203 502653 503398 504767 502,997.8 1287.6

3 507007 505240 506566 507488 508116 506,883.4 1084.2

4 503146 501079 500181 502232 498535 501,034.6 1793.8

5 500253 499790 501644 500077 499796 500,312.0 770.0

6 501869 503221 501073 502880 503385 502,485.6 985.0

7 504497 506293 502415 502871 504423 504,099.8 1534.7

8 505986 505682 508692 506986 509664 507,402.0 1726.1

Table 11. Cost Results for DFLP LNM for 15 Departments - No-Sorting

PN R1 R2 R3 R4 R5 Average Std Dev

1 509933 511825 512736 511302 509640 511,087.2 1,297.7

2 515116 513235 505768 516033 513011 512,632.6 4,042.2

3 514849 519094 516696 511302 514118 515,211.8 2,910.7

4 509335 508651 507627 506729 508525 508,173.4 1,010.7

5 508626 507496 512751 512867 513982 511,144.4 2,883.3

53

Table 11. (Continued)

6 509046 513107 511075 513996 510268 511,498.4 2,033.0

7 513470 514088 514020 513943 514864 514,077.0 502.3

8 519291 517236 517310 517884 517169 517,778.0 892.2

Table 12. Cost Results for DFLP PSP for 30 Departments - No-Sorting

PN R1 R2 R3 R4 R5 Average Std Dev

1 601677 602742 603472 603722 604214 603,165.4 987.2

2 597363 600518 600037 601620 602501 600,407.8 1953.9

3 609946 607188 609449 604782 607237 607,720.4 2067.2

4 600429 602334 600736 603536 599272 601,261.4 1677.1

5 587114 589020 594161 591567 590409 590,454.2 2654.9

6 599630 596776 597768 597645 597601 597,884.0 1052.0

7 597888 589807 597501 598014 596290 595,900.0 3473.5

8 603205 606773 604466 605378 600036 603,971.6 2556.7

Table 13. Cost Results for DFLP LNM for 30 Departments - No-Sorting

PN R1 R2 R3 R4 R5 Average Std Dev

1 610863 609194 608418 609015 609364 609,370.8 907.2

2 608969 602084 609999 608834 603844 606,746.0 3,536.9

3 611281 609360 609949 615224 613051 611,773.0 2,394.5

4 612074 602438 609192 604111 608623 607,287.6 3,934.8

5 597523 601774 600448 595799 602353 599,579.4 2,818.9

6 602212 606536 601016 603545 603283 603,318.4 2,057.3

7 600228 602175 600160 603011 603538 601,822.4 1,564.1

8 612718 617314 614259 618330 611595 614,843.2 2,901.3

5.5.2 Sorting

To determine if generating a larger number X of permutations per year and filtering

the best first Y in terms of MHC improve the solutions from the two solution approaches

(PSP and LNM), a total of X = 400,000 permutations was generated for PSP and X= 85,000

for LNM. The material handling costs for each year and permutation was computed. The

Y= 50,000 permutations having the lowest costs in each year were selected as input to the

PSP. The Y=2,000 permutations with the lowest cost in each year were selected as input

to the LNM approach. This selection of layouts is done using the “Quick sort algorithm”.

54

Quick Sort Algorithm sorts data by dividing large arrays into 2 smaller arrays by utilizing

a divide and conquer strategy. Quick Sort Algorithm Sorts the layouts in a particular year

based on the following steps:

• Picking a “Pivot” Element

• “Partitioning” the array into 3 parts. In the first part, all elements are less than the pivot.

The second part is the pivot itself (only one element). In the third part, all the elements are

greater than or equal to the pivot.

• Applying recursively the Quick Sort Algorithm to the first and the third parts of the

array.

Final costs for PSP and LNM were collected and averaged over the five runs done

to each problem. The standard deviation was also computed. Tables 14-19 shows the

resulting costs; the abbreviations used in these tables are for problem number (PN), run (R)

and standard deviation (Std). The costs for the 6-departments problems for PSP and LNM

are the same while for the 15 and 30 department problem LNM gave results not more than

3.40% above those in PSP.

Table 14. Cost Results for DFLP PSP for 6 Departments - Sorting

PN R1 R2 R3 R4 R5 Average Std Dev

1 106419 106419 106419 106419 106419 106419 0

2 105341 105341 105341 105341 105341 105341 0

3 102989 102989 102989 102989 102989 102989 0

4 106399 106399 106399 106399 106399 106399 0

5 105628 105628 105628 105628 105628 105628 0

6 103985 103985 103985 103985 103985 103985 0

7 106439 106439 106439 106439 106439 106439 0

8 103771 103771 103771 103771 103771 103771 0

Table 15. Cost Results for DFLP LNM for 6 Departments - Sorting

PN R1 R2 R3 R4 R5 Average Std Dev

1 106419 106419 106419 106419 106419 106,419 0

55

Table 15. (Continued)

2 105341 105341 105341 105341 105341 105,341 0

3 102989 102989 102989 102989 102989 102,989 0

4 106399 106399 106399 106399 106399 106,399 0

5 105628 105628 105628 105628 105628 105,628 0

6 103985 103985 103985 103985 103985 103,985 0

7 106439 106439 106439 106439 106439 106,439 0

8 103771 103771 103771 103771 103771 103,771 0

Table 16. Cost Results for DFLP PSP 15 Departments - Sorting

PN R1 R2 R3 R4 R5 Average Std Dev

1 500507 495473 499358 498621 497406 498,273.0 1,929

2 497275 500387 501017 498662 499142 499,296.6 1,472

3 499744 499873 499660 499660 501395 500,066.4 748

4 498665 498251 498707 500457 497507 498,717.4 1,085

5 498733 499223 499512 499806 499796 499,414.0 450

6 499405 499556 499694 497515 500596 499,353.2 1,127

7 502451 500889 500052 500109 502345 501,169.2 1,170

8 505986 505409 505855 506986 504570 505,761.2 881

Table 17. Cost Results for DFLP LNM for 15 Departments - Sorting

PN R1 R2 R3 R4 R5 Average Std Dev

1 502383 503061 501022 501945 499324 501,547.0 1,446

2 502968 501203 502653 503398 504767 502,997.8 1,288

3 507007 505240 506566 504767 509312 506,578.4 1,784

4 503146 501079 500181 502232 498535 501,034.6 1,794

5 500253 499790 501644 500077 499796 500,312.0 770

6 501869 503221 501073 502880 503385 502,485.6 985

7 504497 506293 502415 502871 504423 504,099.8 1,535

8 505986 505682 508692 506986 509864 507,442.0 1,793

Table 18. Cost Results for DFLP PSP for 30 Departments - Sorting

PN R1 R2 R3 R4 R5 Average Std Dev

1 601577 605578 604070 600346 604596 603233.4 2187

2 603036 603455 603250 604517 602403 603332.2 771

3 605506 606976 606469 603952 606011 605782.8 1159

4 598641 598470 597683 595931 599272 597999.4 1288

5 585817 589020 585213 588691 586792 587106.6 1697

6 595499 595757 594274 595855 593583 594993.6 1011

7 597802 594831 596663 597906 598693 597179.0 1499

8 601448 602638 601616 602577 600036 601663.0 1059

56

Table 19. Cost Results for DFLP LNM for 30 Departments - Sorting

5.6 DFLP computational time results PSP vs. LNM

5.6.1 No-sorting

Data collected for the computational time for the two solution methodologies (PSP

and LNM) are in Tables 20-27. For PSP, the time measured is the one for generating the

layouts, computing MHC and RC and solving the variation of the Dijkstra algorithm (i.e.

all steps in Figure 14). For the LNM, the time measured is only the one for solving the LNM

in AMPL. The time for generating the layouts and computing the MHC and RC is very

negligible since the C code has several of these functions parallelized. In the 6-department

problem, the computational time for the PSP is very small. For 12, 15, and 30 departments,

the LNM gave faster computational times in several cases. However, in the 15 department

the first and second problem were solved faster with the PSP. LNM ran faster than PSP

in 75 runs. The PSP performed better in the remaining 50 runs. Appendix I has samples of

outputs generated by the PSP implementation in C and the LNM implementation in AMPL.

The outputs show best solutions found and computational times for some of the problems

run under the no-sorting version.

Table 20. Computational Time (Seconds) for PSP for 6 Departments - No-Sorting

PN R1 R2 R3 R4 R5 Average Std. Dev

1 0.87 1.19 0.99 0.98 1.11 1.03 0.13

2 0.13 0.13 0.13 0.13 0.13 0.13 0.00

PN R1 R2 R3 R4 R5 Average Std Dev

1 623712 624958 625140 624347 624161 624463.6 586

2 606868 607110 606678 608297 605593 606909.2 969

3 605593 611584 611584 614039 617973 612154.6 4503

4 600429 602438 602079 604389 599272 601721.4 1964

5 587114 589489 594161 591567 590409 590548.0 2599

6 599819 598573 598124 597645 598853 598602.8 820

7 600898 595211 599727 603858 599984 599935.6 3110

8 603205 606773 598897 605378 600036 602857.8 3371

57

Table 20. (Continued)

3 0.21 0.13 0.14 0.13 0.12 0.15 0.04

4 0.98 0.94 0.94 0.89 0.87 0.92 0.04

5 4.87 0.40 1.61 0.14 5.19 2.44 2.43

6 0.14 0.30 0.24 0.13 0.13 0.19 0.08

7 0.31 0.31 0.13 0.13 0.13 0.20 0.10

8 0.21 0.13 0.13 0.13 0.13 0.15 0.04

Table 21. Computational Time (Seconds) for LNM for 6 Departments - No-Sorting

PN R1 R2 R3 R4 R5 Average Std. Dev

1 5.23 4.98 4.95 5.03 5.06 5.05 0.11

2 10.89 11.20 11.20 11.04 11.39 11.14 0.19

3 10.78 11.17 11.26 10.92 11.59 11.14 0.32

4 10.78 11.23 11.47 11.48 10.98 11.19 0.31

5 11.25 10.76 10.72 11.61 11.20 11.11 0.37

6 10.99 10.89 11.50 11.15 11.29 11.17 0.24

7 11.43 11.34 11.17 10.95 11.33 11.24 0.19

8 11.36 11.34 11.67 11.00 11.98 11.47 0.37

Table 22. Computational Time (Seconds) Results for PSP for 12 Departments -

No-Sorting

PN R1 R2 R3 R4 R5 Average Std. Dev

1 94.86 97.21 95.91 99.07 95.48 96.50 1.67

Table 23. Computational Time (Seconds) for LNM for 12 Departments - No-Sorting

PN R1 R2 R3 R4 R5 Average Std. Dev

1 65.66 68.27 65.81 59.84 63.27 64.57 3.18

 Table 24. Computational Time (Seconds) for PSP for 15 Departments - No-Sorting

PN R1 R2 R3 R4 R5 Average Std. Dev

1 35.70 35.65 37.25 38.99 34.73 36.46 1.68

2 96.56 100.06 92.44 98.32 99.69 97.41 3.10

3 400.94 396.36 396.17 395.33 395.05 396.77 2.40

4 394.68 394.61 398.26 397.36 395.39 396.06 1.66

5 394.30 394.79 398.10 399.61 395.36 396.43 2.31

6 395.56 395.41 394.58 399.57 395.19 396.06 1.99

7 396.99 394.97 394.51 394.82 397.53 395.76 1.39

8 399.96 334.96 395.02 396.05 394.25 384.05 27.53

58

Table 25. Computational Time (Seconds) for LNM for 15 Departments – No-Sorting

PN R1 R2 R3 R4 R5 Average Std. Dev

1 61.23 64.16 75.58 61.38 60.92 64.65 6.25

2 62.00 59.95 62.20 60.61 60.95 61.14 0.95

3 64.59 65.42 60.69 59.91 59.80 62.08 2.71

4 59.92 60.33 60.34 59.95 61.02 60.31 0.44

5 60.39 59.52 60.38 60.95 60.94 60.43 0.59

6 59.83 60.42 61.23 61.28 61.67 60.89 0.75

7 60.03 59.63 59.80 60.82 61.17 60.29 0.67

8 59.86 59.61 60.70 60.56 58.86 59.92 0.75

 Table 26. Computational Time (Seconds) for PSP for 30 Departments – No-Sorting

PN R1 R2 R3 R4 R5 Average Std. Dev

1 455.41 457.85 456.14 456.88 458.75 457.01 1.33

2 457.11 453.77 456.55 453.99 465.44 457.37 4.75

3 460.53 456.75 455.43 455.13 454.18 456.40 2.49

4 105.30 110.02 101.16 110.31 104.02 106.16 3.95

5 104.05 107.96 105.31 113.57 107.87 107.75 3.66

6 104.09 111.72 102.79 112.61 108.12 107.86 4.40

7 109.71 103.15 113.62 116.06 113.46 111.20 5.04

8 112.06 106.05 101.63 108.68 107.17 107.12 3.81

 Table 27. Computational Time (Seconds) for LNM for 30 Departments – No-Sorting

PN R1 R2 R3 R4 R5 Average Std. Dev

1 62.17 60.27 60.48 59.53 79.26 64.34 8.40

2 75.18 76.16 75.01 55.06 78.09 71.90 9.49

3 60.11 60.83 59.48 62.56 60.83 60.76 1.15

4 60.31 59.09 60.45 59.67 60.59 60.03 0.63

5 59.11 60.25 60.45 60.30 60.19 60.06 0.54

6 76.25 77.98 79.09 78.28 76.47 77.62 1.22

7 60.58 60.83 60.36 59.50 59.34 60.12 0.66

8 77.75 75.55 76.52 77.52 76.94 76.86 0.87

5.6.2 Sorting

For the sorting variant, the parallelization in the Shortest Path algorithm was

removed and consequently the algorithm is notated as SP in the remainder of this

59

document. Computational times for the SP method, including the times for sorting the

400,000 generated permutations and filtering the best 50,000 in each year, are in Tables

28-33. These tables also show the time for solving the LNM in AMPL. For the LNM, the

times reported do not include the time for sorting the 85,000 generated permutations and

filtering the best 2,000 in each year.

It is important to mention that for the SP method, two times were collected. The

first one is the entire time the algorithm takes to generate the permutations, sort them, and

execute the variation of the Dijkstra algorithm (Tables 28-33). The second one is the time

to execute just the variation of the Dijkstra algorithm. Out of the entire time collected, the

variation of the Dijkstra algorithm accounts for a maximum time of 9.939%. Tables with

the time to execute just the variant of the Dijkstra’s algorithm are in Appendixes N, O, and

P. Appendix N presents the differences in times for doing the variation of the Dijkstra’s

algorithm for SP sorting vs. PSP no sorting, Appendix O presents the times SP sorting

took to perform the variation of the Dijkstra in each of the 5 runs done in each problem,

the average and standard deviation. Appendix P presents the differences in times for doing

the variation of the Dijkstra’s algorithm for SP sorting vs. LNM sorting. Appendix Q

presents a graph that shows Problem 1 average computational times over the 5 runs done

in the 6, 15, and 30 departments cases. The graph lets to appreciate the trends on the

computational times for all the methods studied. SP and LNM showed similar execution

times if looking just at the portion of time spent on doing the variation of the Dijkstra

algorithm for SP-sorting 50,000 layouts and the network simplex method for LNM-sorting

2,000 layouts.

60

If analyzing results in Tables 28-33, in the 6-department problems, the SP

computational time is very small and smaller than the one for LNM. For 15, and 30

departments the LNM gave faster computational times. The LNM ran faster than SP in 80

runs while the SP performed better in 40 runs. The number of runs for the sorting case was

120 since the Moslemipour instance of size 12 was not run for the sorting case.

Table 28. Computational Time (Seconds) for SP 6 Departments - Sorting

PN R1 R2 R3 R4 R5 Average Std. Dev

1 0.13 0.12 0.12 0.12 0.12 0.122 0.004

2 0.13 0.12 0.12 0.12 0.12 0.122 0.004

3 0.13 0.12 0.12 0.12 0.12 0.122 0.004

4 0.13 0.12 0.12 0.12 0.12 0.122 0.004

5 0.13 0.12 0.12 0.12 0.12 0.122 0.004

6 0.13 0.12 0.12 0.12 0.12 0.122 0.004

7 0.13 0.12 0.12 0.12 0.12 0.122 0.004

8 0.13 0.12 0.12 0.12 0.12 0.122 0.004

Table 29. Computational Time (Seconds) for LNM 6 Departments – Sorting

PN R1 R2 R3 R4 R5 Average

Std.

Dev

1 5.67 5.30 5.17 5.10 5.63 5.374 0.262

2 5.55 5.58 5.24 5.28 5.19 5.368 0.183

3 5.22 5.60 5.50 5.66 5.86 5.568 0.235

4 5.31 5.21 5.41 5.50 5.33 5.352 0.109

5 5.47 5.24 5.27 5.25 5.35 5.316 0.096

6 5.33 5.30 5.30 5.24 5.38 5.310 0.051

7 5.46 5.24 5.22 5.39 5.30 5.322 0.102

8 5.30 5.36 5.39 5.25 5.24 5.308 0.066

Table 30. Computational Time (Seconds) for SP 15 Departments - Sorting

PN R1 R2 R3 R4 R5 Average

Std.

Dev

1 513.08 499.31 439.06 439.34 433.62 464.882 38.095

2 502.15 436.10 440.50 437.20 437.05 450.600 28.865

3 440.94 438.57 443.52 435.92 441.85 440.160 2.969

4 441.28 440.55 443.14 439.17 440.34 440.896 1.466

5 438.20 443.68 444.59 467.30 441.99 447.152 11.525

61

Table 30. (Continued)

6 481.53 457.00 482.22 449.19 474.27 468.842 14.965

7 429.12 467.60 473.71 442.58 440.56 450.714 19.036

8 461.51 474.56 439.29 451.38 455.97 456.542 12.980

Table 31. Computational Time (Seconds) for LNM 15 Departments - Sorting

PN R1 R2 R3 R4 R5 Average Std. Dev

1 47.31 45.45 45.07 45.10 45.71 45.728 0.923

2 45.00 45.48 45.29 45.73 46.86 45.672 0.716

3 45.85 46.17 46.26 46.81 53.96 47.810 3.455

4 45.43 45.28 44.62 44.89 44.70 44.984 0.357

5 45.00 44.93 44.64 46.20 45.40 45.234 0.604

6 45.96 45.48 45.10 44.71 45.37 45.324 0.463

7 45.87 45.32 45.46 45.40 44.81 45.372 0.379

8 45.17 44.67 46.48 45.39 44.95 45.332 0.695

Table 32. Computational Time (Seconds) for SP 30 Departments - Sorting

PN R1 R2 R3 R4 R5 Average Std Dev

1 624.93 626.75 624.97 627.08 705.14 641.774 35.436

2 706.26 705.23 626.52 703.10 624.31 673.084 43.538

3 626.75 624.77 628.16 628.93 710.84 643.890 37.460

4 628.098 631.011 625.77 628.68 634.08 629.528 3.155

5 627.43 627.65 712.59 710.92 674.91 670.700 42.177

6 632.24 633.35 625.87 714.28 627.29 646.606 37.964

7 627.49 629.84 628.16 632.16 635.71 630.672 3.344

8 630.00 708.11 626.7 710.03 626.28 660.224 44.619

Table 33. Computational Time (Seconds) for LNM 30 Departments - Sorting

PN R1 R2 R3 R4 R5 Average Std Dev

1 45.75 47.31 49.28 48.92 47.26 47.704 1.426

2 47.81 47.54 48.96 47.53 47.87 47.942 0.590

3 47.87 48.40 48.21 47.48 47.42 47.876 0.433

4 48.46 48.50 48.71 48.48 48.25 48.480 0.163

5 48.42 48.14 49.39 49.57 48.29 48.762 0.666

6 48.39 48.23 47.75 45.54 49.01 48.345 0.520

7 46.21 45.46 45.53 45.89 45.45 45.708 0.333

8 45.64 45.20 46.10 45.65 46.26 45.770 0.420

62

5.7 Sorting vs no-sorting costs comparison

The comparison of costs for sorting (S) and no-sorting (NS) variants is provided in

tables 34-36. The formula computed in the percentage differences is: 100*(Cost no-sorting

– Cost sorting)/Cost no-sorting. Then positive percentages mean that sorting decreased

cost while negative percentages mean sorting increased it.

The comparison of sorting and no-sorting for the PSP show the considerable

improvement achieved by sorting the 400,000 generated permutations and filtering the best

50,000 in each year instead of just generating 85,000 permutations and using them for all

years. Sorting reduces costs by up to 1.34% if compared to no-sorting. However, sorting

gave costs higher than no-sorting in 3 instances. In the remaining 21 instances, sorting

outperformed no-sorting. All tables have 8 rows. Each row corresponds to each one of the

8 problems tested under the number of departments studied.

The comparison of sorting and no-sorting for the LNM shows the considerable

difference achieved by sorting the 85,000 generated permutations and filtering the best

2,000 in each year. Sorting reduces the cost by up to 2.12 % if compared to no-sorting.

Sorting also gives costs much higher than no-sorting for 3 instances but in the rest of the

21 instances sorting outperforms no-sorting in terms of cost.

5.8 Sorting vs no-sorting computational time comparison

 The comparison of computational time for sorting and no-sorting is also in Tables

34-36. The formula computed in the percentage differences is: 100*(Computational Times

no-sorting – computational times sorting)/computational times no-sorting. Then positive

percentages mean that sorting decreased time while negative percentages mean sorting

increased it.

63

The comparison of SP sorting and PSP no-sorting shows the increase in time if

sorting 400,000 permutations by the material handling cost of each year and filtering the

best 50,000 instead of just generating 85,000 permutations and using them for all years

(PSP no-sorting). The main reasons for the time increase are: (1) the number of

permutations considered (400,000 sorting, 85,000 no-sorting) and (2) the lack of

parallelization in the sorting variant. It translates into a time increase of up to 1175%.

Computational times for 6-department problems in sorting were effective in comparison to

the 6 departments problem in no–sorting while no-sorting gave effective computational

times for the 15 and 30 department problems.

If comparing the computational time of LNM sorting and LNM no-sorting, sorting

gave effective computational time in comparison to no-sorting with a 53% of maximum

decrease in times. Both the sorting and no-sorting variants in AMPL use the node-arc

formulation and therefore there should be no reason for the vast difference in computational

times. It seems the only difference is that AMPL was able to execute the network simplex

method faster on the network with the permutations for the sorted case than in the one for

the no sorted case.

Table 34. Difference in Cost and Computational Time for PSP and LNM - Sorting (S) vs.

No- Sorting (NS) - 6 Departments

 Cost

Problem

Number

PSP-S
PSP-

NS

%

Diff

LNM -

S

LNM-

NS

%

Diff

1 106419 106419 0 106419 106419 0

2 105341 105341 0 105341 105341 0

3 102989 102989 0 102989 102989 0

4 106399 106399 0 106399 106399 0

5 105628 105628 0 105628 105628 0

6 103985 103985 0 103985 103985 0

7 106439 106439 0 106439 106439 0

64

Table 34. (Continued)

8 103771 103771 0 103771 103771 0

 Time (Seconds)

Problem

Number

SP-S
PSP-

NS

%

Diff
LNM-S

LNM-

NS

%

Diff

1 0.12 1.03 88 5.37 5.05 -6

2 0.12 0.13 6 5.37 11.14 52

3 0.12 0.15 19 5.57 11.14 50

4 0.12 0.92 87 5.35 11.19 52

5 0.12 2.44 95 5.32 11.11 52

6 0.12 0.19 36 5.31 11.17 52

7 0.12 0.2 39 5.32 11.24 53

8 0.12 0.15 19 5.31 11.47 54

Table 35. Difference in Cost and Computational Time for PSP and LNM - Sorting (S) vs.

No-Sorting (NS) - 15 Departments

 Cost

Problem

Number
PSP-S PSP-NS % Diff LNM -S LNM-NS % Diff

1 498273 501547 0.65 501547 511087 1.9

2 499297 502998 0.74 502998 512633 1.9

3 500066 506883 1.34 507031 515212 1.59

4 498717 501035 0.46 501035 508173 1.4

5 499414 500312 0.18 500312 511144 2.12

6 499353 502486 0.62 502486 511498 1.76

7 501169 504100 0.58 504100 514077 1.94

8 505761 507402 0.32 507442 517778 2

 Time (Seconds)

Problem

Number
SP-S PSP-NS % Diff LNM-S LNM-NS % Diff

1 464.9 36.5 -1175 45.73 64.65 29

2 450.6 97.4 -366 45.67 61.14 25

3 440.2 396.8 -10.94 47.81 62.08 22.99

4 440.9 396.1 -11.32 44.984 60.31 25.42

5 447.1 396.4 -12.79 45.234 60.43 25.1

6 468.8 396.1 -18.38 45.324 60.89 25.56

7 450.7 395.8 -13.89 45.372 60.29 24.74

8 456.5 384.05 -18.88 45.332 59.92 24.34

65

Table 36. Difference in Cost and Computational Time for PSP and LNM - Sorting (S)

vs. No - Sorting (NS) - 30 Departments

 Cost

Problem

Number
PSP-S PSP-NS % Diff LNM-S LNM-NS % Diff

1 603233 603165 -0.01 624464 609371 -2.48

2 603332 600408 -0.49 606909 606746 -0.03

3 605783 607720 0.32 612155 611773 -0.06

4 597999 601261 0.54 601721 607288 0.92

5 587107 590454 0.57 590548 599579 1.51

6 594994 597884 0.48 598842 603318 0.74

7 597179 595900 -0.21 599936 601822 0.31

8 601663 603972 0.38 603848 614843 1.79

 Time (Seconds)

Problem

Number
SP-S PSP-NS % Diff LNM-S LNM-NS % Diff

1 641.77 457.01 -40.43 47.7 64.34 25.86

2 673.08 457.37 -47.16 47.94 71.9 33.32

3 643.89 456.4 -41.08 47.88 60.76 21.21

4 629.53 106.16 -493 48.48 60.03 19.23

5 670.7 107.75 -522.46 48.76 60.06 18.81

6 646.61 107.86 -499.49 48.35 77.62 37.71

7 630.67 111.2 -467.15 45.71 60.12 23.97

8 660.22 107.12 -516.34 45.77 76.85 40.45

Appendixes J, K and L present the number of network simplex iterations AMPL

took to solve the LNM for all problems under the sorting and no-sorting variants studied.

A series of paired t-tests with null hypothesis Ho: mean for the number of simplex iterations

under sorting = mean for the number of iterations under no-sorting vs. Ha : mean for the

number of iterations under sorting < mean for the number of iterations under no sorting

show that for the problems with 6 departments the null hypothesis is rejected with a p-

value of 2.99E-10 and for the problems with 15 departments the null hypothesis is rejected

with a p-value of 1.92E-12.However, for the 30-departments case the hypothesis couldn’t

be rejected (p-value 0.43 vs. alpha 0.05). A paired t-test considering all the sample of 120

66

values (problems with 6, 15, and 30 departments, 8 in each case) lead to reject the null

hypothesis with a p-value of 0.004. These tests permit to conclude that for problems of size

6 and 15 the number of simplex iterations in the sorting variant was statistically

significantly less that for the no-sorting variant.

5.9 Cost and computational time differences between PSP and LNM

Tables 37 - 39 summarize the cost and computational time differences for the

comparison between PSP and LNM Model under the two variants studied, sorting (S) and

no-sorting (NS). The formulas used to compute the cost differences are: 100*(cost PSP_NS

– cost LNM_NS)/cost PSP_NS and 100*(cost SP_S – cost LNM_S)/cost SP_S. Then

negative percentages in the first one mean that PSP_NS has lower cost than LNM_NS.

Similarly, negative percentages in the second one mean that SP_S has lower cost than

LNM_S.

However, the formulas used to compute the time differences are: 100*(time

LNM_NS – time PSP_NS)/time LNM_NS and 100*(time LNM_NS – time SP_NS)/time

LNM_NS. Then negative percentages in those formulas mean that LNM has lower

computational time than PSP or SP. The comparison for the times between SP_S and

LNM_S is not entirely fair since the times for SP_S include the serial time spent on

generating and sorting the permutations which is not included in LNM_S. The reader can

see a possibly fairer comparison of times between SP_S and LNM_S by looking at

Appendix P where the differences in times to perform just the variant of the Dijkstra’s

algorithm are reported.

67

Table 37. Cost and Computational Time Differences between PSP and LNM - 6

Departments

Cost

 PSP_NS vs

LNM_ NS

Time LNM_

NS vs

PSP_NS

Cost

SP_S vs

LNM _S

Time LNM_

NS vs

PSP_NS

D_PN % Diff % Diff % Diff % Diff

6_1 0 79.64 0.00 97.73

6_2 0 98.86 0.00 97.73

6_3 0 98.70 0.00 97.81

6_4 0 91.74 0.00 97.72

6_5 0 78.03 0.73 97.71

6_6 0 98.30 0.00 97.70

6_7 0 98.20 0.00 97.71

6_8 0 98.73 0.00 97.70

Table 38. Cost and Computational Time Differences between PSP and LNM - 15

Departments

Cost

PSP_NS vs

LNM_ NS

Time LNM_

NS vs

PSP_NS

Cost

SP_S vs

LNM _S

Time LNM_

NS vs

PSP_NS

D_PN % Diff % Diff % Diff % Diff

15_1 -1.90 43.60 -0.66 -922.33

15_2 -1.92 -59.32 -0.75 -886.60

15_3 -1.64 -539.11 -1.37 -820.64

15_4 -1.42 -556.68 -0.46 -880.10

15_5 -2.17 -555.97 -0.18 -888.53

15_6 -1.79 -550.49 -0.62 -934.42

15_7 -1.98 -556.45 -0.58 -893.37

15_8 -2.04 -540.95 -0.33 -907.10

Table 39. Cost and Computational Time Difference Between PSP and LNM - 30

Departments

Cost

PSP_NS vs

LNM_ NS

Time

LNM_ NS

vs PSP_NS

Cost

SP_S vs

LNM _S

Time LNM_

NS vs

PSP_NS

D_PN % Diff % Diff % Diff % Diff

30_1 -1.03 -610.3 -3.40 -1245.32

30_2 -1.06 -536.1 -0.59 -1303.95

30_3 -0.67 -651.1 -1.04 -1244.91

30_4 -1.00 -76.9 -0.62 -1198.51

30_5 -1.55 -79.4 -0.58 -1275.46

30_6 -0.91 -39.0 -0.64 -1237.47

68

Table 39. (Continued)

30_7 -0.99 -85.0 -0.46 -1279.78

30_8 -1.80 -39.4 -0.36 -1342.47

5.10 DFLP costs and computational times comparisons between proposed methods

and previous works

Tables 40-42 summarize the average costs and computational times for all the

problems under the PSP and LNM methods and the variants (sorting, no-sorting) studied

and the percentage cost difference vs. the best known cost from the literature. The

computational time comparison vs. other authors couldn’t be done since the information is

not available. This comparison is also not meaningful since the computational settings used

differ. Abbreviations used in Tables 40-42 are: number of departments and problem

number (D_PN) and best known cost (BKC). Table 43 presents the average costs obtained

by Conway & Venkataramanan (1994) with their genetic algorithm named CONGA,

Balakrishnan & Cheng (2000) with their nested loop genetic algorithm named NLGA,

Baykosaglu & Gindy (2001) with their simulated annealing (SA) method, Balakrishnan et

al. (2003) with their hybrid dynamic programming and genetic algorithm approach named

GADP, and McKendall & Shang (2006) with their hybrid ant systems methods named

HASI, HASII, and HASIII.

69

Table 40. Cost, Computational Time and Percentage (%) of Cost Difference PSP and

LNM – Sorting(S) and No-Sorting(NS) vs. Best Known Cost (BKC) - 6 Departments

Parallel Shortest Path

– no-sorting

Linear Network Model – no-

sorting

D_PN Cost
Time

(s)

%

Cost

vs.

BKC

Cost
Time

(s)

%

Cost

vs.

BKC

BKC

6_1 106419 1.03 0 106419 5.05 0 106419

6_2 105341 0.13 0.48 105341 11.14 0.48 104834

6_3 102989 0.15 -1.28 102989 11.14 -1.28 104320

6_4 106399 0.92 0 106399 11.19 0 106399

6_5 105628 2.44 0.34 105628 11.11 0.34 105268

6_6 103985 0.19 0 103985 11.17 0 103985

6_7 106439 0.2 0 106439 11.24 0 106439

6_8 103771 0.15 0 103771 11.47 0 103771

Shortest Path - sorting Linear Network Model - sorting

D_PN Cost
Time

(s)

%

Cost

vs.

BKC

Cost
Time

(s)

% vs.

BKC
BKC

6_1 106419 0.12 0 106419 5.37 0 106419

6_2 105341 0.12 0.48 105341 5.37 0.48 104834

6_3 102989 0.12 -1.28 102989 5.57 -1.28 104320

6_4 106399 0.12 0 106399 5.35 0 106399

6_5 106399 0.12 1.07 105628 5.32 0.34 105268

6_6 103985 0.12 0 103985 5.31 0 103985

6_7 106439 0.12 0 106439 5.32 0 106439

6_8 103771 0.12 0 103771 5.31 0 103771

70

Table 41. Cost, Computational Time and Percentage (%) of Cost Difference PSP and

LNM – Sorting(S) and No-Sorting(NS) vs. Best Known Cost (BKC) - 15 Departments

Parallel Shortest Path –

no-sorting

Linear Network Model – no-

sorting

D_PN Cost
Time

(s)

%

Cost

vs.

BKC

Cost
Time

(s)

%

Cost

vs.

BKC

BKC

15_1 501547 36.46 4.39 511087 64.65 6.38 480453

15_2 502998 97.41 3.76 512633 61.14 5.75 484761

15_3 506883 396.77 3.71 515212 62.08 5.41 488748

15_4 501035 396.06 3.42 508173 60.31 4.9 484446

15_5 500312 396.43 2.58 511144 60.43 4.8 487722

15_6 502486 396.06 3.25 511498 60.89 5.1 486685

15_7 504100 395.76 3.54 514077 60.29 5.59 486853

15_8 507402 384.05 3.34 517778 59.92 5.45 491016

Shortest Path - sorting Linear Network Model - sorting

D_PN Cost
Time

(s)

%Cost

vs.

BKC

Cost
Time

(s)

%

vs.

BKC

BKC

15_1 498273 464.88 3.71 501547 45.73 4.39 480453

15_2 499297 450.6 3 502998 45.67 3.76 484761

15_3 500066 440.16 2.32 507031 47.81 3.74 488748

15_4 498717 440.9 2.95 501035 44.98 3.42 484446

15_5 499414 447.15 2.4 500312 45.23 2.58 487722

15_6 499353 468.84 2.6 502486 45.32 3.25 486685

15_7 501169 450.71 2.94 504100 45.37 3.54 486853

15_8 505761 456.54 3 507442 45.332 3.35 491016

71

Table 42. Cost, Computational Time and Percentage (%) of Cost Difference PSP and

LNM – Sorting(S) and No-Sorting(NS) vs. Best Known Cost (BKC) - 30 Departments

Parallel Shortest Path – no-

sorting

Linear Network Model –

no- sorting

D_PN Cost
Time

(s)

%

Cost

vs.

BKC

Cost
Time

(s)

%

Cost

vs.

BKC

BKC

30_1 603165 457.01 4.56 609371 64.34 5.63 576886

30_2 600408 457.37 5.27 606746 71.9 6.38 570349

30_3 607720 456.4 5.5 611773 60.76 6.2 576053

30_4 601261 106.16 6.08 607288 60.03 7.15 566777

30_5 590454 107.75 5.75 599579 60.06 7.38 558353

30_6 597884 107.86 5.49 603318 77.62 6.44 566792

30_7 595900 111.2 5.07 601822 60.12 6.12 567131

30_8 603972 107.12 4.99 614843 76.86 6.88 575280

Shortest Path - sorting

Linear Network Model -

sorting

D_PN Cost
Time

(s)

%

Cost

vs.

BKC

Cost
Time

(s)

%

Cost

vs.

BKC

BKC

30_1 603233 641.77 4.57 624464 47.7 8.25 576886

30_2 603332 673.08 5.78 606909 47.94 6.41 570349

30_3 605783 643.89 5.16 612155 47.88 6.27 576053

30_4 597999 629.53 5.51 601721 48.48 6.17 566777

30_5 587107 670.7 5.15 590548 48.76 5.77 558353

30_6 594994 646.61 4.98 598842 48.34 5.65 566792

30_7 597179 630.67 5.3 599936 45.71 5.78 567131

30_8 601663 660.22 4.59 603348 45.77 4.97 575280

72

Table 43. DFLP Average Costs presented by Other Authors for 6-15-30

Departments

Dep. Problem
CONGA

(1994)

NLGA

(2000)

SA

(2001)

GADP

(2003)

6 1 108976 106419 107249 106419

6 2 105170 104834 105710 104834

6 3 104520 104320 104800 104320

6 4 106719 106515 106515 106515

6 5 105628 105268 106282 105628

6 6 105606 104053 103985 104053

6 7 106439 106978 106447 106439

6 8 104485 103771 103771 103771

15 1 504759 511854 501447 484090

15 2 514718 507694 506236 485352

15 3 516063 518461 512886 489898

15 4 508532 514242 504956 484625

15 5 515599 512834 509636 489885

15 6 509384 513763 508215 488640

15 7 512508 512722 508848 489378

15 8 514839 521116 512320 500779

30 1 632737 611794 604408 578689

30 2 647585 611873 604370 572232

30 3 642295 611664 603867 578527

30 4 634626 611766 596901 572057

30 5 639693 604564 591988 559777

30 6 637620 606010 599862 566792

30 7 640482 607134 600670 567873

30 8 635776 620183 610474 575720

73

Table 43. (Continued)

Dep. Problem
HAS I

(2006)

HAS II

(2006)

HAS III

(2006)

6 1 106419 106419 106419

6 2 104834 104834 104834

6 3 104320 104320 104320

6 4 106399 106399 106399

6 5 105628 105628 105628

6 6 103985 103985 103985

6 7 106439 106439 106439

6 8 103771 103771 103771

15 1 481511 481395 480453

15 2 484761 484761 484879

15 3 490899 488748 490398

15 4 485561 485658 484446

15 5 489012 487722 489206

15 6 487417 486685 486965

15 7 486853 486853 486853

15 8 493963 492074 491016

30 1 578854 576886 580240

30 2 570349 571528 570349

30 3 578152 576053 578176

30 4 569694 572005 566777

30 5 560433 558353 558353

30 6 569725 570567 566792

30 7 570899 567190 567131

30 8 576980 575998 575280

Figure 17 presents the costs for PSP and LNM for both the sorting and no-sorting

variants studied. Figure 18 presents the costs for PSP sorted and LNM sorted vs. the ones

from several previous authors, CONGA (1994), HAS III (2006) and SA (2001). Figure 19

presents the cost for PSP and LNM under sorting and no-sorting variants if compared to

the best known cost.

74

Figure 17. Costs for PSP and LNM under the sorting and no-sorting variants studied

Figure 18. Costs PSP sorting and LNM sorting vs. previous authors

75

 Figure 19. Cost for PSP and LNM (sorting and no-sorting) vs. best known cost

Appendix I has samples of output for best solutions found for the PSP and LNM

algorithms for the no-sorting variant. The samples for the sorting variant were omitted to

keep the document shorter.

5.11 Analysis of the results for the DFLP

The variation in cost and computational times over the 5 runs in each problem (see

Tables 7-33) does not reveal any outliers of practical significance. The number of

permutations used in the LNM is 2000. This low number is due to the memory issues

experienced when AMPL attempted to solve larger problems. However, the results

achieved are incredibly flawless. The comparison of costs for the LNM to the ones in the

PSP and to the best known cost supports this statement.

Tables 37-39 show that the maximum increase in cost for LNM (no–sorting) vs.

PSP (no-sorting) is only 2.17%. Also, the computational time comparison shows that LNM

(no–sorting) results 651.13% faster than PSP (no- sorting). On the other hand, Tables 37-

39 also show that the maximum increase in cost for LNM (sorting) if compared to SP

(sorting) is only 3.40%. Also, the computational time comparison shows that r LNM

(sorting) is up to 1342.47% faster than SP (sorting).

76

Tables 40-42 show that the maximum difference in cost for PSP (no-sorting) vs.

best known cost is 6.08% and for LNM (no-sorting) vs. best known cost is 7.38%. Tables

40-42 also show that the maximum difference in cost for PSP (sorting) vs. best known cost

is 5.78% and for LNM (sorting) vs. best known cost is 6.41% (ignoring the 8.25% in the

first problem of size 30). Thus, the idea of filtering the permutations in each year performed

well and improved the overall results.

A strength found in the LNM is its ability to produce similar accurate results with

small number of permutations (i.e. layouts in the network per each period). The LNM gave

also smaller computational times more often than the PSP. However, the comparison is not

straightforward because of the different number of permutations (i.e. layouts) included

under each case. Nevertheless, it is predicted that under a low number of permutations both

methods are computationally efficient. The maximum running time for PSP (no-sorting)

was 457.37 seconds (about 7 minutes) and for LNM (no-sorting) was 77.62 seconds. The

maximum running time for SP (sorting) was 673.08 seconds and for LNM (sorting) was

48.76 seconds.

Table 44 shows the performance of the PSP and LNM under the best variant (i.e.

the sorted variant) in comparison to 7 algorithms from previous authors studying the DFLP

for the 24 problems considered. PSP achieved a better cost on 67 cases out of the total

24*7=168 compared. LNM gave a better cost than the best known cost on 62 cases. Both

LNM and PSP equaled the best known cost in 5 occasions and surpassed it 1 case. LNM

and PSP ended costlier 16 and 24 cases, respectively.

77

Table 44. Performance of PSP and LNM vs. Previous Authors Solutions

5.12 SDFLP results

Table 45 presents the average objective function values resulting from solving the

model proposed to solve the SDFLP presented in Chapter 2 Section 5. The periods are

assumed to be 5 years. The problems generated have 3 scenarios (high, medium, low) for

the budget available for relocations 𝐴𝑠𝑡, the flows between departments and the costs of

relocating each department (UC’s). The scenarios have probabilities 0.3, 0.5 and 0.2. A

total of 720 layouts (i.e. 6!) are included in each year. Costs of relocating each department

(UC’s) follow a probability distribution because of variations in charges due to labor, fuel

and special equipment’s used during relocations.

Experimentation was done under three cases. Case 1 corresponds to very high

magnitudes for the values of the 𝐴𝑠𝑡 parameters; still decreasing the numbers over the 3

scenarios considered. In case 1, the model was run 4 times in each of the 4 six departments

problems generated (P1, P2, P3, P4). In cases 2 and 3 the model was run also 4 times but

only for 1 of the six departments problem generated (P1). Cases 2 and 3 correspond to

medium and low magnitudes for the values for 𝐴𝑠𝑡, still decreasing the numbers over the

Algorithms from

previous authors

Number of

comparisons

where Sorted PSP

costs are better

Number of

comparisons where

Sorted LNM costs are

better

CONGA (1994) 21 21

NLGA (2000) 20 18

SA (2001) 20 17

GADP (2003) 3 3

HAS I (2006) 1 1

HAS II (2006) 1 1

HAS III (2006) 1 1

78

3 scenarios considered. The budgeted money for relocations, 𝐴𝑠𝑡, includes the loss in

production incurred during the time the departments are under relocation.

The terms in the SDFLP objective function and their signs introduced in Chapter 2

are pasted below again.

𝑚𝑖𝑛 𝑧𝑠𝑡𝑜𝑐 = ∑ ∑ ∑ 𝑝𝑠𝐶𝑠𝑖𝑡𝐾𝑡+1
𝑥𝑖𝑡𝐾𝑡+1

−

𝐿𝑡+1

𝐾𝑡+1

𝐿𝑡

𝑖𝑡

𝑆′

𝑠=1

 ∑ 𝑝𝑠𝑦𝑠(𝑁−1)
(1 + 𝑟)−(𝑁−1)

𝑆′

𝑠=1

 (11)

However, in table 45, the sign for 𝑧𝑠𝑡𝑜𝑐 is displayed as minus the value computed

in equation (11). This means a negative number for 𝑧𝑠𝑡𝑜𝑐 represents the case in which

besides incurring in MHC and RC, money should be borrowed to relocate the departments

(negative values for the y variables) and thus 𝑧𝑠𝑡𝑜𝑐 ends being a cost. A positive number for

𝑧𝑠𝑡𝑜𝑐 indicates that the total amount unused from the allocated budget (positive values for

the y variables) exceeded the cost incurred in MHC and RC.

These preliminary experiments indicate that the model is sensitive to 𝐴𝑆𝑡
, the

available or allocated budget for the relocations occurring between period t and t+1 under

scenario s. Future work will consider calibrating the model parameters to resemble a

company setting and to assess the value of the stochastic solution from this SDFLP model

vs. the one from solving a DFLP.

79

Table 45. Results from Solving the SDFLP - 6 Departments

Case Problem −𝑧𝑠𝑡𝑜𝑐 (see equation 11)

High magnitudes for the budget for

relocations , 𝐴𝑠𝑡

P1 195,729

P2 62,813

P3 34,132

P4 193,948

Medium magnitudes for the budget for

relocations , 𝐴𝑠𝑡 P1 11,938

Low magnitude for the budget for

relocations , 𝐴𝑠𝑡 P1 -62,000

80

6. PRACTICAL CASE STUDY

6.1 Micro Power facility layout problem

Micro Power Global, a private green energy technology company started in 2008

and partnered with Texas State University to develop and commercialize a cutting-edge

solid-state semiconductor which in the Power Mode converts heat directly into electricity

and in the cooling mode converts electricity directly into refrigeration (MicroPower

Global; Novoa & Mai, 2013). Texas State University has provided technical expertise,

facilities and equipment to Micro Power.

 In 2012, MicroPower starts to relocate its operations to the new STAR park facility

in San Marcos, TX in preparation for company’s growth. Uncertainty and variability of

product demands require a flexible facility layout that may involve shifting of some

departments onto new locations inside the building at certain periods of time or a careful

decision on the final position of each department if they are not going to be relocated.

The manufacturing process for the wafers produced by MicroPower is sequential

and involves 5 production departments in this order: ingot growing, ingot slicing, wafer

polishing, MBE, and metrology. MicroPower needs a facility layout to accommodate these

departments. The STAR park facility has been divided into 6 equal rectangular locations

labeled as shown in Figure 20.

81

Location 1 Location 3

Location 2 Location 4 Location 6

Location 5

Figure 20. Numerical labels for the locations in the Micro Power STAR Park

facility

Table 46 shows the distances between the locations as labeled and depicted in Figure

20. A dummy department is added to have an equal number of departments and locations.

Flows of material (in trips/year) between departments over the next 3 years, based on the

product demands and material handling systems used, are collected through meetings with

the managers and presented in Tables 47 and 48. MicroPower has provided also estimates

for the departments’ relocation costs and they are in Table 49. Given the information

collected, this problem matches the definition and assumptions in a DFLP problem with

deterministic but variable material flow.

Table 46. Distances (in Feet) between Locations

at the Micro Power Facility

Location\Location 1 2 3 4 5 6

1 0 32 28 62 56 89

2 32 0 61 29 88 57

3 28 61 0 32 27 60

4 30 29 32 0 59 27

5 56 88 27 59 0 32

6 89 57 60 27 32 0

82

Table 47. Flows of Material between Micro Power Departments

for Year 1 (in Trips/Year)

Departments Ingot Slicing Polishing MBE Metrology Dummy

Ingot

growing

0 53000 0 0 5300 0

Slicing 0 0 53000 0 2650 0

Polishing 0 0 0 53000 2650 0

MBE 0 0 0 0 5300 0

Metrology 5300 2650 2650 5300 0 0

Dummy 0 0 0 0 0 0

Table 48. Flows of Material between Micro Power Departments

for Year 2 and Year 3 (in Trips/Year)

Table 49. Departments Relocation Costs at Micro Power

Department Fixed relocation

Cost

Ingot growing 200,000

Slicing 100,000

Polishing 250,000

MBE 1,000,000

Metrology 200,000

Dummy 0

6.2. Results

 The two methodologies described in this thesis (PSP and LNM) are tested to assess

their practical suitability for solving the DFLP faced by MicroPower. Because of the

relatively small size of this DFLP if modeled as a network problem, (6! = 720 layouts per

period, a network with 720*3 + 2 = 2162 nodes and (T-1)*(n!*n!) + 2n! = 2*(720*720) +

Departments Ingot Slicing Polishing MBE Metrology Dummy

Ingot

growing

0 363,000 0 0 36300 0

Slicing 0 0 363,000 0 18,150 0

Polishing 0 0 0 363,000 18,150 0

MBE 0 0 0 0 36,300 0

Metrology 36,300 18,150 18,150 36,300 0 0

Dummy 0 0 0 0 0 0

83

2*720 = 1,038,240 arcs), the input to the PSP and LNM models was to include all 720

layouts or permutations for each year in the networks.

PSP and LNM methodologies gave the same result. The permutation 4-6-5-3-1-2 is

the new layout suggested for the MicroPower facility by the two methodologies. It means

department 4, MBE, must be in location 1, department 6, Dummy, must be in location 2,

department 5, Metrology, must be in location 3, department 3, Polishing, must be in

location 4, department 1, Ingot must be in location 5 and department 2, Slicing, must be in

location 6. The total cost of such solution is $84,982,000. It results from summing the

material handling costs incurred over the 3 years. No relocation costs are added since no

department is relocated. Figure 21 presents the final facility layout suggested for

MicroPower and Figure 22 presents the mirror image of it. The mirror image shows flows

between departments from left to right and consequently it agrees more with the flow

concepts suggested in facility layout books. The LNM implemented in AMPL takes about

2 seconds to solve this problem and performs 8,576 network simplex iterations. The serial

SP takes about 0.06 seconds in the CAPI machine.

 Figure 21. New layout suggested for Micro Power after solving with PSP and LNM

methods

84

 Figure 22. Mirror image for new layout suggested for Micro Power after solving

with PSP and LNM methods

It is nice to see that without imposing any additional constraint the ingot growing

and ingot slicing departments ended as neighbors. In previous works (Novoa & Mai, 2013)

managers required to allocate both departments in a single location since in reality it is

highly desirable to have these departments closer. The total cost found in this study cannot

be directly compared to the one in Novoa & Mai (2013) because in this thesis 5 different

departments are allocated to 5 locations and in Novoa & Mai (2013) after adding to the

non-linear model the constraint that ingot growing and ingot slicing must occupy the same

location the solution has 5 departments allocated to 4 locations.

It is also nice to see another couple of results that the managers desired: (1) MBE

(department 4) is closer to polishing (department 3) and metrology (department 5), and (2)

metrology (department 5) is closer to ingot (department 1), slicing (department 2),

polishing (department 3) and MBE (department 4).

 A layout for the departments was randomly generated (permutation 5-1-3-6-2-4)

and the cost of keeping such layout over the 3-years was computed. This cost is equal to

162,107,300 and it is significantly higher if compared to the optimal one of $84,982,000

85

(permutation 4-6-5-3-1-2). The random layout doesn’t have ingot close to slicing, MBE is

relatively close to polishing but not close to metrology, and metrology is located closer to

polishing and ingot but not closer to MBE and slicing. In this way, the random layout can

be considered as a very poor one. The difference in costs should be a fair assessment of the

maximum amount of money that can be saved over 3-years if using optimization techniques

in facilities planning.

Also, the cost for one case in which 3 different and sub-optimal layouts are used

for each year was computed. Such cost ended equal to 132,319,450. In this case, some

layouts were not as poor as the random one mentioned in the previous paragraph but there

were unnecessary relocation costs. For this particular problem, relocation costs are very

high for the MBE department and therefore they should be avoided, if possible. Due to the

small problem size and the rectangular shape of the facility, it is possible to allocate a

department that has high flows with multiple departments in a central location and pair of

departments that have high flows as neighbors. Such fact turns into the fact that the optimal

solution ends to be a fixed layout instead of a different one for each year.

86

7. CONCLUSION

In this research, the dynamic facility layout problem (DFLP) and the stochastic and

dynamic facility layout problem (SDFLP) have been studied. Two methodologies for

solving the DFLP have been compared, Parallel Shortest Path (PSP) solved under a

slightly modified version of the Dijkstra algorithm and a Linear Network Model (LNM)

solved in AMPL. In the first phase of this study, solutions are obtained without filtering

the permutations to include in the network. The efficiency of the proposed

methodologies/algorithms is analyzed. This phase is called the non-sorting variant. Later,

in the second phase the proposed methodologies are analyzed by filtering out the layouts

with the best material handling cost in each year. The methodologies are contrasted in terms

of cost of the solutions and computational time. This second phase is called the sorting

variant. Both methodologies prove to be efficient and relatively simple to develop if

compared to other heuristic algorithms previously published by other authors. They have

also acceptable percentages of accuracy.

 For the non-sorting variant, this thesis performed the experimental work on the

PSP implementation developed by Kolla, (2015) by including a very large number of

randomly selected layouts (85,000) to get the best quality results and perform comparisons

to methodologies from previous authors. In this study, the sorting variant compared well

to other previous works by generating 400,000 layouts and filtering the 50,000 with the

best material handling cost in the PSP methodology and by generating 85,000 layouts and

filtering the 2,000 ones with the best material handling cost in the LNM methodology.

This thesis proposed a new model for solving the SDFLP and demonstrated that the

problem can be solved with a model that is an extension of the LNM used for the DFLP.

87

Problems with 6 departments and 5-time periods were solved with AMPL. Future research

includes to extend the experimentation to see up to what problem sizes are possible to solve

with the proposed methodology and to assess the value of the stochastic solution. SDFLP

is a more realistic problem arising if considering that product demands (and consequently

flows of material between departments) and relocation costs are not known with certainty

but only through probability distributions.

 This research proves to be the first one in solving models for both DFLP for

6,12,15 and 30 departments and SDFLP with budget constraints and 6 departments using

a linear model and solving directly with an operations research software such as AMPL. It

was rewarding to discover that AMPL was able to solve those problems using the network

simplex algorithm. By using AMPL this work demonstrated that is possible to include up

to 2000 layouts per period in the network. This number is a significant improvement if

compared to the numbers reported for the DFLP in Balakrishnan & Jacobs (1992). These

authors are the only ones researching previously on the Linear Network Model approach.

They considered two settings, one with 50 layouts per period (small) and the other one with

100 layouts (large) per period.

The computational time reported by AMPL/CPLEX on solving the instances

studied evidences that the software is efficient in solving these NP-Hard problems. A

computer with more memory could be able to solve the DFLP and SDFLP problems with

a larger number of layouts and to possibly get improvements in the costs.

The two methodologies for solving the DFLP can be used in industry. The LNM

may be simpler to understand and perform to a supply chain/logistics practitioner than the

PSP. LNM is relatively accurate and useful for those companies not in search of the very

88

optimal solution but just a good solution or a solution that is better to the current

implemented one, and efficient in terms of computational time. However, LNM relies on

running separately a C program to compute the some of the model input parameters (total

costs equal to the sum of material handling cost and relocation costs) and to prepare the

very large data file needed to run the model. On the other hand, the PSP is a single C

program that can be used by a practitioner as a black box once he/she is trained on running

the parallelized code on a parallel environment with OpenMP capabilities. Finally, the

comparison of the methods studied in this thesis was not entirely straightforward since the

PSP has been parallelized in the non-sorting variant and the LNM has been limited on the

number of layouts to include because of computer memory constraints. Both methods were

put in the best conditions they can work to identify their solution quality vs. other methods

reported in the literature.

From a practical perspective, achieving cost reductions that considerably

outperformed other methods in 67 and 62 cases by a percentage between 1-4 % is a result

having a substantial value. This is because the 1-4% cost improvements for the problems

studied (6,15 and 30 department’s) will positively impact a company budget by freeing a

significant amount of money that can be saved or re-allocated to cover other operational

costs. From the research point of view, for this NP-hard problem authors have used various

methodologies to achieve reduction in cost however for most of the problems no one knows

the exact lowest cost but it is of high interest for the research community to know which

algorithms are the best performers for the particular instances and which ones do it

efficiently. Notoriously, we believe that most of the prior solution approaches have used

more complex algorithms to explore the search space to find the minimum cost for the

89

instances studied. Hence, it is of great value for a company that is considering to implement

PSP and LNM to setup their layout to have a not too complex algorithm available that has

been contrasted to previous works and it produces good results in terms of costs.

This work helps supply chains to cut operational costs such as material handling

and relocation cost. It helps to prioritize relocation of departments each year considering

demand forecasts, new products, unexpected disasters, changes in machinery, geography

or other issues. The places for applying the proposed methodologies are wide (warehouses,

distribution centers, manufacturing plants, telecommunication and healthcare companies,

and disaster relief supply chains among others). Future research will extend these models

and research on methodologies to solve larger instances of the DFLP and SDFLP. The

SDFLP is a facility layout problem where literature is scarce, especially efficient and good

quality solution methods.

90

APPENDIX

APPENDIX A: Table 50: Summary of Literature Reviewed on DFLP

DFLP

Heuristics and Approximate Dynamic

Programing
Metaheuristics

Author Approach Author Approach

Urban (1998)

GRASP and

Initialized

Multi Greedy

Algorithms

compared to

DP

Conway and

Venkataramanan

(1994)
Evolutionary

Algorithms -

Genetic

Algorithms

(GA)

Conway and

Venkataramanan

(1994)

Balakrishnan

and Cheng

(2000)

DFLP

Heuristics and Approximate Dynamic

Programing
Metaheuristics

Author Approach Author Approach

Lacksonen and

Enscore (1993)

Several exact

methods

(approximate

for large

instances)

including DP

Kaku and

Mazzola (1997)

Tabu Search

(TS)

DFLP

Heuristics and Approximate Dynamic

Programing
Metaheuristics

Author Approach Author Approach

Balakrishnan & Cheng

(2009)

CRAFT,

Urban

heuristic, DP

and

backward

pass

algorithm

Baykasoglu and

Gindy (2001)

Moslemipour &

Lee (2012)

Simulated

Annealing

(SA)

Baykasoglu et

al. (2006)
Ant Systems

91

Table 50 (Continued) DFLP

Exact Hybrid

Author Approach Author Approach

Rosenblatt (1986)

Dynamic

Programming

(DP)

Balakrishnan

et al. (2003)

Balakrishnan

and Cheng

(2006)

DP and GA

DFLP

Exact Hybrid

Author Approach Author Approach

Balakrishnan et

al. (1992)

Linear

programming

to solve a

network

model using

a specialized

primal

shortest-path

simplex

algorithm

(LP)

McKendall and

Shang (2006)

Ant Systems

and

Simulated

Annealing

DFLP

Exact

Author Approach

Urban (1998)

Exact

Dynamic

Programming

(DP) small

instances

92

APPENDIX B: Table 51: Summary of Literature Reviewed on SDFLP

SDFLP

Heuristics Metaheuristics Exact

Author Approach Author Approach Author Approach

Benjaafar

and

Sheikhzade

h (1997)

CRAFT

Vitayasa

k et al.

(2017)

Genetic

Algorithm(G

A) and

Backtracking

Search

Algorithm

(BSA)

Palekar et

al. (1992)

Dynamic

Program

ming

(DP)

 Krishnan

et al.

(2008)

Generic

Algorithm

(GA)

 Tayal et

al. (2016)

Tayal et

al. (2018)

Simulated

Annealing

(SA) and

Chaotic

Simulated

Annealing

(CSA)

93

APPENDIX C: Table 52: AMPL Model File for DFLP without Budget

set Layouts;

set Arcs within (Layouts cross Layouts);

param supply {Layouts} >= 0; # amounts available at Layouts

param demand {Layouts} >= 0; # amounts required at Layouts

check: sum {i in Layouts} supply[i] = sum {j in Layouts} demand[j];

param cost {Arcs} >= 0;

param capacity {Arcs} >= 0; # max packages that can be shipped

minimize Total_Cost;

node Balance {k in Layouts}: net_in = demand[k] - supply[k];

arc Ship {(i,j) in Arcs} >= 0, <= capacity[i,j],

from Balance[i], to Balance[j], obj Total_Cost cost[i,j];

APPENDIX D: Table 53: AMPL Data File for DFLP without Budget

set Layouts := 0 1 2 3 4 5 6 7 8 9…..721;

set Arcs :=

(0 , 1)

(0 , 2)

(0 , 3)

.

.

(719 , 721)

(720 , 721);

param supply default 0 := 0 1;

param demand default 0 := 721 1;

param: cost capacity :=

0 1 0 800

0 2 0 800

0 3 0 800

.

.

720 721 14401 800;

94

APPENDIX E: Table 54: AMPL Model File for DFLP with Budget

set Layouts;

set Arcs within (Layouts cross Layouts);

param supply {Layouts} >= 0; # amounts available at Layouts

param demand {Layouts} >= 0; # amounts required at Layouts

check: sum {i in Layouts} supply[i] = sum {j in Layouts} demand[j];

param cost {Arcs} >= 0;

param capacity {Arcs} >= 0; # max units that can be shipped

param RC {Arcs} >= 0;

param budget >= 0;

minimize Total_Cost;

node Balance {k in Layouts}: net_in = demand[k] - supply[k];

arc Ship {(i,j) in Arcs} >= 0, <= capacity[i,j], from Balance[i], to Balance[j], obj

Total_Cost cost[i,j];

subject to BC: sum {(i,k) in Arcs} RC[i,k]*Ship[i,k] <= budget;

APPENDIX F: Table 55: AMPL Data File for DFLP with Budget

set Layouts := 0 1 2 3 4 5 6 7 8……………..721;

set Arcs :=

(0 , 1)

(0 , 2)

.

.

.

(719 , 721)

(720 , 721);

param supply default 0 := 0 1;

param demand default 0 := 721 1;

param budget := 3600;

param: cost capacity RC :=

0 1 0 800 900

0 2 0 800 900

.

.

.

719 721 14401 800 900

720 721 14401 800 900;

95

APPENDIX G: Table 56: AMPL Model file for SDFLP with Budget

set scenarios;

set years;

set yearminus1;

set Layouts;

set Layouts1;

set Layouts2;

set Layouts3;

set Layouts4;

set Layouts5;

param start in Layouts;

param end in Layouts, <> start;

set Arcs within (Layouts diff {end}) cross (Layouts diff {start});

set Arcs1 within (Layouts1 diff {end}) cross (Layouts2 diff {start});

set Arcs2 within (Layouts2 diff {end}) cross (Layouts3 diff {start});

set Arcs3 within (Layouts3 diff {end}) cross (Layouts4 diff {start});

set Arcs4 within (Layouts4 diff {end}) cross (Layouts5 diff {start});

param supply {Layouts} >= 0; # amounts of imaginary unit available at the

nodes or Layouts. Only dummy supply node sends a unit

param demand {Layouts} >= 0; # amounts of imaginary unit required by the

nodes or Layouts. Only destination node demands a unit

param numscen;

param probscen {scenarios};

param cost {Arcs, scenarios} >= 0; # Material handling cost C plus relocation

costs

param capacity {Arcs} >= 0; # nodes (layouts) have infinite capacity to transfer

the single "fictitious" unit passing in the network

param RC {Arcs, scenarios} >= 0; # Relocation cost from one layout at period t

to another layout at period t+1

param budget_avail {scenarios, years} >= 0; # Budget allocated to relocations

that varies by scenario and year; A in our model

param interest; # interest rate used as discount in the objective function

var Ship {(i,j) in Arcs} >= 0; # X's in our model in the thesis

var Remaining{scenarios, years}; # Y in our model in the thesis

var total_avail{scenarios,years}; # B in our model in the thesis

minimize Total_Cost: sum {(i,j) in Arcs, s in scenarios}

probscen[s]*cost[i,j,s]*Ship[i,j] - sum{s in scenarios}

probscen[s]*Remaining[s,4]*(1 + interest)^(-4);

4 is to represent the previous to last year

96

Table 56. (Continued)

subject to Start: sum {(start, j) in Arcs} Ship[start,j] = 1;

subject to Balance {k in Layouts diff {start, end}}:

sum {(i,k) in Arcs} Ship[i,k] = sum {(k,j) in Arcs} Ship[k,j];

subject to Rem1to2 {s in scenarios}: sum {(i,k) in Arcs1 } RC[i,k,s]*Ship[i,k]

+ Remaining[s,1] = total_avail[s,1];

subject to Rem2to3 {s in scenarios}: sum {(i,k) in Arcs2 } RC[i,k,s]*Ship[i,k]

+ Remaining[s,2] = total_avail[s,2];

subject to Rem3to4 {s in scenarios}: sum {(i,k) in Arcs3 } RC[i,k,s]*Ship[i,k]

+ Remaining[s,3] = total_avail[s,3];

subject to Rem4to5 {s in scenarios}: sum {(i,k) in Arcs4 } RC[i,k,s]*Ship[i,k]

+ Remaining[s,4] = total_avail[s,4];

subject to Tie1to2 {s in scenarios}: budget_avail[s,1] = total_avail[s,1];

subject to Tie2to3 {s in scenarios}: budget_avail[s,2] +

Remaining[s,1]*(1+interest) = total_avail[s,2];

subject to Tie3to4 {s in scenarios}: budget_avail[s,3] +

Remaining[s,2]*(1+interest) = total_avail[s,3];

subject to Tie4to5 {s in scenarios}: budget_avail[s,4] +

Remaining[s,3]*(1+interest) = total_avail[s,4];

97

APPENDIX H: Table 57: AMPL Data File for SDFLP with Budget

set Layouts := 0 1 2 3 4 5 6 7 8..............................721;

set Layouts1 := 1 2 3 4 5 6 7 8.................144;

set Layouts3 := 289 290 291 292 293 294 295 296...............432;

set Layouts4 := 433 434 435 436 437 438 439 440...............576;

set Layouts5 := 577 578 579 580 581 582 583 584...............720;

set years := 1 2 3 4 5;

set scenarios := 1 2 3;

set yearminus1 := 1 2 3 4;

set Arcs :=

(0 , 1)

(0 , 2)

.

.

.

(719 , 721)

(720 , 721);

set Arcs1 :=

(1 , 145)

(1 , 146)

.

.

.

set Arcs2 :=

(145 , 289)

(145 , 290)

.

.

.

(288 , 431)

(288 , 432);

set Arcs3 :=

(289 , 433)

(289 , 434)

.

.

.

(432 , 575)

(432 , 576);

set Arcs4 :=

(433 , 577)

(433 , 578)

.

.

98

 Table 57. (Continued)

.

(576 , 719)

(576 , 720);

param start := 0;

param end := 721;

param supply default 0 := 0 1;

param demand default 0 := 721 1;

param numscen := 3;

param probscen := 1 0.3 2 0.5 3 0.2;

param budget_avail :

 1 2 3 4 5 :=

1 22200 23000 23500 24000 25000

2 35000 35500 36000 36500 37500

3 45000 45500 46000 46500 46500;

param interest := 0.04;

param cost: 1 2 3 :=

0 1 12900 13700 14500

0 2 12900 13700 14500

.

.

.

719 721 12900 13700 14500

720 721 12900 13700 14500;

param capacity :=

0 1 800

0 2 800

.

.

.

719 721 800

720 721 800;

param RC: 1 2 3 :=

0 1 500 525 550

0 2 500 525 550

.

.

.

719 721 500 525 550

720 721 500 525 550;

99

APPENDIX I: Samples of best solutions found for the PSP algorithm developed by

Chandra Kolla (2015) and the LNM coded in AMPL by Gowtham Balachandran - no-

sorting

Optimal path: Total_Cost = 106419 CPLEX 12.6.1.0: optimal solution; objective 106419

1 2 4 5 3 6 8 24972 network simplex iterations.

1 2 4 5 3 6 728 Runtime in seconds: 0 simplex iterations (0 in phase I)

1 2 4 5 3 6 1448 _ampl_user_time = 5.23438 Run time for solving the problem = 3.843750 seconds

1 2 4 5 3 6 2168

1 2 4 5 3 6 2888 Ship :=

0 672 1 6 3 5 4 2 1

Cost: 106419 672 1392 1 6 3 5 4 2 1

1392 2112 1 6 3 5 4 2 1

real 0m0.866s 2112 2832 1 6 3 5 4 2 1

user 0m1.350s 2832 3552 1 6 3 5 4 2 1

sys 0m0.051s 3552 3601 1 6 3 5 4 2 1

Chandra Parallel Algorithm Balachandran Network Model - AMPL

6 Department 1st problem 1st Run

Optimal path: Total_Cost = 106419 CPLEX 12.6.1.0: optimal solution; objective 106419

1 2 4 5 3 6 8 24972 network simplex iterations.

1 2 4 5 3 6 728 Runtime in seconds: 0 simplex iterations (0 in phase I)

1 2 4 5 3 6 1448 _ampl_user_time = 4.98438 Run time for solving the problem = 3.625000 seconds

1 2 4 5 3 6 2168

1 2 4 5 3 6 2888 Ship :=

0 672 1 6 3 5 4 2 1

Cost: 106419 672 1392 1 6 3 5 4 2 1

1392 2112 1 6 3 5 4 2 1

real 0m1.194s 2112 2832 1 6 3 5 4 2 1

user 0m1.363s 2832 3552 1 6 3 5 4 2 1

sys 0m0.057s 3552 3601 1 6 3 5 4 2 1

Chandra Parallel Algorithm Balachandran Network Model-AMPL

6 departments 1st problem 2nd Run

Optimal path: Total_Cost = 106419 CPLEX 12.6.1.0: optimal solution; objective 106419

1 2 4 5 3 6 8 24972 network simplex iterations.

1 2 4 5 3 6 728 Runtime in seconds: 0 simplex iterations (0 in phase I)

1 2 4 5 3 6 1448 _ampl_user_time = 4.95312 Run time for solving the problem = 3.609375 seconds

1 2 4 5 3 6 2168

1 2 4 5 3 6 2888 Ship :=

0 672 1 6 3 5 4 2 1

Cost: 106419 672 1392 1 6 3 5 4 2 1

1392 2112 1 6 3 5 4 2 1

real 0m0.994s 2112 2832 1 6 3 5 4 2 1

user 0m1.358s 2832 3552 1 6 3 5 4 2 1

sys 0m0.051s 3552 3601 1 6 3 5 4 2 1

Balachandran Network Model - AMPLChandra Parallel Algorithm

6 Departments 1st problem 3rd Run

100

Optimal path: Total_Cost = 106419 CPLEX 12.6.1.0: optimal solution; objective 106419

1 2 4 5 3 6 8 24972 network simplex iterations.

1 2 4 5 3 6 728 Runtime in seconds: 0 simplex iterations (0 in phase I)

1 2 4 5 3 6 1448 _ampl_user_time = 5.03125 Run time for solving the problem = 3.671875 seconds

1 2 4 5 3 6 2168

1 2 4 5 3 6 2888 Ship :=

0 672 1 6 3 5 4 2 1

Cost: 106419 672 1392 1 6 3 5 4 2 1

1392 2112 1 6 3 5 4 2 1

real 0m0.978s 2112 2832 1 6 3 5 4 2 1

user 0m1.367s 2832 3552 1 6 3 5 4 2 1

sys 0m0.045s 3552 3601 1 6 3 5 4 2 1

Chandra Parallel Algorithm Balachandran Network Model - AMPL

6 Departments 1st Problem 4th Run

Optimal path: Total_Cost = 106419 CPLEX 12.6.1.0: optimal solution; objective 106419

1 2 4 5 3 6 8 24972 network simplex iterations.

1 2 4 5 3 6 728 Runtime in seconds: 0 simplex iterations (0 in phase I)

1 2 4 5 3 6 1448 _ampl_user_time = 5.0625 Run time for solving the problem = 3.687500 seconds

1 2 4 5 3 6 2168

1 2 4 5 3 6 2888 Ship :=

0 672 1 6 3 5 4 2 1

Cost: 106419 672 1392 1 6 3 5 4 2 1

1392 2112 1 6 3 5 4 2 1

real 0m1.111s 2112 2832 1 6 3 5 4 2 1

user 0m1.340s 2832 3552 1 6 3 5 4 2 1

sys 0m0.056s 3552 3601 1 6 3 5 4 2 1

Balachandran Network Model - AMPLChandra Parallel Algorithm

6 Departments 1st Problem 5th Run

Optimal path: Total_Cost = 1501490 CPLEX 12.6.1.0: optimal solution; objective 1501492

3 10 2 4 7 6 1 12 8 11 5 9 67930 132639 network simplex iterations.

3 10 2 4 7 6 1 12 8 11 5 9 152930 Runtime in seconds: 0 simplex iterations (0 in phase I)

3 10 2 4 7 6 1 12 8 11 5 9 237930 _ampl_user_time = 65.6562 Run time for solving the problem = 50.250000 seconds

3 10 2 4 7 6 1 12 8 11 5 9 322930

3 10 2 4 7 6 1 12 8 11 5 9 407930 Ship :=

0 1262 1 9 3 10 11 12 8 1 4 6 2 7 5

Cost: 1273487 1262 3262 1 9 3 10 11 12 8 1 4 6 2 7 5

3262 5262 1 9 3 10 11 12 8 1 4 6 2 7 5

real 1m34.856s 5262 7262 1 9 3 10 11 12 8 1 4 6 2 7 5

user 7m6.958s 7262 9262 1 9 3 10 11 12 8 1 4 6 2 7 5

sys 0m16.259s 9262 10001 1 9 3 10 11 12 8 1 4 6 2 7 5

Chandra Parallel Algorithm Balachandran Linear Netork Model - AMPL

12 Departments 1st Problem 1st Run

Optimal path: Total_Cost = 1501180 CPLEX 12.6.1.0: optimal solution; objective 1501176

8 1 12 11 10 3 5 9 2 6 7 4 43277 96542 network simplex iterations.

8 1 12 11 10 3 5 9 2 6 7 4 128277 Runtime in seconds: 0 simplex iterations (0 in phase I)

8 1 12 11 10 3 5 9 2 6 7 4 213277 _ampl_user_time = 68.2656 Run time for solving the problem = 53.125000 seconds

8 1 12 11 10 3 5 9 2 6 7 4 298277

8 1 12 11 10 3 5 9 2 6 7 4 383277 Ship :=

0 359 1 5 11 10 9 7 4 2 6 3 1 8 12

Cost: 1252704 359 2359 1 5 11 10 9 7 4 2 6 3 1 8 12

2359 4359 1 5 11 10 9 7 4 2 6 3 1 8 12

real 1m37.205s 4359 6359 1 5 11 10 9 7 4 2 6 3 1 8 12

user 7m10.625s 6359 8359 1 5 11 10 9 7 4 2 6 3 1 8 12

sys 0m15.760s 8359 10001 1 5 11 10 9 7 4 2 6 3 1 8 12

12 Departments 1st Problem 2nd Run

Chandra Prallel Algorithm Balachandran Linear Network Model - AMPL

101

Optimal path: Total_Cost = 1418920 CPLEX 12.6.1.0: optimal solution; objective 1418924

11 8 12 1 6 2 4 7 5 3 10 9 77578 86114 network simplex iterations.

11 8 12 1 6 2 4 7 5 3 10 9 162578 Runtime in seconds: 0 simplex iterations (0 in phase I)

11 8 12 1 6 2 4 7 5 3 10 9 247578 _ampl_user_time = 65.8125 Run time for solving the problem = 50.640625 seconds

11 8 12 1 6 2 4 7 5 3 10 9 332578

11 8 12 1 6 2 4 7 5 3 10 9 417578 Ship :=

0 1462 1 10 6 7 12 1 4 2 8 11 9 5 3

Cost: 1278564 1462 3462 1 10 6 7 12 1 4 2 8 11 9 5 3

3462 5462 1 10 6 7 12 1 4 2 8 11 9 5 3

real 1m35.907s 5462 7462 1 10 6 7 12 1 4 2 8 11 9 5 3

user 7m6.441s 7462 9462 1 10 6 7 12 1 4 2 8 11 9 5 3

sys 0m15.719s 9462 10001 1 10 6 7 12 1 4 2 8 11 9 5 3

Chandra Parallel Algorithm Balachandran Linear Network Model -AMPL

12 Departments 1st Problem 3rd Run

Optimal path: Total_Cost = 1455610 CPLEX 12.6.1.0: optimal solution; objective 1455606

11 3 10 8 12 1 4 7 2 6 9 5 13295 74458 network simplex iterations.

11 3 10 8 12 1 4 7 2 6 9 5 98295 Runtime in seconds: 0 simplex iterations (0 in phase I)

11 3 10 8 12 1 4 7 2 6 9 5 183295 _ampl_user_time = 59.8438 Run time for solving the problem = 45.984375 seconds

12 8 1 11 2 4 7 6 10 9 3 5 339132

12 8 1 11 2 4 7 6 10 9 3 5 424132 Ship :=

0 542 1 5 6 9 3 7 12 11 4 8 1 10 2

Cost: 1278994 542 2542 1 5 6 9 3 7 12 11 4 8 1 10 2

2542 4542 1 5 6 9 3 7 12 11 4 8 1 10 2

real 1m39.069s 4542 6542 1 5 6 9 3 7 12 11 4 8 1 10 2

user 7m9.074s 6542 8542 1 5 6 9 3 7 12 11 4 8 1 10 2

sys 0m15.647s 8542 10001 1 5 6 9 3 7 12 11 4 8 1 10 2

Chandra Parallel Algorithm Balachandran Linear Network Model -AMPL

12 Departments 1st Problem 4th Run

Optimal path: Total_Cost = 1350250 CPLEX 12.6.1.0: optimal solution; objective 1350247

1 12 4 7 2 6 11 9 10 5 3 8 56219 71258 network simplex iterations.

6 7 4 2 1 8 12 11 10 3 9 5 95807 Runtime in seconds: 0 simplex iterations (0 in phase I)

6 7 4 2 1 8 12 11 10 3 9 5 180807 _ampl_user_time = 63.2656 Run time for solving the problem = 48.406250 seconds

6 7 4 2 1 8 12 11 10 3 9 5 265807

6 7 4 2 1 8 12 11 10 3 9 5 350807 Ship :=

0 1833 1 11 5 9 10 3 8 1 12 6 2 4 7

Cost: 1259654 1833 3833 1 11 5 9 10 3 8 1 12 6 2 4 7

3833 5833 1 11 5 9 10 3 8 1 12 6 2 4 7

real 1m35.490s 5833 7833 1 11 5 9 10 3 8 1 12 6 2 4 7

user 7m6.870s 7833 9833 1 11 5 9 10 3 8 1 12 6 2 4 7

sys 0m15.799s 9833 10001 1 11 5 9 10 3 8 1 12 6 2 4 7

Chandra Parallel Algorithm Balachandran Linear Network Model -AMPL

12th Departments 1st Problem 5th Run

Optimal path: Total_Cost = 509933 CPLEX 12.6.1.0: optimal solution; objective 509933

7 14 13 10 2 5 8 15 11 3 4 1 12 9 6 73341 97397 network simplex iterations.

12 15 6 14 11 2 8 10 9 4 3 1 7 5 13 152011 Runtime in seconds: 0 simplex iterations (0 in phase I)

12 15 6 14 11 2 8 10 9 4 3 1 7 5 13 237011 _ampl_user_time = 61.2344 Run time for solving the problem = 46.640625 seconds

12 15 6 14 11 2 8 10 9 4 3 1 7 5 13 322011

11 15 12 3 9 8 1 2 14 4 6 10 7 5 13 376680 Ship :=

0 906 1 4 9 12 2 3 5 15 13 11 1 7 8 14 6 10

Cost: 502383 906 3217 1 4 9 12 2 3 5 15 13 11 1 7 8 14 6 10

3217 5217 1 4 8 9 14 3 15 6 10 7 5 11 2 12 1 13

real 6m35.699s 5217 7217 1 4 8 9 14 3 15 6 10 7 5 11 2 12 1 13

user 37m53.374s 7217 9583 1 11 3 10 8 9 4 2 5 7 13 15 14 12 1 6

sys 0m39.218s 9583 10001 1 11 3 10 8 9 4 2 5 7 13 15 14 12 1 6

Chandra Parallel Algorithm Balachandran Linear Network Model - AMPL

15 Departments 1st Problem 1st Run

102

Optimal path: Total_Cost = 511825 CPLEX 12.6.1.0: optimal solution; objective 511825

10 6 4 15 7 5 12 13 11 3 1 2 8 14 9 29109 100476 network simplex iterations.

3 12 6 1 4 11 9 10 8 15 5 2 7 14 13 147348 Runtime in seconds: 0 simplex iterations (0 in phase I)

3 12 6 1 4 11 9 10 8 15 5 2 7 14 13 232348 _ampl_user_time = 64.1562 Run time for solving the problem = 50.296875 seconds

3 12 6 1 4 11 9 10 8 15 5 2 7 14 13 317348

6 15 10 1 8 11 5 2 12 13 7 14 3 4 9 405874 Ship :=

0 95 1 3 5 13 10 6 4 14 12 9 8 2 15 7 11 1

Cost: 503061 95 3047 1 3 1 9 15 13 6 14 4 12 10 11 5 8 2 7

3047 5047 1 3 1 9 15 13 6 14 4 12 10 11 5 8 2 7

real 6m35.653s 5047 7047 1 3 1 9 15 13 6 14 4 12 10 11 5 8 2 7

user 37m43.889s 7047 9719 1 3 1 9 15 13 6 14 4 12 10 11 5 8 2 7

sys 0m37.575s 9719 10001 1 6 9 14 12 15 8 5 2 13 11 4 1 7 10 3

Chandra Parallel Algorithm Balachandran Linear Network Model - AMPL

15 Departments 1st Problem 2nd Run

Optimal path: Total_Cost = 512736 CPLEX 12.6.1.0: optimal solution; objective 512736

7 9 6 12 2 5 11 15 13 4 1 8 3 14 10 24467 111902 network simplex iterations.

13 3 1 15 2 12 10 8 6 4 11 9 7 5 14 95963 Runtime in seconds: 0 dual simplex iterations (0 in phase I)

13 3 1 15 2 12 10 8 6 4 11 9 7 5 14 180963 _ampl_user_time = 75.5825 Run time for solving the problem = 54.257148 seconds

13 3 1 15 2 12 10 8 6 4 11 9 7 5 14 265963

10 1 6 15 8 12 4 2 5 7 11 9 3 14 13 410389 Ship :=

0 801 1 7 15 8 6 3 4 11 13 12 9 5 10 14 1 2

Cost: 501022 801 2376 1 7 15 8 6 3 4 11 13 12 9 5 10 14 1 2

2376 4376 1 4 14 8 2 13 12 7 6 9 1 11 5 3 10 15

real 6m37.249s 4376 6376 1 4 14 8 2 13 12 7 6 9 1 11 5 3 10 15

user 37m53.206s 6376 8858 1 4 14 8 2 13 12 7 6 9 1 11 5 3 10 15

sys 0m37.469s 8858 10001 1 8 11 5 4 9 7 1 6 2 10 12 13 3 14 15

Balachandran Linear Network Model -AMPLChandra Parallel Algorithm

15 Departments 1st Problem 3rd Run

Optimal path: Total_Cost = 511302 CPLEX 12.6.1.0: optimal solution; objective 511302

4 8 15 3 2 7 11 13 14 5 6 9 12 10 1 11525 101290 network simplex iterations.

4 5 6 10 15 13 9 8 7 1 11 12 2 14 3 107614 Runtime in seconds: 0 simplex iterations (0 in phase I)

4 5 6 10 15 13 9 8 7 1 11 12 2 14 3 192614 _ampl_user_time = 61.375 Run time for solving the problem = 47.046875 seconds

4 5 6 10 15 13 9 8 7 1 11 12 2 14 3 277614

10 14 6 4 9 15 5 2 3 13 7 12 1 11 8 419001 Ship :=

0 1376 1 10 4 6 2 1 12 13 15 9 3 5 14 11 8 7

Cost: 501945 1376 3821 1 10 4 6 2 1 12 13 15 9 3 5 14 11 8 7

3821 5821 1 3 5 7 2 11 12 6 10 9 1 4 14 13 8 15

real 6m38.987s 5821 7821 1 3 5 7 2 11 12 6 10 9 1 4 14 13 8 15

user 38m10.021s 7821 9141 1 3 5 7 2 11 12 6 10 9 1 4 14 13 8 15

sys 0m37.777s 9141 10001 1 7 5 15 8 11 14 2 3 13 4 6 10 12 1 9

Chandra Parallel Algorithm Balachandran Linear Network Model - AMPL

15 Departments 1st Problem 4th Run

Optimal path: Total_Cost = 509640

9 11 6 3 10 8 12 15 13 7 4 5 14 1 2 2458 CPLEX 12.6.1.0: optimal solution; objective 509640

14 4 6 3 12 5 9 10 7 11 13 1 8 15 2 150014 Runtime in seconds: 90641 network simplex iterations.

14 4 6 3 12 5 9 10 7 11 13 1 8 15 2 235014 _ampl_user_time = 60.9219 0 simplex iterations (0 in phase I)

14 4 6 3 12 5 9 10 7 11 13 1 8 15 2 320014 Run time for solving the problem = 46.015625 seconds

9 4 5 12 8 13 3 2 1 6 11 10 14 15 7 414740 Ship :=

0 1583 1 1 5 13 2 4 6 11 12 15 8 7 9 14 10 3

Cost: 499324 1583 3742 1 1 5 13 2 4 6 11 12 15 8 7 9 14 10 3

3742 5742 1 11 1 15 2 12 4 7 8 6 3 5 10 9 14 13

real 6m34.729s 5742 7742 1 11 1 15 2 12 4 7 8 6 3 5 10 9 14 13

user 37m42.764s 7742 9543 1 11 1 15 2 12 4 7 8 6 3 5 10 9 14 13

sys 0m37.746s 9543 10001 1 7 5 14 6 11 9 3 2 12 4 13 10 1 15 8

Chandra Parallel Algorithm Balachandran Linear Network Model -AMPL

15 Departments 1st Problem 5th Run

103

Optimal path:

1 5 18 24 14 27 11 6 23 29 26 10 12 16 22 3 28 17 30 15 13 25 21 7 20 8 9 19 2 4 58000

1 5 18 24 14 27 11 6 23 29 26 10 12 16 22 3 28 17 30 15 13 25 21 7 20 8 9 19 2 4 143000

1 5 18 24 14 27 11 6 23 29 26 10 12 16 22 3 28 17 30 15 13 25 21 7 20 8 9 19 2 4 228000

1 5 18 24 14 27 11 6 23 29 26 10 12 16 22 3 28 17 30 15 13 25 21 7 20 8 9 19 2 4 313000

1 5 18 24 14 27 11 6 23 29 26 10 12 16 22 3 28 17 30 15 13 25 21 7 20 8 9 19 2 4 398000

Cost: 601677

real 7m35.407s

user 42m12.088s

sys 0m40.262s

Total_Cost = 610863 CPLEX 12.6.1.0: optimal solution; objective 610863

65260 network simplex iterations.

Runtime in seconds: 0 simplex iterations (0 in phase I)

_ampl_user_time = 62.1719 Run time for solving the problem = 47.437500 seconds

Ship :=

0 1521 1 1 7 30 13 28 9 19 16 29 11 18 8 4 21 24 17 15 2 14 20 25 22 12 10 26 27 6 23 5 3

1521 3521 1 1 7 30 13 28 9 19 16 29 11 18 8 4 21 24 17 15 2 14 20 25 22 12 10 26 27 6 23 5 3

3521 5521 1 1 7 30 13 28 9 19 16 29 11 18 8 4 21 24 17 15 2 14 20 25 22 12 10 26 27 6 23 5 3

5521 7521 1 1 7 30 13 28 9 19 16 29 11 18 8 4 21 24 17 15 2 14 20 25 22 12 10 26 27 6 23 5 3

7521 9521 1 1 7 30 13 28 9 19 16 29 11 18 8 4 21 24 17 15 2 14 20 25 22 12 10 26 27 6 23 5 3

9521 10001 1 1 7 30 13 28 9 19 16 29 11 18 8 4 21 24 17 15 2 14 20 25 22 12 10 26 27 6 23 5 3

Balachandran Linear Network Model -AMPL

30 Departments 1st Problem 1st Run

Chandra Parallel Algorithm

Optimal path:

7 16 22 2 24 18 1 28 15 30 20 5 10 13 29 17 25 12 9 21 23 14 6 8 4 3 11 26 19 27 18893

7 16 22 2 24 18 1 28 15 30 20 5 10 13 29 17 25 12 9 21 23 14 6 8 4 3 11 26 19 27 103893

7 16 22 2 24 18 1 28 15 30 20 5 10 13 29 17 25 12 9 21 23 14 6 8 4 3 11 26 19 27 188893

7 16 22 2 24 18 1 28 15 30 20 5 10 13 29 17 25 12 9 21 23 14 6 8 4 3 11 26 19 27 273893

7 16 22 2 24 18 1 28 15 30 20 5 10 13 29 17 25 12 9 21 23 14 6 8 4 3 11 26 19 27 358893

Cost: 602742

real 7m37.846s

user 42m41.713s

sys 0m39.510s

Total_Cost = 609194

CPLEX 12.6.1.0: optimal solution; objective 609194

Runtime in seconds: 59679 network simplex iterations.

_ampl_user_time = 60.2656 0 simplex iterations (0 in phase I)

Run time for solving the problem = 45.984375 seconds

Ship :=

0 269 1 20 10 13 29 11 3 17 25 21 22 12 27 28 19 1 15 23 14 16 26 2 30 6 18 5 24 4 8 7 9

269 2269 1 20 10 13 29 11 3 17 25 21 22 12 27 28 19 1 15 23 14 16 26 2 30 6 18 5 24 4 8 7 9

2269 4269 1 20 10 13 29 11 3 17 25 21 22 12 27 28 19 1 15 23 14 16 26 2 30 6 18 5 24 4 8 7 9

4269 6269 1 20 10 13 29 11 3 17 25 21 22 12 27 28 19 1 15 23 14 16 26 2 30 6 18 5 24 4 8 7 9

6269 8269 1 20 10 13 29 11 3 17 25 21 22 12 27 28 19 1 15 23 14 16 26 2 30 6 18 5 24 4 8 7 9

8269 10001 1 20 10 13 29 11 3 17 25 21 22 12 27 28 19 1 15 23 14 16 26 2 30 6 18 5 24 4 8 7 9

Balachandran Linear Network Model -AMPL

Chandra Parallel Algorithm

30 Departments 1st Problem 2nd Run

104

Optimal path:

6 27 9 16 26 10 20 19 28 24 25 7 17 15 29 21 23 8 2 30 5 22 1 13 12 4 14 18 3 11 79260

6 27 9 16 26 10 20 19 28 24 25 7 17 15 29 21 23 8 2 30 5 22 1 13 12 4 14 18 3 11 164260

6 27 9 16 26 10 20 19 28 24 25 7 17 15 29 21 23 8 2 30 5 22 1 13 12 4 14 18 3 11 249260

6 27 9 16 26 10 20 19 28 24 25 7 17 15 29 21 23 8 2 30 5 22 1 13 12 4 14 18 3 11 334260

6 27 9 16 26 10 20 19 28 24 25 7 17 15 29 21 23 8 2 30 5 22 1 13 12 4 14 18 3 11 419260

Cost: 603472

real 7m36.142s

user 42m12.811s

sys 0m39.824s

Total_Cost = 608418

CPLEX 12.6.1.0: optimal solution; objective 608418

Runtime in seconds: 82167 network simplex iterations.

_ampl_user_time = 60.4844 0 simplex iterations (0 in phase I)

Run time for solving the problem = 46.500000 seconds

Ship :=

0 550 1 10 25 18 19 30 9 20 23 15 17 6 3 26 21 13 28 2 22 12 14 29 5 24 1 7 11 4 27 16 8

550 2550 1 10 25 18 19 30 9 20 23 15 17 6 3 26 21 13 28 2 22 12 14 29 5 24 1 7 11 4 27 16 8

2550 4550 1 10 25 18 19 30 9 20 23 15 17 6 3 26 21 13 28 2 22 12 14 29 5 24 1 7 11 4 27 16 8

4550 6550 1 10 25 18 19 30 9 20 23 15 17 6 3 26 21 13 28 2 22 12 14 29 5 24 1 7 11 4 27 16 8

6550 8550 1 10 25 18 19 30 9 20 23 15 17 6 3 26 21 13 28 2 22 12 14 29 5 24 1 7 11 4 27 16 8

8550 10001 1 10 25 18 19 30 9 20 23 15 17 6 3 26 21 13 28 2 22 12 14 29 5 24 1 7 11 4 27 16 8

Balachandran Linear Network Model - AMPL

30 Departments 1st Problem 3rd Run

Chandra Parallel Algorithm

Optimal path:

2 12 1 19 8 20 16 18 29 26 5 10 4 3 13 24 22 27 11 30 25 15 23 17 7 6 21 28 14 9 14152

2 12 1 19 8 20 16 18 29 26 5 10 4 3 13 24 22 27 11 30 25 15 23 17 7 6 21 28 14 9 99152

2 12 1 19 8 20 16 18 29 26 5 10 4 3 13 24 22 27 11 30 25 15 23 17 7 6 21 28 14 9 184152

2 12 1 19 8 20 16 18 29 26 5 10 4 3 13 24 22 27 11 30 25 15 23 17 7 6 21 28 14 9 269152

2 12 1 19 8 20 16 18 29 26 5 10 4 3 13 24 22 27 11 30 25 15 23 17 7 6 21 28 14 9 354152

Cost: 603722

real 7m36.883s

user 42m35.264s

sys 0m39.933s

Total_Cost = 609015

CPLEX 12.6.1.0: optimal solution; objective 609015

Runtime in seconds: 60940 network simplex iterations.

_ampl_user_time = 59.5312 0 simplex iterations (0 in phase I)

Run time for solving the problem = 45.640625 seconds

Ship :=

0 434 1 11 3 9 21 4 8 19 15 23 25 22 7 13 29 28 6 14 20 2 5 17 1 24 18 10 26 12 30 27 16

434 2434 1 11 3 9 21 4 8 19 15 23 25 22 7 13 29 28 6 14 20 2 5 17 1 24 18 10 26 12 30 27 16

2434 4434 1 11 3 9 21 4 8 19 15 23 25 22 7 13 29 28 6 14 20 2 5 17 1 24 18 10 26 12 30 27 16

4434 6434 1 11 3 9 21 4 8 19 15 23 25 22 7 13 29 28 6 14 20 2 5 17 1 24 18 10 26 12 30 27 16

6434 8434 1 11 3 9 21 4 8 19 15 23 25 22 7 13 29 28 6 14 20 2 5 17 1 24 18 10 26 12 30 27 16

8434 10001 1 11 3 9 21 4 8 19 15 23 25 22 7 13 29 28 6 14 20 2 5 17 1 24 18 10 26 12 30 27 16

Balachandran Linear Network Model -AMPL

30 Departments 1st Problem 4th Run

Chandra Parallel Algorithm

105

Optimal path:

27 24 29 28 18 10 7 1 23 15 30 2 5 21 12 26 17 11 16 19 22 25 13 14 6 3 8 20 9 4 74873

27 24 29 28 18 10 7 1 23 15 30 2 5 21 12 26 17 11 16 19 22 25 13 14 6 3 8 20 9 4 159873

27 24 29 28 18 10 7 1 23 15 30 2 5 21 12 26 17 11 16 19 22 25 13 14 6 3 8 20 9 4 244873

27 24 29 28 18 10 7 1 23 15 30 2 5 21 12 26 17 11 16 19 22 25 13 14 6 3 8 20 9 4 329873

27 24 29 28 18 10 7 1 23 15 30 2 5 21 12 26 17 11 16 19 22 25 13 14 6 3 8 20 9 4 414873

Cost: 604214

real 7m38.750s

user 42m43.590s

sys 0m39.974s

Total_Cost = 609364

CPLEX 12.6.1.0: optimal solution; objective 609364

Runtime in seconds: 63519 network simplex iterations.

_ampl_user_time = 79.2641 0 dual simplex iterations (0 in phase I)

Run time for solving the problem = 58.016772 seconds

Ship :=

0 1707 1 6 3 23 20 9 8 24 21 25 15 18 7 11 16 19 13 28 4 27 1 22 12 30 2 17 14 29 5 26 10

1707 3707 1 6 3 23 20 9 8 24 21 25 15 18 7 11 16 19 13 28 4 27 1 22 12 30 2 17 14 29 5 26 10

3707 5707 1 6 3 23 20 9 8 24 21 25 15 18 7 11 16 19 13 28 4 27 1 22 12 30 2 17 14 29 5 26 10

5707 7707 1 6 3 23 20 9 8 24 21 25 15 18 7 11 16 19 13 28 4 27 1 22 12 30 2 17 14 29 5 26 10

7707 9707 1 6 3 23 20 9 8 24 21 25 15 18 7 11 16 19 13 28 4 27 1 22 12 30 2 17 14 29 5 26 10

9707 10001 1 6 3 23 20 9 8 24 21 25 15 18 7 11 16 19 13 28 4 27 1 22 12 30 2 17 14 29 5 26 10

Balachandran Linear Network Model - AMPL

Chandra Parallel Algorithm

30 Departments 1st Problem 5th Run

106

APPENDIX J: Simplex iterations LNM solved in AMPL - 6 departments

Problem

Number of departments_problem number_ run number Sorting No-sorting

6_1_1 24077 24972

6_1_2 24077 24972

6_1_3 24077 24972

6_1_4 24077 24972

6_1_5 24077 24972

6_2_1 19233 24277

6_2_2 19233 24277

6_2_3 19233 24277

6_2_4 19233 24277

6_2_5 19233 24277

6_3_1 21430 23808

6_3_2 21430 23808

6_3_3 21430 23808

6_3_4 21430 23808

6_3_5 21430 23808

6_4_1 22528 26053

6_4_2 22528 26053

6_4_3 22528 26053

6_4_4 22528 26053

6_4_5 22528 26053

6_5_1 21568 22278

6_5_2 21568 22278

6_5_3 21568 22278

6_5_4 21568 22278

6_5_5 21568 22278

6_6_1 20413 24187

6_6_2 20413 24187

6_6_3 20413 24187

6_6_4 20413 24187

6_6_5 20413 24187

6_7_1 20796 20097

6_7_2 20796 20097

6_7_3 20796 20097

6_7_4 20796 20097

6_7_5 20796 20097

6_8_1 25886 28705

6_8_2 25886 28705

6_8_3 25886 28705

6_8_4 25886 28705

6_8_5 25886 28705

107

APPENDIX K: Simplex iterations LNM solved in AMPL - 15 departments

Problem

Number of departments_problem number_ run number Sorting No- sorting

15_1_1 81002 97397

15_1_2 78272 100476

15_1_3 63112 111902

15_1_4 83060 101290

15_1_5 64469 90641

15_2_1 54170 106389

15_2_2 65007 71097

15_2_3 86644 58733

15_2_4 65043 119468

15_2_5 83704 99292

15_3_1 61579 80660

15_3_2 62807 83790

15_3_3 57092 76346

15_3_4 83704 105136

15_3_5 53195 102944

15_4_1 57716 92498

15_4_2 49208 107528

15_4_3 51300 96242

15_4_4 67496 82229

15_4_5 65228 74709

15_5_1 59238 107148

15_5_2 94007 91955

15_5_3 50953 85983

15_5_4 48668 90162

15_5_5 48497 98718

15_6_1 59404 130186

15_6_2 56373 66529

15_6_3 53270 103436

15_6_4 45773 90543

15_6_5 65619 96583

15_7_1 63025 114633

15_7_2 47440 94429

15_7_3 53514 81625

15_7_4 64860 84925

15_7_5 53815 95910

15_8_1 77389 93352

15_8_2 51431 92172

15_8_3 61620 86898

15_8_4 59069 111351

15_8_5 53236 80978

108

APPENDIX L: Simplex iterations LNM solved in AMPL - 30 departments

Problem

Number of departments_problem number_ run number Sorting No-sorting

30_1_1 91052 65260

30_1_2 70818 59679

30_1_3 56930 82167

30_1_4 72040 60940

30_1_5 68203 63519

30_2_1 72421 81854

30_2_2 141896 75925

30_2_3 72850 88339

30_2_4 61028 65568

30_2_5 87913 76070

30_3_1 87913 67162

30_3_2 61980 74932

30_3_3 61980 56268

30_3_4 62711 80280

30_3_5 93690 69650

30_4_1 74625 75723

30_4_2 63769 68761

30_4_3 50258 71067

30_4_4 50638 80099

30_4_5 72403 85473

30_5_1 49323 80500

30_5_2 88280 118737

30_5_3 55895 56139

30_5_4 55807 248608

30_5_5 46001 114839

30_6_1 58509 113537

30_6_2 67823 99685

30_6_3 84082 95670

30_6_4 323556 64152

30_6_5 44423 128863

30_7_1 133985 66140

30_7_2 96465 89949

30_7_3 78469 72823

30_7_4 277163 77819

30_7_5 59042 78040

30_8_1 94777 112548

30_8_2 77368 89997

30_8_3 100458 57206

30_8_4 71470 59438

30_8_5 66207 49142

109

APPENDIX M: Table 58: Relevant Information about the Computational Environments

Used

Problem or Algorithm Cluster or

computer

Operating

System

Speed

(Ghz)

CPU’s Memory

(GB)

PSP, LNM no-sorting Stampede

cluster

CentOS 2.8 20 12.8

PSP, LNM sorting Maverick

cluster

CentOS 2.7 10 32

LNM for DFLP

sorting and no-

sorting,

SDFLP

SOLAR lab

PC

Windows 3.2 4 16

SDFLP

LEAP CentOS 2.4 28 128

LNM sorting,

PSP sorting

CAPI CentOS 2.06 -

3.69

160 16

110

APPENDIX N: Table 59: Costs, Computational Times and Percentage Difference (%

Diff) for PSP and LNM – Sorting (S) vs. No-Sorting (NS) - 15 Departments - Times

Shortest Path Sorting (SP-S) are only for doing the variant of the Dijkstra’s Algorithm

PSP-S PSP-NS % Diff LNM -S
LNM-

NS
% Diff

498273 501547 0.65 501547 511087 1.9

499297 502998 0.74 502998 512633 1.9

500066 506883 1.34 507031 515212 1.59

498717 501035 0.46 501035 508173 1.4

499414 500312 0.18 500312 511144 2.12

499353 502486 0.62 502486 511498 1.76

501169 504100 0.58 504100 514077 1.94

505761 507402 0.32 507442 517778 2

SP-S PSP-NS % Diff LNM-S
LNM-

NS
% Diff

41.2 36.5 -12.88 45.7 64.7 29

41.6 97.4 57.29 45.7 61.1 25

42.4 396.8 89.31 47.8 62.1 22.99

42.4 396.1 89.3 46 60.3 25.42

42 396.4 89.4 45.2 60.4 25.1

46.6 396.1 88.24 45.3 60.9 25.56

41.2 395.8 89.59 45.4 60.3 24.74

41.4 384.1 89.22 45.3 59.9 24.34

Table 60: Costs, Computational Times and Percentage Difference (% Diff) for PSP and

LNM – Sorting (S) vs. No-Sorting (NS) - 30 Departments - Times Shortest Path Sorting

(SP-S) are only for doing the variant of the Dijkstra’s Algorithm

PSP-S PSP-NS % Diff LNM -S
LNM-

NS
% Diff

603233 603165 -0.01 624464 609371 -2.48

603332 600408 -0.49 606909 606746 -0.03

605783 607720 0.32 612155 611773 -0.06

597999 601261 0.54 601721 607288 0.92

587107 590454 0.57 590548 599579 1.51

594994 597884 0.48 598842 603318 0.74

597179 595900 -0.21 599936 601822 0.31

601663 603972 0.38 603848 614843 1.79

111

Table 60 (Continued)

SP-S PSP-NS % Diff LNM-S
LNM-

NS
% Diff

41.6 457 90.9 47.7 64.3 25.86

41.2 457.4 90.99 47.9 71.9 33.32

41.8 456.4 90.84 47.9 60.8 21.21

41.6 106.2 60.81 48.5 60 19.23

41.2 107.8 61.76 48.8 60.1 18.81

41 107.9 61.99 48.4 77.6 37.71

41 111.2 63.13 45.7 60.1 23.97

41.6 107.1 61.17 45.8 76.8 40.45

APPENDIX O: Table 61: Times to Perform only the variant of the Dijkstra algorithm

for SP Sorting (S)- 15 and 30 departments

 Problem # R1 R2 R3 R4 R5 Average Std. Dev

15

1 41 41 42 41 41 41.2 0

2 41 41 42 43 41 41.6 1

3 42 42 42 43 43 42.4 1

4 41 42 43 42 44 42.4 1

5 42 41 42 41 44 42.0 1

6 41 69 41 41 41 46.6 13

7 41 41 41 42 41 41.2 0

8 42 41 42 41 41 41.4 1

30

1 41 44 41 41 41 41.6 1

2 41 41 41 41 42 41.2 0

3 41 41 41 44 42 41.8 1

4 41 41 41 41 44 41.6 1

5 41 41 41 42 41 41.2 0

6 41 41 41 41 41 41.0 0

7 41 41 41 41 41 41.0 0

8 43 42 41 41 41 41.6 1

112

APPENDIX P: Table 62: Times to Perform LNM Sorting (S) – 15 and 30 Departments

including Percentage Difference (% Diff) for LNM Sorting (S) vs SP Sorting (S) as

reported in Appendix O

 Problem R1 R2 R3 R4 R5 Average

Std.

Dev

% Diff

LNM

vs SP

15

1 47.31 45.45 45.07 45.10 45.71 45.728 0.923 9.90%

2 45.00 45.48 45.29 45.73 46.86 45.672 0.716 8.92%

3 45.85 46.17 46.26 46.81 53.96 47.810 3.455 11.32%

4 45.43 45.28 44.62 44.89 44.70 44.984 0.357 5.74%

5 45.00 44.93 44.64 46.20 45.40 45.234 0.604 7.15%

6 45.96 45.48 45.10 44.71 45.37 45.324 0.463 -2.82%

7 45.87 45.32 45.46 45.40 44.81 45.372 0.379 9.20%

8 45.17 44.67 46.48 45.39 44.95 45.332 0.695 8.67%

30

1 45.75 47.31 49.28 48.92 47.26 47.704 1.426 12.80%

2 47.81 47.54 48.96 47.53 47.87 47.942 0.590 14.06%

3 47.87 48.40 48.21 47.48 47.42 47.876 0.433 12.69%

4 48.46 48.50 48.71 48.48 48.25 48.480 0.163 14.19%

5 48.42 48.14 49.39 49.57 48.29 48.762 0.666 15.51%

6 48.39 48.23 47.75 45.54 49.01 47.784 1.333 14.20%

7 46.21 45.46 45.53 45.89 45.45 45.708 0.333 10.30%

8 45.64 45.20 46.10 45.65 46.26 45.770 0.420 9.11%

% Diff = 100*(LNM sorting –SP sorting)/LNM sorting

113

APPENDIX Q: Computational Time Graph for Various Methods Studied

114

REFERENCES

Azadivar, F., & Wang, J. (2000). Facility layout optimization using simulation and genetic

algorithms. International Journal of Production Research, 38(17), 4369-4383.

Azimi. P, Charmchi, H. R. (2012). A new optimization approach for dynamic facility

layout with budget constraint. Operations Research, 168 (2), 57–89.

Balakrishnan, J., Jacobs, R. F., & Venkataraman, M.A. (1992). Solutions for the

constrained Dynamic Facility Layout Problem. European Journal of Operations

Research, 57(2), 280-286.

Balakrishnan, J., & Cheng, C. H. (1998). Dynamic Layout Algorithms: A State-of-the-art

Survey. Omega International Journal of Management Science, 26(4), 507-521.

Balakrishnan, J., & Cheng, C. H. (2000). Genetic search and the dynamic layout problem.

Computers & Operations Research, 27(6), 587-593.

Balakrishnan, J., & Cheng, C. H., Conway, D.G., Lau, M.C. (2003). A hybrid genetic

algorithm for the dynamic plant layout problem. International Journal of Production

Economics, 86(2), 107–120.

Balakrishnan, J., & Cheng, C. H. (2006). A note on “a hybrid genetic algorithm for the

dynamic plant layout problem.” International Journal of Production Economics,

103(1), 87–89.

Balakrishnan, J., & Cheng, C. H. (2009). The dynamic plant layout problem: Incorporating

rolling horizons and forecast uncertainty. The international journal of management

science, Omega, 37(1) 165–177.

Balas, E., & Mazzola, J.B. (1980). Quadratic 0-1 programming by a new linearization,

TIMS/ORSA meeting, Washington, DC.

Ballou, R. J. (2003). Business Logistics/Supply Chain Management and Logware.

Pearson/Prentice Hall, Upper Sadle River, NJ.

Ballou, R. H. (1968). Dynamic Warehouse location analysis. Journal of Marketing

Research, 5, 271-276.

Baykasoglu, A., Dereli, T., & Sabuncu, I. (2006). An ant colony algorithm for solving

budget constrained and unconstrained dynamic facility layout problems, Omega, 34(4),

385–396.

Baykasoglu, A., & Gindy, N. N. Z. (2001). A simulated annealing algorithm for dynamic

layout problem. Computers & Operations Research, 28(14), 1403-1426.

Benjaafar, S., & Sheikhzadeh, M. (1997). Design of flexible plant layouts. IIE

Transactions, 32(4), 309-322.

http://www.tandfonline.com/doi/abs/10.1080/00207540050205154
http://www.tandfonline.com/doi/abs/10.1080/00207540050205154
http://www.tandfonline.com/toc/tprs20/38/17

115

Birge, J. R., Louveaux, F. (2010). Introduction to Stochastic Programming. Second

Edition. Springer Series in Operations Research and Financial Engineering. Mikosch,

T.V., Resnick, S.I., and Robinson, S.M., Editors. Springer, New York, NY.

Burkard, R. E., & Bonniger, T. (1983). A heuristic for quadratic Boolean program with

applications to quadratic assignment problems. European Journal of Operational

Research, 13(4), 374-386.

Bazaraa, S. M., Jarvis, J. J., & Sherali, H. D. (1990). Linear programming and network

flows- Second Edition. John Wiley & Sons, New York, NY.

Conway, D.G., & Venkataramanan, M.A. (1994). Genetic search and the dynamic facility

layout problem. Computers & Operations Research, 21(8), 955-960.

Dijkstra, E.W. (1959). A note on two problems in connection with graphs. Number Math.

1, 269-271.

Fourer, R, Gay, D.M., & Kernighan, B.W. (2003). A Modeling Language for Mathematical

Programming, Thomson, Canada, Second edition, 319-351.

Fredman, M. L., & Tarjan, R. E. (1987). Fibonacci Heaps and their uses in improved

network optimization algorithms. Journal of the association for computing machinery,

34(3), 596-615.

Kaku, B.K., & Mazzola, J. B. (1997). A Tabu search heuristic for the dynamic plant layout

problem. INFORMS Journal on Computing, 9(4), 374-384.

Kolla, C.S. (2015). Finding Efficient Solutions to the Dynamic Plant Layout Problem with

Dijkstra’s Shortest Path Algorithm. Independent Study. Department of Computer

Science. Texas State University.

Krishnan, K. K., Cheraghi, H. S., & Nayak, C.N. (2008). Facility layout design for multiple

production scenarios in a dynamic environment. International Journal of Industrial and

Systems Engineering, 3(2), 105-133.

Kulturel-Konak, S. (2007). Approaches to uncertainties in facility layout problems:

perspectives at the beginning of the 21st century. Journals of Intelligent Manufacturing,

18(2), 273–284.

Lacksonen, T. A., & Enscore, E. E. (1993). Quadratic assignment algorithms for the

dynamic layout problem. International Journal of Production Research, 31(3), 503-517.

Leap: High Performance Computing Cluster. Texas State University. Retrieved from

http://www.vpit.txstate.edu/rc/leap.html

http://www.vpit.txstate.edu/rc/leap.html

116

Loiola, E. M., De Abreu, N., Boaventura Netto, P., Hahn, P. & Querido, T. (2007). A

survey for the quadratic assignment problem. European Journal of Operational

Research, 176(2), 657–690.

McKendall, R. A., & Shang, J. (2006). Hybrid ant systems for the dynamic facility layout

problem. Computers & Operations Research, 33(3), 790 – 803.

MicroPower. Retrieved from http://MicroPower-global.com

Moselimipour, G., Lee, T.S., & Rilling, D. (2012). A review of intelligent approaches for

designing dynamic and robust layouts in flexible manufacturing systems. International

Journal of Advanced Manufacturing Technology, 60(1-4), 11-27.

Moslemipour, G., & Lee, T.S. (2012). Intelligent design of a dynamic machine layout in

uncertain environment of flexible manufacturing systems. Journals of Intelligent

Manufacturing, 23(5), 1-12.

Novoa, C. M., & Mai, N. (2013). Facilities Layout at MicroPower. In Decision Sciences

Institute 44th Annual Meeting (pp. 671963-1-14).

Palekar, S. U., Batta, R., Bosch, R.M., & Elhence, S. (1992). Modeling uncertainties in

plant layout problems. European Journal of Operational Research, 63(2), 347-359.

Rosenblatt, M. J. (1986). The dynamics of plant layout. Management Science, 32(1),76-

86.

Rardin, R. (2017). Optimization in Operations Research Second Edition. Pearson,

Hoboken, NJ.

Sahin, R., Ertogral, K. & Turkbey, O. (2010). A simulated annealing heuristic for the

dynamic layout problem with budget constraint. Computers & Industrial Engineering,

59, 308–313.

Sweeney, D. S. & Tatham, R. L. (1976). An improved long run model for multiple

warehouse location. Management Science, 22(7), 758-758.

Taha, H. A. (2013). Operations Research – An Introduction Ninth Edition. Prentice Hall,

Upper Saddle River, NJ.

Tarjan, R. E. (1983). Data Structures and Network Algorithms. Society for Industrial and

Applied Mathematics, Philadelphia, PA.

Tayal, A., Gunasekaran, A., Singh, S. P., Dubey, R., & Papadopoulos, T. (2017).

Formulating and solving sustainable dynamic facility layout problem: a key to

sustainable operations. Annals of Operations Research. 253, 621-655.

https://doi.org/10.1007/s10479-016-2351-9

http://micropower-global.com/

117

Tayal, A., Singh, S. P. (2018). Formulating multi objective stochastic dynamic facility

layout problem for disaster relief. Annals of Operations Research.

https://doi.org/10.1007/s10479-017-2592-2

Texas Advanced Computing Center (TACC). University of Texas at Austin. Pickle

Research Center. https://portal.tacc.utexas.edu

Urban, L. T. (1998). Solution procedures for the dynamic facility layout problem. Journal

of Operations Research, 76(0), 323-342.

Vitayasak, S., Pongcharoen, P., & Hicks, C. (2017). A tool for solving stochastic dynamic

facility layout problems with stochastic demand using either a Genetic Algorithm or

modified Backtracking Search Algorithm. International Journal of Production

Economics, 190C, 146-157.

Winston, W. L. (2004). Operations Research – Applications and Algorithms Fourth

Edition. Brooks/Cole, Cengage Learning, Belmont, CA.

https://portal.tacc.utexas.edu/

