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ABSTRACT 

This thesis researches on the Dynamic Facility Layout Problem (DFLP) and the 

Stochastic and Dynamic Facility Layout Problem (SDFLP). The problems are extensions 

to the static or single-period facility layout problem (SFLP). They assume that there are 

fluctuations in the products’ demands and consequently in the flows of material (and/or 

final products) between facilities in a given planning horizon. Fluctuations in flows of 

material are also due to the introduction of new products, disasters, and other production 

and marketing changes impacting the supply chain. In the DFLP, the flows of material 

between facilities vary over time but they are assumed known. In the SDFLP, the flows 

between facilities are uncertain and may follow different random distributions. The 

objective of these problems is to find an assignment of facilities to locations at each period 

that optimizes the material handling cost and the facilities relocation cost.  This thesis has 

three contributions. First, it assesses the accuracy and efficiency of a Parallel Shortest Path 

(PSP) algorithm developed by Kolla (2015) to solve the DFLP.  Second, it tests the 

efficiency on formulating a linear network model (LNM) for the DFLP and solving it with 

the network simplex algorithm implemented in AMPL, a commercial mathematical 

programming language, through numerical experimentation. Third, this thesis proposes a 

constrained shortest path network model to solve the SDFLP and experiments with small 

size instances. The SDFLP network model is an extension of the DFLP model in 

Balakrishnan et al. (1992). 
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1. INTRODUCTION 

Tompkins et al. (2010) highlight the relevance of facilities planning from the point 

of view of size of the investment. They mention that U.S. businesses invested over a trillion 

dollars per year over the last five years in capital goods and from this amount, over 30% 

was spent on structures with a large part of this percentage spent on new constructions. In 

addition, Tompkins et al. (2010) state that over 8% of the United States gross national 

product has been annually spent on new facilities and that over $300 billion will be spent 

annually on facilities planning or re-planning.  

Between 20%-50% of the total operating expenses in manufacturing in the US are 

attributed to material handling. Facilities planning deals with the reduction of this 

significant supply chain expenditure. Effective facilities planning can reduce material 

handling cost by 10-30% (Tomkins et al., 2010).  

According to Ballou (2003), Logistics/Supply Chain embraces four major areas: 

customer service, inventory, location and transportation (see Figure 1). The facility layout 

problem (FLP) is a strategic planning problem that falls in the Location Strategy side of 

the triangle in Figure 1. The FLP occurs every time there is a need to plan for the 

arrangement of the facilities. The time horizons for the plan range typically from 3 to 10 

years. Besides material handling cost, facilities relocation costs and improper location of 

facilities affect the performance of the supply chain. Reduction of material handling costs 

is crucial since it is incurred if routing all materials (raw materials, parts, sub-assemblies 

and assemblies) inside facilities or between them. A good location strategy has a positive 

impact on inventory levels, entire transportation costs, and customer service by reducing 

delays. 
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Figure 1. The logistics triangle (Ballou, 2003) 

Ballou (1968) mentions that a physical distribution system can be conceptualized 

as several inventory storage points (nodal points) interconnected by a transportation 

network (links) (See Figure 2). Location and arrangement of inventories and warehouse 

facilities, transportation service choices, and inventory levels are major decision areas that 

concern managers designing distribution systems especially when demand and economic 

conditions change over time. This thesis researches on solution methodologies for solving 

two facility layout problems (FLP’s):  the Dynamic Facility Layout Problem (DFLP) and 

the Stochastic and Dynamic Facility Layout Problem (SDFLP). 
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Figure 2. A representation of a segment of a physical distribution system (Ballou, 1968) 

In the Dynamic Facility Layout Problem (DFLP), the flows of material/products 

between facilities (or departments) are known but vary over the time horizon. In the 

Stochastic Dynamic Facility Layout Problem (SDFLP), the flows of products between 

facilities are known only through probability distributions and vary over time. The 

objective of these problems is to find an assignment of facilities to physical locations for 

every period that optimizes the trade-off between material handling cost and facilities 

relocation cost. For these problems, the flows of material/products between facilities may 

vary because of fluctuations in product demand, introduction of new products, changes in 

product design, updates in production processes, new machinery, breakdowns and/or 

unexpected disruptions in the supply chain. The SDFLP is an extension to the DFLP and 

the Single-period or Static Facility Layout Problem (SFLP). The SFLP models as a 

Quadratic Assignment Problem (QAP) if the facilities are of equal size and the layout is 

divided into equal size locations. A practical example of facilities (machines or 



 

4 

departments) of equal size occurs in flexible manufacturing settings using multiple 

automated and multifunctional equipment such as Computer Numerical Control (CNC) 

machines (Moslemipour & Lee, 2012).  

This thesis has three contributions. First, it assesses the accuracy and efficiency of 

an algorithm to solve the DFLP through numerical experimentation. The algorithm coded 

by Kolla (2015) is a variation of the Dijkstra’s shortest path algorithm (1959), also 

presented by Tarjan (1983), and adapted to solve the DFLP. The instances selected for the 

computational study have 6, 10, 12, 15, and 30 departments and 5 years and they come 

from the Balakrishnan’s repository (Balakrishnan & Cheng, 2000). The solutions from 

running Djikstra’s implementation are compared to those published by Conway & 

Venkataramanan (1994), Balakrishnan & Cheng (2000), Baykosaglu & Gindy (2001), 

Balakrishnan et al. (2003), and McKendall & Shang (2006). Second, this thesis 

experiments with a linear programming model for the DFLP proposed in Balakrishnan et 

al. (1992) and assess its efficiency if solving it with the network simplex algorithm in 

AMPL, a commercial mathematical programming language, through extensive numerical 

experimentation. Third, this thesis devises a constrained network model to solve the 

SDFLP and solves this as a stochastic program. The SDFLP model extends the 

deterministic DFLP model in Balakrishnan et al. (1992). This works assesses the feasibility 

of solving the proposed model using a set of generated instances. This will be the first work 

in the literature modeling a constrained SDFLP under the network modeling approach. 

The thesis consists of 7 chapters. Chapter 2 presents the mathematical models for 

the DFLP and SDFLP and a small example to understand the terminology and 

computations to evaluate the objective function for the DFLP. Chapter 3 presents a 
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literature review that summarizes the contributions under the solution approaches 

researched by previous authors. Chapter 4 presents the two solution methodologies studied 

in this thesis, the variation of the Dijkstra’s Algorithm and the Network Simplex 

Algorithm. The examples presented on using the Network Simplex Algorithm illustrate at 

a small scale the solution steps performed by the AMPL software. Chapter 5 describes the 

experiments conducted to find the numerical results and an analysis of them. Chapter 6 

applies the devised solution methods to solve a practical case study and Chapter 7 presents 

the conclusions of the thesis. 
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             2. MATHEMATICAL MODELS FOR THE DFLP AND THE SDFLP 

The Quadratic Assignment Problem (QAP) is a facility layout problem that models 

as a non-linear integer programming (NLP) problem with quadratic objective function. It 

aims to find an assignment of n facilities of about equal size to n layout locations that 

minimizes only the cost of material handling incurred in a single period.  

2.1 Non-linear-programming formulation for the DFLP 

The DFLP can be modeled as an extension to the QAP. The NLP formulation for 

the DFLP presented below is the one in Moslemipour & Lee (2012). Let F and D be two 

given matrices that can be asymmetric. F = [ftkl] contains the flows between any facilities 

or departments k and l at time t and D = [dij] has the distances between any locations i and 

j. An optimal solution to the DFLP is to find the values for the decision variables, x and y, 

that minimize the cost of material handling (first term in equation 1) and facilities 

relocation cost (second term equation 1) and satisfy constraints (equations 2 - 5) over T 

periods of time. Table 1 summarizes the model notation. 

min 𝑧 = ∑ ∑ ∑ ∑ ∑ 𝑓𝑡𝑘𝑙𝑑𝑖𝑗𝑥𝑡𝑘𝑖𝑥𝑡𝑙𝑗

𝑛

𝑗=1

𝑛

𝑖=1

𝑛

𝑙=1

𝑛

𝑘=1

𝑇

𝑡=1

+ ∑ ∑ ∑ ∑ 𝑎𝑡𝑘𝑖𝑗

𝑛

𝑗=1

𝑦𝑡𝑘𝑖𝑗

𝑛

𝑖=1

𝑛

𝑘=1

       (1)

𝑇

𝑡=2

 

𝑠. 𝑡 ∑ 𝑥𝑡𝑘𝑖

𝑛

𝑖=1

= 1,                                                  𝑡 = 1, … , 𝑇; 𝑘 = 1,2, … , 𝑛       (2) 

𝑠. 𝑡 ∑ 𝑥𝑡𝑘𝑖

𝑛

𝑘=1

= 1,                                                   𝑡 = 1, … , 𝑇; 𝑖 = 1,2, … , 𝑛       (3) 

                                   𝑥𝑡𝑘𝑖     Є  {0,1}                                          ∀𝑡, 𝑘, 𝑖                    (4) 

 

                                 𝑦𝑡𝑘𝑖𝑗 = 𝑥(𝑡−1)𝑘𝑖 ∗ 𝑥𝑡𝑘𝑗                             ∀𝑘, 𝑖, 𝑗, 𝑡 ≥ 2         (5) 
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Table 1. Model Notation for the NLP Formulation of the DFLP 

Decision variables: 

xtki Binary decision variable that takes the value of one if department 

k is assigned to location i in period t and zero otherwise 

ytkij Binary decision variable that takes the value of one if department 

k is shifted from location i in period t − 1 to location j in period t 

and zero otherwise 

Parameters: 

T Length of the planning horizon, usually given in years 

n Total number of departments, which is also the total number of 

locations 

𝑓𝑡𝑘𝑙 Flows of material between facilities or departments k and l at time 

t 

dij Distances between any physical locations i and j 

atkij Cost of relocating department k from location i to j in period t 

 

Constraints (2) and (3) are assignment constraints that guarantee every department 

is assigned to one location and every location has exactly one department. Constraints (3) 

and (4) state that the decision variables are binary. Thus, xtki takes the value one if 

department k is assigned to location i in period t and zero otherwise. The decision variable 

ytkij is one if the department k is shifted from location i in period t − 1 to location j in period 

t and zero otherwise.  

The parameter atkij representing the cost of relocating a single department can be 

modified to represent: (1) a fixed cost and independent of the department arranged or (2) a 

variable cost that depends on the department being moved but not on its locations. 

Rosenblatt (1986) and most other authors since then have considered a variable 

rearrangement costs (case 2). However, in many practical situations, the primary cost 

associated with the rearrangement of a facility is the fixed cost that results from the 

disruption, or possible shutdown, of its operations.  
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The right-hand side in Table 14.1 in Rardin (2017) lists a series of classical 

optimization problems that are believed not to be solvable in polynomial time, but this has 

not been proven. One of these problems is the QAP. The QAP and extensions of it such as 

the DFLP have been labeled as non-deterministic polynomial time hard (NP-hard) 

problems (Loiola, 2007). Rardin, 2017 states in its Principle 14.18 that if any single 

problem in NP-Complete or NP-Hard can be solved in polynomial time, then very member 

of NP is polynomially solvable, and P=NP. Consequently, unless P=NP, there can exist no 

polynomial time algorithm for any NP-Complete or NP-Hard Problem.  

Because of the large size of the solution space for the DFLP formulated as a NLP 

(i.e. n!t), exact solution approaches to DFLP’s have been limited to instances with sizes 

about 6 departments and locations and 3 years. These works have used mostly Dynamic 

Programming (DP). Other solution approaches have solved the problem approximately 

using metaheuristics such as tabu search (TS), genetic algorithm (GA) and simulated 

annealing (SA).  

The NLP model for the DFLP that was presented above can be extended to model 

the SDFLP where flows and relocation cost parameters are unknown with certainty and 

just the probability distribution for them is known. However, by introducing scenarios that 

represent forecasted values for these unknown parameters the NLP formulation gets easily 

intractable even for very small problem instances. This thesis researches in other 

methodologies different than NLP to solve the DFLP and SDFLP. 

2.2 Graphical explanation of the DFLP 

Figure 3 is a graphical example of a solution for a small size DFLP in which 3 

departments had to be assigned to 3 locations in 3-time periods (i.e., years). The given 
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departments’ relocation costs are presented in the small table on the top left side of the 

figure. T denotes the periods (i.e. years), MHC represents material handling cost, RC stands 

for the relocation cost to transition from one layout in a year to another layout in a 

consecutive year, and the layouts or permutations of departments are notated by the letter 

Lxxx where xxx is a permutation number. 

 

        Figure 3. DFLP graphical example 

The solution depicted in the Figure, indicates that in year T=1 the departments 2, 

3, and 1 are in locations 1, 2, and 3, respectively. In year T=2, department 1 is shifted to 

location 2, department 2 is shifted to location 3 and department 3 is shifted to location 1. 

Similarly, relocation of departments occurs if comparing layout L145 in year two vs. layout 

L289 in year 3.  RC will be added to the MHC to compute the total cost of this solution to 

the DFLP. 

 

 

 

                                                                                                     Locations                           

   

                                                       Departments                                                                                

                                                                                                           

                                                                                               

                     T=1                                                               T=2                                           T=3                                          

                   

         Loc 1   Loc 2   Loc3         Loc 1   Loc 2   Loc3                                 Loc 1   Loc 2   Loc3 

 

    

Departments 
relocation cost 

1 $40 

2 $40 

3 $50 

   2   3   1   3   1   2   3   2   1 

MHC11 + RC111452 L145 L289   L1 MHC1452 + RC14522893 
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The MHC computation for L1 is calculated in Table 5. It results from the product 

of flows between departments, distances between locations and cost per unit of distance 

given the hypothetical layout, flow and distance matrixes presented in Table 2, 3, and 4. 

Table 2. Hypothetical Layout or Permutation of Departments in Period 1 

Department number 2 3 1 

Location number 1 2 3 

 

Table 3. Distances between Locations 

Locations/Locations 1 2 3 

1 0 3 2 

2 2 0 7 

3 5 6 0 

     

 Table 4. Flows between Departments 

Departments/Departments 1 2 3 

1 0 40 60 

2 40 0 20 

3 60 20 0 

 

From Table 3, the distance between location 1 to 2 is 3 feet and from Table 4, the 

number of times product flows between departments 2 and 3 is 20. Thus, the flow-distance 

is 20*3 = 60. Similarly, the flow-distance computation is repeated for each pair of 

departments (taken from left to right and from right to left since the matrix of distance is 

non-symmetric). The MHC is the sum of all the flow-distance calculations (see Table 5) 

and it is equal to, 1160*0.25= $290 assuming the material handling cost is $0.25/feet.  

Table 5. Example on Computing Material Handling Cost for a given Layout 

Pairs of departments Flows Locations Distance Flows*Distance 

2 3 20 1 2 3 60 

2 1 40 1 3 2 80 
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Table 5. (Continued) 

3 1 60 2 3 7 420 

1 3 60 3 2 6 360 

1 2 40 3 1 5 200 

3 2 20 2 1 2 40 

    Total =  1160 

 

From one period to another the departments change to different locations and a new 

MHC for the new layout is computed in a similar way as in table 5. The computed MHC 

of $290 for year 1 is added with the RC incurred to transition from period 1 to period 2 

(from L1 to L145). If comparing L1 from period 1 to L145 in period 2, department 2 was 

moved from location 1 to location 3 and it costs of $50. Department’s 3 and 1 were also 

moved and therefore RC is $130 (adding all numbers in the given departments’ relocation 

cost table). Then the total cost incurred to go from L1 in period one to L145 in period two 

is $290 + $130=$420. The computation of MHC and RC is repeated for the lapse between 

years 2 and 3 using L145 and L289. The total cost of the solution in Figure 3 will result 

from adding this cost to the $420 computed for the lapse between years one and two. In 

general, a department is shifted when due to the high flow between it and other(s) 

department(s) not currently close to it the MHC may be reduced given that the increase in 

RC’s do not exceed those savings. 

2.3 DFLP formulated as a network problem 

Balakrishnan et al. (1992) indicated that the DFLP can be modeled as a linear 

network problem (LNP). The network proposed by Balakrishnan et al. (1992) to represent 

the DFLP as a LNP is in Figure 4 and its notation is in Table 6.  Decisions occur at the end 

of the period. L11 represents layout number 1 in the first period. L22 represents a 

rearranged layout for the next period (layout 2 in period 2). Edges of the network connect 
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layouts from different periods and have costs, C, equal to the sum of the material handling 

cost of the layout in the previous period plus the relocation cost incurred from going from 

one layout to the next. The problem is to find the lowest cost dynamic layout plan as shown 

in the figure 4 by the red colored arcs. In Balakrishnan et al. (1992), the edges are also 

selected in such a way that the sum of the relocation cost incurred does not exceed a total 

amount of budget allocated to the rearrangements.  The linear network model (LNM) and 

its notation, as in Balakrishnan et al. (1992), are presented below Table 6. 

 

Figure 4. The constrained dynamic plant layout problem (Balakrishnan et al., 1992) 

Table 6. Notation for the Network Problem in Figure 4 

Lit Static layout i in period t 

S, E Source and end nodes, respectively (dummy layouts) 

P Possible number of layouts in each period which is constant across 

periods   
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Table 6. (Continued) 

N    Number of time periods in the planning horizon 

 

Linear Network Model (LNM) to solve the DFLP: 

𝑀𝑖𝑛 𝑧 =   ∑ ∑ 𝐶𝑖𝑡,𝑘(𝑡+1)

𝑘(𝑡+1)

𝑥𝑖𝑡,𝑘(𝑡+1)                                                                          (6)

𝑖𝑡

 

Subject to 

∑ 𝑥𝑆,𝑖1 = 1,

𝑖1

                                                                                                                    (7) 

∑ 𝑥𝑖𝑁,𝐸 = 1

𝑖𝑁

                                                                                                                    (8)    

∑ 𝑥𝑖𝑡,𝑘(𝑡+1)    −   ∑ 𝑥𝑘(𝑡+1),𝑚(𝑡+2) = 0,

𝑚(𝑡+2)𝑖𝑡

              𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘, 𝑡                          (9) 

Model decision variables: 

𝑥𝑖𝑡,𝑘(𝑡+1): The arc representing the  sum of the 𝑀𝐻𝐶 in layout 𝑖 in period t and the RC 

incurred from layout i in period t to layout k in period t+1. The variable 𝑥𝑖𝑡,𝑘(𝑡+1) is binary. 

It will be 1 if layout i is selected in period t and layout k is selected in period (t+1) and 0 

otherwise. 

𝑥𝑆,𝑖1        ∶ Arc connecting the source node 𝑆 to layout 𝑖 in period 1. 

𝑥𝑖𝑁,𝐸       ∶ Arc connecting layout 𝑖 in period 𝑁 to end node 𝐸. 

Model parameters: 

𝐶𝑖𝑡,𝑘(𝑡+1): The sum of the MHC in layout 𝑖 in period 𝑡 and the RC incurred from moving 

from layout i in period t to layout k in period t+1. 



 

14 

In the model, the objective function (6) minimizes sum of the RC and MHC. 

Constraint (7) guarantees that one unit is sent from the source node, S to one layout in 

period 1, constraint (8) assures that one unit arrives to the destination node, E and constraint 

(9) represents the flow conservation for all nodes. Note the difference in the meaning of 

the model decision variables for this model and the NLP presented in Section 2.1. 

2.4 DFLP with a budget constraint modeled as a network problem  

Balakrishnan et al. (1992) introduced the network model for the DFLP with the 

following additional budget constraint: 

∑ ∑ 𝑅𝐶𝑖𝑡,𝑘(𝑡+1)𝑥𝑖𝑡,𝑘(𝑡+1) 

𝑘(𝑡+1)𝑖𝑡

≤   𝐵                                                                              (10) 

In this model, B is a parameter that represents the total available budget for relocations in 

the planning horizon. 

2.5 SDFLP formulated as a network problem 

This thesis proposes the following extension of the models in Sections 2.3 and 2.4 

to solve a constrained SDFLP under a deterministic equivalent formulation (Birge, 2010) 

considering a total of S’ scenarios and N time periods. The model is constrained because it 

considers limited budget. The three stochastic parameters in the model are the budget 

available for relocations (A), the cost of relocating the departments (and thus RC is 

stochastic), and the matrices containing the flow of material between departments (and thus 

C is stochastic since C is the sum of MHC and RC). The model and its notation are 

presented below. Given that this model is proposed by the author of this thesis the notation 

has been slightly changed vs. the one in Balakrishnan et al. (1992). To have a clearer 

notation, indexes i and k that represent a layout number and index s that represents a 
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scenario are notated as subscripts and the time indexes (i.e. t, t+1, N-1) are notated as sub-

subscripts.  

𝑚𝑖𝑛 𝑧𝑠𝑡𝑜𝑐 = ∑ ∑ ∑ 𝑝𝑠𝐶𝑠𝑖𝑡𝐾𝑡+1
𝑥𝑖𝑡𝐾𝑡+1

−

𝐿𝑡+1

𝐾𝑡+1

𝐿𝑡

𝑖𝑡

𝑆′

𝑠=1

 ∑ 𝑝𝑠𝑦𝑠(𝑁−1)
(1 + 𝑟)−(𝑁−1)

𝑆′

𝑠=1

           (11) 

∑ 𝑥𝑆𝑡𝑎𝑟𝑡 𝑖1=1

𝑖1

                                                                                                                     (12) 

∑ 𝑥𝑖𝑁 𝐸=1                                   

𝑖𝑁

                                                                                                  (13)    

∑ 𝑥𝑖𝑡 𝐾𝑖+1

𝑖𝑡

−  ∑ 𝑥𝐾𝑡+1𝑚𝑡+2

𝑚𝑡+2

= 0                                            𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘, 𝑡                 (14) 

 

∑ ∑ 𝑅𝐶𝑠𝑖𝑡 𝐾𝑡+1
𝑥𝑖𝑡𝐾𝑡+1 + 𝑦𝑠𝑡

 =  𝐵𝑠𝑡
                ∀𝑠, 𝑡 = 1, … 𝑁 − 1                       

𝐿𝑡+1

𝑘𝑡+1

𝐿𝑡

𝑖𝑡

(15) 

 

𝐵𝑆1
= 𝐴𝑠1

                                                                    ∀𝑠            (16) 

𝐵𝑆𝑡+1
= 𝐴𝑠𝑡+1

+ 𝑦𝑠𝑡
∗ (1 + 𝑟)                                ∀𝑠, 𝑡 = 1, … , 𝑁 − 2               (17) 

𝐵𝑆𝑡
≥ 0                  ∀𝑠, t = 1,…,N - 1               (18) 

𝑦𝑠𝑡
 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑖𝑛 𝑠𝑖𝑔𝑛 (𝑢𝑟𝑠)                            ∀𝑠, 𝑡 = 1, … , 𝑁 − 1                   (19) 

Model decision variables: 

𝑥𝑖𝑡𝑘𝑡+1
: The arc representing the sum of  MHC in layout 𝑖 in period t and the RC 

incurred if changing from layout i in period t to layout k in period t+1. The variable 

x𝑖𝑡,𝑘𝑡+1
 is binary. It will be 1 if layout i is selected in period t and layout k is selected in 

period (t+1) and 0 otherwise. 

𝑥𝑆𝑡𝑎𝑟𝑡 𝑖1
∶ Arc connecting source or start node (Start) to layout 𝑖 in period 1.  

𝑥𝑖𝑁,𝐸 ∶ Arc connecting layout 𝑖 in period 𝑁 to end node 𝐸. 
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𝑦𝑠𝑡
: If positive, it represents the amount of budget not used for relocations occurring 

between year t and t+1 under scenario s. If negative, it represents the extra money to 

borrow to do relocations occurring between period t to t+1 under scenario s. 

𝐵𝑠𝑡
 : Total available money for relocations between year t and t+1 under scenario s. 

Model parameters: 

𝐶𝑠𝑖𝑡𝑘𝑡+1
: The sum of the MHC in scenario 𝑠 for layout 𝑖 in period 𝑡 and the cost of 

rearranging layout i in period t to layout k in period t+1.  

𝑝𝑆                    : Probability of scenario 𝑠. 

𝑅𝐶𝑠𝑖𝑡 𝐾𝑡+1
∶ Cost of rearranging from layout i in period t to layout k in period t+1 under 

scenario s.  

𝐴𝑆𝑡
: Available or allocated budget for the relocations occurring between period t and t+1 

under scenario s 

r: Annual interest rate  

In the SDFLP model above, equation (11) minimizes the cost of material handling 

and relocations and considers the earnings or loses resulting from money not used for 

relocations or borrowed for doing those relocations assuming an interest rate r.  Constraints 

(12) to (14) are the same as for the DFLP model with budget constraint proposed by 

Balakrishnan et al. (1992). Constraints (15) to (17) correspond to flow conservation 

constraints. Constraint (15) says that for a given period, the amount used in relocations plus 

any money borrowed or left (decision variable y can be negative or positive as explained 

in the decision variables list) should be equal to the total available money for relocations 

in such period and scenario. Constraint (17) indicates that the total available money for 

relocations in a period other than the first one is equal to the available or allocated budget 
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for relocations in such period plus money (considering interest) that could have been left 

from the previous period or that must be repaid. Constraint (16) is a border constraint and 

indicates that the total available money for relocations in period 1 is equal to the available 

or allocated budget since there is no money left from a previous period to be brought to the 

period 1. Thus, the model assumes 𝑌𝑠0
= 0. 
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3. LITERATURE REVIEW 

This chapter presents relevant work on facility layout problems (FLP’s) besides the 

work in Balakrishnan et al. (1992) mentioned in the previous chapter. The chapter reviews: 

(a) seminal works on solving FLP’s, (b) approaches to solve DFLP and SDFLP’s, (c) and 

a problem arising in supply chain known as the dynamic warehouse location problem 

(DWLP) which is closely related to the DFLP. The focus of this review is on problems that 

model as extensions of the Quadratic Assignment Problem (QAP) and consequently 

assume that the facilities are about the same size.   

3.1 Surveys on recent advancements on solving facility layout problems (FLP) 

Balakrishnan & Cheng (1998) mainly discuss approaches to solve DFLP’s with 

equal sized departments. The approaches are Dynamic Programming, Computerized 

Relative Allocation of Facilities (CRAFT) heuristic, Genetic Algorithms, Tabu Search, 

Cutting Planes, Branch and Bound and Cut Trees. The authors also review contributions 

that deal with stochastic material flow in DFLP. The last section of their paper reviews the 

DFLP with unequal size departments. 

Kulturel-Konak (2007) emphasizes on the uncertainty surrounding production 

environments and on the relevance of designing robust and flexible facilities. Her work 

reviews previous work on DFLP and SDFLP’s and mentions two types of uncertainties: (i) 

internal disturbances, such as equipment breakdowns, variable task times, queuing delays, 

rejects and reworks and (ii) external forces, such as uncertainties in the level of demand, 

product prices, and product mix. She discusses exact, heuristics, meta-heuristics and hybrid 

solution methods and indicates that the future research direction is moving to address the 

uncertainties and changing scenarios in the production environment. 
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Moslemipour, Lee, & Rilling (2012) focus on discussing dynamic and robust 

layouts, mathematical models and solution approaches for the FLP. The mathematical 

models presented are Quadratic Assignment Problem (QAP), Quadratic Set Covering 

Problem (QSP), Mixed Integer Programming (MIP) and Graph Theoretic Models (GT). 

The reviewed intelligent solution approaches are Genetic Algorithm (GA), Simulated 

Annealing (SA), Tabu Search (TS), Ant Colony Optimization (ACO), Greedy Randomized 

Adaptive Search Procedure (GRASP), Particle Swarm Optimization (PSO), Artificial 

Immune System (AIS), Expert System (ES), Fuzzy System (FS), Artificial Neural 

Networks (ANN). The advantages and disadvantages of these solution approaches are 

summarized in detail. 

3.2 Heuristics derived from exact methods to solve static or single-period Quadratic 

Assignment Problems (QAP) 

Burkard & Bonniger (1983) propose a cutting plane algorithm without Bender’s 

decomposition as an update to the methods proposed by Balas and Mazzola (1980).  The 

authors differentiate their cutting plane method (CPM) by proposing another linearization 

technique. They further improve the solution given by the CPM by doing pairwise 

exchanges. In this thesis, the approach to solve the DFLP is through a Linear Network 

Model (LNM) instead of using the NLP formulation used by these authors.   

3.3 Dynamic Programming (DP) to solve the DFLP 

This section presents different previous works using DP to solve the DFLP. The 

DP approach has high resemblance with the approaches used in this thesis. As stated in the 

introduction, this thesis solves the DFLP with a variation of the Dijkstra algorithm and 

compare such solution approach to the one using a LNM (section 2.3). Rosenblatt, (1986) 
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presents a formulation for the static facility layout problem (SFLP) as a non-linear integer 

program (NLIP). In the formulation, the number of locations is equal to the number of 

departments.  The author mentions that problems where the number of locations is different 

than the number of departments can be solved with this model by introducing dummy 

departments or locations. He obtains an exact solution for a six departments DFLP using 

exact DP and derives lower and upper bounds on the optimal solution.  For DFLP’s with 

more than 6 departments and 3 periods, Rosenblatt, (1986) suggest a heuristic that selects 

random layouts from solving the SFLP using CRAFT. The layouts are the input for each 

stage of the DFLP algorithm.  

Lacksonen & Enscore (1993) benchmark the exchange algorithm, cutting planes, 

branch and bound, DP, and cut trees to solve a quadratic assignment formulation of the 

DFLP. The authors generate the instances to test the algorithms. The instances have 6 to 

30 departments and 3 to 5 periods. The cutting plane algorithm provided the best solution 

with a reasonable computational time.  

Urban (1998) applies the incomplete DP concept to solve the DFLP with fixed 

rearrangement costs incurring in low computational times. For a T-period DFLP, the 

incomplete method solves only T(T+1)/2 static facility layout problems (SFLP’s) that 

correspond to the cases where relocation cost is incurred. Using these layouts, a solution is 

found using DP. The author also solves the DFLP using GRASP and Initialized Multi 

Greedy Algorithms and compares those results to the ones from the incomplete DP method. 

The work presents also an improved lower and upper bound to the DFLP. 
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3.4 Heuristic and meta-heuristic approaches to solve the DFLP 

This section presents seminal contributions regarding heuristics methods to solve 

the DFLP. In the Numerical Results chapter, the methodologies proposed in this thesis will 

be compared to results from some of authors mentioned in this section. Conway & 

Venkataramanan (1994) are the first authors using GA to solve the DFLP with a budget 

constraint. GA is a meta-heuristic that applies concepts and terminology brought from 

genetics to find a near optimal solution. GA most relevant elements are generation, 

chromosomes, population, survival of the fitness, crossover, and mutation. The GA 

proposed is tested in an n=6 departments (and locations) and t=5 periods problem. The 

chromosome size is n×t, or 30 digits, representing the location of every department in each 

period. Also, for each period there are n!=720 chromosome strings in the population. Based 

on the fitness function (i.e. the cost function), two strong chromosomes are selected, split 

and swapped. It may end up in infeasible solutions like repeating a department in one 

period. Replacement of the invalid chromosome digits produces feasible solutions. The GA 

repeats the process of selecting pairs of chromosomes, splitting and swapping to produce 

new feasible solutions at each iteration of the algorithm.  

Kaku & Mazzola (1997) use Tabu Search (TS), a technique that does pairwise 

interchanges between departments in the local neighborhood of a solution and keeps a tabu 

list to avoid cycling. A diversification strategy is used to ensure that different regions of 

the search space are explored. Their TS heuristic is a two-stage procedure. In the first stage, 

diversification allows to get several different solutions. The best solutions generated are 

fed into the second stage for intensification of the search and determine a final solution. 



 

22 

Problems from Lacksonen & Enscore (1993) repository with up to 30 departments and 5 

periods took 3 hours, on average, to run on a Pentium 200 MHz PC. 

Balakrishnan & Cheng (2000) propose a GA method that outperforms the one in 

Conway & Venkataraman (1994). Later, Balakrishnan et al. (2003) and Balakrishnan & 

Cheng (2006) produce a hybrid algorithm that combines GA and DP. DP is used at the 

crossover step to find the best multi-period layout based in fitness. This hybrid algorithm 

takes advantage of DP and GA without being computationally prohibitive. 

Baykasoglu & Gindy (2001) propose a SA algorithm with a simple, but effective, 

data structure and neighborhood generation mechanism. Solutions are in a two-

dimensional matrix (periods in the rows, locations in the columns, and departments are 

entries of the matrix). Neighborhood solutions result from swapping elements in the rows 

of the matrix. The algorithm is applied to small test problems from the literature. It finds 

the optimal solutions and performs better than the DP from Rosenblatt, (1986) and the GA 

of Conway & Venkataraman, (1994). Additional computational experimentation is done 

with the data set from Balakrishnan & Cheng, (2000) which contains problems for 6, 15, 

30 departments for 5 and 10 periods. Comparisons made with the GA in Balakrishnan & 

Cheng, (2000) show that the proposed SA performs considerable well. However, 

computational time increases considerably as problem size gets bigger. 

McKendall & Shang (2006) are the first ones to apply Hybrid Ant Systems (HAS) 

to the DFLP and develop three different versions of the heuristic (HAS I, HAS II, and HAS 

III). Results show that the proposed versions perform well on Lacksonen & Enscore (1993) 

and Balakrishnan & Cheng, (2000) data sets. A pairwise exchange technique is used in 

HAS I to improve the initial and updated solutions from using the pheromone trail matrix. 
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HAS II uses SA as the local search heuristic and the ideas in HAS I. HAS III adds a look-

ahead/look-back strategy to the pairwise exchange heuristic within the HAS I heuristic. 

HAS I, II, III obtained the best solutions for 19, 30, and 36 problems from Balakrishman 

& Cheng (2000) repository, respectively.  

Baykasoglu et al. (2006) propose an ant colony heuristic for solving complex 

combinatorial optimization problems like DFLP. The authors came out with competitive 

solutions however, Mckendall & Shang (2006) gave a few better results.  

Sahin et al. (2010) propose a simulated annealing algorithm to solve the DFLP with 

a constraint on the budget available for relocations. They compare the proposed heuristic 

with the one in Baykasoglu et al. (2006) because they state that Baykasoglu et al. (2006) 

and Balakrishnan et al. (1992) are the only two previous studying the DFLP with budget 

constraints. The problems compared have 5, 15 and 30 departments and 5 and 10 periods. 

The average improvements obtained by Sahin et al (2010). vs. Baykasoglu et al. (2006) are 

1.27& for the instances of size 5, 6.19% for the instances of size 15 and 5.59% for the 

instances of size 30.  

3.5 Simulation approaches to solve the DFLP 

A novel perspective to solve DFLP’s is introduced by Azimi & Charmchi (2012). 

They proposed a heuristic algorithm to solve a DFLP with budget constraint combining 

linear/integer programming and simulation. After solving a linear relaxation of the non-

linear model for the DFLP, the decision variable is interpreted as the probability of 

assigning a department to a location. In the experiments, the budget is split equally for each 

period and for some problems the budget was set equal to the rearrangement costs. This 

work proved to be efficient in computational time and was tested in problems of up to 30 
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departments. They are the second authors after Sahin et al. (2010) to research on a DFLP 

model with two constraints that limit the expenditure on relocations and tie the leftover 

budget from a previous period to the total available budget in a current period.  

3.6 Stochastic and Dynamic Facility Layout Problems (SDFLP) 

Palekar et al. (1992) use exact methods based on DP and heuristics to solve for the 

first time an SDFLP under fixed and rolling horizons options. The work provides lower 

and upper bounds to the problem optimal solution. In the exact approach, this work 

exemplifies the combination of the use of integer programming (IP) and DP. The author 

found exact solutions for problems with up to 12 departments and 8 periods. Also, the 

approximate methods tested successful for problems with up to 40 departments and 8 

periods. Using a rolling horizon produced good results if compared to fixed horizon.  The 

main contribution of this work is a drastic reduction on computational time since heuristics 

reduced the number of layout combinations explored in the DP procedure.  

Benjaafar & Sheikhzadeh (1997) find the most flexible layout over a set of demand 

scenarios. In addition to variability of product mix and product demand, the authors allow 

duplication of the same department type within the facility. In fact, disaggregation and 

distribution of a department throughout the facility is not a new idea. Earlier, Montreuil et 

al. (1993) introduced the concept of holographic layouts for systems operated in high 

volatile environments. A holographic layout allows the spreading of machines in a facility. 

The authors assume that: (1) each sub department may consist of more than one machine, 

(2) all sub departments of the same type may not necessarily have the same capacities and 

(3) material flow between departments is a decision variable. The material handling cost is 

reduced, and the solution adjusts to the fluctuations in flow patterns and volumes. The 
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authors use a heuristic method to solve the problem. It is an extension to the CRAFT 

algorithm where a flow volume allocation problem is solved first in an exact way. They 

show that duplicates of the same departments can significantly reduce material handling 

cost while effectively coping with fluctuations in flow patterns and volumes. However, 

most of the cost reduction occurs with relatively few duplicates. 

Krishnan et al. (2008) work on minimizing uncertainties from multiple demand 

scenarios in single and multi-period facility layout problems. The problems are solved 

under minmax approach and minimize the total expected loss (MTEL) approaches. Under 

the minmax approach, the objective is to minimize the maximum loss considering all 

possible scenarios. The common layout to be used under all scenarios is found using GA. 

The results show that these models are effective in reducing the risks that are associated 

with facility layout design under uncertain environments. 

Tayal et al. (2016) propose a methodology to solve a sustainable stochastic demand 

flow facility layout problem. They integrate meta-heuristic techniques such as SA, chaotic 

simulated annealing (CSA) and hybrid firefly algorithm (FA/CSA) to generate the layouts. 

The best layouts among the generated layouts are filtered using data envelopment analysis 

(DEA) and applying multiple attribute decision making (MADM) approaches such as 

TOPSIS, IRP and AHP in association with aggregate ranking methods and integer linear 

programming (ILP). 

Vitayasak et al. (2017) solve SDFLP’s assuming product demands follow 

exponential, normal, and uniform distributions and using GA and the Backtracking Search 

algorithm (BSA) as solution methods. The novel modified BSA consists of five processes: 

initialization, selection-I, mutation, crossover and selection-II. The computational 
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experiments compared five algorithms GA, BSA and modified BSA’s (mBSA1, mBSA2, 

mBSA3). Results show that GA performs much better than BSA in terms of minimizing 

the cost. However, BSA took 55% less time than GA and thus the authors suggest that BSA 

is suitable for large, computationally intensive optimization problems.  

             Tayal et al. (2018) propose Simulated Annealing (SA) and Chaotic Simulated 

Annealing (CSA) meta-heuristics to solve a Multi Objective Stochastic Dynamic Facility 

Layout Problem (MO-SDFLP) to solve the location-based demand problem on the facility 

during disasters. The main aim is to find a layout that responds to the sudden demand 

variations occurring in disaster relief situations faced by supply chains. The two considered 

objectives are to minimize the flow times distance while maximizing the department’s 

closeness or adjacency desirability, which is in many cases subjective information related 

to noise, heat, dust, flow of material, etc. Tayal et al. (2018) test their proposed methods 

on the Moslemipour & Lee (2012) problem with 12 Departments and 5 periods and 

Gaussian (i.e. normal) distribution product demand. For further testing the capabilities of 

MO-SDFLP on a high-demand disaster situation the SA and CSA algorithms are used to 

solve a problem with 30 Departments and 5 periods. The results showed that CSA 

performed better than SA.  

3.7 Dealing with planning horizon and other practical considerations that should be 

included when solving the DFLP  

Azadivar & Wang (2000) solve a single-period FLP by considering other dynamic 

characteristics and operational constraints such as the time involved in moving the material 

and number of transporters. The objective function is not to minimize material handling 

cost but to minimize average cycle time. GA is used to optimize the facility layout for cycle 
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time and productivity. Simulation is used to evaluate the performance of the system.  The 

method proved very effective to find near-optimal solutions. However, the time consumed 

by the computer simulation is significant. 

Balakrishnan & Cheng (2009) compare the Urban heuristic (1998) and approximate 

DP to solve a DFLP starting from layouts generated with the CRAFT heuristic and 

randomly. The comparisons were done under fixed vs. rolling horizons options. The 

authors mention that algorithms developed for the fixed horizon case are not as effective 

as those developed for rolling horizons. They also indicate that it is hard to pick up an 

algorithm that runs effectively under both fixed and rolling horizons. The effectiveness of 

the rolling plan horizon algorithm is compared under various scenarios. The authors 

conclude that further research is needed to coin an effective self-adjusting algorithm under 

rolling horizons. 

Appendix A presents a table that summarizes the DFLP works reviewed in this 

Sections 3.1-3.5 and 3.7. Appendix B presents a table that summarizes the SDFLP works 

reviewed in Section 3.6.  The current gaps in the literature are to: (1) find more efficient 

and accurate ways to solve DFLP for instances with more than 10 departments (10 

locations) with 3-5 periods and (2) provide a stochastic model and a solution approach for 

the SDFLP that does not rely on DP or meta-heuristics. This thesis attempts to fill this gap. 

In the last part of this section, we briefly review the Dynamic Warehouse Location Problem 

(DWLP), a supply chain problem that closely relates to the DFLP.  

3.8 Dynamic Warehouse Location Problem (DWLP) 

Ballou (1968) mentions that in a rapidly changing economy, warehouse location-

relocation is also a dynamic decision problem, yet most existing location models used to 
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solve the problem are static. Ballou applies the DP technique to find a location-relocation 

plan for a single warehouse that will maximize total profit in a given planning period of 

five years.  This DWLP involves the tradeoff between expected profit and time to relocate 

warehouses. Relocation profit depends on decision makers periodical review of new input 

data about the location of the warehouse. When future demand and economic data can be 

forecasted only for a short time horizon and the forecasted demand is high, it is not a good 

idea to relocate since at the time of relocation the demand might have changed, and the 

company may end up with a profit much lower than predicted. Accurate long-term 

forecasts provide the best scenario for the decision makers because it gives them enough 

time to relocate warehouses. As relocation is also concerned with land purchase, 

construction, lease negotiation, financing, closing and starting operations, accurate long-

term forecasts put relocation as risk free, because of the ample time, and low chances of 

changes for demand and economic data after relocating. 

Sweeney and Tatham’s (1976) propose an approximate method to solve a DWLP 

that combines DP and Mixed Integer Linear Programming. They opt for a computationally 

efficient DP algorithm that consists of using as states in each period only the R best static 

configurations for the warehouse on each period. The generation of the best configurations 

involves solving the MILP multiple times by adding constraints that avoid repetition of the 

previous static solution. This approach was illustrated in a problem with five-year planning 

horizon, two plants, five warehouse locations, and 15 customer zones. 

DWLP could be extended to include the identification of the best layout for 

products inside the warehouse. High demand of a product makes a product of high priority. 

The warehouse will save in relocation and material handling costs by finding the optimal 
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location for the products. Furthermore, products can be grouped by using inventory 

stratification methods, such as ABC and weighted linear optimization. Such extended 

DWLP could include multiple objectives such as maximize the overall profits in the 

warehouse location decision and achieve top-notch customer service over the time horizon. 
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4. METHODOLOGY 

This chapter consist of 4 sections. Section 4.1 explains a variation of the Dijkstra’s 

algorithm used in this thesis to solve the DFLP modeled as a network and presented in 

Chapter 2 (Section 2.3). Section 4.2 briefly presents Dynamic Programming (DP), a closely 

related methodology. Section 4.3 explains and exemplifies the simplex for networks 

algorithm (SNA), the second methodology used in this thesis. Section 4.4 briefly discusses 

how these methodologies were implemented for developing the computational study. 

4.1 Parallel Shortest Path (PSP) algorithm for solving the DFLP 

This thesis experiments with the parallel implementation to solve the DFLP as a 

shortest path problem developed by Kolla (2015). This implementation is notated as 

Parallel Shortest Path (PSP). It is a slight variation of the Dijkstra’s algorithm (Dijkstra, 

1959), also presented in Tarjan (1983) and Rardin (2017). Following is a presentation of 

the variation of the Dijkstra’s algorithm implemented by Kolla (2015) to solve the DFLP. 

 

Figure 5. A network representation of the DFLP 
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Figure 5 presents the DFLP modeled as a network problem in a directed weighted 

graph G. To make Figure 5 simple, the DFLP presented has three facilities, three locations 

and T time periods. In general, G has T*n! + 2 vertexes or nodes where T is the total number 

of periods and n! is the total number of layouts considered in each period if the problem 

has n departments and n locations.  G has (T-1)*(n!*n!) + 2n! arcs. Two dummy nodes vo 

and vf are added to the network and they represent the single origin and the destination.  

Node v in the graph define a layout of facilities (i.e. assignment of facilities to 

locations), represented as a permutation π of integers, {1 … n}. Material handling cost 

(MHC) for node v is computed using the permutation π, the flow (F={ftkl}) and distance 

(D={dij}) matrices as exemplified in Section 2.2. MHC is the sum of all feasible products 

of flow between departments and distances between locations. There is a unidirectional 

edge ers from node vr to vs if vr and vs are in two different periods (i.e. r is in t-1 and s is in 

t, this means vr precedes vs).  The weight W(ers) on each edge can be computed as W(ers) = 

RCers + MHCvs where RC represents the relocation cost. The value for RCers results from 

comparing the permutations in vr and vs and adding the relocation costs for all departments 

that have shifted their locations from one period to the next one.  

The length of a path in G is the sum of its edge weights. The cost to travel from a 

node vr to a node vs is the minimum length of a path from vr to vs.  However, note that in 

the DFLP, the only interest is to find the shortest path or minimum-cost path from vo to vf. 

The shortest path DFLP algorithm uses a tentative cost function C[v] such that when the 

algorithm ends C[vf] has the total cost to travel (i.e. to go) from vo to vf. The steps in the 

variation of the Dijkstra’s algorithm implemented by Kolla (2015) to solve the DFLP are 

listed below. 
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Variation of the Dijkstra’s algorithm to solve the DFLP:  

Initialization Step 

• Each vertex or node is in one of three states: unlabeled (and with infinite cost), 

labeled (i.e. temporary labeled) or scanned (i.e. permanently labeled).  

• At the beginning vo is the only vertex labeled and C[vo]= 0. The vertexes vs that 

connect directly to node vo are temporarily labeled with a cost C[vs] equal to the 

sum of RCos + MHCvs which is equal to MHCvs since RCos is zero. All other nodes 

are unlabeled and have infinite cost. The index i is set equal to 1 and the scan step 

is performed. 

Scan or Processing Step  

• Select vertex vi and change it from labeled to scanned. For each edge ers such that 

𝐶𝑣𝑖
+ 𝑅𝐶𝑣𝑖𝑣𝑠

+ 𝑀𝐻𝐶𝑣𝑠
< 𝐶𝑣𝑠  replace 𝐶𝑣𝑠

by 𝐶𝑣𝑖
+ 𝑅𝐶𝑣𝑖𝑣𝑠

+ 𝑀𝐻𝐶𝑣𝑠
and make vs 

labeled. If C[vs] was replaced, set the predecessor node of s, p[s], as vertex. 

Increase i to i+1 and repeat the scan step until no temporary nodes remain. 

Comments about the algorithm 

Storing the predecessor node information permits to find the shortest path from vo 

to vf when the algorithm ends. This is done by going backwards from vf to v0 and using the 

information in p[s]. There are a couple of differences to highlight between this variant of 

the Dijkstra’s algorithm to solve the DFLP and the algorithms originally proposed by 

Tarjan (1983) and Dijkstra’s (1959). In the PSP implementation, finding the shortest 

distance corresponds to finding one layout for each period that minimizes the total cost in 

equation (1) of the model presented in section 2.1 or equivalently the total cost in equation 

(6) of the model presented in 2.3. Besides, in each iteration, the selection of the node to 
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label as scanned (Tarjan, 1983) or permanent (Taha, 2013) among the temporary nodes 

does not require to loop over the temporary labeled nodes to find the one of minimum cost 

(i.e. distance). It is because there is no interest in identifying the nodes that are closer to 

the source node vo in increasing order of cost. It reduces the computational time of the PSP 

implementation. Besides, the DFLP network has no edges between nodes that belong to 

the same period or are separated by more than one period. It also simplifies the number of 

comparisons to perform by the PSP implementation.  

In the DFLP the problem size rapidly grows for instances with more than n = 6 

departments and t = 3 periods.  To cope with this issue, the PSP implementation generates 

a large number N of layouts for each period t where (N<n!) and proceeds to execute the 

shortest path algorithm previously described. Since the problem exemplified in figure 5 is 

small (3 departments, 3 locations, T periods), all n! layouts are in the network. 

Consequently, the reader sees a repetition in the layouts (or permutations) in the nodes over 

the periods. 

Regarding the parallelization implemented by Kolla (2015), it focused on 

computing the MHC of the nodes in a parallel fashion using two reduction operations 

available in OpenMP. Kolla also observed that the computation of MHC and RC are 

independent and can be executed in parallel. However, the time to compute MHC is 

significantly larger than the time to compute RC. Then, there was no great reduction in 

computational times when implementing the last parallelization idea. 

4.2.  Solving DFLP using Dynamic Programming (DP)  

Alternatively, the shortest path problem can be modeled and solved with the 

Dynamic Programming (DP) methodology. However, this approach still will have the curse 
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of dimensionality mentioned in the previous section. The main idea in a DP approach is to 

decompose the problem into sub-problems (Taha, 2013). Computations are performed 

recursively in such a way that the optimum solution of one stage (i.e., a sub-problem) is 

used as an input to the next stage. The optimum solution is obtained when the last stage is 

reached. In the DFLP a stage represents a period. Using the DFLP notation introduced in 

the previous paragraphs, the forward recursive equation to solve the DFLP under a DP 

approach is given by equation (6). 

𝐶𝑣𝑠 =
𝑡   {𝐶𝑣𝑟

𝑡−1 + 𝑅𝐶𝑣𝑟𝑣𝑠
}  + 𝑀𝐻𝐶𝑣𝑠

𝑡                                  𝑣𝑟 ∈ (𝑠𝑡𝑎𝑔𝑒 𝑡−1)
min               (6) 

The recursive equation (6) express the shortest cost to state or node vs in the next 

stage t. It links successive stages in a way that permits optimal decision for every state or 

node vs in a future stage t independently of the decisions already made in all preceding 

stages. DP is an operations research approach appropriate for exactly solving multi-period 

or multi-stage problems.  

4.3 Network simplex algorithm for solving DFLP modeled as a network problem 

The network simplex method (NSM) is an adaptation of the bounded variable 

primal simplex algorithm.  It can be used to solve Minimum-Cost Network Flow Problems 

MCNFP such as shortest path, maximum flow, transportation, assignment, transshipment 

and critical path problem. The primal and the dual for the MCNFP are: 

Primal: 

𝒎𝒊𝒏 𝑪𝑻𝑿 

𝒔. 𝒕. , 𝑨𝒙 = 𝒃 

𝒙 ≥ 𝟎 
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Dual: 

𝑴𝒂𝒙 𝒃𝑻𝑾 

𝒔. 𝒕. , 𝑾𝑻𝑨 ≤  𝑪𝑻 

𝑾 𝒖𝒏𝒓𝒆𝒔𝒕𝒓𝒊𝒄𝒕𝒆𝒅 𝒊𝒏 𝒔𝒊𝒈𝒏 (𝑼𝑹𝑺) 

The MCNFP variables are the arcs.  Iterations are done until the optimal solution is 

achieved, this means when no non-basic variable (i.e., arc) is eligible to enter to the basis. 

The first iteration starts by arbitrarily selecting a spanning tree. Second iteration and the 

rest of the iterations identify the non-basic arc to enter. The arc with the maximum violation 

of the optimality condition causes the maximum decrease in the objective function per unit 

change in the value of flow on the selected arc. It will enter to the basis in the next iteration 

and a new objective function cost will be computed. The detailed steps for the NSM as 

discussed in Winston (2004) are presented below. 

4.3.1 Network simplex method (NSM) procedure 

Step 1: Determine the initial basic feasible solution (bfs) by selecting a spanning tree 

arbitrarily. Indicate non-basic variables at their upper bound by dashed arcs.  

Step 2: Compute W1 ,W2, … Wn ( simplex multipliers or dual values) by solving Wi -Wj = 

Cij for all basic variables Xij and giving the value W= 0 to one of the Wi’s. For all non-basic 

variables, determine the reduced cost coefficient 𝐶̅ij from 𝐶̅ij = Wi- Wj - Cij. The current bfs 

is optimal if 𝐶̅ij ≤ 0 for all Xij.= Lij  and 𝐶̅ij ≥ 0 for all Xij = Uij . If the bfs is not optimal, 

choose the non-basic variable that most violates the optimality conditions as the entering 

basic variable. 

Step 3: Identify the cycle (there will be exactly one!) created by adding the arc 

corresponding to the entering variable to the current spanning tree of the current bfs. Use 
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conservation of flow to determine the new values of the variables in the cycle. The basic 

variable that exits the basis will be the variable that first hits its upper or lower bound as 

the value of the entering non-basic variable is changed. 

Step 4: Find the new bfs by changing the flows of the arcs in the cycle found in step 3. Go 

to step 2. 

Following are two examples on the network simplex method. Example 1 show 

some of the steps for solving small size Shortest Path Problem. Example 2 show the steps 

for solving a Transshipment Problem without bounds on the variables. 

4.3.2 Example 1: solving a Shortest Path Problem (SPP) using the NSM  

Figure 6 depicts a Shortest Path Problem. In this network, the costs are given in $. 

As a first step, one feasible solution (i.e. arbitrarily chosen spanning tree with n-1 arcs) is 

identified as shown Figure 7. A spanning tree is a tree that connects all nodes and does not 

form a cycle. All the five arcs represent basic variables (X13 and X56 are at its lower bound 

and the others at its upper bound). The omitted arcs (X25 and X35) represent non-basic 

variables. 

 

Figure 6. Initial network example 1 
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Figure 7. First step to solve the shortest path problem in example 1 

In Step 2, the complementary slackness theorem on the dual constraints is applied. 

It means to solve the following system of equations for the primal basic variables. The 

system has one redundant W variable that can be set equal to zero to solve for the other 

variables. If W1=0 the values of the W’s are computed below and depicted in Figure 8.  

W1 - W2 = C12 = 4 

W2 - W4 = C24 = 3 

W4 - W6 = C46 = 2 

W1 - W3 = C13 = 3 

W5 - W6 = C56 = 2 

Now, the optimality of the non-basic variables is checked by using the dual 

constraints and the complementary slackness theorem. 

𝐶̅25  =  [W2 - W5  - C25 ]  [-4  - (-7) - 2]  1 (Violates optimality condition) 

𝐶̅35 =  [W3  - W5 - C35  ]  [ -3 - (-7)  -3]  1 (Violates optimality condition) 

Since 𝐶̅25  and 𝐶̅35 violate the optimality conditions with a value 1, arbitrarily 𝐶̅25  is 

taken. Step 3 of the NSM is also shown in Figure 8. X25 will enter the basis with an 
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allocation of Ө equal to 1 because beyond this value, arcs (2,4) and (4,6) will become 

negative. X46 will leave the basis as shown by the cycle formed by arcs X24, X46, X25 and 

X56. 

 

Figure 8. Steps 2 and 3 NSM to solve the shortest path problem in example 1 

The lighter arcs in Figure 8 indicate basic variables at the lower level of 0 and the 

thicker arcs represent the remaining basic variables. The new basic arcs are (1,2) (2,4) (2,5) 

(1,3) and (5,6). A new iteration of the NSM starts by repeating step 2. The new W values 

are: 

W2 – W5 = C25 = 2 

W2 - W4 = C24 = 3 

W5 - W6  = C56 = 2 

W1 - W3 = C13  = 3 

W1  - W2 = C12 = 4 
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Now, the optimality of the non-basic variables is checked by using the dual 

constraints and the complementary slackness theorem. 

𝐶̅35 =  [W3  - W5 – C35  ]  [ -3 - (-6)  -3]  0 (Satisfies optimality condition) 

𝐶̅46 =  [W4  - W6 – C46  ]  [ -7 - (-8)  -2]  -1 (Satisfies optimality condition) 

Since both non-basic variables satisfy the optimality condition, the algorithm stops. Figure 

9 shows the optimal shortest path solution. 

 

Figure 9. Optimal solution for the shortest path problem in example 1 

4.3.3 Example 2: solving a Transshipment Problem using the NSM  

Figure 10 presents the problem. Node 1 and 3 are supply nodes, while node 2 is a 

transshipment node and node 4 and 5 are demand nodes. The B values indicate the amount 

of demand (-) and/or supply (+) on each node. The cost associated with each arc are along 

the arrows.  Figure 11 shows the status of the algorithm after the first step is completed.  
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Figure 10. Initial network example 2 

In the first step, the arcs (1,2) (2,4) (3,4) and (3,5) are arbitrarily selected as the bfs. 

Figure 11 has the allocated values for these basic variables (i.e. arcs). See values after the 

x’s. Figure 11 also shows the W’s resulting after solving the system of equations in step 2 

of the NSM. The system results from applying the complementary slackness theorem on 

the dual constraints. The system has one redundant W variable that can be set equal to zero 

to solve for the other variables. If W5=0 the values of the W’s are the ones listed below and 

depicted in Figure 11.   
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   Figure 11. Network simplex method steps for the first iteration in example 2 

W1 - W2 = C12 = 8 

W2 - W4 = C24 = 5 

W3 - W4 = C34 = 6 

W4 - W5 = C45 = 4 

Now, the optimality of the non-basic variables is checked by using the values of 

the dual constraints and the complementary slackness theorem. 

𝐶̅25  =  [W2 - W5 - C25 ]  [9  - 0  - 7]  2 (Violates optimality condition) 

𝐶̅13 =  [W1  - W3 – C13  ]  [ 17 – 10 -1]  6 (Violates optimality condition) 

𝐶̅35 = [ W3  - W5  - C35 ] [ 10 – 0 -3]  7 (Violates optimality condition) 

𝐶̅35 is the maximum violating arc and it enters to the bfs. In Step 3 of the NSM, an 

allocation of Ɵ =4 is given to the new entering arc 3-5 because in the cycle formed by arcs 

X34, X45, and X35, a value larger than 4 will give a negative value to the basic variable X34.  

The variable X34 then leaves the basis. Figure 11 shows with bolded color the current bfs 

after completing one iteration of the steps in the NSM.  The second iteration starts with 
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arcs (1,2), (2,4), (4,5) and (3,5) as basic variables.  Figure 12 shows the values for the W’s 

computed in the second step at the second iteration. They result from solving the equations 

below Figure 12, setting W5=0 and using the complementary slackness theorem again. 

 

             Figure 12. Second iteration of the network simplex method for example 2  

W1 - W2 = C12 = 8 

W2 - W4 = C24 = 5 

W4 - W5 = C45 = 4 

W3 - W5 = C35 = 3 

Now, the optimality of the non-basic variables is checked. 

𝐶̅34 =  [ W3 –W4  - C34 ]  [ 3 - 4 - 3] = -4 (Satisfies optimality condition) 

𝐶̅13 =  [W1 - W3  - Cij]  [17 - 3 - 6] = 8 (Violates optimality condition) 

𝐶̅25  =  [W2 - W5   - Cij ] [9 - 0 - 7] = 2 (Violates optimality condition) 

 𝐶̅13 is the maximum violating arc and it enters into the bfs. In step 3, an allocation 

of Ɵ=1 is given for the new entering arc 1-3 because in the cycle formed by arcs X12, X24, 
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X45, X13 and X35 it is the maximum value that permits the arc 4-5 to stay above its lower 

value of zero. Then X45 leaves the basis. The iterations of the NSM continue until the 

optimum is achieved. In example 2, the optimum is achieved in 4 iterations. Figure 9 shows 

the optimal network. 

 

Figure 13. Optimal network for example 2 after four iterations 

 

4.4 Modeling the DFLP and the SDFLP as a linear network problem with AMPL 

 

AMPL stands for Advanced Mathematical Programming Language. It is an 

algebraic modelling language to describe and solve highly complex problems occurring in 

large scale optimization and scheduling-type problems. Network linear programs can be 

modeled in AMPL using standard AMPL formulations that include definition of sets, 

parameters, variables, objective function and constraints. AMPL also permits network 

models to be described more directly in terms of their network structure using what is 

known as node and arc declarations. The advantage of modeling the problem using node 
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and arc declarations is that AMPL automatically communicates the network structure to 

the solver and any special network algorithms in the solver are applied automatically. 

(Fourer, 2003).  

In this thesis, the solver selected to work with AMPL is CPLEX. CPLEX 

incorporates an optional heuristic procedure that identifies “pure network” constraints in a 

linear program. The CPLEX procedure looks for these constraints and if the model has 

many of them CPLEX applies a fast network simplex algorithm. If the CPLEX solver finds 

non-network constraints, CPLEX uses the network solution as a start for solving the 

problem by the general primal or dual simplex algorithm. The optional heuristic is active 

by default but the user can suppress it or force its use in all cases. CPLEX’s network 

simplex algorithm can achieve dramatic reductions in optimization time for “pure” network 

linear programs defined entirely in terms of node and arc declarations (Fourer,2003).  

The node-and-arc declaration makes it easy to define a linear program for a 

network that has several different kinds of nodes and arcs. The DFLP problem in this thesis, 

modeled as presented in Section 2.3, is solved in AMPL using node and arc declarations. 

Consequently, the various steps and iterations that such formulation undergoes to find a 

solution are the ones described and depicted in the Section 4.3 Network Simplex Algorithm 

for solving DFLP modeled as a network problem. Examples 4.3.2 & 4.3.3 illustrated the 

procedure AMPL/CPLEX follows by using a small-sized problem. Because the models for 

solving the DFLP with budget constraint and the SDFLP model presented in sections 2.4 

and 2.5 have additional constraints they are considered as variants to the regular shortest 

path problem. Thus, they are not solved with the simplex network algorithm. 
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  The AMPL model and a skeleton sample data file used for solving the DFLP 

proposed in Section 2.3 using node and arc declarations are presented in Appendix C and 

D, respectively.  The AMPL model and a skeleton sample data file for solving the DFLP 

with budget proposed in Section 2.4 are in Appendix E and F. The AMPL model and a 

skeleton sample data file for solving the SDFLP proposed in Section 2.5 are presented in 

Appendix G and H. 



 

46 

 

5. NUMERICAL RESULTS 

In this chapter, the DFLP Parallel Shortest Path (PSP) variation of the Dijkstra 

algorithm and the Linear Network Model (LNM) methodology are compared and contrasted 

to several heuristic approaches proposed by previous authors. The comparison is done in 

terms of computational time and overall cost of the solution.  

5.1 DFLP Datasets  

Balakrishnan & Cheng (2000) generated DFLP instances that the research 

community have been using to test their proposed methodologies. The instances have 6, 15 

and 30 departments and 5 and 10-time periods. Under each combination of department and 

period, there are eight different problems that differ by the matrixes of flow between 

departments and distance between locations. In this thesis, all problems with 6, 15 and 30 

departments and 5-time periods were selected and tested. The fixed time horizons of 5 

periods seemed to make more practical sense. Due to volatility in the economy, fixed 

periods of 10-years length seemed less practically implementable. In addition, 

Moslemipour & Lee (2012) present a randomly generated problem with 12 departments 

and 5-time periods.  In this thesis, this 12 departments instance is also used for 

experimentation.    

5.2 SDFLP Datasets 

Since there is no library of instances for the SDFLP, 4 problems were generated 

with Excel inspired by the methodology Balakrishnan et al (1992) followed to generate 

instances for the DFLP. The instances considered five-time periods, six departments and 

locations and three scenarios for the market that will affect the matrices of flows between 

departments and the vectors of costs of relocating the departments. The flows between 
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departments necessary to compute the material handling cost (MHC) and to obtain the 

values for the 𝐶𝑆𝑖𝑡,𝑘(𝑡+1) parameters were randomly generated from a uniform distribution 

(U[a,b]) with parameters a=100 and b=200. For each problem, the total material flow 

between departments was kept constant over the time periods. Then, the flows for three 

departments were increased by a factor of 5 in three departments (departments 1,4, and 6). 

In this way, flow dominance from some departments would motivate relocations and the 

flow matrixes end asymmetric. The distance (feet) matrix between locations was about the 

same order of magnitude than the ones provided from the library (d6l5) in Balakrishnan & 

Cheng (2000). 

The vectors of costs for relocating each department, named uRC in the codes, were 

generated randomly from a uniform distribution (U[a,b])  with a=100 and b=500 in each 

of the three scenarios considered.   The procedure to generate flow matrices and vectors of 

cost of relocating each department was repeated for the 4 problems, and for the 3 scenarios 

and 5-time periods in each.  

5.3 DFLP experimental Setting 

The number of different DFLP problems studied is 25 (8 problems with 6, 15 and 

30 departments and 1 problem with 12 departments). Each DFLP problem was also run 5 

times. The multiple runs are necessary to see the variability of the results to selecting 

different sets of layouts or permutations to include in the DFLP network.   

The number of runs equals to 125 (25*5) for the variant of no-sorting the layouts 

randomly generated to input to the network. This variant is labeled as no-sorting through 

this document. A total of 120 (24*5) runs were done for the sorting layouts variant (since 

the 12 instances was not studied). This variant is labeled as sorting through this document. 
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Since this thesis compares two methodologies, PSP and LNM, 250 runs were executed for 

the non-sorting variant and 240 for the sorting variant.  

The first PSP algorithm implemented was the one that does not sort the 

permutations or layouts to enter in the network nodes based on its MHC. This PSP was 

implemented in C language by Kolla (2015) under the supervision of Dr. Apan Qasem and 

Dr. Clara Novoa. This implementation had some OpenMP calls. Later, Dr. Apan Qasem 

developed an implementation of the PSP that sorts the permutations to enter to the network 

nodes in each year based on the annual MHC incurred. 

 The first C implementation (i.e. the no-sorting variant) was run using the Stampede 

and Maverick clusters from the Texas Advanced Computing Center (TACC), 

https://portal.tacc.utexas.edu/.  The cluster that was used the most was Stampede (100 

runs). Each one of the 6400 Stampede nodes runs under the CentOS 6.4 Operating system 

and has the following characteristics: CPU Intel Xeon E5-2680 v2 Ivy Bridge, 2.80 GHz, 

20 CPU’s/node, 12.8 GB memory/core. Also, 25 runs were done in the Maverick cluster 

equipped with 132 nodes each one with the following characteristics:  CentOS, Dell C8220, 

Intel PQI, C610 Chipset, 2/8 Xeon E5-2680 2.7GHz (turbo, 3.5) 1/61 Xeon Phi SE10P 

1.1GHz, 10 CPU cores with 32 GB 8x4G DDR3-1600 MHZ 8GB GDDR5. One input to 

the PSP implementation was the number of permutations to randomly generate for each 

period. This number was set to 85,000. As shown in Figure 14, the C program uses flow 

and distances data from the instances, generates a number of permutations per period equal 

to min (n!, 85,000), assign them to the nodes in the PSP network, computes MHC at the 

nodes or vertices and RC at the edges,  and performs the PSP, a variant of the Dijkstra 

algorithm described in detail in Chapter 4.  

https://portal.tacc.utexas.edu/
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Figure 14. Flow chart to solve the DFLP using the PSP implementation 

For the experimentation under sorting (i.e. the sorting variant), a larger memory 

machine named CAPI was used. CAPI (Coherent Accelerator Processor Interface) is 

available at the Computer Science department at Texas State. The machine was donated 

by IBM. CAPI runs under CentOS. It has 160 CPU’s, min speed 2.061 Ghz and max speed 

3.690 Ghz. CAPI has an additional functionality for PCIe slots on CAPI enabled systems. 

It uses 16 PCIe slots and is layered on top of PCIe Gen 3. CAPI port is determined by the 

underlying PCIe 3.0 x16 technology, peaking at ca 16 GB/s, bidirectional. PCI Express 

3.0's 8 GT/s bit rate effectively delivers 985 MB/s per lane, nearly doubling the lane 

bandwidth relative to PCI Express 2.0 Latest versions of CAPI have been consistently 

updated. They have more capabilities and can be used in the future research.   A comparison 

of the computational environments used in this thesis is in Appendix M. 

To solve the problems under the LNM, the PSP implementation in C was modified 

by deleting the variant of the Dijkstra procedure and introducing additional lines in C code 

to print the input data files for AMPL following specific syntax required by AMPL under 

the node and arc declaration style. The C modified implementation was asked to randomly 

generate only 2,000 permutations to feed the network nodes in each year.  This relatively 

small number of permutations was used, if compared to 85,000 used in the PSP 

implementation, because when solving larger input data problems there were computer 
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memory issues and AMPL was unable to provide a solution. The steps to solve under the 

LNM are presented in Figure 15.  

 

         Figure 15. Flow chart to solve the DFLP under the Linear Network Model 

To generate the LNM solutions, the 8 problems with 6 departments were run in a 

personal laptop, Dell studio XPS 1645, Core i7-720QM 1.6 GHz Processor, windows 7 

professional, 64-bit OS, 4GB Ram. The rest of the problems were run in the SOLAR lab at 

Texas State University, http://www.engineering.txstate.edu/Facilities/IE-labs/RFM-

4244.html, using a Dell Optiplex 5040, Intel Core i5-6500 CPU @3.20 GHZ, 16GB Ram, 

Quad-Core (i.e. 4 cores), 64 Bit OS, Windows 10 Enterprise. 

5.4 SDFLP experimental setting 

The data generated in Excel for each of the 4 SDFLP problems studied was saved 

in text files that were fed to a C program which is another variation of the one described in 

the previous section. It generates 6! random layouts per period and computes MHC and 

RC for each scenario and period. The C program was run 20 times (4 problems, 5 runs in 

each) in Leap, a high-performance computing cluster at Texas State University managed 

by the Division of Information Technology. Leap, http://www.vpit.txstate.edu/rc/leap.html   

has 120, Intel Xeon E5-2680v4 nodes each one with 28 CPU cores running at 2.4 GHz 

speed, 128 GB memory running under CentOS. The output of the C program is the input 

data file to the AMPL model created to solve the SDFLP problem. Figure 16 presents the 

steps described above. 

http://www.vpit.txstate.edu/rc/leap.html
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Figure 16. Flow chart to solve the SDFLP under the Linear Network Model 

5.5 DFLP cost results PSP vs. LNM   

5.5.1 No-sorting 

Final costs for both PSP and LNM were collected and averaged over the five runs 

done on each problem. The standard deviation was also computed. Tables 7-13 show the 

resulting costs for the variant in which the permutations were randomly generated and not 

sorted. In the tables, the abbreviation “PN” stands for problem number, the abbreviation 

“Std Dev” stands for standard deviation and the abbreviation “R” stands for run.  The costs 

for the 6-departments problems are the same for PSP and LNM while for the 12, 15 and 30 

departments problems PSP gave slightly better results. However, the LNM gave very 

competitive results considering that this method has considerably less permutations in the 

network.  LNM costs are no more that 2.17% above those from PSP.  

Table 7. Cost Results for DFLP PSP 6 Departments - No-Sorting 

PN R1 R2 R3 R4 R5 Average Std Dev 

1 106419 106419 106419 106419 106419 106419 0 

2 105341 105341 105341 105341 105341 105341 0 

3 102989 102989 102989 102989 102989 102989 0 

4 106399 106399 106399 106399 106399 106399 0 

5 105628 105628 105628 105628 105628 105628 0 

6 103985 103985 103985 103985 103985 103985 0 

7 106439 106439 106439 106439 106439 106439 0 

8 103771 103771 103771 103771 103771 103771 0 
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Table 8. Cost Results for DFLP LNM 6 Departments - No-Sorting 

PN R1 R2 R3 R4 R5 Average Std Dev 

1 106419 106419 106419 106419 106419 106419 0 

2 105341 105341 105341 105341 105341 105341 0 

3 102989 102989 102989 102989 102989 102989 0 

4 106399 106399 106399 106399 106399 106399 0 

5 105628 105628 105628 105628 105628 105628 0 

6 103985 103985 103985 103985 103985 103985 0 

7 106439 106439 106439 106439 106439 106439 0 

8 103771 103771 103771 103771 103771 103771 0 

 

Table 9. Cost Results for DFLP PSP and LNM 12 Departments - No-Sorting 

PN   R1 R2 R3 R4 R5 

1 PSP 1273487 1252704 1278564 1278994 1259654 

1 LNM 1501492 1501176 1418920 1455610 1350250 

   Average Std Dev   

   1268681 11873   

   1431489 63759.6   

 

Table 10. Cost Results for DFLP PSP for 15 Departments - No-Sorting 

 

PN R1 R2 R3 R4 R5 Average Std Dev 

1 502383 503061 501022 501945 499324 501,547.0 1446.3 

2 502968 501203 502653 503398 504767 502,997.8 1287.6 

3 507007 505240 506566 507488 508116 506,883.4 1084.2 

4 503146 501079 500181 502232 498535 501,034.6 1793.8 

5 500253 499790 501644 500077 499796 500,312.0 770.0 

6 501869 503221 501073 502880 503385 502,485.6 985.0 

7 504497 506293 502415 502871 504423 504,099.8 1534.7 

8 505986 505682 508692 506986 509664 507,402.0 1726.1 

 

Table 11. Cost Results for DFLP LNM for 15 Departments - No-Sorting 

 

PN R1 R2 R3 R4 R5 Average Std Dev 

1 509933 511825 512736 511302 509640 511,087.2 1,297.7 

2 515116 513235 505768 516033 513011 512,632.6 4,042.2 

3 514849 519094 516696 511302 514118 515,211.8 2,910.7 

4 509335 508651 507627 506729 508525 508,173.4 1,010.7 

5 508626 507496 512751 512867 513982 511,144.4 2,883.3 
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Table 11. (Continued) 

6 509046 513107 511075 513996 510268 511,498.4 2,033.0 

7 513470 514088 514020 513943 514864 514,077.0 502.3 

8 519291 517236 517310 517884 517169 517,778.0 892.2 

 

Table 12. Cost Results for DFLP PSP for 30 Departments - No-Sorting 

 

PN R1 R2 R3 R4 R5 Average Std Dev 

1 601677 602742 603472 603722 604214 603,165.4 987.2 

2 597363 600518 600037 601620 602501 600,407.8 1953.9 

3 609946 607188 609449 604782 607237 607,720.4 2067.2 

4 600429 602334 600736 603536 599272 601,261.4 1677.1 

5 587114 589020 594161 591567 590409 590,454.2 2654.9 

6 599630 596776 597768 597645 597601 597,884.0 1052.0 

7 597888 589807 597501 598014 596290 595,900.0 3473.5 

8 603205 606773 604466 605378 600036 603,971.6 2556.7 

 

Table 13. Cost Results for DFLP LNM for 30 Departments - No-Sorting 

 

PN R1 R2 R3 R4 R5 Average Std Dev 

1 610863 609194 608418 609015 609364 609,370.8 907.2 

2 608969 602084 609999 608834 603844 606,746.0 3,536.9 

3 611281 609360 609949 615224 613051 611,773.0 2,394.5 

4 612074 602438 609192 604111 608623 607,287.6 3,934.8 

5 597523 601774 600448 595799 602353 599,579.4 2,818.9 

6 602212 606536 601016 603545 603283 603,318.4 2,057.3 

7 600228 602175 600160 603011 603538 601,822.4 1,564.1 

8 612718 617314 614259 618330 611595 614,843.2 2,901.3 

 

5.5.2 Sorting 

 

To determine if generating a larger number X of permutations per year and filtering 

the best first Y in terms of MHC improve the solutions from the two solution approaches 

(PSP and LNM), a total of X = 400,000 permutations was generated for PSP and X= 85,000 

for LNM. The material handling costs for each year and permutation was computed. The 

Y= 50,000 permutations having the lowest costs in each year were selected as input to the 

PSP. The Y=2,000 permutations with the lowest cost in each year were selected as input 

to the LNM approach. This selection of layouts is done using the “Quick sort algorithm”. 



 

54 

 

Quick Sort Algorithm sorts data by dividing large arrays into 2 smaller arrays by utilizing 

a divide and conquer strategy.  Quick Sort Algorithm Sorts the layouts in a particular year 

based on the following steps: 

•  Picking a “Pivot” Element 

•  “Partitioning” the array into 3 parts. In the first part, all elements are less than the pivot. 

The second part is the pivot itself (only one element). In the third part, all the elements are 

greater than or equal to the pivot. 

•  Applying recursively the Quick Sort Algorithm to the first and the third parts of the 

array. 

Final costs for PSP and LNM were collected and averaged over the five runs done 

to each problem. The standard deviation was also computed. Tables 14-19 shows the 

resulting costs; the abbreviations used in these tables are for problem number (PN), run (R) 

and standard deviation (Std). The costs for the 6-departments problems for PSP and LNM 

are the same while for the 15 and 30 department problem LNM gave results not more than 

3.40% above those in PSP. 

Table 14. Cost Results for DFLP PSP for 6 Departments - Sorting  

PN R1 R2 R3 R4 R5 Average Std Dev 

1 106419 106419 106419 106419 106419 106419 0 

2 105341 105341 105341 105341 105341 105341 0 

3 102989 102989 102989 102989 102989 102989 0 

4 106399 106399 106399 106399 106399 106399 0 

5 105628 105628 105628 105628 105628 105628 0 

6 103985 103985 103985 103985 103985 103985 0 

7 106439 106439 106439 106439 106439 106439 0 

8 103771 103771 103771 103771 103771 103771 0 

 

Table 15. Cost Results for DFLP LNM for 6 Departments - Sorting 

PN R1 R2 R3 R4 R5 Average Std Dev 

1 106419 106419 106419 106419 106419 106,419 0 
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Table 15. (Continued) 

2 105341 105341 105341 105341 105341 105,341 0 

3 102989 102989 102989 102989 102989 102,989 0 

4 106399 106399 106399 106399 106399 106,399 0 

5 105628 105628 105628 105628 105628 105,628 0 

6 103985 103985 103985 103985 103985 103,985 0 

7 106439 106439 106439 106439 106439 106,439 0 

8 103771 103771 103771 103771 103771 103,771 0 

 

Table 16. Cost Results for DFLP PSP 15 Departments - Sorting  

PN R1 R2 R3 R4 R5 Average Std Dev 

1 500507 495473 499358 498621 497406 498,273.0 1,929 

2 497275 500387 501017 498662 499142 499,296.6 1,472 

3 499744 499873 499660 499660 501395 500,066.4 748 

4 498665 498251 498707 500457 497507 498,717.4 1,085 

5 498733 499223 499512 499806 499796 499,414.0 450 

6 499405 499556 499694 497515 500596 499,353.2 1,127 

7 502451 500889 500052 500109 502345 501,169.2 1,170 

8 505986 505409 505855 506986 504570 505,761.2 881 

 

Table 17. Cost Results for DFLP LNM for 15 Departments - Sorting 

PN R1 R2 R3 R4 R5 Average Std Dev 

1 502383 503061 501022 501945 499324 501,547.0 1,446 

2 502968 501203 502653 503398 504767 502,997.8 1,288 

3 507007 505240 506566 504767 509312 506,578.4 1,784 

4 503146 501079 500181 502232 498535 501,034.6 1,794 

5 500253 499790 501644 500077 499796 500,312.0 770 

6 501869 503221 501073 502880 503385 502,485.6 985 

7 504497 506293 502415 502871 504423 504,099.8 1,535 

8 505986 505682 508692 506986 509864 507,442.0 1,793 

 

Table 18. Cost Results for DFLP PSP for 30 Departments - Sorting  

PN R1 R2 R3 R4  R5 Average Std Dev 

1 601577 605578 604070 600346 604596 603233.4 2187 

2 603036 603455 603250 604517 602403 603332.2 771 

3 605506 606976 606469 603952 606011 605782.8 1159 

4 598641 598470 597683 595931 599272 597999.4 1288 

5 585817 589020 585213 588691 586792 587106.6 1697 

6 595499 595757 594274 595855 593583 594993.6 1011 

7 597802 594831 596663 597906 598693 597179.0 1499 

8 601448 602638 601616 602577 600036 601663.0 1059 
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Table 19. Cost Results for DFLP LNM for 30 Departments - Sorting  

 

 

 

 

 

5.6 DFLP computational time results PSP vs. LNM  

5.6.1 No-sorting 

Data collected for the computational time for the two solution methodologies (PSP 

and LNM) are in Tables 20-27.  For PSP, the time measured is the one for generating the 

layouts, computing MHC and RC and solving the variation of the Dijkstra algorithm (i.e. 

all steps in Figure 14). For the LNM, the time measured is only the one for solving the LNM 

in AMPL.  The time for generating the layouts and computing the MHC and RC is very 

negligible since the C code has several of these functions parallelized. In the 6-department 

problem, the computational time for the PSP is very small. For 12, 15, and 30 departments, 

the LNM gave faster computational times in several cases. However, in the 15 department 

the first and second problem were solved faster with the PSP.   LNM ran faster than PSP 

in 75 runs. The PSP performed better in the remaining 50 runs. Appendix I has samples of 

outputs generated by the PSP implementation in C and the LNM implementation in AMPL. 

The outputs show best solutions found and computational times for some of the problems 

run under  the no-sorting version. 

Table 20. Computational Time (Seconds) for PSP for 6 Departments - No-Sorting 

 

PN R1 R2 R3 R4 R5 Average Std. Dev 

1 0.87 1.19 0.99 0.98 1.11 1.03 0.13 

2 0.13 0.13 0.13 0.13 0.13 0.13 0.00 

PN  R1 R2 R3 R4 R5 Average Std Dev 

1 623712 624958 625140 624347 624161 624463.6 586 

2 606868 607110 606678 608297 605593 606909.2 969 

3 605593 611584 611584 614039 617973 612154.6 4503 

4 600429 602438 602079 604389 599272 601721.4 1964 

5 587114 589489 594161 591567 590409 590548.0 2599 

6 599819 598573 598124 597645 598853 598602.8 820 

7 600898 595211 599727 603858 599984 599935.6 3110 

8 603205 606773 598897 605378 600036 602857.8 3371 
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Table 20. (Continued) 

3 0.21 0.13 0.14 0.13 0.12 0.15 0.04 

4 0.98 0.94 0.94 0.89 0.87 0.92 0.04 

5 4.87 0.40 1.61 0.14 5.19 2.44 2.43 

6 0.14 0.30 0.24 0.13 0.13 0.19 0.08 

7 0.31 0.31 0.13 0.13 0.13 0.20 0.10 

8 0.21 0.13 0.13 0.13 0.13 0.15 0.04 

 

Table 21. Computational Time (Seconds) for LNM for 6 Departments - No-Sorting 

 

PN R1 R2 R3 R4 R5 Average Std. Dev 

1 5.23 4.98 4.95 5.03 5.06 5.05 0.11 

2 10.89 11.20 11.20 11.04 11.39 11.14 0.19 

3 10.78 11.17 11.26 10.92 11.59 11.14 0.32 

4 10.78 11.23 11.47 11.48 10.98 11.19 0.31 

5 11.25 10.76 10.72 11.61 11.20 11.11 0.37 

6 10.99 10.89 11.50 11.15 11.29 11.17 0.24 

7 11.43 11.34 11.17 10.95 11.33 11.24 0.19 

8 11.36 11.34 11.67 11.00 11.98 11.47 0.37 

 

Table 22. Computational Time (Seconds) Results for PSP for 12 Departments -  

No-Sorting 

PN R1 R2 R3 R4 R5 Average Std. Dev 

1 94.86 97.21 95.91 99.07 95.48 96.50 1.67 

 

Table 23. Computational Time (Seconds) for LNM for 12 Departments - No-Sorting 

PN R1 R2 R3 R4 R5 Average Std. Dev 

1 65.66 68.27 65.81 59.84 63.27 64.57 3.18 

 

            Table 24. Computational Time (Seconds) for PSP for 15 Departments - No-Sorting 

PN R1 R2 R3 R4 R5 Average  Std. Dev 

1 35.70 35.65 37.25 38.99 34.73 36.46 1.68 

2 96.56 100.06 92.44 98.32 99.69 97.41 3.10 

3 400.94 396.36 396.17 395.33 395.05 396.77 2.40 

4 394.68 394.61 398.26 397.36 395.39 396.06 1.66 

5 394.30 394.79 398.10 399.61 395.36 396.43 2.31 

6 395.56 395.41 394.58 399.57 395.19 396.06 1.99 

7 396.99 394.97 394.51 394.82 397.53 395.76 1.39 

8 399.96 334.96 395.02 396.05 394.25 384.05 27.53 
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Table 25. Computational Time (Seconds) for LNM for 15 Departments – No-Sorting 

 

PN R1 R2 R3 R4 R5 Average  Std. Dev 

1 61.23 64.16 75.58 61.38 60.92 64.65 6.25 

2 62.00 59.95 62.20 60.61 60.95 61.14 0.95 

3 64.59 65.42 60.69 59.91 59.80 62.08 2.71 

4 59.92 60.33 60.34 59.95 61.02 60.31 0.44 

5 60.39 59.52 60.38 60.95 60.94 60.43 0.59 

6 59.83 60.42 61.23 61.28 61.67 60.89 0.75 

7 60.03 59.63 59.80 60.82 61.17 60.29 0.67 

8 59.86 59.61 60.70 60.56 58.86 59.92 0.75 

 

     Table 26. Computational Time (Seconds) for PSP for 30 Departments – No-Sorting 

PN R1 R2 R3 R4 R5 Average  Std. Dev 

1 455.41 457.85 456.14 456.88 458.75 457.01 1.33 

2 457.11 453.77 456.55 453.99 465.44 457.37 4.75 

3 460.53 456.75 455.43 455.13 454.18 456.40 2.49 

4 105.30 110.02 101.16 110.31 104.02 106.16 3.95 

5 104.05 107.96 105.31 113.57 107.87 107.75 3.66 

6 104.09 111.72 102.79 112.61 108.12 107.86 4.40 

7 109.71 103.15 113.62 116.06 113.46 111.20 5.04 

8 112.06 106.05 101.63 108.68 107.17 107.12 3.81 

 

    Table 27. Computational Time (Seconds) for LNM for 30 Departments – No-Sorting  

PN R1 R2 R3 R4 R5 Average  Std. Dev 

1 62.17 60.27 60.48 59.53 79.26 64.34 8.40 

2 75.18 76.16 75.01 55.06 78.09 71.90 9.49 

3 60.11 60.83 59.48 62.56 60.83 60.76 1.15 

4 60.31 59.09 60.45 59.67 60.59 60.03 0.63 

5 59.11 60.25 60.45 60.30 60.19 60.06 0.54 

6 76.25 77.98 79.09 78.28 76.47 77.62 1.22 

7 60.58 60.83 60.36 59.50 59.34 60.12 0.66 

8 77.75 75.55 76.52 77.52 76.94 76.86 0.87 

 

5.6.2 Sorting 

For the sorting variant, the parallelization in the Shortest Path algorithm was 

removed and consequently the algorithm is notated as SP in the remainder of this 
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document. Computational times for the SP method, including the times for sorting the 

400,000 generated permutations and filtering the best 50,000 in each year, are in Tables 

28-33. These tables also show the time for solving the LNM in AMPL. For the LNM, the 

times reported do not include the time for sorting the 85,000 generated permutations and 

filtering the best 2,000 in each year.  

It is important to mention that for the SP method, two times were collected. The 

first one is the entire time the algorithm takes to generate the permutations, sort them, and 

execute the variation of the Dijkstra algorithm (Tables 28-33). The second one is the time 

to execute just the variation of the Dijkstra algorithm. Out of the entire time collected, the 

variation of the Dijkstra algorithm accounts for a maximum time of 9.939%. Tables with 

the time to execute just the variant of the Dijkstra’s algorithm are in Appendixes N, O, and 

P. Appendix N presents the differences in times for doing the variation of the Dijkstra’s 

algorithm for SP sorting vs. PSP no sorting, Appendix O presents the times SP sorting 

took to perform the variation of the Dijkstra in each of the 5 runs done in each problem, 

the average and standard deviation. Appendix P presents the differences in times for doing 

the variation of the Dijkstra’s algorithm for SP sorting vs. LNM sorting. Appendix Q 

presents a graph that shows Problem 1 average computational times over the 5 runs done 

in the 6, 15, and 30 departments cases. The graph lets to appreciate the trends on the 

computational times for all the methods studied. SP and LNM showed similar execution 

times if looking just at the portion of time spent on doing the variation of the Dijkstra 

algorithm for SP-sorting 50,000 layouts and the network simplex method for LNM-sorting 

2,000 layouts. 
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If analyzing results in Tables 28-33, in the 6-department problems, the SP 

computational time is very small and smaller than the one for LNM.  For 15, and 30 

departments the LNM gave faster computational times. The LNM ran faster than SP in 80 

runs while the SP performed better in 40 runs. The number of runs for the sorting case was 

120 since the Moslemipour instance of size 12 was not run for the sorting case. 

 

Table 28. Computational Time (Seconds) for SP 6 Departments - Sorting  

 

PN R1 R2 R3 R4 R5 Average Std. Dev 

1 0.13 0.12 0.12 0.12 0.12 0.122 0.004 

2 0.13 0.12 0.12 0.12 0.12 0.122 0.004 

3 0.13 0.12 0.12 0.12 0.12 0.122 0.004 

4 0.13 0.12 0.12 0.12 0.12 0.122 0.004 

5 0.13 0.12 0.12 0.12 0.12 0.122 0.004 

6 0.13 0.12 0.12 0.12 0.12 0.122 0.004 

7 0.13 0.12 0.12 0.12 0.12 0.122 0.004 

8 0.13 0.12 0.12 0.12 0.12 0.122 0.004 

 

Table 29. Computational Time (Seconds) for LNM 6 Departments – Sorting 

 

PN  R1 R2  R3  R4  R5  Average  

Std. 

Dev  

1 5.67 5.30 5.17 5.10 5.63 5.374 0.262 

2 5.55 5.58 5.24 5.28 5.19 5.368 0.183 

3 5.22 5.60 5.50 5.66 5.86 5.568 0.235 

4 5.31 5.21 5.41 5.50 5.33 5.352 0.109 

5 5.47 5.24 5.27 5.25 5.35 5.316 0.096 

6 5.33 5.30 5.30 5.24 5.38 5.310 0.051 

7 5.46 5.24 5.22 5.39 5.30 5.322 0.102 

8 5.30 5.36 5.39 5.25 5.24 5.308 0.066 

 

Table 30. Computational Time (Seconds) for SP 15 Departments - Sorting 

 

PN R1 R2  R3  R4  R5  Average  

Std. 

Dev  

1 513.08 499.31 439.06 439.34 433.62 464.882 38.095 

2 502.15 436.10 440.50 437.20 437.05 450.600 28.865 

3 440.94 438.57 443.52 435.92 441.85 440.160 2.969 

4 441.28 440.55 443.14 439.17 440.34 440.896 1.466 

5 438.20 443.68 444.59 467.30 441.99 447.152 11.525 
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Table 30. (Continued) 

6 481.53 457.00 482.22 449.19 474.27 468.842 14.965 

7 429.12 467.60 473.71 442.58 440.56 450.714 19.036 

8 461.51 474.56 439.29 451.38 455.97 456.542 12.980 

 

Table 31. Computational Time (Seconds) for LNM 15 Departments - Sorting 

 

PN R1 R2 R3 R4 R5 Average Std. Dev 

1 47.31 45.45 45.07 45.10 45.71 45.728 0.923 

2 45.00 45.48 45.29 45.73 46.86 45.672 0.716 

3 45.85 46.17 46.26 46.81 53.96 47.810 3.455 

4 45.43 45.28 44.62 44.89 44.70 44.984 0.357 

5 45.00 44.93 44.64 46.20 45.40 45.234 0.604 

6 45.96 45.48 45.10 44.71 45.37 45.324 0.463 

7 45.87 45.32 45.46 45.40 44.81 45.372 0.379 

8 45.17 44.67 46.48 45.39 44.95 45.332 0.695 

 

Table 32. Computational Time (Seconds) for SP 30 Departments - Sorting 

 

PN R1 R2 R3 R4 R5 Average Std Dev 

1 624.93 626.75 624.97 627.08 705.14 641.774 35.436 

2 706.26 705.23 626.52 703.10 624.31 673.084 43.538 

3 626.75 624.77 628.16 628.93 710.84 643.890 37.460 

4 628.098 631.011 625.77 628.68 634.08 629.528 3.155 

5 627.43 627.65 712.59 710.92 674.91 670.700 42.177 

6 632.24 633.35 625.87 714.28 627.29 646.606 37.964 

7 627.49 629.84 628.16 632.16 635.71 630.672 3.344 

8 630.00 708.11 626.7 710.03 626.28 660.224 44.619 

 

Table 33. Computational Time (Seconds) for LNM 30 Departments - Sorting 

 

PN R1 R2 R3 R4 R5 Average Std Dev 

1 45.75 47.31 49.28 48.92 47.26 47.704 1.426 

2 47.81 47.54 48.96 47.53 47.87 47.942 0.590 

3 47.87 48.40 48.21 47.48 47.42 47.876 0.433 

4 48.46 48.50 48.71 48.48 48.25 48.480 0.163 

5 48.42 48.14 49.39 49.57 48.29 48.762 0.666 

6 48.39 48.23 47.75 45.54  49.01 48.345 0.520 

7 46.21 45.46 45.53 45.89 45.45 45.708 0.333 

8 45.64 45.20 46.10 45.65 46.26 45.770 0.420 
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5.7 Sorting vs no-sorting costs comparison 

The comparison of costs for sorting (S) and no-sorting (NS) variants is provided in 

tables 34-36.  The formula computed in the percentage differences is: 100*(Cost no-sorting 

– Cost sorting)/Cost no-sorting. Then positive percentages mean that sorting decreased 

cost while negative percentages mean sorting increased it.  

The comparison of sorting and no-sorting for the PSP show the considerable 

improvement achieved by sorting the 400,000 generated permutations and filtering the best 

50,000 in each year instead of just generating 85,000 permutations and using them for all 

years. Sorting reduces costs by up to 1.34% if compared to no-sorting. However, sorting 

gave costs higher than no-sorting in 3 instances. In the remaining 21 instances, sorting 

outperformed no-sorting. All tables have 8 rows. Each row corresponds to each one of the 

8 problems tested under the number of departments studied.  

The comparison of sorting and no-sorting for the LNM shows the considerable 

difference achieved by sorting the 85,000 generated permutations and filtering the best 

2,000 in each year. Sorting reduces the cost by up to 2.12 % if compared to no-sorting. 

Sorting also gives costs much higher than no-sorting for 3 instances but in the rest of the 

21 instances sorting outperforms no-sorting in terms of cost. 

5.8 Sorting vs no-sorting computational time comparison 

     The comparison of computational time for sorting and no-sorting is also in Tables 

34-36. The formula computed in the percentage differences is: 100*(Computational Times 

no-sorting – computational times sorting)/computational times no-sorting. Then positive 

percentages mean that sorting decreased time while negative percentages mean sorting 

increased it.  
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The comparison of SP sorting and PSP no-sorting shows the increase in time if 

sorting 400,000 permutations by the material handling cost of each year and filtering the 

best 50,000 instead of just generating 85,000 permutations and using them for all years 

(PSP no-sorting). The main reasons for the time increase are: (1) the number of 

permutations considered (400,000 sorting, 85,000 no-sorting) and (2) the lack of 

parallelization in the sorting variant. It translates into a time increase of up to 1175%. 

Computational times for 6-department problems in sorting were effective in comparison to 

the 6 departments problem in no–sorting while no-sorting gave effective computational 

times for the 15 and 30 department problems.   

If comparing the computational time of LNM sorting and LNM no-sorting, sorting 

gave effective computational time in comparison to no-sorting with a 53% of maximum 

decrease in times. Both the sorting and no-sorting variants in AMPL use the node-arc 

formulation and therefore there should be no reason for the vast difference in computational 

times. It seems the only difference is that AMPL was able to execute the network simplex 

method faster on the network with the permutations for the sorted case than in the one for 

the no sorted case. 

Table 34. Difference in Cost and Computational Time for PSP and LNM - Sorting (S) vs.  

No- Sorting (NS) - 6 Departments  

 Cost 

 

Problem 

Number 

PSP-S 
PSP-

NS 

% 

Diff 

LNM -

S 

LNM-

NS 

% 

Diff 

1 106419 106419 0 106419 106419 0 

2 105341 105341 0 105341 105341 0 

3 102989 102989 0 102989 102989 0 

4 106399 106399 0 106399 106399 0 

5 105628 105628 0 105628 105628 0 

6 103985 103985 0 103985 103985 0 

7 106439 106439 0 106439 106439 0 
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Table 34. (Continued) 

8 103771 103771 0 103771 103771 0 

 Time (Seconds) 

 

Problem 

Number 

SP-S 
PSP-

NS 

% 

Diff 
LNM-S 

LNM-

NS 

% 

Diff 

1 0.12 1.03 88 5.37 5.05 -6 

2 0.12 0.13 6 5.37 11.14 52 

3 0.12 0.15 19 5.57 11.14 50 

4 0.12 0.92 87 5.35 11.19 52 

5 0.12 2.44 95 5.32 11.11 52 

6 0.12 0.19 36 5.31 11.17 52 

7 0.12 0.2 39 5.32 11.24 53 

8 0.12 0.15 19 5.31 11.47 54 

 

Table 35. Difference in Cost and Computational Time for PSP and LNM - Sorting (S) vs. 

No-Sorting (NS) - 15 Departments 

 

 Cost 

Problem  

Number 
PSP-S PSP-NS % Diff LNM -S LNM-NS % Diff 

1 498273 501547 0.65 501547 511087 1.9 

2 499297 502998 0.74 502998 512633 1.9 

3 500066 506883 1.34 507031 515212 1.59 

4 498717 501035 0.46 501035 508173 1.4 

5 499414 500312 0.18 500312 511144 2.12 

6 499353 502486 0.62 502486 511498 1.76 

7 501169 504100 0.58 504100 514077 1.94 

8 505761 507402 0.32 507442 517778 2 

 Time (Seconds) 

Problem  

Number 
SP-S PSP-NS % Diff LNM-S LNM-NS % Diff 

1 464.9 36.5 -1175 45.73 64.65 29 

2 450.6 97.4 -366 45.67 61.14 25 

3 440.2 396.8 -10.94 47.81 62.08 22.99 

4 440.9 396.1 -11.32 44.984 60.31 25.42 

5 447.1 396.4 -12.79 45.234 60.43 25.1 

6 468.8 396.1 -18.38 45.324 60.89 25.56 

7 450.7 395.8 -13.89 45.372 60.29 24.74 

8 456.5 384.05 -18.88 45.332 59.92 24.34 
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Table 36. Difference in Cost and Computational Time for PSP and LNM -  Sorting (S) 

vs. No - Sorting (NS) - 30 Departments 

 
 Cost 

Problem  

Number 
PSP-S PSP-NS % Diff LNM-S LNM-NS % Diff 

1 603233 603165 -0.01 624464 609371 -2.48 

2 603332 600408 -0.49 606909 606746 -0.03 

3 605783 607720 0.32 612155 611773 -0.06 

4 597999 601261 0.54 601721 607288 0.92 

5 587107 590454 0.57 590548 599579 1.51 

6 594994 597884 0.48 598842 603318 0.74 

7 597179 595900 -0.21 599936 601822 0.31 

8 601663 603972 0.38 603848 614843 1.79 

 Time (Seconds) 

Problem  

Number 
SP-S PSP-NS % Diff LNM-S LNM-NS % Diff 

1 641.77 457.01 -40.43 47.7 64.34 25.86 

2 673.08 457.37 -47.16 47.94 71.9 33.32 

3 643.89 456.4 -41.08 47.88 60.76 21.21 

4 629.53 106.16 -493 48.48 60.03 19.23 

5 670.7 107.75 -522.46 48.76 60.06 18.81 

6 646.61 107.86 -499.49 48.35 77.62 37.71 

7 630.67 111.2 -467.15 45.71 60.12 23.97 

8 660.22 107.12 -516.34 45.77 76.85 40.45 

 

Appendixes J, K and L present the number of network simplex iterations AMPL 

took to solve the LNM for all problems under the sorting and no-sorting variants studied. 

A series of paired t-tests with null hypothesis Ho: mean for the number of simplex iterations 

under sorting = mean for the number of iterations under no-sorting vs. Ha : mean for the 

number of iterations under sorting < mean for the number of iterations under no sorting 

show that for the problems with 6 departments the null hypothesis is rejected with a p-

value of 2.99E-10 and for the problems with 15 departments the null hypothesis is rejected 

with a p-value of 1.92E-12.However, for the 30-departments case the hypothesis couldn’t 

be rejected (p-value 0.43 vs. alpha 0.05). A paired t-test considering all the sample of 120 
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values (problems with 6, 15, and 30 departments, 8 in each case) lead to reject the null 

hypothesis with a p-value of 0.004. These tests permit to conclude that for problems of size 

6 and 15 the number of simplex iterations in the sorting variant was statistically 

significantly less that for the no-sorting variant. 

5.9 Cost and computational time differences between PSP and LNM 

 

Tables 37 - 39 summarize the cost and computational time differences for the 

comparison between PSP and LNM Model under the two variants studied, sorting (S) and 

no-sorting (NS). The formulas used to compute the cost differences are: 100*(cost PSP_NS 

– cost LNM_NS)/cost PSP_NS and 100*(cost SP_S – cost LNM_S)/cost SP_S. Then 

negative percentages in the first one mean that PSP_NS has lower cost than LNM_NS. 

Similarly, negative percentages in the second one mean that SP_S has lower cost than 

LNM_S.  

However, the formulas used to compute the time differences are: 100*(time 

LNM_NS – time PSP_NS)/time LNM_NS and 100*(time LNM_NS – time SP_NS)/time 

LNM_NS. Then negative percentages in those formulas mean that LNM has lower 

computational time than PSP or SP. The comparison for the times between SP_S and 

LNM_S is not entirely fair since the times for SP_S include the serial time spent on 

generating and sorting the permutations which is not included in LNM_S. The reader can 

see a possibly fairer comparison of times between SP_S and LNM_S by looking at 

Appendix P where the differences in times to perform just the variant of the Dijkstra’s 

algorithm are reported. 
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Table 37. Cost and Computational Time Differences between PSP and LNM - 6 

Departments 
 

 

Cost 

 PSP_NS vs 

LNM_ NS 

Time LNM_ 

NS vs 

PSP_NS  

Cost 

SP_S vs 

LNM _S 

Time LNM_ 

NS vs 

PSP_NS 

D_PN % Diff % Diff % Diff % Diff 

6_1 0 79.64 0.00 97.73 

6_2 0 98.86 0.00 97.73 

6_3 0 98.70 0.00 97.81 

6_4 0 91.74 0.00 97.72 

6_5 0 78.03 0.73 97.71 

6_6 0 98.30 0.00 97.70 

6_7 0 98.20 0.00 97.71 

6_8 0 98.73 0.00 97.70 

 

 

Table 38. Cost and Computational Time Differences between PSP and LNM - 15 

Departments 
 

 

Cost 

PSP_NS vs 

LNM_ NS 

Time LNM_ 

NS vs 

PSP_NS 

Cost 

SP_S vs 

LNM _S 

Time LNM_ 

NS vs 

PSP_NS 

D_PN % Diff % Diff % Diff % Diff 

15_1 -1.90 43.60 -0.66 -922.33 

15_2 -1.92 -59.32 -0.75 -886.60 

15_3 -1.64 -539.11 -1.37 -820.64 

15_4 -1.42 -556.68 -0.46 -880.10 

15_5 -2.17 -555.97 -0.18 -888.53 

15_6 -1.79 -550.49 -0.62 -934.42 

15_7 -1.98 -556.45 -0.58 -893.37 

15_8 -2.04 -540.95 -0.33 -907.10 

 

Table 39. Cost and Computational Time Difference Between PSP and LNM - 30 

Departments 
 

 

Cost 

PSP_NS vs 

LNM_ NS 

Time 

LNM_ NS 

vs PSP_NS 

Cost 

SP_S vs 

LNM _S 

Time LNM_ 

NS vs 

PSP_NS 

D_PN % Diff % Diff % Diff % Diff 

30_1 -1.03 -610.3 -3.40 -1245.32 

30_2 -1.06 -536.1 -0.59 -1303.95 

30_3 -0.67 -651.1 -1.04 -1244.91 

30_4 -1.00 -76.9 -0.62 -1198.51 

30_5 -1.55 -79.4 -0.58 -1275.46 

30_6 -0.91 -39.0 -0.64 -1237.47 
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Table 39. (Continued) 

30_7 -0.99 -85.0 -0.46 -1279.78 

30_8 -1.80 -39.4 -0.36 -1342.47 

 

5.10 DFLP costs and computational times comparisons between proposed methods 

and previous works 

Tables 40-42 summarize the average costs and computational times for all the 

problems under the PSP and LNM methods and the variants (sorting, no-sorting) studied 

and the percentage cost difference vs. the best known cost from the literature. The 

computational time comparison vs. other authors couldn’t be done since the information is 

not available. This comparison is also not meaningful since the computational settings used 

differ. Abbreviations used in Tables 40-42 are: number of departments and problem 

number (D_PN) and best known cost (BKC). Table 43 presents the average costs obtained 

by Conway & Venkataramanan (1994) with their genetic algorithm named CONGA, 

Balakrishnan & Cheng (2000) with their nested loop genetic algorithm named NLGA, 

Baykosaglu & Gindy (2001) with their simulated annealing (SA) method, Balakrishnan et 

al. (2003) with their hybrid dynamic programming and genetic algorithm approach named 

GADP, and McKendall & Shang (2006) with their hybrid ant systems methods named 

HASI, HASII, and HASIII. 
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Table 40. Cost, Computational Time and Percentage (%) of Cost Difference PSP and 

LNM – Sorting(S) and No-Sorting(NS) vs. Best Known Cost (BKC) - 6 Departments 

 
 

 

    
Parallel Shortest Path 

– no-sorting 

Linear Network Model – no-

sorting 

D_PN Cost 
Time 

(s) 

% 

Cost 

vs. 

BKC 

Cost 
Time 

(s) 

% 

Cost 

vs. 

BKC 

BKC 

6_1 106419 1.03 0 106419 5.05 0 106419 

6_2 105341 0.13 0.48 105341 11.14 0.48 104834 

6_3 102989 0.15 -1.28 102989 11.14 -1.28 104320 

6_4 106399 0.92 0 106399 11.19 0 106399 

6_5 105628 2.44 0.34 105628 11.11 0.34 105268 

6_6 103985 0.19 0 103985 11.17 0 103985 

6_7 106439 0.2 0 106439 11.24 0 106439 

6_8 103771 0.15 0 103771 11.47 0 103771 
  

Shortest Path -  sorting Linear Network Model - sorting 
  

D_PN Cost 
Time 

(s) 

% 

Cost 

vs. 

BKC 

Cost 
Time 

(s) 

% vs. 

BKC 
BKC 

6_1 106419 0.12 0 106419 5.37 0 106419 

6_2 105341 0.12 0.48 105341 5.37 0.48 104834 

6_3 102989 0.12 -1.28 102989 5.57 -1.28 104320 

6_4 106399 0.12 0 106399 5.35 0 106399 

6_5 106399 0.12 1.07 105628 5.32 0.34 105268 

6_6 103985 0.12 0 103985 5.31 0 103985 

6_7 106439 0.12 0 106439 5.32 0 106439 

6_8 103771 0.12 0 103771 5.31 0 103771 
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Table 41. Cost, Computational Time and Percentage (%) of Cost Difference PSP and 

LNM – Sorting(S) and No-Sorting(NS) vs. Best Known Cost (BKC) - 15 Departments 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Parallel Shortest Path – 

no-sorting 

Linear Network Model – no-

sorting 

D_PN Cost 
Time 

(s) 

% 

Cost 

vs. 

BKC 

Cost 
Time 

(s) 

% 

Cost 

vs. 

BKC 

BKC 

15_1 501547 36.46 4.39 511087 64.65 6.38 480453 

15_2 502998 97.41 3.76 512633 61.14 5.75 484761 

15_3 506883 396.77 3.71 515212 62.08 5.41 488748 

15_4 501035 396.06 3.42 508173 60.31 4.9 484446 

15_5 500312 396.43 2.58 511144 60.43 4.8 487722 

15_6 502486 396.06 3.25 511498 60.89 5.1 486685 

15_7 504100 395.76 3.54 514077 60.29 5.59 486853 

15_8 507402 384.05 3.34 517778 59.92 5.45 491016 

  
Shortest Path -  sorting Linear Network Model - sorting 

D_PN Cost 
Time 

(s) 

%Cost 

vs. 

BKC 

Cost 
Time 

(s) 

% 

vs. 

BKC 

BKC 

15_1 498273 464.88 3.71 501547 45.73 4.39 480453 

15_2 499297 450.6 3 502998 45.67 3.76 484761 

15_3 500066 440.16 2.32 507031 47.81 3.74 488748 

15_4 498717 440.9 2.95 501035 44.98 3.42 484446 

15_5 499414 447.15 2.4 500312 45.23 2.58 487722 

15_6 499353 468.84 2.6 502486 45.32 3.25 486685 

15_7 501169 450.71 2.94 504100 45.37 3.54 486853 

15_8 505761 456.54 3 507442 45.332 3.35 491016 
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Table 42. Cost, Computational Time and Percentage (%) of Cost Difference PSP and 

LNM – Sorting(S) and No-Sorting(NS) vs. Best Known Cost (BKC) - 30 Departments 

 

  
  

Parallel Shortest Path – no-

sorting 

Linear Network Model – 

no- sorting   

D_PN Cost 
Time 

(s) 

% 

Cost 

vs. 

BKC 

Cost 
Time 

(s) 

% 

Cost 

vs. 

BKC 

BKC 

30_1 603165 457.01 4.56 609371 64.34 5.63 576886 

30_2 600408 457.37 5.27 606746 71.9 6.38 570349 

30_3 607720 456.4 5.5 611773 60.76 6.2 576053 

30_4 601261 106.16 6.08 607288 60.03 7.15 566777 

30_5 590454 107.75 5.75 599579 60.06 7.38 558353 

30_6 597884 107.86 5.49 603318 77.62 6.44 566792 

30_7 595900 111.2 5.07 601822 60.12 6.12 567131 

30_8 603972 107.12 4.99 614843 76.86 6.88 575280 

  
Shortest Path - sorting 

Linear Network Model - 

sorting 
  

D_PN Cost 
Time 

(s) 

% 

Cost 

vs. 

BKC 

Cost 
Time 

(s) 

% 

Cost 

vs. 

BKC 

BKC 

30_1 603233 641.77 4.57 624464 47.7 8.25 576886 

30_2 603332 673.08 5.78 606909 47.94 6.41 570349 

30_3 605783 643.89 5.16 612155 47.88 6.27 576053 

30_4 597999 629.53 5.51 601721 48.48 6.17 566777 

30_5 587107 670.7 5.15 590548 48.76 5.77 558353 

30_6 594994 646.61 4.98 598842 48.34 5.65 566792 

30_7 597179 630.67 5.3 599936 45.71 5.78 567131 

30_8 601663 660.22 4.59 603348 45.77 4.97 575280 
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Table 43. DFLP Average Costs presented by Other Authors for 6-15-30 

Departments 

 

Dep. Problem 
CONGA 

(1994) 

NLGA 

(2000) 

SA 

(2001) 

GADP 

(2003) 

6 1 108976 106419 107249 106419 

6 2 105170 104834 105710 104834 

6 3 104520 104320 104800 104320 

6 4 106719 106515 106515 106515 

6 5 105628 105268 106282 105628 

6 6 105606 104053 103985 104053 

6 7 106439 106978 106447 106439 

6 8 104485 103771 103771 103771 

15 1 504759 511854 501447 484090 

15 2 514718 507694 506236 485352 

15 3 516063 518461 512886 489898 

15 4 508532 514242 504956 484625 

15 5 515599 512834 509636 489885 

15 6 509384 513763 508215 488640 

15 7 512508 512722 508848 489378 

15 8 514839 521116 512320 500779 

30 1 632737 611794 604408 578689 

30 2 647585 611873 604370 572232 

30 3 642295 611664 603867 578527 

30 4 634626 611766 596901 572057 

30 5 639693 604564 591988 559777 

30 6 637620 606010 599862 566792 

30 7 640482 607134 600670 567873 

30 8 635776 620183 610474 575720 
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Table 43. (Continued) 

Dep. Problem 
HAS I 

(2006) 

HAS II 

(2006) 

HAS III 

(2006) 

6 1 106419 106419 106419 

6 2 104834 104834 104834 

6 3 104320 104320 104320 

6 4 106399 106399 106399 

6 5 105628 105628 105628 

6 6 103985 103985 103985 

6 7 106439 106439 106439 

6 8 103771 103771 103771 

15 1 481511 481395 480453 

15 2 484761 484761 484879 

15 3 490899 488748 490398 

15 4 485561 485658 484446 

15 5 489012 487722 489206 

15 6 487417 486685 486965 

15 7 486853 486853 486853 

15 8 493963 492074 491016 

30 1 578854 576886 580240 

30 2 570349 571528 570349 

30 3 578152 576053 578176 

30 4 569694 572005 566777 

30 5 560433 558353 558353 

30 6 569725 570567 566792 

30 7 570899 567190 567131 

30 8 576980 575998 575280 

 

Figure 17 presents the costs for PSP and LNM for both the sorting and no-sorting 

variants studied. Figure 18 presents the costs for PSP sorted and LNM sorted vs. the ones 

from several previous authors, CONGA (1994), HAS III (2006) and SA (2001). Figure 19 

presents the cost for PSP and LNM under sorting and no-sorting variants if compared to 

the best known cost. 
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Figure 17. Costs for PSP and LNM under the sorting and no-sorting variants studied 

 

 

Figure 18. Costs PSP sorting and LNM sorting vs. previous authors  

 



 

75 

 

 

             Figure 19. Cost for PSP and LNM (sorting and no-sorting) vs. best known cost 

Appendix I has samples of output for best solutions found for the PSP and LNM 

algorithms for the no-sorting variant. The samples for the sorting variant were omitted to 

keep the document shorter. 

5.11 Analysis of the results for the DFLP  

The variation in cost and computational times over the 5 runs in each problem (see 

Tables 7-33) does not reveal any outliers of practical significance. The number of 

permutations used in the LNM is 2000. This low number is due to the memory issues 

experienced when AMPL attempted to solve larger problems. However, the results 

achieved are incredibly flawless. The comparison of costs for the LNM to the ones in the 

PSP and to the best known cost supports this statement.  

Tables 37-39 show that the maximum increase in cost for LNM (no–sorting) vs. 

PSP (no-sorting) is only 2.17%. Also, the computational time comparison shows that LNM 

(no–sorting) results 651.13% faster than PSP (no- sorting).  On the other hand, Tables 37-

39 also show that the maximum increase in cost for LNM (sorting) if compared to SP 

(sorting) is only 3.40%. Also, the computational time comparison shows that r LNM 

(sorting) is up to 1342.47% faster than SP (sorting). 
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Tables 40-42 show that the maximum difference in cost for PSP (no-sorting) vs. 

best known cost is 6.08% and for LNM (no-sorting) vs. best known cost is 7.38%. Tables 

40-42 also show that the maximum difference in cost for PSP (sorting) vs. best known cost 

is 5.78% and for LNM (sorting) vs. best known cost is 6.41% (ignoring the 8.25% in the 

first problem of size 30). Thus, the idea of filtering the permutations in each year performed 

well and improved the overall results.  

A strength found in the LNM is its ability to produce similar accurate results with 

small number of permutations (i.e. layouts in the network per each period). The LNM gave 

also smaller computational times more often than the PSP. However, the comparison is not 

straightforward because of the different number of permutations (i.e. layouts) included 

under each case. Nevertheless, it is predicted that under a low number of permutations both 

methods are computationally efficient. The maximum running time for PSP (no-sorting) 

was 457.37 seconds (about 7 minutes) and for LNM (no-sorting) was 77.62 seconds. The 

maximum running time for SP (sorting) was 673.08 seconds and for LNM (sorting) was 

48.76 seconds.   

Table 44 shows the performance of the PSP and LNM under the best variant (i.e. 

the sorted variant) in comparison to 7 algorithms from previous authors studying the DFLP 

for the 24 problems considered.  PSP achieved a better cost on 67 cases out of the total 

24*7=168 compared. LNM gave a better cost than the best known cost on 62 cases. Both 

LNM and PSP equaled the best known cost in 5 occasions and surpassed it 1 case.  LNM 

and PSP ended costlier 16 and 24 cases, respectively.  
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Table 44. Performance of PSP and LNM vs. Previous Authors Solutions  

 

 

 

 

 

 

 

 

5.12 SDFLP results  

Table 45 presents the average objective function values resulting from solving the 

model proposed to solve the SDFLP presented in Chapter 2 Section 5. The periods are 

assumed to be 5 years. The problems generated have 3 scenarios (high, medium, low) for 

the budget available for relocations 𝐴𝑠𝑡, the flows between departments and the costs of 

relocating each department (UC’s). The scenarios have probabilities 0.3, 0.5 and 0.2. A 

total of 720 layouts (i.e. 6!) are included in each year. Costs of relocating each department 

(UC’s) follow a probability distribution because of variations in charges due to labor, fuel 

and special equipment’s used during relocations.  

Experimentation was done under three cases. Case 1 corresponds to very high 

magnitudes for the values of the  𝐴𝑠𝑡 parameters; still decreasing the numbers over the 3 

scenarios considered. In case 1, the model was run 4 times in each of the 4 six departments 

problems generated (P1, P2, P3, P4). In cases 2 and 3 the model was run also 4 times but 

only for 1 of the six departments problem generated (P1). Cases 2 and 3 correspond to 

medium and low magnitudes for the values for  𝐴𝑠𝑡, still decreasing the numbers over the 

Algorithms from 

previous authors   

Number of 

comparisons 

where Sorted PSP 

costs are better 

Number of 

comparisons where 

Sorted LNM costs are 

better 

CONGA (1994) 21 21 

NLGA (2000) 20 18 

SA (2001) 20 17 

GADP (2003) 3 3 

HAS I (2006) 1 1 

HAS II (2006) 1 1 

HAS III (2006) 1 1 
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3 scenarios considered. The budgeted money for relocations, 𝐴𝑠𝑡, includes the loss in 

production incurred during the time the departments are under relocation.  

The terms in the SDFLP objective function and their signs introduced in Chapter 2 

are pasted below again. 

𝑚𝑖𝑛 𝑧𝑠𝑡𝑜𝑐 = ∑ ∑ ∑ 𝑝𝑠𝐶𝑠𝑖𝑡𝐾𝑡+1
𝑥𝑖𝑡𝐾𝑡+1

−

𝐿𝑡+1

𝐾𝑡+1

𝐿𝑡

𝑖𝑡

𝑆′

𝑠=1

 ∑ 𝑝𝑠𝑦𝑠(𝑁−1)
(1 + 𝑟)−(𝑁−1)

𝑆′

𝑠=1

           (11) 

 

However, in table 45, the sign for 𝑧𝑠𝑡𝑜𝑐 is displayed as minus the value computed 

in equation (11). This means a negative number for 𝑧𝑠𝑡𝑜𝑐  represents the case in which 

besides incurring in MHC and RC, money should be borrowed to relocate the departments 

(negative values for the y variables) and thus 𝑧𝑠𝑡𝑜𝑐 ends being a cost. A positive number for 

𝑧𝑠𝑡𝑜𝑐  indicates that the total amount unused from the allocated budget (positive values for 

the y variables) exceeded the cost incurred in MHC and RC.  

These preliminary experiments indicate that the model is sensitive to 𝐴𝑆𝑡
, the 

available or allocated budget for the relocations occurring between period t and t+1 under 

scenario s. Future work will consider calibrating the model parameters to resemble a 

company setting and to assess the value of the stochastic solution from this SDFLP model 

vs. the one from solving a DFLP.  
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Table 45. Results from Solving the SDFLP - 6 Departments  

Case Problem  −𝑧𝑠𝑡𝑜𝑐 (see equation 11) 

 

High magnitudes for the budget for 

relocations , 𝐴𝑠𝑡 

P1 195,729 

P2 62,813 

P3 34,132 

P4 193,948 

Medium magnitudes for the budget for 

relocations , 𝐴𝑠𝑡 P1 11,938 

Low magnitude for the budget for 

relocations , 𝐴𝑠𝑡 P1 -62,000 
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6. PRACTICAL CASE STUDY 

6.1 Micro Power facility layout problem 

Micro Power Global, a private green energy technology company started in 2008 

and partnered with Texas State University to develop and commercialize a cutting-edge 

solid-state semiconductor which in the Power Mode converts heat directly into electricity 

and in the cooling mode converts electricity directly into refrigeration (MicroPower 

Global; Novoa & Mai, 2013). Texas State University has provided technical expertise, 

facilities and equipment to Micro Power.  

            In 2012, MicroPower starts to relocate its operations to the new STAR park facility 

in San Marcos, TX in preparation for company’s growth. Uncertainty and variability of 

product demands require a flexible facility layout that may involve shifting of some 

departments onto new locations inside the building at certain periods of time or a careful 

decision on the final position of each department if they are not going to be relocated.  

The manufacturing process for the wafers produced by MicroPower is sequential 

and involves 5 production departments in this order: ingot growing, ingot slicing, wafer 

polishing, MBE, and metrology. MicroPower needs a facility layout to accommodate these 

departments. The STAR park facility has been divided into 6 equal rectangular locations 

labeled as shown in Figure 20.  
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Location 1 Location 3

Location 2 Location 4 Location 6

Location 5

 

Figure 20. Numerical labels for the locations in the Micro Power STAR Park 

facility 

Table 46 shows the distances between the locations as labeled and depicted in Figure 

20. A dummy department is added to have an equal number of departments and locations. 

Flows of material (in trips/year) between departments over the next 3 years, based on the 

product demands and material handling systems used, are collected through meetings with 

the managers and presented in Tables 47 and 48. MicroPower has provided also estimates 

for the departments’ relocation costs and they are in Table 49. Given the information 

collected, this problem matches the definition and assumptions in a DFLP problem with 

deterministic but variable material flow.  

Table 46. Distances (in Feet) between Locations  

at the Micro Power Facility 

 

 

 

 

 

 

 

 

                                               

Location\Location 1 2 3 4 5 6 

1 0 32 28 62 56 89 

2 32 0 61 29 88 57 

3 28 61 0 32 27 60 

4 30 29 32 0 59 27 

5 56 88 27 59 0 32 

6 89 57 60 27 32 0 
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Table 47. Flows of Material between Micro Power Departments  

for Year 1 (in Trips/Year)  

 

Departments Ingot  Slicing Polishing MBE Metrology Dummy 

Ingot 

growing 

0 53000 0 0 5300 0 

Slicing 0 0 53000 0 2650 0 

Polishing 0 0 0 53000 2650 0 

MBE 0 0 0 0 5300 0 

Metrology 5300 2650 2650 5300 0 0 

Dummy 0 0 0 0 0 0 

 

Table 48. Flows of Material between Micro Power Departments 

for Year 2 and Year 3 (in Trips/Year) 

 

 

Table 49. Departments Relocation Costs at Micro Power 

 

Department Fixed relocation 

Cost 

Ingot growing 200,000 

Slicing 100,000 

Polishing 250,000 

MBE 1,000,000 

Metrology 200,000 

Dummy 0 

 

6.2. Results 

 

    The two methodologies described in this thesis (PSP and LNM) are tested to assess 

their practical suitability for solving the DFLP faced by MicroPower. Because of the 

relatively small size of this DFLP if modeled as a network problem, (6! = 720 layouts per 

period, a network with 720*3 + 2 = 2162 nodes and (T-1)*(n!*n!) + 2n! = 2*(720*720) + 

Departments Ingot Slicing Polishing MBE Metrology Dummy 

Ingot 

growing 

0 363,000 0 0       36300 0 

Slicing 0 0 363,000 0 18,150 0 

Polishing 0 0 0 363,000 18,150 0 

MBE 0 0 0 0 36,300 0 

Metrology 36,300 18,150 18,150 36,300 0 0 

Dummy 0 0 0 0 0 0 
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2*720 = 1,038,240 arcs), the input to the PSP and LNM models was to include all 720 

layouts or permutations for each year in the networks.  

PSP and LNM methodologies gave the same result. The permutation 4-6-5-3-1-2 is 

the new layout suggested for the MicroPower facility by the two methodologies. It means 

department 4, MBE, must be in location 1, department 6, Dummy, must be in location 2, 

department 5, Metrology, must be in location 3, department 3, Polishing, must be in 

location 4, department 1, Ingot must be in location 5 and department 2, Slicing, must be in 

location 6. The total cost of such solution is $84,982,000. It results from summing the 

material handling costs incurred over the 3 years. No relocation costs are added since no 

department is relocated. Figure 21 presents the final facility layout suggested for 

MicroPower and Figure 22 presents the mirror image of it. The mirror image shows flows 

between departments from left to right and consequently it agrees more with the flow 

concepts suggested in facility layout books.  The LNM implemented in AMPL takes about 

2 seconds to solve this problem and performs 8,576 network simplex iterations. The serial 

SP takes about 0.06 seconds in the CAPI machine. 

 

    Figure 21. New layout suggested for Micro Power after solving with PSP and LNM 

methods 
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        Figure 22. Mirror image for new layout suggested for Micro Power after solving 

with PSP and LNM methods 

It is nice to see that without imposing any additional constraint the ingot growing 

and ingot slicing departments ended as neighbors. In previous works (Novoa & Mai, 2013) 

managers required to allocate both departments in a single location since in reality it is 

highly desirable to have these departments closer. The total cost found in this study cannot 

be directly compared to the one in Novoa & Mai (2013) because in this thesis 5 different 

departments are allocated to 5 locations and in Novoa & Mai (2013) after adding to the 

non-linear model the constraint that ingot growing and ingot slicing must occupy the same 

location the solution has 5 departments allocated to 4 locations.    

It is also nice to see another couple of results that the managers desired: (1) MBE 

(department 4) is closer to polishing (department 3) and metrology (department 5), and (2) 

metrology (department 5) is closer to ingot (department 1), slicing (department 2), 

polishing (department 3) and MBE (department 4). 

    A layout for the departments was randomly generated (permutation 5-1-3-6-2-4) 

and the cost of keeping such layout over the 3-years was computed. This cost is equal to 

162,107,300 and it is significantly higher if compared to the optimal one of $84,982,000 
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(permutation 4-6-5-3-1-2). The random layout doesn’t have ingot close to slicing, MBE is 

relatively close to polishing but not close to metrology, and metrology is located closer to 

polishing and ingot but not closer to MBE and slicing. In this way, the random layout can 

be considered as a very poor one. The difference in costs should be a fair assessment of the 

maximum amount of money that can be saved over 3-years if using optimization techniques 

in facilities planning.  

Also, the cost for one case in which 3 different and sub-optimal layouts are used 

for each year was computed. Such cost ended equal to 132,319,450. In this case, some 

layouts were not as poor as the random one mentioned in the previous paragraph but there 

were unnecessary relocation costs. For this particular problem, relocation costs are very 

high for the MBE department and therefore they should be avoided, if possible. Due to the 

small problem size and the rectangular shape of the facility, it is possible to allocate a 

department that has high flows with multiple departments in a central location and pair of 

departments that have high flows as neighbors.  Such fact turns into the fact that the optimal 

solution ends to be a fixed layout instead of a different one for each year.    
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7. CONCLUSION 

In this research, the dynamic facility layout problem (DFLP) and the stochastic and 

dynamic facility layout problem (SDFLP) have been studied.  Two methodologies for 

solving the DFLP have been compared, Parallel Shortest Path (PSP) solved under a 

slightly modified version of the Dijkstra algorithm and a Linear Network Model (LNM) 

solved in AMPL. In the first phase of this study, solutions are obtained without filtering 

the permutations to include in the network.  The efficiency of the proposed 

methodologies/algorithms is analyzed. This phase is called the non-sorting variant. Later, 

in the second phase the proposed methodologies are analyzed by filtering out the layouts 

with the best material handling cost in each year. The methodologies are contrasted in terms 

of cost of the solutions and computational time. This second phase is called the sorting 

variant. Both methodologies prove to be efficient and relatively simple to develop if 

compared to other heuristic algorithms previously published by other authors. They have 

also acceptable percentages of accuracy. 

 For the non-sorting variant, this thesis performed the experimental work on the 

PSP implementation developed by Kolla, (2015) by including a very large number of 

randomly selected layouts (85,000) to get the best quality results and perform comparisons 

to methodologies from previous authors. In this study, the sorting variant compared well 

to other previous works by generating 400,000 layouts and filtering the 50,000 with the 

best material handling cost in the PSP methodology and by generating 85,000 layouts and 

filtering the 2,000 ones with the best material handling cost in the LNM methodology. 

This thesis proposed a new model for solving the SDFLP and demonstrated that the 

problem can be solved with a model that is an extension of the LNM used for the DFLP. 
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Problems with 6 departments and 5-time periods were solved with AMPL. Future research 

includes to extend the experimentation to see up to what problem sizes are possible to solve 

with the proposed methodology and to assess the value of the stochastic solution. SDFLP 

is a more realistic problem arising if considering that product demands (and consequently 

flows of material between departments) and relocation costs are not known with certainty 

but only through probability distributions. 

 This research proves to be the first one in solving models for both DFLP for 

6,12,15 and 30 departments and SDFLP with budget constraints and 6 departments using 

a linear model and solving directly with an operations research software such as AMPL. It 

was rewarding to discover that AMPL was able to solve those problems using the network 

simplex algorithm. By using AMPL this work demonstrated that is possible to include up 

to 2000 layouts per period in the network. This number is a significant improvement if 

compared to the numbers reported for the DFLP in Balakrishnan & Jacobs (1992). These 

authors are the only ones researching previously on the Linear Network Model approach. 

They considered two settings, one with 50 layouts per period (small) and the other one with 

100 layouts (large) per period.  

The computational time reported by AMPL/CPLEX on solving the instances 

studied evidences that the software is efficient in solving these NP-Hard problems. A 

computer with more memory could be able to solve the DFLP and SDFLP problems with 

a larger number of layouts and to possibly get improvements in the costs.  

The two methodologies for solving the DFLP can be used in industry. The LNM 

may be simpler to understand and perform to a supply chain/logistics practitioner than the 

PSP. LNM is relatively accurate and useful for those companies not in search of the very 
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optimal solution but just a good solution or a solution that is better to the current 

implemented one, and efficient in terms of computational time. However, LNM relies on 

running separately a C program to compute the some of the model input parameters (total 

costs equal to the sum of material handling cost and relocation costs) and to prepare the 

very large data file needed to run the model.  On the other hand, the PSP is a single C 

program that can be used by a practitioner as a black box once he/she is trained on running 

the parallelized code on a parallel environment with OpenMP capabilities. Finally, the 

comparison of the methods studied in this thesis was not entirely straightforward since the 

PSP has been parallelized in the non-sorting variant and the LNM has been limited on the 

number of layouts to include because of computer memory constraints. Both methods were 

put in the best conditions they can work to identify their solution quality vs. other methods 

reported in the literature. 

From a practical perspective, achieving cost reductions that considerably 

outperformed other methods in 67 and 62 cases by a percentage between 1-4 % is a result 

having a substantial value. This is because the 1-4% cost improvements for the problems 

studied (6,15 and 30 department’s) will positively impact a company budget by freeing a 

significant amount of money that can be saved or re-allocated to cover other operational 

costs. From the research point of view, for this NP-hard problem authors have used various 

methodologies to achieve reduction in cost however for most of the problems no one knows 

the exact lowest cost but it is of high interest for the research community to know which 

algorithms are the best performers for the particular instances and which ones do it 

efficiently. Notoriously, we believe that most of the prior solution approaches have used 

more complex algorithms to explore the search space to find the minimum cost for the 
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instances studied. Hence, it is of great value for a company that is considering to implement 

PSP and LNM to setup their layout to have a not too complex algorithm available that has 

been contrasted to previous works and it produces good results in terms of costs.  

This work helps supply chains to cut operational costs such as material handling 

and relocation cost. It helps to prioritize relocation of departments each year considering 

demand forecasts, new products, unexpected disasters, changes in machinery, geography 

or other issues. The places for applying the proposed methodologies are wide (warehouses, 

distribution centers, manufacturing plants, telecommunication and healthcare companies, 

and disaster relief supply chains among others). Future research will extend these models 

and research on methodologies to solve larger instances of the DFLP and SDFLP. The 

SDFLP is a facility layout problem where literature is scarce, especially efficient and good 

quality solution methods. 
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APPENDIX 

APPENDIX A: Table 50: Summary of Literature Reviewed on DFLP 

DFLP 

Heuristics and Approximate Dynamic 

Programing 
Metaheuristics 

Author Approach Author Approach 

Urban (1998) 

GRASP and 

Initialized 

Multi Greedy 

Algorithms 

compared to 

DP 

Conway and 

Venkataramanan 

(1994) 
Evolutionary 

Algorithms - 

Genetic 

Algorithms 

(GA) 

Conway and 

Venkataramanan 

(1994) 

Balakrishnan 

and Cheng 

(2000) 

DFLP 

Heuristics and Approximate Dynamic 

Programing 
Metaheuristics 

Author Approach Author Approach 

Lacksonen and 

Enscore (1993) 

Several exact 

methods 

(approximate 

for large 

instances) 

including DP 

Kaku and 

Mazzola (1997) 

Tabu Search 

(TS) 

DFLP 

Heuristics and Approximate Dynamic 

Programing 
Metaheuristics 

Author Approach Author Approach 

Balakrishnan & Cheng 

(2009) 

CRAFT, 

Urban 

heuristic, DP 

and 

backward 

pass 

algorithm 

Baykasoglu and 

Gindy (2001) 

Moslemipour & 

Lee (2012) 

Simulated 

Annealing 

(SA) 

  

Baykasoglu et 

al. (2006) 
Ant Systems 
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Table 50 (Continued)                       DFLP 

Exact Hybrid 

Author Approach Author Approach 

Rosenblatt (1986) 

Dynamic 

Programming 

(DP) 

Balakrishnan 

et al. (2003) 

Balakrishnan 

and Cheng 

(2006) 

DP and GA 

DFLP 

Exact Hybrid 

Author Approach Author Approach 

Balakrishnan et 

al. (1992) 

Linear 

programming 

to solve a 

network 

model using 

a specialized 

primal 

shortest-path 

simplex 

algorithm 

(LP) 

McKendall and 

Shang (2006) 

Ant Systems 

and 

Simulated 

Annealing 

DFLP     

Exact     

Author Approach     

Urban (1998) 

Exact 

Dynamic 

Programming 

(DP) small 

instances 
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APPENDIX B: Table 51: Summary of Literature Reviewed on SDFLP 

 

SDFLP 

Heuristics Metaheuristics Exact 

Author Approach Author Approach Author Approach 

 

Benjaafar 

and 

Sheikhzade

h (1997) 

 

CRAFT 

 

Vitayasa

k et al. 

(2017) 

 

Genetic 

Algorithm(G

A) and 

Backtracking 

Search 

Algorithm 

(BSA) 

 

 

Palekar et 

al. (1992) 

 

 

Dynamic 

Program

ming 

(DP) 

  Krishnan 

et al. 

(2008) 

Generic 

Algorithm 

(GA) 

  

  Tayal et 

al. (2016) 

 

Tayal et 

al. (2018) 

Simulated 

Annealing 

(SA) and 

Chaotic 

Simulated 

Annealing 

(CSA) 
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APPENDIX C: Table 52: AMPL Model File for DFLP without Budget 

set Layouts; 

set Arcs within (Layouts cross Layouts); 

param supply {Layouts} >= 0; # amounts available at Layouts 

param demand {Layouts} >= 0; # amounts required at Layouts 

check: sum {i in Layouts} supply[i] = sum {j in Layouts} demand[j]; 

param cost {Arcs} >= 0;  

param capacity {Arcs} >= 0; # max packages that can be shipped 

minimize Total_Cost; 

node Balance {k in Layouts}: net_in = demand[k] - supply[k]; 

arc Ship {(i,j) in Arcs} >= 0, <= capacity[i,j], 

from Balance[i], to Balance[j], obj Total_Cost cost[i,j]; 

 

APPENDIX D: Table 53: AMPL Data File for DFLP without Budget 

set Layouts := 0 1 2 3 4 5 6 7 8 9…..721; 

set Arcs :=  

( 0 , 1 ) 

( 0 , 2 ) 

( 0 , 3 ) 

. 

. 

( 719 , 721 ) 

( 720 , 721 ); 

param supply default 0 := 0 1; 

param demand default 0 := 721 1; 

param: cost capacity := 

0 1 0 800 

0 2 0 800 

0 3 0 800 

. 

. 

720 721 14401 800; 
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APPENDIX E: Table 54: AMPL Model File for DFLP with Budget 

set Layouts; 

set Arcs within (Layouts cross Layouts); 

param supply {Layouts} >= 0; # amounts available at Layouts 

param demand {Layouts} >= 0; # amounts required at Layouts 

check: sum {i in Layouts} supply[i] = sum {j in Layouts} demand[j]; 

param cost {Arcs} >= 0; 

param capacity {Arcs} >= 0; # max units that can be shipped 

param RC {Arcs} >= 0; 

param budget >= 0; 

minimize Total_Cost; 

node Balance {k in Layouts}: net_in = demand[k] - supply[k]; 

arc Ship {(i,j) in Arcs} >= 0, <= capacity[i,j], from Balance[i], to Balance[j], obj 

Total_Cost cost[i,j]; 

subject to BC:  sum {(i,k) in Arcs} RC[i,k]*Ship[i,k] <= budget; 

 

APPENDIX F: Table 55: AMPL Data File for DFLP with Budget 

set Layouts := 0 1 2 3 4 5 6 7 8……………..721; 

set Arcs :=  

( 0 , 1 ) 

( 0 , 2 ) 

. 

. 

. 

( 719 , 721 ) 

( 720 , 721 ); 

param supply default 0 := 0 1; 

param demand default 0 := 721 1; 

param budget := 3600; 

param: cost capacity RC := 

0 1 0 800 900 

0 2 0 800 900 

. 

. 

. 

719 721 14401 800 900 

720 721 14401 800 900; 
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APPENDIX G: Table 56: AMPL Model file for SDFLP with Budget 

set scenarios; 

set years; 

set yearminus1; 

set Layouts; 

set Layouts1; 

set Layouts2; 

set Layouts3; 

set Layouts4; 

set Layouts5; 

 

param start in Layouts; 

param end in Layouts, <> start; 

 

set Arcs within (Layouts diff {end}) cross (Layouts diff {start}); 

set Arcs1 within (Layouts1 diff {end}) cross (Layouts2 diff {start});  

set Arcs2 within (Layouts2 diff {end}) cross (Layouts3 diff {start}); 

set Arcs3 within (Layouts3 diff {end}) cross (Layouts4 diff {start}); 

set Arcs4 within (Layouts4 diff {end}) cross (Layouts5 diff {start}); 

 

param supply {Layouts} >= 0; # amounts of imaginary unit available at the 

nodes or Layouts. Only dummy supply node sends a unit 

param demand {Layouts} >= 0; # amounts of imaginary unit required by the 

nodes or Layouts. Only destination node demands a unit 

param numscen; 

param probscen {scenarios}; 

param cost {Arcs, scenarios} >= 0; # Material handling cost C plus relocation 

costs 

param capacity {Arcs} >= 0; # nodes (layouts) have infinite capacity to transfer 

the single "fictitious" unit passing in the network 

param RC {Arcs, scenarios} >= 0; # Relocation cost from one layout at period t 

to another layout at period t+1 

param budget_avail {scenarios, years} >= 0; # Budget allocated to relocations 

that varies by scenario and year; A in our model 

param interest; # interest rate used as discount in the objective function 

 

var Ship {(i,j) in Arcs} >= 0;   # X's in our model in the thesis 

var Remaining{scenarios, years};    # Y in our model in the thesis 

var total_avail{scenarios,years};   # B in our model in the thesis 

 

minimize Total_Cost: sum {(i,j) in Arcs, s in scenarios} 

probscen[s]*cost[i,j,s]*Ship[i,j] - sum{s in scenarios} 

probscen[s]*Remaining[s,4]*(1 + interest)^(-4); 

# 4 is to represent the previous to last year  
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Table 56. (Continued)  

 

subject to Start: sum {(start, j) in Arcs} Ship[start,j] = 1; 

subject to Balance {k in Layouts diff {start, end}}:  

sum {(i,k) in Arcs} Ship[i,k] = sum {(k,j) in Arcs} Ship[k,j];  

 

subject to Rem1to2 {s in scenarios}: sum {(i,k) in Arcs1 } RC[i,k,s]*Ship[i,k] 

+ Remaining[s,1] = total_avail[s,1]; 

subject to Rem2to3 {s in scenarios}: sum {(i,k) in Arcs2 } RC[i,k,s]*Ship[i,k] 

+ Remaining[s,2] = total_avail[s,2]; 

subject to Rem3to4 {s in scenarios}: sum {(i,k) in Arcs3 } RC[i,k,s]*Ship[i,k] 

+ Remaining[s,3] = total_avail[s,3]; 

subject to Rem4to5 {s in scenarios}: sum {(i,k) in Arcs4 } RC[i,k,s]*Ship[i,k] 

+ Remaining[s,4] = total_avail[s,4]; 

 

subject to Tie1to2 {s in scenarios}: budget_avail[s,1]  = total_avail[s,1]; 

subject to Tie2to3 {s in scenarios}: budget_avail[s,2] + 

Remaining[s,1]*(1+interest) = total_avail[s,2]; 

subject to Tie3to4 {s in scenarios}: budget_avail[s,3] + 

Remaining[s,2]*(1+interest) = total_avail[s,3]; 

subject to Tie4to5 {s in scenarios}: budget_avail[s,4] + 

Remaining[s,3]*(1+interest) = total_avail[s,4]; 
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APPENDIX H: Table 57: AMPL Data File for SDFLP with Budget 

set Layouts := 0 1 2 3 4 5 6 7 8..............................721; 

set Layouts1 := 1 2 3 4 5 6 7 8.................144; 

set Layouts3 := 289 290 291 292 293 294 295 296...............432; 

set Layouts4 := 433 434 435 436 437 438 439 440...............576; 

set Layouts5 := 577 578 579 580 581 582 583 584...............720; 

set years := 1 2 3 4 5; 

set scenarios := 1 2 3; 

set yearminus1 := 1 2 3 4; 

set Arcs := 

( 0 , 1 ) 

( 0 , 2 ) 

. 

. 

. 

( 719 , 721 ) 

( 720 , 721 ); 

set Arcs1 := 

( 1 , 145 ) 

( 1 , 146 ) 

. 

. 

. 

set Arcs2 := 

( 145 , 289 ) 

( 145 , 290 ) 

. 

. 

. 

( 288 , 431 ) 

( 288 , 432 ); 

set Arcs3 := 

( 289 , 433 ) 

( 289 , 434 ) 

. 

. 

. 

( 432 , 575 ) 

( 432 , 576 ); 

set Arcs4 := 

( 433 , 577 ) 

( 433 , 578 ) 

. 

. 
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 Table 57. (Continued) 

. 

( 576 , 719 ) 

( 576 , 720 ); 

param start := 0; 

param end := 721; 

param supply default 0 := 0 1; 

param demand default 0 := 721 1; 

param numscen := 3; 

param probscen := 1 0.3 2 0.5 3 0.2; 

param budget_avail : 

    1   2    3    4   5 := 

1 22200 23000 23500 24000 25000 

2 35000 35500 36000 36500 37500 

3 45000 45500 46000 46500 46500; 

param interest := 0.04; 

param   cost:  1  2  3  := 

0 1 12900 13700 14500 

0 2 12900 13700 14500 

. 

. 

. 

719 721 12900 13700 14500 

720 721 12900 13700 14500; 

param capacity := 

0 1 800 

0 2 800 

. 

. 

. 

719 721 800 

720 721 800; 

param RC:  1  2  3 := 

0 1 500 525 550 

0 2 500 525 550 

. 

. 

. 

719 721 500 525 550 

720 721 500 525 550; 
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APPENDIX I: Samples of best solutions found for the PSP algorithm developed by 

Chandra Kolla (2015) and the LNM coded in AMPL by Gowtham Balachandran -  no-

sorting 

 

 

 

 

Optimal path: Total_Cost = 106419 CPLEX 12.6.1.0: optimal solution; objective 106419

1 2 4 5 3 6 8 24972 network simplex iterations.

1 2 4 5 3 6 728 Runtime in seconds: 0 simplex iterations (0 in phase I)

1 2 4 5 3 6 1448 _ampl_user_time = 5.23438 Run time for solving the problem = 3.843750 seconds

1 2 4 5 3 6 2168

1 2 4 5 3 6 2888 Ship :=

0    672    1 6 3 5 4 2 1

Cost: 106419 672  1392   1 6 3 5 4 2 1

1392 2112   1 6 3 5 4 2 1

real    0m0.866s 2112 2832   1 6 3 5 4 2 1

user    0m1.350s 2832 3552   1 6 3 5 4 2 1

sys     0m0.051s 3552 3601   1 6 3 5 4 2 1

Chandra Parallel Algorithm Balachandran Network Model - AMPL

6 Department 1st problem 1st Run

Optimal path: Total_Cost = 106419 CPLEX 12.6.1.0: optimal solution; objective 106419

1 2 4 5 3 6 8 24972 network simplex iterations.

1 2 4 5 3 6 728 Runtime in seconds: 0 simplex iterations (0 in phase I)

1 2 4 5 3 6 1448 _ampl_user_time = 4.98438 Run time for solving the problem = 3.625000 seconds

1 2 4 5 3 6 2168

1 2 4 5 3 6 2888 Ship :=

0    672    1 6 3 5 4 2 1

Cost: 106419 672  1392   1 6 3 5 4 2 1

1392 2112   1 6 3 5 4 2 1

real    0m1.194s 2112 2832   1 6 3 5 4 2 1

user    0m1.363s 2832 3552   1 6 3 5 4 2 1

sys     0m0.057s 3552 3601   1 6 3 5 4 2 1

Chandra Parallel  Algorithm Balachandran Network Model-AMPL

6 departments 1st problem 2nd Run

Optimal path: Total_Cost = 106419 CPLEX 12.6.1.0: optimal solution; objective 106419

1 2 4 5 3 6 8 24972 network simplex iterations.

1 2 4 5 3 6 728 Runtime in seconds: 0 simplex iterations (0 in phase I)

1 2 4 5 3 6 1448 _ampl_user_time = 4.95312 Run time for solving the problem = 3.609375 seconds

1 2 4 5 3 6 2168

1 2 4 5 3 6 2888 Ship :=

0    672    1 6 3 5 4 2 1

Cost: 106419 672  1392   1 6 3 5 4 2 1

1392 2112   1 6 3 5 4 2 1

real    0m0.994s 2112 2832   1 6 3 5 4 2 1

user    0m1.358s 2832 3552   1 6 3 5 4 2 1

sys     0m0.051s 3552 3601   1 6 3 5 4 2 1

Balachandran Network Model - AMPLChandra Parallel Algorithm

6 Departments 1st problem 3rd Run
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Optimal path: Total_Cost = 106419 CPLEX 12.6.1.0: optimal solution; objective 106419

1 2 4 5 3 6 8 24972 network simplex iterations.

1 2 4 5 3 6 728 Runtime in seconds: 0 simplex iterations (0 in phase I)

1 2 4 5 3 6 1448 _ampl_user_time = 5.03125 Run time for solving the problem = 3.671875 seconds

1 2 4 5 3 6 2168

1 2 4 5 3 6 2888 Ship :=

0    672    1 6 3 5 4 2 1

Cost: 106419 672  1392   1 6 3 5 4 2 1

1392 2112   1 6 3 5 4 2 1

real    0m0.978s 2112 2832   1 6 3 5 4 2 1

user    0m1.367s 2832 3552   1 6 3 5 4 2 1

sys     0m0.045s 3552 3601   1 6 3 5 4 2 1

Chandra Parallel Algorithm Balachandran Network Model - AMPL

6 Departments 1st Problem 4th Run

Optimal path: Total_Cost = 106419 CPLEX 12.6.1.0: optimal solution; objective 106419

1 2 4 5 3 6 8 24972 network simplex iterations.

1 2 4 5 3 6 728 Runtime in seconds: 0 simplex iterations (0 in phase I)

1 2 4 5 3 6 1448 _ampl_user_time = 5.0625 Run time for solving the problem = 3.687500 seconds

1 2 4 5 3 6 2168

1 2 4 5 3 6 2888 Ship :=

0    672    1 6 3 5 4 2 1

Cost: 106419 672  1392   1 6 3 5 4 2 1

1392 2112   1 6 3 5 4 2 1

real    0m1.111s 2112 2832   1 6 3 5 4 2 1

user    0m1.340s 2832 3552   1 6 3 5 4 2 1

sys     0m0.056s 3552 3601   1 6 3 5 4 2 1

Balachandran Network Model - AMPLChandra Parallel Algorithm

6 Departments 1st Problem 5th Run

Optimal path: Total_Cost = 1501490 CPLEX 12.6.1.0: optimal solution; objective 1501492

3 10 2 4 7 6 1 12 8 11 5 9 67930 132639 network simplex iterations.

3 10 2 4 7 6 1 12 8 11 5 9 152930 Runtime in seconds: 0 simplex iterations (0 in phase I)

3 10 2 4 7 6 1 12 8 11 5 9 237930 _ampl_user_time = 65.6562 Run time for solving the problem = 50.250000 seconds

3 10 2 4 7 6 1 12 8 11 5 9 322930

3 10 2 4 7 6 1 12 8 11 5 9 407930 Ship :=

0    1262    1 9 3 10 11 12 8 1 4 6 2 7 5 

Cost: 1273487 1262 3262    1 9 3 10 11 12 8 1 4 6 2 7 5 

3262 5262    1 9 3 10 11 12 8 1 4 6 2 7 5 

real    1m34.856s 5262 7262    1 9 3 10 11 12 8 1 4 6 2 7 5 

user    7m6.958s 7262 9262    1 9 3 10 11 12 8 1 4 6 2 7 5 

sys     0m16.259s 9262 10001   1 9 3 10 11 12 8 1 4 6 2 7 5 

Chandra Parallel Algorithm Balachandran Linear Netork Model - AMPL

12 Departments 1st Problem 1st Run

Optimal path: Total_Cost = 1501180 CPLEX 12.6.1.0: optimal solution; objective 1501176

8 1 12 11 10 3 5 9 2 6 7 4 43277 96542 network simplex iterations.

8 1 12 11 10 3 5 9 2 6 7 4 128277 Runtime in seconds: 0 simplex iterations (0 in phase I)

8 1 12 11 10 3 5 9 2 6 7 4 213277 _ampl_user_time = 68.2656 Run time for solving the problem = 53.125000 seconds

8 1 12 11 10 3 5 9 2 6 7 4 298277

8 1 12 11 10 3 5 9 2 6 7 4 383277 Ship :=

0    359     1 5 11 10 9 7 4 2 6 3 1 8 12 

Cost: 1252704 359  2359    1 5 11 10 9 7 4 2 6 3 1 8 12 

2359 4359    1 5 11 10 9 7 4 2 6 3 1 8 12 

real    1m37.205s 4359 6359    1 5 11 10 9 7 4 2 6 3 1 8 12 

user    7m10.625s 6359 8359    1 5 11 10 9 7 4 2 6 3 1 8 12 

sys     0m15.760s 8359 10001   1 5 11 10 9 7 4 2 6 3 1 8 12 

12 Departments 1st Problem 2nd Run

Chandra Prallel Algorithm Balachandran Linear Network Model - AMPL
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Optimal path: Total_Cost = 1418920 CPLEX 12.6.1.0: optimal solution; objective 1418924

11 8 12 1 6 2 4 7 5 3 10 9 77578 86114 network simplex iterations.

11 8 12 1 6 2 4 7 5 3 10 9 162578 Runtime in seconds: 0 simplex iterations (0 in phase I)

11 8 12 1 6 2 4 7 5 3 10 9 247578 _ampl_user_time = 65.8125 Run time for solving the problem = 50.640625 seconds

11 8 12 1 6 2 4 7 5 3 10 9 332578

11 8 12 1 6 2 4 7 5 3 10 9 417578 Ship :=

0    1462    1 10 6 7 12 1 4 2 8 11 9 5 3 

Cost: 1278564 1462 3462    1 10 6 7 12 1 4 2 8 11 9 5 3 

3462 5462    1 10 6 7 12 1 4 2 8 11 9 5 3 

real    1m35.907s 5462 7462    1 10 6 7 12 1 4 2 8 11 9 5 3 

user    7m6.441s 7462 9462    1 10 6 7 12 1 4 2 8 11 9 5 3 

sys     0m15.719s 9462 10001   1 10 6 7 12 1 4 2 8 11 9 5 3 

Chandra Parallel Algorithm Balachandran Linear Network Model -AMPL

12 Departments 1st Problem 3rd Run

Optimal path: Total_Cost = 1455610 CPLEX 12.6.1.0: optimal solution; objective 1455606

11 3 10 8 12 1 4 7 2 6 9 5 13295 74458 network simplex iterations.

11 3 10 8 12 1 4 7 2 6 9 5 98295 Runtime in seconds: 0 simplex iterations (0 in phase I)

11 3 10 8 12 1 4 7 2 6 9 5 183295 _ampl_user_time = 59.8438 Run time for solving the problem = 45.984375 seconds

12 8 1 11 2 4 7 6 10 9 3 5 339132

12 8 1 11 2 4 7 6 10 9 3 5 424132 Ship :=

0    542     1 5 6 9 3 7 12 11 4 8 1 10 2

Cost: 1278994 542  2542    1 5 6 9 3 7 12 11 4 8 1 10 2

2542 4542    1 5 6 9 3 7 12 11 4 8 1 10 2

real    1m39.069s 4542 6542    1 5 6 9 3 7 12 11 4 8 1 10 2

user    7m9.074s 6542 8542    1 5 6 9 3 7 12 11 4 8 1 10 2

sys     0m15.647s 8542 10001   1 5 6 9 3 7 12 11 4 8 1 10 2

Chandra Parallel Algorithm Balachandran Linear Network Model -AMPL

12 Departments 1st Problem 4th Run

Optimal path: Total_Cost = 1350250 CPLEX 12.6.1.0: optimal solution; objective 1350247

1 12 4 7 2 6 11 9 10 5 3 8 56219 71258 network simplex iterations.

6 7 4 2 1 8 12 11 10 3 9 5 95807 Runtime in seconds: 0 simplex iterations (0 in phase I)

6 7 4 2 1 8 12 11 10 3 9 5 180807 _ampl_user_time = 63.2656 Run time for solving the problem = 48.406250 seconds

6 7 4 2 1 8 12 11 10 3 9 5 265807

6 7 4 2 1 8 12 11 10 3 9 5 350807 Ship :=

0    1833    1 11 5 9 10 3 8 1 12 6 2 4 7 

Cost: 1259654 1833 3833    1 11 5 9 10 3 8 1 12 6 2 4 7 

3833 5833    1 11 5 9 10 3 8 1 12 6 2 4 7 

real    1m35.490s 5833 7833    1 11 5 9 10 3 8 1 12 6 2 4 7 

user    7m6.870s 7833 9833    1 11 5 9 10 3 8 1 12 6 2 4 7 

sys     0m15.799s 9833 10001   1 11 5 9 10 3 8 1 12 6 2 4 7 

Chandra Parallel Algorithm Balachandran Linear Network Model -AMPL

12th Departments 1st Problem 5th Run

Optimal path: Total_Cost = 509933 CPLEX 12.6.1.0: optimal solution; objective 509933

7 14 13 10 2 5 8 15 11 3 4 1 12 9 6 73341 97397 network simplex iterations.

12 15 6 14 11 2 8 10 9 4 3 1 7 5 13 152011 Runtime in seconds: 0 simplex iterations (0 in phase I)

12 15 6 14 11 2 8 10 9 4 3 1 7 5 13 237011 _ampl_user_time = 61.2344 Run time for solving the problem = 46.640625 seconds

12 15 6 14 11 2 8 10 9 4 3 1 7 5 13 322011

11 15 12 3 9 8 1 2 14 4 6 10 7 5 13 376680 Ship :=

0    906     1 4 9 12 2 3 5 15 13 11 1 7 8 14 6 10

Cost: 502383 906  3217    1 4 9 12 2 3 5 15 13 11 1 7 8 14 6 10

3217 5217    1 4 8 9 14 3 15 6 10 7 5 11 2 12 1 13 

real    6m35.699s 5217 7217    1 4 8 9 14 3 15 6 10 7 5 11 2 12 1 13 

user    37m53.374s 7217 9583    1 11 3 10 8 9 4 2 5 7 13 15 14 12 1 6

sys     0m39.218s 9583 10001   1 11 3 10 8 9 4 2 5 7 13 15 14 12 1 6

Chandra Parallel Algorithm Balachandran Linear Network Model - AMPL

15 Departments 1st Problem 1st Run
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Optimal path: Total_Cost = 511825 CPLEX 12.6.1.0: optimal solution; objective 511825

10 6 4 15 7 5 12 13 11 3 1 2 8 14 9 29109 100476 network simplex iterations.

3 12 6 1 4 11 9 10 8 15 5 2 7 14 13 147348 Runtime in seconds: 0 simplex iterations (0 in phase I)

3 12 6 1 4 11 9 10 8 15 5 2 7 14 13 232348 _ampl_user_time = 64.1562 Run time for solving the problem = 50.296875 seconds

3 12 6 1 4 11 9 10 8 15 5 2 7 14 13 317348

6 15 10 1 8 11 5 2 12 13 7 14 3 4 9 405874 Ship :=

0    95      1 3 5 13 10 6 4 14 12 9 8 2 15 7 11 1

Cost: 503061 95   3047    1 3 1 9 15 13 6 14 4 12 10 11 5 8 2 7

3047 5047    1 3 1 9 15 13 6 14 4 12 10 11 5 8 2 7

real    6m35.653s 5047 7047    1 3 1 9 15 13 6 14 4 12 10 11 5 8 2 7

user    37m43.889s 7047 9719    1 3 1 9 15 13 6 14 4 12 10 11 5 8 2 7

sys     0m37.575s 9719 10001   1 6 9 14 12 15 8 5 2 13 11 4 1 7 10 3 

Chandra Parallel Algorithm Balachandran Linear Network Model - AMPL

15 Departments 1st Problem 2nd Run

Optimal path: Total_Cost = 512736 CPLEX 12.6.1.0: optimal solution; objective 512736

7 9 6 12 2 5 11 15 13 4 1 8 3 14 10 24467 111902 network simplex iterations.

13 3 1 15 2 12 10 8 6 4 11 9 7 5 14 95963 Runtime in seconds: 0 dual simplex iterations (0 in phase I)

13 3 1 15 2 12 10 8 6 4 11 9 7 5 14 180963 _ampl_user_time = 75.5825 Run time for solving the problem = 54.257148 seconds

13 3 1 15 2 12 10 8 6 4 11 9 7 5 14 265963

10 1 6 15 8 12 4 2 5 7 11 9 3 14 13 410389 Ship :=

0    801     1 7 15 8 6 3 4 11 13 12 9 5 10 14 1 2

Cost: 501022 801  2376    1 7 15 8 6 3 4 11 13 12 9 5 10 14 1 2

2376 4376    1 4 14 8 2 13 12 7 6 9 1 11 5 3 10 15 

real    6m37.249s 4376 6376    1 4 14 8 2 13 12 7 6 9 1 11 5 3 10 15 

user    37m53.206s 6376 8858    1 4 14 8 2 13 12 7 6 9 1 11 5 3 10 15 

sys     0m37.469s 8858 10001   1 8 11 5 4 9 7 1 6 2 10 12 13 3 14 15

Balachandran Linear Network Model -AMPLChandra Parallel Algorithm

15 Departments 1st Problem 3rd Run

Optimal path: Total_Cost = 511302 CPLEX 12.6.1.0: optimal solution; objective 511302

4 8 15 3 2 7 11 13 14 5 6 9 12 10 1 11525 101290 network simplex iterations.

4 5 6 10 15 13 9 8 7 1 11 12 2 14 3 107614 Runtime in seconds: 0 simplex iterations (0 in phase I)

4 5 6 10 15 13 9 8 7 1 11 12 2 14 3 192614 _ampl_user_time = 61.375 Run time for solving the problem = 47.046875 seconds

4 5 6 10 15 13 9 8 7 1 11 12 2 14 3 277614

10 14 6 4 9 15 5 2 3 13 7 12 1 11 8 419001 Ship :=

0    1376    1 10 4 6 2 1 12 13 15 9 3 5 14 11 8 7

Cost: 501945 1376 3821    1 10 4 6 2 1 12 13 15 9 3 5 14 11 8 7

3821 5821    1 3 5 7 2 11 12 6 10 9 1 4 14 13 8 15

real    6m38.987s 5821 7821    1 3 5 7 2 11 12 6 10 9 1 4 14 13 8 15

user    38m10.021s 7821 9141    1 3 5 7 2 11 12 6 10 9 1 4 14 13 8 15

sys     0m37.777s 9141 10001   1 7 5 15 8 11 14 2 3 13 4 6 10 12 1 9

Chandra Parallel Algorithm Balachandran Linear Network Model - AMPL

15 Departments 1st Problem 4th Run

Optimal path: Total_Cost = 509640

9 11 6 3 10 8 12 15 13 7 4 5 14 1 2 2458 CPLEX 12.6.1.0: optimal solution; objective 509640

14 4 6 3 12 5 9 10 7 11 13 1 8 15 2 150014 Runtime in seconds: 90641 network simplex iterations.

14 4 6 3 12 5 9 10 7 11 13 1 8 15 2 235014 _ampl_user_time = 60.9219 0 simplex iterations (0 in phase I)

14 4 6 3 12 5 9 10 7 11 13 1 8 15 2 320014 Run time for solving the problem = 46.015625 seconds

9 4 5 12 8 13 3 2 1 6 11 10 14 15 7 414740 Ship :=

0    1583    1 1 5 13 2 4 6 11 12 15 8 7 9 14 10 3

Cost: 499324 1583 3742    1 1 5 13 2 4 6 11 12 15 8 7 9 14 10 3

3742 5742    1 11 1 15 2 12 4 7 8 6 3 5 10 9 14 13

real    6m34.729s 5742 7742    1 11 1 15 2 12 4 7 8 6 3 5 10 9 14 13

user    37m42.764s 7742 9543    1 11 1 15 2 12 4 7 8 6 3 5 10 9 14 13

sys     0m37.746s 9543 10001   1 7 5 14 6 11 9 3 2 12 4 13 10 1 15 8

Chandra Parallel Algorithm Balachandran Linear Network Model -AMPL

15 Departments 1st Problem 5th Run
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Optimal path:

1 5 18 24 14 27 11 6 23 29 26 10 12 16 22 3 28 17 30 15 13 25 21 7 20 8 9 19 2 4 58000

1 5 18 24 14 27 11 6 23 29 26 10 12 16 22 3 28 17 30 15 13 25 21 7 20 8 9 19 2 4 143000

1 5 18 24 14 27 11 6 23 29 26 10 12 16 22 3 28 17 30 15 13 25 21 7 20 8 9 19 2 4 228000

1 5 18 24 14 27 11 6 23 29 26 10 12 16 22 3 28 17 30 15 13 25 21 7 20 8 9 19 2 4 313000

1 5 18 24 14 27 11 6 23 29 26 10 12 16 22 3 28 17 30 15 13 25 21 7 20 8 9 19 2 4 398000

Cost: 601677

real    7m35.407s

user    42m12.088s

sys     0m40.262s

Total_Cost = 610863 CPLEX 12.6.1.0: optimal solution; objective 610863

65260 network simplex iterations.

Runtime in seconds: 0 simplex iterations (0 in phase I)

_ampl_user_time = 62.1719 Run time for solving the problem = 47.437500 seconds

Ship :=

0    1521    1  1 7 30 13 28 9 19 16 29 11 18 8 4 21 24 17 15 2 14 20 25 22 12 10 26 27 6 23 5 3 

1521 3521    1  1 7 30 13 28 9 19 16 29 11 18 8 4 21 24 17 15 2 14 20 25 22 12 10 26 27 6 23 5 3 

3521 5521    1  1 7 30 13 28 9 19 16 29 11 18 8 4 21 24 17 15 2 14 20 25 22 12 10 26 27 6 23 5 3 

5521 7521    1  1 7 30 13 28 9 19 16 29 11 18 8 4 21 24 17 15 2 14 20 25 22 12 10 26 27 6 23 5 3 

7521 9521    1  1 7 30 13 28 9 19 16 29 11 18 8 4 21 24 17 15 2 14 20 25 22 12 10 26 27 6 23 5 3 

9521 10001   1  1 7 30 13 28 9 19 16 29 11 18 8 4 21 24 17 15 2 14 20 25 22 12 10 26 27 6 23 5 3 

Balachandran Linear Network Model -AMPL

30 Departments 1st Problem 1st Run

Chandra Parallel Algorithm

Optimal path:

7 16 22 2 24 18 1 28 15 30 20 5 10 13 29 17 25 12 9 21 23 14 6 8 4 3 11 26 19 27 18893

7 16 22 2 24 18 1 28 15 30 20 5 10 13 29 17 25 12 9 21 23 14 6 8 4 3 11 26 19 27 103893

7 16 22 2 24 18 1 28 15 30 20 5 10 13 29 17 25 12 9 21 23 14 6 8 4 3 11 26 19 27 188893

7 16 22 2 24 18 1 28 15 30 20 5 10 13 29 17 25 12 9 21 23 14 6 8 4 3 11 26 19 27 273893

7 16 22 2 24 18 1 28 15 30 20 5 10 13 29 17 25 12 9 21 23 14 6 8 4 3 11 26 19 27 358893

Cost: 602742

real    7m37.846s

user    42m41.713s

sys     0m39.510s

Total_Cost = 609194

CPLEX 12.6.1.0: optimal solution; objective 609194

Runtime in seconds: 59679 network simplex iterations.

_ampl_user_time = 60.2656 0 simplex iterations (0 in phase I)

Run time for solving the problem = 45.984375 seconds

Ship :=

0    269     1 20 10 13 29 11 3 17 25 21 22 12 27 28 19 1 15 23 14 16 26 2 30 6 18 5 24 4 8 7 9 

269  2269    1 20 10 13 29 11 3 17 25 21 22 12 27 28 19 1 15 23 14 16 26 2 30 6 18 5 24 4 8 7 9 

2269 4269    1 20 10 13 29 11 3 17 25 21 22 12 27 28 19 1 15 23 14 16 26 2 30 6 18 5 24 4 8 7 9 

4269 6269    1 20 10 13 29 11 3 17 25 21 22 12 27 28 19 1 15 23 14 16 26 2 30 6 18 5 24 4 8 7 9 

6269 8269    1 20 10 13 29 11 3 17 25 21 22 12 27 28 19 1 15 23 14 16 26 2 30 6 18 5 24 4 8 7 9 

8269 10001   1 20 10 13 29 11 3 17 25 21 22 12 27 28 19 1 15 23 14 16 26 2 30 6 18 5 24 4 8 7 9 

Balachandran Linear Network Model -AMPL

Chandra Parallel Algorithm

30 Departments 1st Problem 2nd Run
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Optimal path:

6 27 9 16 26 10 20 19 28 24 25 7 17 15 29 21 23 8 2 30 5 22 1 13 12 4 14 18 3 11 79260

6 27 9 16 26 10 20 19 28 24 25 7 17 15 29 21 23 8 2 30 5 22 1 13 12 4 14 18 3 11 164260

6 27 9 16 26 10 20 19 28 24 25 7 17 15 29 21 23 8 2 30 5 22 1 13 12 4 14 18 3 11 249260

6 27 9 16 26 10 20 19 28 24 25 7 17 15 29 21 23 8 2 30 5 22 1 13 12 4 14 18 3 11 334260

6 27 9 16 26 10 20 19 28 24 25 7 17 15 29 21 23 8 2 30 5 22 1 13 12 4 14 18 3 11 419260

Cost: 603472

real    7m36.142s

user    42m12.811s

sys     0m39.824s

Total_Cost = 608418

CPLEX 12.6.1.0: optimal solution; objective 608418

Runtime in seconds: 82167 network simplex iterations.

_ampl_user_time = 60.4844 0 simplex iterations (0 in phase I)

Run time for solving the problem = 46.500000 seconds

Ship :=

0    550     1 10 25 18 19 30 9 20 23 15 17 6 3 26 21 13 28 2 22 12 14 29 5 24 1 7 11 4 27 16 8 

550  2550    1 10 25 18 19 30 9 20 23 15 17 6 3 26 21 13 28 2 22 12 14 29 5 24 1 7 11 4 27 16 8 

2550 4550    1 10 25 18 19 30 9 20 23 15 17 6 3 26 21 13 28 2 22 12 14 29 5 24 1 7 11 4 27 16 8 

4550 6550    1 10 25 18 19 30 9 20 23 15 17 6 3 26 21 13 28 2 22 12 14 29 5 24 1 7 11 4 27 16 8 

6550 8550    1 10 25 18 19 30 9 20 23 15 17 6 3 26 21 13 28 2 22 12 14 29 5 24 1 7 11 4 27 16 8 

8550 10001   1 10 25 18 19 30 9 20 23 15 17 6 3 26 21 13 28 2 22 12 14 29 5 24 1 7 11 4 27 16 8 

Balachandran Linear Network Model - AMPL

30 Departments 1st Problem 3rd Run

Chandra Parallel Algorithm

Optimal path:

2 12 1 19 8 20 16 18 29 26 5 10 4 3 13 24 22 27 11 30 25 15 23 17 7 6 21 28 14 9 14152

2 12 1 19 8 20 16 18 29 26 5 10 4 3 13 24 22 27 11 30 25 15 23 17 7 6 21 28 14 9 99152

2 12 1 19 8 20 16 18 29 26 5 10 4 3 13 24 22 27 11 30 25 15 23 17 7 6 21 28 14 9 184152

2 12 1 19 8 20 16 18 29 26 5 10 4 3 13 24 22 27 11 30 25 15 23 17 7 6 21 28 14 9 269152

2 12 1 19 8 20 16 18 29 26 5 10 4 3 13 24 22 27 11 30 25 15 23 17 7 6 21 28 14 9 354152

Cost: 603722

real    7m36.883s

user    42m35.264s

sys     0m39.933s

Total_Cost = 609015

CPLEX 12.6.1.0: optimal solution; objective 609015

Runtime in seconds: 60940 network simplex iterations.

_ampl_user_time = 59.5312 0 simplex iterations (0 in phase I)

Run time for solving the problem = 45.640625 seconds

Ship :=

0    434     1 11 3 9 21 4 8 19 15 23 25 22 7 13 29 28 6 14 20 2 5 17 1 24 18 10 26 12 30 27 16

434  2434    1 11 3 9 21 4 8 19 15 23 25 22 7 13 29 28 6 14 20 2 5 17 1 24 18 10 26 12 30 27 16

2434 4434    1 11 3 9 21 4 8 19 15 23 25 22 7 13 29 28 6 14 20 2 5 17 1 24 18 10 26 12 30 27 16

4434 6434    1 11 3 9 21 4 8 19 15 23 25 22 7 13 29 28 6 14 20 2 5 17 1 24 18 10 26 12 30 27 16

6434 8434    1 11 3 9 21 4 8 19 15 23 25 22 7 13 29 28 6 14 20 2 5 17 1 24 18 10 26 12 30 27 16

8434 10001   1 11 3 9 21 4 8 19 15 23 25 22 7 13 29 28 6 14 20 2 5 17 1 24 18 10 26 12 30 27 16

Balachandran Linear Network Model -AMPL

30 Departments 1st Problem 4th Run

Chandra Parallel Algorithm
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Optimal path:

27 24 29 28 18 10 7 1 23 15 30 2 5 21 12 26 17 11 16 19 22 25 13 14 6 3 8 20 9 4 74873

27 24 29 28 18 10 7 1 23 15 30 2 5 21 12 26 17 11 16 19 22 25 13 14 6 3 8 20 9 4 159873

27 24 29 28 18 10 7 1 23 15 30 2 5 21 12 26 17 11 16 19 22 25 13 14 6 3 8 20 9 4 244873

27 24 29 28 18 10 7 1 23 15 30 2 5 21 12 26 17 11 16 19 22 25 13 14 6 3 8 20 9 4 329873

27 24 29 28 18 10 7 1 23 15 30 2 5 21 12 26 17 11 16 19 22 25 13 14 6 3 8 20 9 4 414873

Cost: 604214

real    7m38.750s

user    42m43.590s

sys     0m39.974s

Total_Cost = 609364

CPLEX 12.6.1.0: optimal solution; objective 609364

Runtime in seconds: 63519 network simplex iterations.

_ampl_user_time = 79.2641 0 dual simplex iterations (0 in phase I)

Run time for solving the problem = 58.016772 seconds

Ship :=

0    1707    1 6 3 23 20 9 8 24 21 25 15 18 7 11 16 19 13 28 4 27 1 22 12 30 2 17 14 29 5 26 10 

1707 3707    1 6 3 23 20 9 8 24 21 25 15 18 7 11 16 19 13 28 4 27 1 22 12 30 2 17 14 29 5 26 10 

3707 5707    1 6 3 23 20 9 8 24 21 25 15 18 7 11 16 19 13 28 4 27 1 22 12 30 2 17 14 29 5 26 10 

5707 7707    1 6 3 23 20 9 8 24 21 25 15 18 7 11 16 19 13 28 4 27 1 22 12 30 2 17 14 29 5 26 10 

7707 9707    1 6 3 23 20 9 8 24 21 25 15 18 7 11 16 19 13 28 4 27 1 22 12 30 2 17 14 29 5 26 10 

9707 10001   1 6 3 23 20 9 8 24 21 25 15 18 7 11 16 19 13 28 4 27 1 22 12 30 2 17 14 29 5 26 10 

Balachandran Linear Network Model - AMPL

Chandra Parallel Algorithm

30 Departments 1st Problem 5th Run
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APPENDIX J: Simplex iterations LNM solved in AMPL - 6 departments 

 

Problem 

Number of departments_problem number_ run number Sorting No-sorting 

6_1_1 24077 24972 

6_1_2 24077 24972 

6_1_3 24077 24972 

6_1_4 24077 24972 

6_1_5 24077 24972 

6_2_1 19233 24277 

6_2_2 19233 24277 

6_2_3 19233 24277 

6_2_4 19233 24277 

6_2_5 19233 24277 

6_3_1 21430 23808 

6_3_2 21430 23808 

6_3_3 21430 23808 

6_3_4 21430 23808 

6_3_5 21430 23808 

6_4_1 22528 26053 

6_4_2 22528 26053 

6_4_3 22528 26053 

6_4_4 22528 26053 

6_4_5 22528 26053 

6_5_1 21568 22278 

6_5_2 21568 22278 

6_5_3 21568 22278 

6_5_4 21568 22278 

6_5_5 21568 22278 

6_6_1 20413 24187 

6_6_2 20413 24187 

6_6_3 20413 24187 

6_6_4 20413 24187 

6_6_5 20413 24187 

6_7_1 20796 20097 

6_7_2 20796 20097 

6_7_3 20796 20097 

6_7_4 20796 20097 

6_7_5 20796 20097 

6_8_1 25886 28705 

6_8_2 25886 28705 

6_8_3 25886 28705 

6_8_4 25886 28705 

6_8_5 25886 28705 
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APPENDIX K: Simplex iterations LNM solved in AMPL - 15 departments 

 

Problem 

Number of departments_problem number_ run number Sorting No- sorting 

15_1_1 81002 97397 

15_1_2 78272 100476 

15_1_3 63112 111902 

15_1_4 83060 101290 

15_1_5 64469 90641 

15_2_1 54170 106389 

15_2_2 65007 71097 

15_2_3 86644 58733 

15_2_4 65043 119468 

15_2_5 83704 99292 

15_3_1 61579 80660 

15_3_2 62807 83790 

15_3_3 57092 76346 

15_3_4 83704 105136 

15_3_5 53195 102944 

15_4_1 57716 92498 

15_4_2 49208 107528 

15_4_3 51300 96242 

15_4_4 67496 82229 

15_4_5 65228 74709 

15_5_1 59238 107148 

15_5_2 94007 91955 

15_5_3 50953 85983 

15_5_4 48668 90162 

15_5_5 48497 98718 

15_6_1 59404 130186 

15_6_2 56373 66529 

15_6_3 53270 103436 

15_6_4 45773 90543 

15_6_5 65619 96583 

15_7_1 63025 114633 

15_7_2 47440 94429 

15_7_3 53514 81625 

15_7_4 64860 84925 

15_7_5 53815 95910 

15_8_1 77389 93352 

15_8_2 51431 92172 

15_8_3 61620 86898 

15_8_4 59069 111351 

15_8_5 53236 80978 
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APPENDIX L:  Simplex iterations LNM solved in AMPL - 30 departments 

 

Problem 

Number of departments_problem number_ run number Sorting No-sorting 

30_1_1 91052 65260 

30_1_2 70818 59679 

30_1_3 56930 82167 

30_1_4 72040 60940 

30_1_5 68203 63519 

30_2_1 72421 81854 

30_2_2 141896 75925 

30_2_3 72850 88339 

30_2_4 61028 65568 

30_2_5 87913 76070 

30_3_1 87913 67162 

30_3_2 61980 74932 

30_3_3 61980 56268 

30_3_4 62711 80280 

30_3_5 93690 69650 

30_4_1 74625 75723 

30_4_2 63769 68761 

30_4_3 50258 71067 

30_4_4 50638 80099 

30_4_5 72403 85473 

30_5_1 49323 80500 

30_5_2 88280 118737 

30_5_3 55895 56139 

30_5_4 55807 248608 

30_5_5 46001 114839 

30_6_1 58509 113537 

30_6_2 67823 99685 

30_6_3 84082 95670 

30_6_4 323556 64152 

30_6_5 44423 128863 

30_7_1 133985 66140 

30_7_2 96465 89949 

30_7_3 78469 72823 

30_7_4 277163 77819 

30_7_5 59042 78040 

30_8_1 94777 112548 

30_8_2 77368 89997 

30_8_3 100458 57206 

30_8_4 71470 59438 

30_8_5 66207 49142 
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APPENDIX M: Table 58: Relevant Information about the Computational Environments 

Used 

 

Problem or Algorithm Cluster or 

computer 

Operating 

System 

Speed 

(Ghz) 

CPU’s Memory 

(GB) 

PSP, LNM no-sorting Stampede 

cluster 

CentOS 2.8 20 12.8 

PSP, LNM sorting Maverick 

cluster 

CentOS 2.7 10 32 

LNM for DFLP 

sorting and no-

sorting, 

SDFLP 

SOLAR lab 

PC 

Windows 3.2  4 16 

SDFLP 

 

LEAP CentOS 2.4 28 128 

LNM sorting, 

PSP sorting 

CAPI CentOS 2.06 - 

3.69 

160 16 
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APPENDIX N: Table 59: Costs, Computational Times and Percentage Difference (% 

Diff) for PSP and LNM – Sorting (S) vs. No-Sorting (NS) - 15 Departments - Times 

Shortest Path Sorting (SP-S) are only for doing the variant of the Dijkstra’s Algorithm 

 

PSP-S PSP-NS % Diff LNM -S 
LNM-

NS 
% Diff 

498273 501547 0.65 501547 511087 1.9 

499297 502998 0.74 502998 512633 1.9 

500066 506883 1.34 507031 515212 1.59 

498717 501035 0.46 501035 508173 1.4 

499414 500312 0.18 500312 511144 2.12 

499353 502486 0.62 502486 511498 1.76 

501169 504100 0.58 504100 514077 1.94 

505761 507402 0.32 507442 517778 2 

SP-S PSP-NS % Diff LNM-S 
LNM-

NS 
% Diff 

41.2 36.5 -12.88 45.7 64.7 29 

41.6 97.4 57.29 45.7 61.1 25 

42.4 396.8 89.31 47.8 62.1 22.99 

42.4 396.1 89.3 46 60.3 25.42 

42 396.4 89.4 45.2 60.4 25.1 

46.6 396.1 88.24 45.3 60.9 25.56 

41.2 395.8 89.59 45.4 60.3 24.74 

41.4 384.1 89.22 45.3 59.9 24.34 

 

Table 60: Costs, Computational Times and Percentage Difference (% Diff) for PSP and 

LNM – Sorting (S) vs. No-Sorting (NS) - 30 Departments - Times Shortest Path Sorting 

(SP-S) are only for doing the variant of the Dijkstra’s Algorithm 

 

PSP-S PSP-NS % Diff LNM -S 
LNM-

NS 
% Diff 

603233 603165 -0.01 624464 609371 -2.48 

603332 600408 -0.49 606909 606746 -0.03 

605783 607720 0.32 612155 611773 -0.06 

597999 601261 0.54 601721 607288 0.92 

587107 590454 0.57 590548 599579 1.51 

594994 597884 0.48 598842 603318 0.74 

597179 595900 -0.21 599936 601822 0.31 

601663 603972 0.38 603848 614843 1.79 
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Table 60 (Continued) 

 

SP-S PSP-NS % Diff LNM-S 
LNM-

NS 
% Diff 

41.6 457 90.9 47.7 64.3 25.86 

41.2 457.4 90.99 47.9 71.9 33.32 

41.8 456.4 90.84 47.9 60.8 21.21 

41.6 106.2 60.81 48.5 60 19.23 

41.2 107.8 61.76 48.8 60.1 18.81 

41 107.9 61.99 48.4 77.6 37.71 

41 111.2 63.13 45.7 60.1 23.97 

41.6 107.1 61.17 45.8 76.8 40.45 

 

 

APPENDIX O: Table 61: Times to Perform only the variant of the Dijkstra algorithm 

for SP Sorting (S)- 15 and 30 departments 

 

 

    Problem # R1 R2 R3 R4 R5 Average Std. Dev 

15 

1 41 41 42 41 41 41.2 0 

2 41 41 42 43 41 41.6 1 

3 42 42 42 43 43 42.4 1 

4 41 42 43 42 44 42.4 1 

5 42 41 42 41 44 42.0 1 

6 41 69 41 41 41 46.6 13 

7 41 41 41 42 41 41.2 0 

8 42 41 42 41 41 41.4 1 

                  

30 

1 41 44 41 41 41 41.6 1 

2 41 41 41 41 42 41.2 0 

3 41 41 41 44 42 41.8 1 

4 41 41 41 41 44 41.6 1 

5 41 41 41 42 41 41.2 0 

6 41 41 41 41 41 41.0 0 

7 41 41 41 41 41 41.0 0 

8 43 42 41 41 41 41.6 1 
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APPENDIX P: Table 62: Times to Perform LNM Sorting (S) – 15 and 30 Departments 

including Percentage Difference (% Diff) for LNM Sorting (S) vs SP Sorting (S) as 

reported in Appendix O 
 

  Problem  R1 R2 R3 R4 R5 Average 

Std. 

Dev 

% Diff 

LNM 

vs SP 

15 

1 47.31 45.45 45.07 45.10 45.71 45.728 0.923 9.90% 

2 45.00 45.48 45.29 45.73 46.86 45.672 0.716 8.92% 

3 45.85 46.17 46.26 46.81 53.96 47.810 3.455 11.32% 

4 45.43 45.28 44.62 44.89 44.70 44.984 0.357 5.74% 

5 45.00 44.93 44.64 46.20 45.40 45.234 0.604 7.15% 

6 45.96 45.48 45.10 44.71 45.37 45.324 0.463 -2.82% 

7 45.87 45.32 45.46 45.40 44.81 45.372 0.379 9.20% 

8 45.17 44.67 46.48 45.39 44.95 45.332 0.695 8.67% 

                    

30 

1 45.75 47.31 49.28 48.92 47.26 47.704 1.426 12.80% 

2 47.81 47.54 48.96 47.53 47.87 47.942 0.590 14.06% 

3 47.87 48.40 48.21 47.48 47.42 47.876 0.433 12.69% 

4 48.46 48.50 48.71 48.48 48.25 48.480 0.163 14.19% 

5 48.42 48.14 49.39 49.57 48.29 48.762 0.666 15.51% 

6 48.39 48.23 47.75 45.54 49.01 47.784 1.333 14.20% 

7 46.21 45.46 45.53 45.89 45.45 45.708 0.333 10.30% 

8 45.64 45.20 46.10 45.65 46.26 45.770 0.420 9.11% 

% Diff = 100*(LNM sorting –SP sorting)/LNM sorting 
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APPENDIX Q: Computational Time Graph for Various Methods Studied 
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