NETWORK OPTIMIZATION APPROACHES TO SOLVE THE STOCHASTIC AND DYNAMIC FACILITY LAYOUT PROBLEMS AND REDUCE SUPPLY CHAIN COSTS

by
Gowtham Balachandran. B.E.

A thesis submitted to the Graduate Council of
Texas State University in partial fulfillment of the requirements for the degree of
Master of Science
with a Major in Industrial Engineering
May 2018

Committee Members:

Clara Novoa, Chair

Tongdan Jin

Apan Qasem

COPYRIGHT

by
Gowtham Balachandran
2018

FAIR USE AND AUTHOR'S PERMISSION STATEMENT

Abstract

Fair Use This work is protected by the Copyright Laws of the United States (Public Law 94-553, section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations from this material are allowed with proper acknowledgment. Use of this material for financial gain without the author's express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Gowtham Balachandran, authorize duplication of this work, in whole or in part, for educational or scholarly purposes only.

DEDICATION

I must express my very profound gratitude to my parents, and to my friends and family for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them.

ACKNOWLEDGEMENTS

First, I would like to thank my thesis advisor Dr. Clara Novoa, Ph.D., Associate Professor in the Ingram School of Engineering at Texas State University. The way she worked with me was exceptional. The time she spent in clearing all my doubts was the way it helped me to complete this thesis. The door to Dr. Novoa's office was always open whenever I had a question about my research or about writing this document. She consistently allowed this paper to be my own work but steered me in the right direction whenever she thought I needed it. I also would like to thank the professors who were involved in the experimental phase of this research project: Dr. Tongdan Jin, Ph.D., Associate Professor in the Ingram School of Engineering and Dr. Apan Qasem, Ph.D., Associate Professor in the Department of Computer Science at Texas State University. The passionate participation and input of Dr. Qasem and Dr. Jin was very helpful on the successful development of this project. I also like to acknowledge Dr. Vishu Viswanathan, Ph.D., Ingram Professor in the Ingram School of Engineering at Texas State University as the second reader of this thesis. I am gratefully indebted for his valuable comments. I would like to thank Dr. Jaydeep Balakrishnan, Professor at the Operations and Supply Chain Management area at the Haskayne School of Business at the University of Calgary and director of the Canadian Centre for Advanced Supply Chain Management and Logistics for providing to my advisor the datasets for experimenting with the Dynamic Facility Layout Problem (DFLP).

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS V
LIST OF TABLES ix
LIST OF FIGURES xiv
LIST OF ABBREVIATIONS xvi
ABSTRACT xviii
CHAPTER

1. INTRODUCTION 1
2. MATHEMATICAL MODELS FOR THE DFLP AND THE SDFLP 6
2.1 Non-linear-programming formulation for the DFLP 6
2.2 Graphical explanation of the DFLP 8
2.3 DFLP formulated as a network problem 11
2.4 DFLP with a budget constraint modeled as a network problem 14
2.5 SDFLP formulated as a network problem 14
3. LITERATURE REVIEW 18
3.1 Surveys on recent advancements on solving facility layout problems (FLP) 18
3.2 Heuristics derived from exact methods to solve static or single-period Quadratic Assignment Problems (QAP) 19
3.3 Dynamic Programming (DP) to solve the DFLP 19
3.4 Heuristic and meta-heuristic approaches to solve the DFLP 21
3.5 Simulation approaches to solve the DFLP 23
3.6 Stochastic and Dynamic Facility Layout Problems (SDFLP) 24
3.7 Dealing with planning horizon and other practical considerations that should be included when solving the DFLP 26
3.8 Dynamic Warehouse Location Problem (DWLP) 27
4. METHODOLOGY 30
4.1 Parallel Shortest Path ($P S P$) algorithm for solving the DFLP 30
4.2 Solving DFLP using Dynamic Programming(DP) 33
4.3 Network simplex algorithm for solving DFLP modeled as a network problem 34
4.3.1 Network simplex method (NSM) procedure 35
4.3.2 Example 1: solving a Shortest Path Problem using the NSM 36
4.3.3 Example 2: solving a Transshipment Problem using the NSM 39
4.4 Modeling the DFLP and the SDFLP as a linear network problem with AMPL 43
5. NUMERICAL RESULTS 46
5.1 DFLP datasets 46
5.2 SDFLP datasets 46
5.3 DFLP experimental setting 47
5.4 SDFLP experimental setting 50
5.5 DFLP Cost Results PSP vs. $L N M$ 51
5.5.1 No-sorting 51
5.5.2 Sorting 53
5.6 DFLP computational time results $P S P$ vs. $L N M$ 56
5.6.1 No-sorting 56
5.6.2 Sorting 58
5.7 Sorting vs. no-sorting costs comparison 62
5.8 Sorting vs. no-sorting computational time comparison 62
5.9 Cost and computational time differences between PSP and $L N M$ 66
5.10 DFLP costs and computational times comparisons between proposed methods and previous works 68
5.11 Analysis of the results for the DFLP 75
5.12 SDFLP results 77
6. PRACTICAL CASE STUDY 80
6.1 Micro Power facility layout problem 80
6.2 Results 82
7. CONCLUSION 86
APPENDIX 90

REFERENCES .. 114

LIST OF TABLES

Table Page

1. Model Notation for the NLP Formulation of the DFLP.. 7
2. Hypothetical Layout or Permutation of Departments in Period 1........................... 10
3. Distances between Locations .. 10
4. Flows between Departments ... 10
5. Example on Computing Material Handling Cost for a given Layout 10
6. Notation for the Network Problem in Figure 4 ... 12
7. Cost Results for DFLP PSP 6 Departments - No-Sorting .. 51
8. Cost Results for DFLP LNM 6 departments - No-Sorting....................................... 52
9. Cost Results for DFLP PSP and LNM 12 Departments - No-Sorting 52
10. Cost Results for DFLP PSP for 15 Departments - No-Sorting 52
11. Cost Results for DFLP LNM for 15 Departments - No-Sorting 52
12. Cost Results for DFLP PSP for 30 Departments - No-Sorting 53
13. Cost Results for DFLP LNM for 30 departments - No-Sorting............................... 53
14. Cost Results for DFLP PSP for 6 Departments - Sorting....................................... 54
15. Cost Results for DFLP $L N M$ for 6 Departments - Sorting 54
16. Cost Results for DFLP PSP for15 Departments - Sorting...................................... 55
17. Cost Results for DFLP $L N M$ for 15 Departments - Sorting 55
18. Cost Results for DFLP PSP for 30 Departments - Sorting..................................... 55
19. Cost Results for DFLP $L N M$ for 30 Departments - Sorting 56
20. Computational Time (Seconds) results for PSP for 6 Departments - No-Sorting.. 56
21. Computational Time (Seconds) for $L N M$ for 6 Departments - No-Sorting 57
22. Computational Time (Seconds) Results for PSP for 12 Departments
-No-Sorting 57
23. Computational Time (Seconds) for $L N M$ for 12 Departments - No-Sorting 57
24. Computational Time (Seconds) for PSP for 15 Departments - No-Sorting 57
25. Computational Time (Seconds) for $L N M$ for 15 Departments - No-Sorting 58
26. Computational Time (Seconds) for PSP for 30 Departments - No-Sorting 58
27. Computational Time (Seconds) for $L N M$ for 30 Departments - No-Sorting 58
28. Computational Time (Seconds) for SP 6 Departments - Sorting 60
29. Computational Time (Seconds) for LNM 6 Departments - Sorting 60
30. Computational Time (Seconds) for SP 15 Departments - Sorting 60
31. Computational Time (Seconds) for LNM 15 Departments - Sorting 61
32. Computational Time (Seconds) for SP 30 Departments - Sorting 61
33. Computational Time (Seconds) for LNM 30 Departments - Sorting 61
34. Difference in Cost and Computational Time for PSP and LNM - Sorting (S) vs. No-Sorting (NS) - 6 Departments 63
35. Difference in Cost and Computational Time for PSP and LNM - Sorting (S) vs. No-Sorting (NS) - 15 Departments 64
36. Difference in Cost and Computational Time for PSP and LNM - Sorting (S) vs.No-Sorting (NS) - 30 Departments65
37. Cost and Computational Time Differences between PSP and LNM - 6
Departments 67
38. Cost and Computational Time Differences between PSP and LNM - 15 Departments 67
39. Cost and Computational Time Difference between PSP and LNM - 30 Departments 67
40. Cost, Computational Time and Percentage (\%) of Cost Difference PSP and LNM - Sorting (S) and No-Sorting (NS) vs. Best Known Cost (BKC) - 6 Departments. 69
41. Cost, Computational Time and Percentage (\%) of Cost Difference PSP and LNM - Sorting (S) and No-Sorting (NS) vs. Best Known Cost (BKC) - 15 Departments. 70
42. Cost, Computational Time and Percentage (\%) of Cost Difference PSP and LNM-Sorting (S) and No-Sorting (NS) vs. Best Known Cost (BKC) - 30 71
43. DFLP Average Costs presented by Other Authors for 6-15-30 Departments 72
44. Performance of PSP and $L N M$ vs. Previous Authors Solutions 77
45. Results from Solving the SDFLP - 6 Departments 79
46. Distances (in Feet) between Locations at the Micro Power Facility. 81
47. Flows of Material between Micro Power Departments for Year 1 (in Trips/Year) 82
48. Flows of Material between Micro Power Departments for Year 2 and Year 3 (in Trips/Year) 82
49. Departments Relocation Costs at Micro Power 82
50. Summary of Literature Reviewed on DFLP 90
51. Summary of Literature Reviewed on SDFLP 92
52. AMPL Model File for DFLP without Budget 93
53. AMPL Data File for DFLP without Budget 93
54. AMPL Model File for DFLP with Budget 94
55. AMPL Data File for DFLP with Budget 94
56. AMPL Model File for SDFLP with Budget 95
57. AMPL Data File for SDFLP with Budget 97
58. Relevant Information about the Computational Environments 109
59. Costs, Computational Times and Percentage Difference (\% Diff) for PSPand LNM - Sorting (S) vs. No-Sorting (NS) - 15 Departments - TimesShortest Path Sorting (SP-S) are only for doing the variant of the Dijkstra's
Algorithm 110
60. Costs, Computational Times and Percentage Difference (\% Diff) for PSPand LNM - Sorting (S) vs. No-Sorting (NS) - 30 departments - TimesShortest Path Sorting (SP-S) are only for doing the variant of the Dijkstra'sAlgorithm110
61. Times to Perform only the Variant of the Dijkstra Algorithm for $S P$
Sorting (S)-15 and 30 departments 111
62. Times to Perform LNM Sorting - 15 and 30 Departments including

Percentage Difference (\% Diff) for LNM Sorting (S) vs SP Sorting (S) as reported in Appendix O... 112

LIST OF FIGURES

Figure Page

1. The logistics triangle 2
2. A representation of a segment of a physical distribution system 3
3. DFLP graphical example 9
4. The constrained dynamic plant layout problem 12
5. A network representation of the DFLP 30
6. Initial network example 1 36
7. First step to solve the shortest path problem in example 1 37
8. Steps 2 and 3 NSM to solve the shortest path problem in example 1 38
9. Optimal solution for the shortest path problem in example 1 39
10. Initial network example 2 40
11. Network simplex method steps for the iteration in example 2 41
12. Second iteration of the network simplex method for example 2 42
13. Optimal network for example 2 four iterations. 43
14. Flow chart to solve the DFLP using the PSP implementation. 49
15. Flow chart to solve the DFLP under the Linear Network Model. 50
16. Flow chart to solve the SDFLP under the Linear Network Model 51
17. Cost for PSP and $L N M$ under the sorting and no-sorting variants studied 74
18. Cost PSP sorting and LNM sorting vs. previous authors 74
19. Cost for PSP and LNM (sorting and no-sorting) vs best known cost 75
20. Numerical labels for the locations in the Micro Power STAR Park facility 81
21. New layout suggested for Micro Power after solving with PSP and $L N M$ methods83
22. Mirror image for new layout suggested for Micro Power after solving with
PSP and LNM methods 84

LIST OF ABBREVIATIONS

Abbreviation	Description
ACO	Ant Colony Optimization
AHP	Analytic Hierarchy Process
AIS	Artificial Immune System
ANN	Artificial Neural Networks
BFS	Basic Feasible Solution
BSA	Backtracking Search Algorithm
CNC	Computer Numerical Control
CONGA	Conway and Venkataraman's Genetic Algorithm
CPM	Cutting Plane Method
CRAFT	Computerized Relative Allocation of Facilities Technique
CSA	Chaotic Simulated Annealing
CSP	Constrained Shortest Path
DEA	Data envelopment analysis
DFLP	Dynamic Facility Layout Problem
DP	Dynamic Programming
DWLP	Dynamic Warehouse Location Programming
ES	Expert System
FA	Firefly Algorithm
FLP	Facility Layout Problem
FS	Fuzzy System
GA	Genetic Algorithm
GRASP	Greedy Randomized Adaptive Search Procedure
GT	Graph Theoretic models
HAS	Hybrid Ant Systems
IP	Integer Programming
IRP	Interpretive Ranking Process
LP	Linear Programming
LNM	Linear network model
LNP	Linear network problem
MADM	Multiple attribute decision making
MCNFP	Minimum-Cost Network Flow Problem
MHC	Material Handling Cost
MILP	Mixed Integer Linear Programming
MIP	Mixed Integer Programming
MTEL	Minimize the Total Expected Loss
NLGA	Nested Loop Genetic Algorithm
NLIP	Non-Linear Integer Programming
NLP	Non-Linear Program

NP hard	Non-Deterministic Polynomial Time hard
NSA	Network Simple Algorithm
NSM	Network Simplex Method
PSP	Parallel Shortest Path
PSO	Particle Swarm Optimization
QAP	Quadratic Assignment Problem
QSP	Quadratic Set Covering
RC	Relocation Cost
SA	Simulated Annealing
SDFLP	Stochastic Dynamic Facility Layout Problem
SFLP	Static Facility Layout Problem
SPP	Shortest Path Problem
TACC	Texas Advanced Computing Center
TOPSIS	Technique for Order Preference by Similarity to Ideal
	Solution
TS	Tabu Search

Abstract

This thesis researches on the Dynamic Facility Layout Problem (DFLP) and the Stochastic and Dynamic Facility Layout Problem (SDFLP). The problems are extensions to the static or single-period facility layout problem (SFLP). They assume that there are fluctuations in the products' demands and consequently in the flows of material (and/or final products) between facilities in a given planning horizon. Fluctuations in flows of material are also due to the introduction of new products, disasters, and other production and marketing changes impacting the supply chain. In the DFLP, the flows of material between facilities vary over time but they are assumed known. In the SDFLP, the flows between facilities are uncertain and may follow different random distributions. The objective of these problems is to find an assignment of facilities to locations at each period that optimizes the material handling cost and the facilities relocation cost. This thesis has three contributions. First, it assesses the accuracy and efficiency of a Parallel Shortest Path (PSP) algorithm developed by Kolla (2015) to solve the DFLP. Second, it tests the efficiency on formulating a linear network model (LNM) for the DFLP and solving it with the network simplex algorithm implemented in AMPL, a commercial mathematical programming language, through numerical experimentation. Third, this thesis proposes a constrained shortest path network model to solve the SDFLP and experiments with small size instances. The SDFLP network model is an extension of the DFLP model in Balakrishnan et al. (1992).

1. INTRODUCTION

Tompkins et al. (2010) highlight the relevance of facilities planning from the point of view of size of the investment. They mention that U.S. businesses invested over a trillion dollars per year over the last five years in capital goods and from this amount, over 30\% was spent on structures with a large part of this percentage spent on new constructions. In addition, Tompkins et al. (2010) state that over 8% of the United States gross national product has been annually spent on new facilities and that over $\$ 300$ billion will be spent annually on facilities planning or re-planning.

Between 20\%-50\% of the total operating expenses in manufacturing in the US are attributed to material handling. Facilities planning deals with the reduction of this significant supply chain expenditure. Effective facilities planning can reduce material handling cost by 10-30\% (Tomkins et al., 2010).

According to Ballou (2003), Logistics/Supply Chain embraces four major areas: customer service, inventory, location and transportation (see Figure 1). The facility layout problem (FLP) is a strategic planning problem that falls in the Location Strategy side of the triangle in Figure 1. The FLP occurs every time there is a need to plan for the arrangement of the facilities. The time horizons for the plan range typically from 3 to 10 years. Besides material handling cost, facilities relocation costs and improper location of facilities affect the performance of the supply chain. Reduction of material handling costs is crucial since it is incurred if routing all materials (raw materials, parts, sub-assemblies and assemblies) inside facilities or between them. A good location strategy has a positive impact on inventory levels, entire transportation costs, and customer service by reducing delays.

Figure 1. The logistics triangle (Ballou, 2003)
Ballou (1968) mentions that a physical distribution system can be conceptualized as several inventory storage points (nodal points) interconnected by a transportation network (links) (See Figure 2). Location and arrangement of inventories and warehouse facilities, transportation service choices, and inventory levels are major decision areas that concern managers designing distribution systems especially when demand and economic conditions change over time. This thesis researches on solution methodologies for solving two facility layout problems (FLP's): the Dynamic Facility Layout Problem (DFLP) and the Stochastic and Dynamic Facility Layout Problem (SDFLP).

Figure 2. A representation of a segment of a physical distribution system (Ballou, 1968)
In the Dynamic Facility Layout Problem (DFLP), the flows of material/products between facilities (or departments) are known but vary over the time horizon. In the Stochastic Dynamic Facility Layout Problem (SDFLP), the flows of products between facilities are known only through probability distributions and vary over time. The objective of these problems is to find an assignment of facilities to physical locations for every period that optimizes the trade-off between material handling cost and facilities relocation cost. For these problems, the flows of material/products between facilities may vary because of fluctuations in product demand, introduction of new products, changes in product design, updates in production processes, new machinery, breakdowns and/or unexpected disruptions in the supply chain. The SDFLP is an extension to the DFLP and the Single-period or Static Facility Layout Problem (SFLP). The SFLP models as a Quadratic Assignment Problem (QAP) if the facilities are of equal size and the layout is divided into equal size locations. A practical example of facilities (machines or
departments) of equal size occurs in flexible manufacturing settings using multiple automated and multifunctional equipment such as Computer Numerical Control (CNC) machines (Moslemipour \& Lee, 2012).

This thesis has three contributions. First, it assesses the accuracy and efficiency of an algorithm to solve the DFLP through numerical experimentation. The algorithm coded by Kolla (2015) is a variation of the Dijkstra's shortest path algorithm (1959), also presented by Tarjan (1983), and adapted to solve the DFLP. The instances selected for the computational study have $6,10,12,15$, and 30 departments and 5 years and they come from the Balakrishnan's repository (Balakrishnan \& Cheng, 2000). The solutions from running Djikstra's implementation are compared to those published by Conway \& Venkataramanan (1994), Balakrishnan \& Cheng (2000), Baykosaglu \& Gindy (2001), Balakrishnan et al. (2003), and McKendall \& Shang (2006). Second, this thesis experiments with a linear programming model for the DFLP proposed in Balakrishnan et al. (1992) and assess its efficiency if solving it with the network simplex algorithm in AMPL, a commercial mathematical programming language, through extensive numerical experimentation. Third, this thesis devises a constrained network model to solve the SDFLP and solves this as a stochastic program. The SDFLP model extends the deterministic DFLP model in Balakrishnan et al. (1992). This works assesses the feasibility of solving the proposed model using a set of generated instances. This will be the first work in the literature modeling a constrained SDFLP under the network modeling approach.

The thesis consists of 7 chapters. Chapter 2 presents the mathematical models for the DFLP and SDFLP and a small example to understand the terminology and computations to evaluate the objective function for the DFLP. Chapter 3 presents a
literature review that summarizes the contributions under the solution approaches researched by previous authors. Chapter 4 presents the two solution methodologies studied in this thesis, the variation of the Dijkstra's Algorithm and the Network Simplex Algorithm. The examples presented on using the Network Simplex Algorithm illustrate at a small scale the solution steps performed by the AMPL software. Chapter 5 describes the experiments conducted to find the numerical results and an analysis of them. Chapter 6 applies the devised solution methods to solve a practical case study and Chapter 7 presents the conclusions of the thesis.

2. MATHEMATICAL MODELS FOR THE DFLP AND THE SDFLP

The Quadratic Assignment Problem (QAP) is a facility layout problem that models as a non-linear integer programming (NLP) problem with quadratic objective function. It aims to find an assignment of n facilities of about equal size to n layout locations that minimizes only the cost of material handling incurred in a single period.

2.1 Non-linear-programming formulation for the DFLP

The DFLP can be modeled as an extension to the QAP. The NLP formulation for the DFLP presented below is the one in Moslemipour \& Lee (2012). Let F and D be two given matrices that can be asymmetric. $F=\left[f_{t k l}\right]$ contains the flows between any facilities or departments k and l at time t and $D=\left[d_{i j}\right]$ has the distances between any locations i and j. An optimal solution to the DFLP is to find the values for the decision variables, x and y, that minimize the cost of material handling (first term in equation 1) and facilities relocation cost (second term equation 1) and satisfy constraints (equations 2-5) over T periods of time. Table 1 summarizes the model notation.

$$
\begin{array}{cr}
\min z=\sum_{t=1}^{T} \sum_{k=1}^{n} \sum_{l=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} f_{t k l} d_{i j} x_{t k i} x_{t l j}+\sum_{t=2}^{T} \sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{t k i j} y_{t k i j} \\
\text { s. } t \sum_{i=1}^{n} x_{t k i}=1, & t=1, \ldots, T ; k=1,2, \ldots, n \\
\text { s. } t \sum_{k=1}^{n} x_{t k i}=1, & t=1, \ldots, T ; i=1,2, \ldots, n \\
x_{t k i} \in\{0,1\} & \forall t, k, i
\end{array}
$$

Table 1. Model Notation for the NLP Formulation of the DFLP

Decision variables:	
$x_{t k i}$	Binary decision variable that takes the value of one if department k is assigned to location i in period t and zero otherwise
$y_{t k i j}$	Binary decision variable that takes the value of one if department k is shifted from location i in period $t-1$ to location j in period t and zero otherwise
Parameters:	Length of the planning horizon, usually given in years
T	Total number of departments, which is also the total number of locations
n	Flows of material between facilities or departments k and l at time t
$f_{t k l}$	Distances between any physical locations i and j
$d_{i j}$	Cost of relocating department k from location i to j in period t
$a_{t k i j}$	

Constraints (2) and (3) are assignment constraints that guarantee every department is assigned to one location and every location has exactly one department. Constraints (3) and (4) state that the decision variables are binary. Thus, $x_{t k i}$ takes the value one if department k is assigned to location i in period t and zero otherwise. The decision variable $y_{t k i j}$ is one if the department k is shifted from location i in period $t-1$ to location j in period t and zero otherwise.

The parameter $a_{t k i j}$ representing the cost of relocating a single department can be modified to represent: (1) a fixed cost and independent of the department arranged or (2) a variable cost that depends on the department being moved but not on its locations. Rosenblatt (1986) and most other authors since then have considered a variable rearrangement costs (case 2). However, in many practical situations, the primary cost associated with the rearrangement of a facility is the fixed cost that results from the disruption, or possible shutdown, of its operations.

The right-hand side in Table 14.1 in Rardin (2017) lists a series of classical optimization problems that are believed not to be solvable in polynomial time, but this has not been proven. One of these problems is the QAP. The QAP and extensions of it such as the DFLP have been labeled as non-deterministic polynomial time hard (NP-hard) problems (Loiola, 2007). Rardin, 2017 states in its Principle 14.18 that if any single problem in NP-Complete or NP-Hard can be solved in polynomial time, then very member of NP is polynomially solvable, and $\mathrm{P}=\mathrm{NP}$. Consequently, unless $\mathrm{P}=\mathrm{NP}$, there can exist no polynomial time algorithm for any NP-Complete or NP-Hard Problem.

Because of the large size of the solution space for the DFLP formulated as a NLP (i.e. $n!^{t}$), exact solution approaches to DFLP's have been limited to instances with sizes about 6 departments and locations and 3 years. These works have used mostly Dynamic Programming (DP). Other solution approaches have solved the problem approximately using metaheuristics such as tabu search (TS), genetic algorithm (GA) and simulated annealing (SA).

The NLP model for the DFLP that was presented above can be extended to model the SDFLP where flows and relocation cost parameters are unknown with certainty and just the probability distribution for them is known. However, by introducing scenarios that represent forecasted values for these unknown parameters the NLP formulation gets easily intractable even for very small problem instances. This thesis researches in other methodologies different than NLP to solve the DFLP and SDFLP.

2.2 Graphical explanation of the DFLP

Figure 3 is a graphical example of a solution for a small size DFLP in which 3 departments had to be assigned to 3 locations in 3-time periods (i.e., years). The given
departments' relocation costs are presented in the small table on the top left side of the figure. T denotes the periods (i.e. years), MHC represents material handling cost, RC stands for the relocation cost to transition from one layout in a year to another layout in a consecutive year, and the layouts or permutations of departments are notated by the letter $L x x x$ where $x x x$ is a permutation number.

Figure 3. DFLP graphical example
The solution depicted in the Figure, indicates that in year $T=1$ the departments 2, 3 , and 1 are in locations 1,2 , and 3 , respectively. In year $T=2$, department 1 is shifted to location 2, department 2 is shifted to location 3 and department 3 is shifted to location 1. Similarly, relocation of departments occurs if comparing layout $L 145$ in year two vs. layout L289 in year 3. RC will be added to the MHC to compute the total cost of this solution to the DFLP.

The MHC computation for $L 1$ is calculated in Table 5. It results from the product of flows between departments, distances between locations and cost per unit of distance given the hypothetical layout, flow and distance matrixes presented in Table 2, 3, and 4.

Table 2. Hypothetical Layout or Permutation of Departments in Period 1

Department number	2	3	1
Location number	1	2	3

Table 3. Distances between Locations

Locations/Locations	1	2	3
1	0	3	2
2	2	0	7
3	5	6	0

Table 4. Flows between Departments

Departments/Departments	1	2	3
1	0	40	60
2	40	0	20
3	60	20	0

From Table 3, the distance between location 1 to 2 is 3 feet and from Table 4, the number of times product flows between departments 2 and 3 is 20 . Thus, the flow-distance is $20 * 3=60$. Similarly, the flow-distance computation is repeated for each pair of departments (taken from left to right and from right to left since the matrix of distance is non-symmetric). The MHC is the sum of all the flow-distance calculations (see Table 5) and it is equal to, $1160 * 0.25=\$ 290$ assuming the material handling cost is $\$ 0.25 /$ feet.

Table 5. Example on Computing Material Handling Cost for a given Layout

Pairs of departments	Flows	Locations		Distance	Flows*Distance	
2	3	20	1	2	3	60
2	1	40	1	3	2	80

Table 5. (Continued)

3	1	60	2	3	7	420
1	3	60	3	2	6	360
1	2	40	3	1	5	200
3	2	20	2	1	2	40
				Total $=$		1160

From one period to another the departments change to different locations and a new MHC for the new layout is computed in a similar way as in table 5 . The computed MHC of $\$ 290$ for year 1 is added with the RC incurred to transition from period 1 to period 2 (from L1 to L145). If comparing L1 from period 1 to L145 in period 2, department 2 was moved from location 1 to location 3 and it costs of $\$ 50$. Department's 3 and 1 were also moved and therefore RC is $\$ 130$ (adding all numbers in the given departments' relocation cost table). Then the total cost incurred to go from L1 in period one to $L 145$ in period two is $\$ 290+\$ 130=\$ 420$. The computation of MHC and RC is repeated for the lapse between years 2 and 3 using L145 and L289. The total cost of the solution in Figure 3 will result from adding this cost to the $\$ 420$ computed for the lapse between years one and two. In general, a department is shifted when due to the high flow between it and other(s) department(s) not currently close to it the MHC may be reduced given that the increase in RC's do not exceed those savings.

2.3 DFLP formulated as a network problem

Balakrishnan et al. (1992) indicated that the DFLP can be modeled as a linear network problem (LNP). The network proposed by Balakrishnan et al. (1992) to represent the DFLP as a LNP is in Figure 4 and its notation is in Table 6. Decisions occur at the end of the period. $L 11$ represents layout number 1 in the first period. $L 22$ represents a rearranged layout for the next period (layout 2 in period 2). Edges of the network connect
layouts from different periods and have costs, C, equal to the sum of the material handling cost of the layout in the previous period plus the relocation cost incurred from going from one layout to the next. The problem is to find the lowest cost dynamic layout plan as shown in the figure 4 by the red colored arcs. In Balakrishnan et al. (1992), the edges are also selected in such a way that the sum of the relocation cost incurred does not exceed a total amount of budget allocated to the rearrangements. The linear network model (LNM) and its notation, as in Balakrishnan et al. (1992), are presented below Table 6.

Figure 4. The constrained dynamic plant layout problem (Balakrishnan et al., 1992)

Table 6. Notation for the Network Problem in Figure 4

$L_{i t}$	Static layout i in period t
S, E	Source and end nodes, respectively (dummy layouts)
P	Possible number of layouts in each period which is constant across periods

Table 6. (Continued)	
N	Number of time periods in the planning horizon

Linear Network Model (LNM) to solve the DFLP:

$\operatorname{Minz}=\sum_{i t} \sum_{k(t+1)} C_{i t, k(t+1)} x_{i t, k(t+1)}$
Subject to
$\sum_{i 1} x_{S, i 1}=1$,
$\sum_{i N} x_{i N, E}=1$
$\sum_{i t} x_{i t, k(t+1)}-\sum_{m(t+2)} x_{k(t+1), m(t+2)}=0, \quad$ for all k, t

Model decision variables:

$x_{i t, k(t+1)}$: The arc representing the sum of the MHC in layout i in period t and the $R C$ incurred from layout i in period t to layout k in period $t+1$. The variable $x_{i t, k(t+1)}$ is binary. It will be 1 if layout i is selected in period t and layout k is selected in period $(t+1)$ and 0 otherwise.
$x_{S, i 1} \quad$: Arc connecting the source node S to layout i in period 1.
$x_{i N, E} \quad:$ Arc connecting layout i in period N to end node E.

Model parameters:

$C_{i t, k(t+1)}$: The sum of the MHC in layout i in period t and the RC incurred from moving from layout i in period t to layout k in period $t+1$.

In the model, the objective function (6) minimizes sum of the RC and MHC. Constraint (7) guarantees that one unit is sent from the source node, S to one layout in period 1, constraint (8) assures that one unit arrives to the destination node, E and constraint (9) represents the flow conservation for all nodes. Note the difference in the meaning of the model decision variables for this model and the NLP presented in Section 2.1.

2.4 DFLP with a budget constraint modeled as a network problem

Balakrishnan et al. (1992) introduced the network model for the DFLP with the following additional budget constraint:
$\sum_{i t} \sum_{k(t+1)} R C_{i t, k(t+1)} x_{i t, k(t+1)} \leq B$
In this model, B is a parameter that represents the total available budget for relocations in the planning horizon.

2.5 SDFLP formulated as a network problem

This thesis proposes the following extension of the models in Sections 2.3 and 2.4 to solve a constrained SDFLP under a deterministic equivalent formulation (Birge, 2010) considering a total of S^{\prime} scenarios and N time periods. The model is constrained because it considers limited budget. The three stochastic parameters in the model are the budget available for relocations (A), the cost of relocating the departments (and thus RC is stochastic), and the matrices containing the flow of material between departments (and thus C is stochastic since C is the sum of MHC and RC). The model and its notation are presented below. Given that this model is proposed by the author of this thesis the notation has been slightly changed vs. the one in Balakrishnan et al. (1992). To have a clearer notation, indexes i and k that represent a layout number and index s that represents a
scenario are notated as subscripts and the time indexes (i.e. $t, t+1, N-1$) are notated as subsubscripts.

$$
\begin{array}{ll}
\min z_{s t o c}=\sum_{s=1}^{s^{\prime}} \sum_{i_{t}}^{L_{t}} \sum_{K_{t+1}}^{L_{t+1}} p_{s} C_{s i_{t} K_{t+1}} x_{i_{t} K_{t+1}}-\sum_{s=1}^{s^{\prime}} p_{s} y_{s_{(N-1)}}(1+r)^{-(N-1)} \\
\sum_{i_{1}} x_{S t a r t} i_{1}=1 \\
\sum_{i_{N}} x_{i_{N} E=1} & \text { for all } k, t \\
\sum_{i_{t}} x_{i_{t} K_{i+1}}-\sum_{m_{t+2}} x_{K_{t+1} m_{t+2}}=0 & \\
\sum_{i_{t}}^{L_{t}} \sum_{k_{t+1}}^{L_{t+1}} R C_{s_{i_{t} K_{t+1}}} x_{i_{t} K_{t+1}}+y_{s_{t}}=B_{s_{t}} & \forall s, t=1, \ldots N-1 \\
B_{S_{1}}=A_{s_{1}} & \forall s \\
B_{S_{t+1}}=A_{s_{t+1}}+y_{s_{t}} *(1+r) & \forall s, t=1, \ldots, N-2 \\
B_{S_{t}} \geq 0 & \forall s, t=1, \ldots, N-1 \\
y_{s_{t}} \text { unrestricted in sign (urs) } & \forall s, t=1, \ldots, N-1
\end{array}
$$

Model decision variables:

$x_{i_{t} k_{t+1}}$: The arc representing the sum of MHC in layout i in period t and the RC incurred if changing from layout i in period t to layout k in period $t+1$. The variable $\mathrm{x}_{i_{t}, k_{t+1}}$ is binary. It will be 1 if layout i is selected in period t and layout k is selected in period $(t+1)$ and 0 otherwise.
$x_{\text {Start } i_{1}}$: Arc connecting source or start node (Start) to layout i in period 1. $x_{i_{N, E}}: \operatorname{Arc}$ connecting layout i in period N to end node E.
$y_{s_{t}}$: If positive, it represents the amount of budget not used for relocations occurring between year t and $t+1$ under scenario s. If negative, it represents the extra money to borrow to do relocations occurring between period t to $t+1$ under scenario s.
$B_{s_{t}}$: Total available money for relocations between year t and $t+1$ under scenario s.

Model parameters:

$C_{s i_{t} k_{t+1}}$: The sum of the MHC in scenario s for layout i in period t and the cost of rearranging layout i in period t to layout k in period $t+1$.
$p_{S} \quad:$ Probability of scenario s.
$R C_{s_{t} K_{t+1}}$: Cost of rearranging from layout i in period t to layout k in period $t+l$ under scenario s.
$A_{S_{t}}:$ Available or allocated budget for the relocations occurring between period t and $\mathrm{t}+1$ under scenario s
r : Annual interest rate
In the SDFLP model above, equation (11) minimizes the cost of material handling and relocations and considers the earnings or loses resulting from money not used for relocations or borrowed for doing those relocations assuming an interest rate r. Constraints (12) to (14) are the same as for the DFLP model with budget constraint proposed by Balakrishnan et al. (1992). Constraints (15) to (17) correspond to flow conservation constraints. Constraint (15) says that for a given period, the amount used in relocations plus any money borrowed or left (decision variable y can be negative or positive as explained in the decision variables list) should be equal to the total available money for relocations in such period and scenario. Constraint (17) indicates that the total available money for relocations in a period other than the first one is equal to the available or allocated budget
for relocations in such period plus money (considering interest) that could have been left from the previous period or that must be repaid. Constraint (16) is a border constraint and indicates that the total available money for relocations in period 1 is equal to the available or allocated budget since there is no money left from a previous period to be brought to the period 1. Thus, the model assumes $Y_{S_{0}}=0$.

3. LITERATURE REVIEW

This chapter presents relevant work on facility layout problems (FLP's) besides the work in Balakrishnan et al. (1992) mentioned in the previous chapter. The chapter reviews: (a) seminal works on solving FLP's, (b) approaches to solve DFLP and SDFLP's, (c) and a problem arising in supply chain known as the dynamic warehouse location problem (DWLP) which is closely related to the DFLP. The focus of this review is on problems that model as extensions of the Quadratic Assignment Problem (QAP) and consequently assume that the facilities are about the same size.

3.1 Surveys on recent advancements on solving facility layout problems (FLP)

Balakrishnan \& Cheng (1998) mainly discuss approaches to solve DFLP's with equal sized departments. The approaches are Dynamic Programming, Computerized Relative Allocation of Facilities (CRAFT) heuristic, Genetic Algorithms, Tabu Search, Cutting Planes, Branch and Bound and Cut Trees. The authors also review contributions that deal with stochastic material flow in DFLP. The last section of their paper reviews the DFLP with unequal size departments.

Kulturel-Konak (2007) emphasizes on the uncertainty surrounding production environments and on the relevance of designing robust and flexible facilities. Her work reviews previous work on DFLP and SDFLP's and mentions two types of uncertainties: (i) internal disturbances, such as equipment breakdowns, variable task times, queuing delays, rejects and reworks and (ii) external forces, such as uncertainties in the level of demand, product prices, and product mix. She discusses exact, heuristics, meta-heuristics and hybrid solution methods and indicates that the future research direction is moving to address the uncertainties and changing scenarios in the production environment.

Moslemipour, Lee, \& Rilling (2012) focus on discussing dynamic and robust layouts, mathematical models and solution approaches for the FLP. The mathematical models presented are Quadratic Assignment Problem (QAP), Quadratic Set Covering Problem (QSP), Mixed Integer Programming (MIP) and Graph Theoretic Models (GT). The reviewed intelligent solution approaches are Genetic Algorithm (GA), Simulated Annealing (SA), Tabu Search (TS), Ant Colony Optimization (ACO), Greedy Randomized Adaptive Search Procedure (GRASP), Particle Swarm Optimization (PSO), Artificial Immune System (AIS), Expert System (ES), Fuzzy System (FS), Artificial Neural Networks (ANN). The advantages and disadvantages of these solution approaches are summarized in detail.

3.2 Heuristics derived from exact methods to solve static or single-period Quadratic

 Assignment Problems (QAP)Burkard \& Bonniger (1983) propose a cutting plane algorithm without Bender's decomposition as an update to the methods proposed by Balas and Mazzola (1980). The authors differentiate their cutting plane method (CPM) by proposing another linearization technique. They further improve the solution given by the CPM by doing pairwise exchanges. In this thesis, the approach to solve the DFLP is through a Linear Network Model (LNM) instead of using the NLP formulation used by these authors.

3.3 Dynamic Programming (DP) to solve the DFLP

This section presents different previous works using DP to solve the DFLP. The DP approach has high resemblance with the approaches used in this thesis. As stated in the introduction, this thesis solves the DFLP with a variation of the Dijkstra algorithm and compare such solution approach to the one using a $L N M$ (section 2.3). Rosenblatt, (1986)
presents a formulation for the static facility layout problem (SFLP) as a non-linear integer program (NLIP). In the formulation, the number of locations is equal to the number of departments. The author mentions that problems where the number of locations is different than the number of departments can be solved with this model by introducing dummy departments or locations. He obtains an exact solution for a six departments DFLP using exact DP and derives lower and upper bounds on the optimal solution. For DFLP's with more than 6 departments and 3 periods, Rosenblatt, (1986) suggest a heuristic that selects random layouts from solving the SFLP using CRAFT. The layouts are the input for each stage of the DFLP algorithm.

Lacksonen \& Enscore (1993) benchmark the exchange algorithm, cutting planes, branch and bound, DP, and cut trees to solve a quadratic assignment formulation of the DFLP. The authors generate the instances to test the algorithms. The instances have 6 to 30 departments and 3 to 5 periods. The cutting plane algorithm provided the best solution with a reasonable computational time.

Urban (1998) applies the incomplete DP concept to solve the DFLP with fixed rearrangement costs incurring in low computational times. For a T-period DFLP, the incomplete method solves only $T(T+1) / 2$ static facility layout problems (SFLP's) that correspond to the cases where relocation cost is incurred. Using these layouts, a solution is found using DP. The author also solves the DFLP using GRASP and Initialized Multi Greedy Algorithms and compares those results to the ones from the incomplete DP method. The work presents also an improved lower and upper bound to the DFLP.

3.4 Heuristic and meta-heuristic approaches to solve the DFLP

This section presents seminal contributions regarding heuristics methods to solve the DFLP. In the Numerical Results chapter, the methodologies proposed in this thesis will be compared to results from some of authors mentioned in this section. Conway \& Venkataramanan (1994) are the first authors using GA to solve the DFLP with a budget constraint. GA is a meta-heuristic that applies concepts and terminology brought from genetics to find a near optimal solution. GA most relevant elements are generation, chromosomes, population, survival of the fitness, crossover, and mutation. The GA proposed is tested in an $n=6$ departments (and locations) and $t=5$ periods problem. The chromosome size is $n \times t$, or 30 digits, representing the location of every department in each period. Also, for each period there are $n!=720$ chromosome strings in the population. Based on the fitness function (i.e. the cost function), two strong chromosomes are selected, split and swapped. It may end up in infeasible solutions like repeating a department in one period. Replacement of the invalid chromosome digits produces feasible solutions. The GA repeats the process of selecting pairs of chromosomes, splitting and swapping to produce new feasible solutions at each iteration of the algorithm.

Kaku \& Mazzola (1997) use Tabu Search (TS), a technique that does pairwise interchanges between departments in the local neighborhood of a solution and keeps a tabu list to avoid cycling. A diversification strategy is used to ensure that different regions of the search space are explored. Their TS heuristic is a two-stage procedure. In the first stage, diversification allows to get several different solutions. The best solutions generated are fed into the second stage for intensification of the search and determine a final solution.

Problems from Lacksonen \& Enscore (1993) repository with up to 30 departments and 5 periods took 3 hours, on average, to run on a Pentium 200 MHz PC .

Balakrishnan \& Cheng (2000) propose a GA method that outperforms the one in Conway \& Venkataraman (1994). Later, Balakrishnan et al. (2003) and Balakrishnan \& Cheng (2006) produce a hybrid algorithm that combines GA and DP. DP is used at the crossover step to find the best multi-period layout based in fitness. This hybrid algorithm takes advantage of DP and GA without being computationally prohibitive.

Baykasoglu \& Gindy (2001) propose a SA algorithm with a simple, but effective, data structure and neighborhood generation mechanism. Solutions are in a twodimensional matrix (periods in the rows, locations in the columns, and departments are entries of the matrix). Neighborhood solutions result from swapping elements in the rows of the matrix. The algorithm is applied to small test problems from the literature. It finds the optimal solutions and performs better than the DP from Rosenblatt, (1986) and the GA of Conway \& Venkataraman, (1994). Additional computational experimentation is done with the data set from Balakrishnan \& Cheng, (2000) which contains problems for 6,15 , 30 departments for 5 and 10 periods. Comparisons made with the GA in Balakrishnan \& Cheng, (2000) show that the proposed SA performs considerable well. However, computational time increases considerably as problem size gets bigger.

McKendall \& Shang (2006) are the first ones to apply Hybrid Ant Systems (HAS) to the DFLP and develop three different versions of the heuristic (HAS I, HAS II, and HAS III). Results show that the proposed versions perform well on Lacksonen \& Enscore (1993) and Balakrishnan \& Cheng, (2000) data sets. A pairwise exchange technique is used in HAS I to improve the initial and updated solutions from using the pheromone trail matrix.

HAS II uses SA as the local search heuristic and the ideas in HAS I. HAS III adds a look-ahead/look-back strategy to the pairwise exchange heuristic within the HAS I heuristic. HAS I, II, III obtained the best solutions for 19, 30, and 36 problems from Balakrishman \& Cheng (2000) repository, respectively.

Baykasoglu et al. (2006) propose an ant colony heuristic for solving complex combinatorial optimization problems like DFLP. The authors came out with competitive solutions however, Mckendall \& Shang (2006) gave a few better results.

Sahin et al. (2010) propose a simulated annealing algorithm to solve the DFLP with a constraint on the budget available for relocations. They compare the proposed heuristic with the one in Baykasoglu et al. (2006) because they state that Baykasoglu et al. (2006) and Balakrishnan et al. (1992) are the only two previous studying the DFLP with budget constraints. The problems compared have 5, 15 and 30 departments and 5 and 10 periods. The average improvements obtained by Sahin et al (2010). vs. Baykasoglu et al. (2006) are $1.27 \&$ for the instances of size $5,6.19 \%$ for the instances of size 15 and 5.59% for the instances of size 30 .

3.5 Simulation approaches to solve the DFLP

A novel perspective to solve DFLP's is introduced by Azimi \& Charmchi (2012). They proposed a heuristic algorithm to solve a DFLP with budget constraint combining linear/integer programming and simulation. After solving a linear relaxation of the nonlinear model for the DFLP, the decision variable is interpreted as the probability of assigning a department to a location. In the experiments, the budget is split equally for each period and for some problems the budget was set equal to the rearrangement costs. This work proved to be efficient in computational time and was tested in problems of up to 30
departments. They are the second authors after Sahin et al. (2010) to research on a DFLP model with two constraints that limit the expenditure on relocations and tie the leftover budget from a previous period to the total available budget in a current period.

3.6 Stochastic and Dynamic Facility Layout Problems (SDFLP)

Palekar et al. (1992) use exact methods based on DP and heuristics to solve for the first time an SDFLP under fixed and rolling horizons options. The work provides lower and upper bounds to the problem optimal solution. In the exact approach, this work exemplifies the combination of the use of integer programming (IP) and DP. The author found exact solutions for problems with up to 12 departments and 8 periods. Also, the approximate methods tested successful for problems with up to 40 departments and 8 periods. Using a rolling horizon produced good results if compared to fixed horizon. The main contribution of this work is a drastic reduction on computational time since heuristics reduced the number of layout combinations explored in the DP procedure.

Benjaafar \& Sheikhzadeh (1997) find the most flexible layout over a set of demand scenarios. In addition to variability of product mix and product demand, the authors allow duplication of the same department type within the facility. In fact, disaggregation and distribution of a department throughout the facility is not a new idea. Earlier, Montreuil et al. (1993) introduced the concept of holographic layouts for systems operated in high volatile environments. A holographic layout allows the spreading of machines in a facility. The authors assume that: (1) each sub department may consist of more than one machine, (2) all sub departments of the same type may not necessarily have the same capacities and (3) material flow between departments is a decision variable. The material handling cost is reduced, and the solution adjusts to the fluctuations in flow patterns and volumes. The
authors use a heuristic method to solve the problem. It is an extension to the CRAFT algorithm where a flow volume allocation problem is solved first in an exact way. They show that duplicates of the same departments can significantly reduce material handling cost while effectively coping with fluctuations in flow patterns and volumes. However, most of the cost reduction occurs with relatively few duplicates.

Krishnan et al. (2008) work on minimizing uncertainties from multiple demand scenarios in single and multi-period facility layout problems. The problems are solved under minmax approach and minimize the total expected loss (MTEL) approaches. Under the minmax approach, the objective is to minimize the maximum loss considering all possible scenarios. The common layout to be used under all scenarios is found using GA. The results show that these models are effective in reducing the risks that are associated with facility layout design under uncertain environments.

Tayal et al. (2016) propose a methodology to solve a sustainable stochastic demand flow facility layout problem. They integrate meta-heuristic techniques such as SA, chaotic simulated annealing (CSA) and hybrid firefly algorithm (FA/CSA) to generate the layouts. The best layouts among the generated layouts are filtered using data envelopment analysis (DEA) and applying multiple attribute decision making (MADM) approaches such as TOPSIS, IRP and AHP in association with aggregate ranking methods and integer linear programming (ILP).

Vitayasak et al. (2017) solve SDFLP's assuming product demands follow exponential, normal, and uniform distributions and using GA and the Backtracking Search algorithm (BSA) as solution methods. The novel modified BSA consists of five processes: initialization, selection-I, mutation, crossover and selection-II. The computational
experiments compared five algorithms GA, BSA and modified BSA's (mBSA1, mBSA2, mBSA3). Results show that GA performs much better than BSA in terms of minimizing the cost. However, BSA took 55% less time than GA and thus the authors suggest that BSA is suitable for large, computationally intensive optimization problems.

Tayal et al. (2018) propose Simulated Annealing (SA) and Chaotic Simulated Annealing (CSA) meta-heuristics to solve a Multi Objective Stochastic Dynamic Facility Layout Problem (MO-SDFLP) to solve the location-based demand problem on the facility during disasters. The main aim is to find a layout that responds to the sudden demand variations occurring in disaster relief situations faced by supply chains. The two considered objectives are to minimize the flow times distance while maximizing the department's closeness or adjacency desirability, which is in many cases subjective information related to noise, heat, dust, flow of material, etc. Tayal et al. (2018) test their proposed methods on the Moslemipour \& Lee (2012) problem with 12 Departments and 5 periods and Gaussian (i.e. normal) distribution product demand. For further testing the capabilities of MO-SDFLP on a high-demand disaster situation the SA and CSA algorithms are used to solve a problem with 30 Departments and 5 periods. The results showed that CSA performed better than SA.

3.7 Dealing with planning horizon and other practical considerations that should be included when solving the DFLP

Azadivar \& Wang (2000) solve a single-period FLP by considering other dynamic characteristics and operational constraints such as the time involved in moving the material and number of transporters. The objective function is not to minimize material handling cost but to minimize average cycle time. GA is used to optimize the facility layout for cycle
time and productivity. Simulation is used to evaluate the performance of the system. The method proved very effective to find near-optimal solutions. However, the time consumed by the computer simulation is significant.

Balakrishnan \& Cheng (2009) compare the Urban heuristic (1998) and approximate DP to solve a DFLP starting from layouts generated with the CRAFT heuristic and randomly. The comparisons were done under fixed vs. rolling horizons options. The authors mention that algorithms developed for the fixed horizon case are not as effective as those developed for rolling horizons. They also indicate that it is hard to pick up an algorithm that runs effectively under both fixed and rolling horizons. The effectiveness of the rolling plan horizon algorithm is compared under various scenarios. The authors conclude that further research is needed to coin an effective self-adjusting algorithm under rolling horizons.

Appendix A presents a table that summarizes the DFLP works reviewed in this Sections 3.1-3.5 and 3.7. Appendix B presents a table that summarizes the SDFLP works reviewed in Section 3.6. The current gaps in the literature are to: (1) find more efficient and accurate ways to solve DFLP for instances with more than 10 departments (10 locations) with 3-5 periods and (2) provide a stochastic model and a solution approach for the SDFLP that does not rely on DP or meta-heuristics. This thesis attempts to fill this gap. In the last part of this section, we briefly review the Dynamic Warehouse Location Problem (DWLP), a supply chain problem that closely relates to the DFLP.

3.8 Dynamic Warehouse Location Problem (DWLP)

Ballou (1968) mentions that in a rapidly changing economy, warehouse locationrelocation is also a dynamic decision problem, yet most existing location models used to
solve the problem are static. Ballou applies the DP technique to find a location-relocation plan for a single warehouse that will maximize total profit in a given planning period of five years. This DWLP involves the tradeoff between expected profit and time to relocate warehouses. Relocation profit depends on decision makers periodical review of new input data about the location of the warehouse. When future demand and economic data can be forecasted only for a short time horizon and the forecasted demand is high, it is not a good idea to relocate since at the time of relocation the demand might have changed, and the company may end up with a profit much lower than predicted. Accurate long-term forecasts provide the best scenario for the decision makers because it gives them enough time to relocate warehouses. As relocation is also concerned with land purchase, construction, lease negotiation, financing, closing and starting operations, accurate longterm forecasts put relocation as risk free, because of the ample time, and low chances of changes for demand and economic data after relocating.

Sweeney and Tatham's (1976) propose an approximate method to solve a DWLP that combines DP and Mixed Integer Linear Programming. They opt for a computationally efficient DP algorithm that consists of using as states in each period only the R best static configurations for the warehouse on each period. The generation of the best configurations involves solving the MILP multiple times by adding constraints that avoid repetition of the previous static solution. This approach was illustrated in a problem with five-year planning horizon, two plants, five warehouse locations, and 15 customer zones.

DWLP could be extended to include the identification of the best layout for products inside the warehouse. High demand of a product makes a product of high priority. The warehouse will save in relocation and material handling costs by finding the optimal
location for the products. Furthermore, products can be grouped by using inventory stratification methods, such as ABC and weighted linear optimization. Such extended DWLP could include multiple objectives such as maximize the overall profits in the warehouse location decision and achieve top-notch customer service over the time horizon.

4. METHODOLOGY

This chapter consist of 4 sections. Section 4.1 explains a variation of the Dijkstra's algorithm used in this thesis to solve the DFLP modeled as a network and presented in Chapter 2 (Section 2.3). Section 4.2 briefly presents Dynamic Programming (DP), a closely related methodology. Section 4.3 explains and exemplifies the simplex for networks algorithm (SNA), the second methodology used in this thesis. Section 4.4 briefly discusses how these methodologies were implemented for developing the computational study.

4.1 Parallel Shortest Path (PSP) algorithm for solving the DFLP

This thesis experiments with the parallel implementation to solve the DFLP as a shortest path problem developed by Kolla (2015). This implementation is notated as Parallel Shortest Path (PSP). It is a slight variation of the Dijkstra's algorithm (Dijkstra, 1959), also presented in Tarjan (1983) and Rardin (2017). Following is a presentation of the variation of the Dijkstra's algorithm implemented by Kolla (2015) to solve the DFLP.

Figure 5. A network representation of the DFLP

Figure 5 presents the DFLP modeled as a network problem in a directed weighted graph G. To make Figure 5 simple, the DFLP presented has three facilities, three locations and T time periods. In general, G has $T * n!+2$ vertexes or nodes where T is the total number of periods and $n!$ is the total number of layouts considered in each period if the problem has n departments and n locations. G has $(\mathrm{T}-1) *(\mathrm{n}!* \mathrm{n}!)+2 \mathrm{n}!$ arcs. Two dummy nodes v_{o} and v_{f} are added to the network and they represent the single origin and the destination.

Node v in the graph define a layout of facilities (i.e. assignment of facilities to locations), represented as a permutation π of integers, $\{1 \ldots n\}$. Material handling cost (MHC) for node v is computed using the permutation π, the flow $(F=\{f t k l\})$ and distance ($D=\{d i j\}$) matrices as exemplified in Section 2.2. MHC is the sum of all feasible products of flow between departments and distances between locations. There is a unidirectional edge $e_{r s}$ from node v_{r} to v_{s} if v_{r} and v_{s} are in two different periods (i.e. r is in $t-1$ and s is in t, this means v_{r} precedes $\left.v_{s}\right)$. The weight $W\left(e_{r s}\right)$ on each edge can be computed as $W\left(e_{r s}\right)=$ $R C e_{r s}+M H C v_{s}$ where $R C$ represents the relocation cost. The value for $R C e_{r s}$ results from comparing the permutations in v_{r} and v_{s} and adding the relocation costs for all departments that have shifted their locations from one period to the next one.

The length of a path in G is the sum of its edge weights. The cost to travel from a node v_{r} to a node v_{s} is the minimum length of a path from v_{r} to v_{s}. However, note that in the DFLP, the only interest is to find the shortest path or minimum-cost path from v_{o} to v_{f}. The shortest path DFLP algorithm uses a tentative cost function $C[v]$ such that when the algorithm ends $C\left[v_{f}\right]$ has the total cost to travel (i.e. to go) from v_{o} to v_{f}. The steps in the variation of the Dijkstra's algorithm implemented by Kolla (2015) to solve the DFLP are listed below.

Variation of the Dijkstra's algorithm to solve the DFLP:

Initialization Step

- Each vertex or node is in one of three states: unlabeled (and with infinite cost), labeled (i.e. temporary labeled) or scanned (i.e. permanently labeled).
- At the beginning v_{o} is the only vertex labeled and $\mathrm{C}\left[v_{o}\right]=0$. The vertexes v_{s} that connect directly to node v_{o} are temporarily labeled with a cost $\mathrm{C}\left[v_{s}\right]$ equal to the sum of $\mathrm{RC}_{o s}+\mathrm{MHC}_{s}$ which is equal to $\mathrm{MHC}_{\boldsymbol{s}}$ since $\mathrm{RC}_{\text {os }}$ is zero. All other nodes are unlabeled and have infinite cost. The index i is set equal to 1 and the scan step is performed.

Scan or Processing Step

- \quad Select vertex v_{i} and change it from labeled to scanned. For each edge $e_{r s}$ such that $C_{v_{i}}+R C_{v_{i} v_{s}}+M H C_{v_{s}}<C_{v_{s}}$ replace $C_{v_{s}}$ by $C_{v_{i}}+R C_{v_{i} v_{s}}+M H C_{v_{s}}$ and make v_{s} labeled. If $\mathrm{C}\left[v_{s}\right]$ was replaced, set the predecessor node of $s, p[s]$, as vertex. Increase i to $i+l$ and repeat the scan step until no temporary nodes remain.

Comments about the algorithm

Storing the predecessor node information permits to find the shortest path from v_{o} to v_{f} when the algorithm ends. This is done by going backwards from v_{f} to v_{0} and using the information in $p[s]$. There are a couple of differences to highlight between this variant of the Dijkstra's algorithm to solve the $D F L P$ and the algorithms originally proposed by Tarjan (1983) and Dijkstra's (1959). In the PSP implementation, finding the shortest distance corresponds to finding one layout for each period that minimizes the total cost in equation (1) of the model presented in section 2.1 or equivalently the total cost in equation (6) of the model presented in 2.3. Besides, in each iteration, the selection of the node to
label as scanned (Tarjan, 1983) or permanent (Taha, 2013) among the temporary nodes does not require to loop over the temporary labeled nodes to find the one of minimum cost (i.e. distance). It is because there is no interest in identifying the nodes that are closer to the source node v_{o} in increasing order of cost. It reduces the computational time of the PSP implementation. Besides, the DFLP network has no edges between nodes that belong to the same period or are separated by more than one period. It also simplifies the number of comparisons to perform by the PSP implementation.

In the DFLP the problem size rapidly grows for instances with more than $n=6$ departments and $t=3$ periods. To cope with this issue, the PSP implementation generates a large number N of layouts for each period t where ($N<n!$) and proceeds to execute the shortest path algorithm previously described. Since the problem exemplified in figure 5 is small (3 departments, 3 locations, T periods), all n! layouts are in the network. Consequently, the reader sees a repetition in the layouts (or permutations) in the nodes over the periods.

Regarding the parallelization implemented by Kolla (2015), it focused on computing the MHC of the nodes in a parallel fashion using two reduction operations available in OpenMP. Kolla also observed that the computation of MHC and RC are independent and can be executed in parallel. However, the time to compute MHC is significantly larger than the time to compute RC. Then, there was no great reduction in computational times when implementing the last parallelization idea.

4.2. Solving DFLP using Dynamic Programming (DP)

Alternatively, the shortest path problem can be modeled and solved with the Dynamic Programming (DP) methodology. However, this approach still will have the curse
of dimensionality mentioned in the previous section. The main idea in a DP approach is to decompose the problem into sub-problems (Taha, 2013). Computations are performed recursively in such a way that the optimum solution of one stage (i.e., a sub-problem) is used as an input to the next stage. The optimum solution is obtained when the last stage is reached. In the DFLP a stage represents a period. Using the DFLP notation introduced in the previous paragraphs, the forward recursive equation to solve the DFLP under a DP approach is given by equation (6).

$$
\begin{equation*}
C_{v_{s}=v_{r} \in(\text { stage } t-1)}\left\{C_{v_{r}}^{t-1}+R C_{v_{r} v_{s}}\right\}+M H C_{v_{s}}^{t} \tag{6}
\end{equation*}
$$

The recursive equation (6) express the shortest cost to state or node v_{s} in the next stage t. It links successive stages in a way that permits optimal decision for every state or node v_{s} in a future stage t independently of the decisions already made in all preceding stages. DP is an operations research approach appropriate for exactly solving multi-period or multi-stage problems.

4.3 Network simplex algorithm for solving DFLP modeled as a network problem

The network simplex method (NSM) is an adaptation of the bounded variable primal simplex algorithm. It can be used to solve Minimum-Cost Network Flow Problems MCNFP such as shortest path, maximum flow, transportation, assignment, transshipment and critical path problem. The primal and the dual for the MCNFP are:

Primal:

$$
\begin{gathered}
\min C^{T} X \\
\text { s.t., } A x=b \\
x \geq 0
\end{gathered}
$$

Dual:

$\operatorname{Max} \boldsymbol{b}^{T} W$

s. .,$W^{T} A \leq C^{T}$

W unrestricted in sign (URS)

The MCNFP variables are the arcs. Iterations are done until the optimal solution is achieved, this means when no non-basic variable (i.e., arc) is eligible to enter to the basis. The first iteration starts by arbitrarily selecting a spanning tree. Second iteration and the rest of the iterations identify the non-basic arc to enter. The arc with the maximum violation of the optimality condition causes the maximum decrease in the objective function per unit change in the value of flow on the selected arc. It will enter to the basis in the next iteration and a new objective function cost will be computed. The detailed steps for the NSM as discussed in Winston (2004) are presented below.

4.3.1 Network simplex method (NSM) procedure

Step 1: Determine the initial basic feasible solution (bfs) by selecting a spanning tree arbitrarily. Indicate non-basic variables at their upper bound by dashed arcs.

Step 2: Compute $W_{1}, W_{2}, \ldots W_{n}$ (simplex multipliers or dual values) by solving $W_{i}-W_{j}=$ $C_{i j}$ for all basic variables $X_{i j}$ and giving the value $\mathrm{W}=0$ to one of the W_{i} 's. For all non-basic variables, determine the reduced cost coefficient $\bar{C}_{i j}$ from $\bar{C}_{i j}=W_{i^{-}} W_{j}-C_{i j}$. The current bfs is optimal if $\bar{C}_{i j} \leq 0$ for all $X_{i j}=L_{i j}$ and $\bar{C}_{i j} \geq 0$ for all $X_{i j}=U_{i j}$. If the bfs is not optimal, choose the non-basic variable that most violates the optimality conditions as the entering basic variable.

Step 3: Identify the cycle (there will be exactly one!) created by adding the arc corresponding to the entering variable to the current spanning tree of the current bfs. Use
conservation of flow to determine the new values of the variables in the cycle. The basic variable that exits the basis will be the variable that first hits its upper or lower bound as the value of the entering non-basic variable is changed.

Step 4: Find the new bfs by changing the flows of the arcs in the cycle found in step 3. Go to step 2.

Following are two examples on the network simplex method. Example 1 show some of the steps for solving small size Shortest Path Problem. Example 2 show the steps for solving a Transshipment Problem without bounds on the variables.

4.3.2 Example 1: solving a Shortest Path Problem (SPP) using the NSM

Figure 6 depicts a Shortest Path Problem. In this network, the costs are given in \$. As a first step, one feasible solution (i.e. arbitrarily chosen spanning tree with $\mathrm{n}-1$ arcs) is identified as shown Figure 7. A spanning tree is a tree that connects all nodes and does not form a cycle. All the five arcs represent basic variables (X_{13} and X_{56} are at its lower bound and the others at its upper bound). The omitted arcs $\left(\mathrm{X}_{25}\right.$ and $\left.\mathrm{X}_{35}\right)$ represent non-basic variables.

Figure 6. Initial network example 1

Figure 7. First step to solve the shortest path problem in example 1
In Step 2, the complementary slackness theorem on the dual constraints is applied.
It means to solve the following system of equations for the primal basic variables. The system has one redundant W variable that can be set equal to zero to solve for the other variables. If $\mathrm{W}_{1}=0$ the values of the W 's are computed below and depicted in Figure 8.

$$
\begin{aligned}
& \mathrm{W}_{1}-\mathrm{W}_{2}=\mathrm{C}_{12}=4 \\
& \mathrm{~W}_{2}-\mathrm{W}_{4}=\mathrm{C}_{24}=3 \\
& \mathrm{~W}_{4}-\mathrm{W}_{6}=\mathrm{C}_{46}=2 \\
& \mathrm{~W}_{1}-\mathrm{W}_{3}=\mathrm{C}_{13}=3 \\
& \mathrm{~W}_{5}-\mathrm{W}_{6}=\mathrm{C}_{56}=2
\end{aligned}
$$

Now, the optimality of the non-basic variables is checked by using the dual constraints and the complementary slackness theorem.

$$
\begin{aligned}
& \bar{C}_{25}=\left[\mathrm{W}_{2}-\mathrm{W}_{5}-\mathrm{C}_{25}\right] \rightarrow[-4-(-7)-2] \rightarrow 1 \text { (Violates optimality condition) } \\
& \bar{C}_{35}=\left[\mathrm{W}_{3}-\mathrm{W}_{5}-\mathrm{C}_{35}\right] \rightarrow[-3-(-7)-3] \rightarrow 1(\text { Violates optimality condition })
\end{aligned}
$$

Since \bar{C}_{25} and \bar{C}_{35} violate the optimality conditions with a value 1 , arbitrarily \bar{C}_{25} is taken. Step 3 of the NSM is also shown in Figure 8. X_{25} will enter the basis with an
allocation of Θ equal to 1 because beyond this value, arcs $(2,4)$ and $(4,6)$ will become negative. X_{46} will leave the basis as shown by the cycle formed by $\operatorname{arcs} \mathrm{X}_{24}, \mathrm{X}_{46}, \mathrm{X}_{25}$ and X_{56}.

Figure 8. Steps 2 and 3 NSM to solve the shortest path problem in example 1
The lighter arcs in Figure 8 indicate basic variables at the lower level of 0 and the thicker arcs represent the remaining basic variables. The new basic arcs are $(1,2)(2,4)(2,5)$ $(1,3)$ and $(5,6)$. A new iteration of the NSM starts by repeating step 2 . The new W values are:

$$
\begin{aligned}
& \mathrm{W}_{2}-\mathrm{W}_{5}=\mathrm{C}_{25}=2 \\
& \mathrm{~W}_{2}-\mathrm{W}_{4}=\mathrm{C}_{24}=3 \\
& \mathrm{~W}_{5}-\mathrm{W}_{6}=\mathrm{C}_{56}=2 \\
& \mathrm{~W}_{1}-\mathrm{W}_{3}=\mathrm{C}_{13}=3 \\
& \mathrm{~W}_{1}-\mathrm{W}_{2}=\mathrm{C}_{12}=4
\end{aligned}
$$

Now, the optimality of the non-basic variables is checked by using the dual constraints and the complementary slackness theorem.

$$
\begin{aligned}
& \bar{C}_{35}=\left[\mathrm{W}_{3}-\mathrm{W}_{5}-\mathrm{C}_{35}\right] \rightarrow[-3-(-6)-3] \rightarrow 0(\text { Satisfies optimality condition }) \\
& \bar{C}_{46}=\left[\mathrm{W}_{4}-\mathrm{W}_{6}-\mathrm{C}_{46}\right] \rightarrow[-7-(-8)-2] \rightarrow-1 \text { (Satisfies optimality condition) }
\end{aligned}
$$

Since both non-basic variables satisfy the optimality condition, the algorithm stops. Figure 9 shows the optimal shortest path solution.

Figure 9. Optimal solution for the shortest path problem in example 1

4.3.3 Example 2: solving a Transshipment Problem using the NSM

Figure 10 presents the problem. Node 1 and 3 are supply nodes, while node 2 is a transshipment node and node 4 and 5 are demand nodes. The B values indicate the amount of demand (-) and/or supply (+) on each node. The cost associated with each arc are along the arrows. Figure 11 shows the status of the algorithm after the first step is completed.

Figure 10. Initial network example 2
In the first step, the arcs $(1,2)(2,4)(3,4)$ and $(3,5)$ are arbitrarily selected as the bfs. Figure 11 has the allocated values for these basic variables (i.e. arcs). See values after the x's. Figure 11 also shows the W's resulting after solving the system of equations in step 2 of the NSM. The system results from applying the complementary slackness theorem on the dual constraints. The system has one redundant W variable that can be set equal to zero to solve for the other variables. If $\mathrm{W}_{5}=0$ the values of the W 's are the ones listed below and depicted in Figure 11.

Figure 11. Network simplex method steps for the first iteration in example 2

$$
\begin{aligned}
& \mathrm{W}_{1}-\mathrm{W}_{2}=\mathrm{C}_{12}=8 \\
& \mathrm{~W}_{2}-\mathrm{W}_{4}=\mathrm{C}_{24}=5 \\
& \mathrm{~W}_{3}-\mathrm{W}_{4}=\mathrm{C}_{34}=6 \\
& \mathrm{~W}_{4}-\mathrm{W}_{5}=\mathrm{C}_{45}=4
\end{aligned}
$$

Now, the optimality of the non-basic variables is checked by using the values of the dual constraints and the complementary slackness theorem.

$$
\begin{gathered}
\bar{C}_{25}=\left[\mathrm{W}_{2}-\mathrm{W}_{5}-\mathrm{C}_{25}\right] \rightarrow[9-0-7] \rightarrow 2 \text { (Violates optimality condition) } \\
\bar{C}_{13}=\left[\mathrm{W}_{1}-\mathrm{W}_{3}-\mathrm{C}_{13}\right] \rightarrow[17-10-1] \rightarrow 6 \text { (Violates optimality condition) } \\
\bar{C}_{35}=\left[\mathrm{W}_{3}-\mathrm{W}_{5}-\mathrm{C}_{35}\right] \rightarrow[10-0-3] \rightarrow 7 \text { (Violates optimality condition) }
\end{gathered}
$$

\bar{C}_{35} is the maximum violating arc and it enters to the bfs. In Step 3 of the NSM, an allocation of $\Theta=4$ is given to the new entering arc 3-5 because in the cycle formed by arcs X_{34}, X_{45}, and X_{35}, a value larger than 4 will give a negative value to the basic variable X_{34}. The variable X_{34} then leaves the basis. Figure 11 shows with bolded color the current bfs after completing one iteration of the steps in the NSM. The second iteration starts with
$\operatorname{arcs}(1,2),(2,4),(4,5)$ and $(3,5)$ as basic variables. Figure 12 shows the values for the W's computed in the second step at the second iteration. They result from solving the equations below Figure 12, setting $\mathrm{W}_{5}=0$ and using the complementary slackness theorem again.

Figure 12. Second iteration of the network simplex method for example 2

$$
\begin{aligned}
& \mathrm{W}_{1}-\mathrm{W}_{2}=\mathrm{C}_{12}=8 \\
& \mathrm{~W}_{2}-\mathrm{W}_{4}=\mathrm{C}_{24}=5 \\
& \mathrm{~W}_{4}-\mathrm{W}_{5}=\mathrm{C}_{45}=4 \\
& \mathrm{~W}_{3}-\mathrm{W}_{5}=\mathrm{C}_{35}=3
\end{aligned}
$$

Now, the optimality of the non-basic variables is checked.

$$
\begin{gathered}
\bar{C}_{34}=\left[\mathrm{W}_{3}-\mathrm{W}_{4}-\mathrm{C}_{34}\right] \rightarrow[3-4-3]=-4 \text { (Satisfies optimality condition) } \\
\bar{C}_{13}=\left[\mathrm{W}_{1}-\mathrm{W}_{3}-\mathrm{C}_{\mathrm{ij}}\right] \rightarrow[17-3-6]=8 \text { (Violates optimality condition) } \\
\bar{C}_{25}=\left[\mathrm{W}_{2}-\mathrm{W}_{5}-\mathrm{C}_{\mathrm{ij}}\right] \rightarrow[9-0-7]=2 \text { (Violates optimality condition) }
\end{gathered}
$$

\bar{C}_{13} is the maximum violating arc and it enters into the bfs. In step 3, an allocation of $\Theta=1$ is given for the new entering arc 1-3 because in the cycle formed by arcs X_{12}, X_{24},
$\mathrm{X}_{45}, \mathrm{X}_{13}$ and X_{35} it is the maximum value that permits the arc 4-5 to stay above its lower value of zero. Then X_{45} leaves the basis. The iterations of the NSM continue until the optimum is achieved. In example 2, the optimum is achieved in 4 iterations. Figure 9 shows the optimal network.

Figure 13. Optimal network for example 2 after four iterations

4.4 Modeling the DFLP and the SDFLP as a linear network problem with AMPL

AMPL stands for Advanced Mathematical Programming Language. It is an algebraic modelling language to describe and solve highly complex problems occurring in large scale optimization and scheduling-type problems. Network linear programs can be modeled in AMPL using standard AMPL formulations that include definition of sets, parameters, variables, objective function and constraints. AMPL also permits network models to be described more directly in terms of their network structure using what is known as node and arc declarations. The advantage of modeling the problem using node
and arc declarations is that AMPL automatically communicates the network structure to the solver and any special network algorithms in the solver are applied automatically. (Fourer, 2003).

In this thesis, the solver selected to work with AMPL is CPLEX. CPLEX incorporates an optional heuristic procedure that identifies "pure network" constraints in a linear program. The CPLEX procedure looks for these constraints and if the model has many of them CPLEX applies a fast network simplex algorithm. If the CPLEX solver finds non-network constraints, CPLEX uses the network solution as a start for solving the problem by the general primal or dual simplex algorithm. The optional heuristic is active by default but the user can suppress it or force its use in all cases. CPLEX's network simplex algorithm can achieve dramatic reductions in optimization time for "pure" network linear programs defined entirely in terms of node and arc declarations (Fourer,2003).

The node-and-arc declaration makes it easy to define a linear program for a network that has several different kinds of nodes and arcs. The DFLP problem in this thesis, modeled as presented in Section 2.3, is solved in AMPL using node and arc declarations. Consequently, the various steps and iterations that such formulation undergoes to find a solution are the ones described and depicted in the Section 4.3 Network Simplex Algorithm for solving DFLP modeled as a network problem. Examples 4.3.2 \& 4.3.3 illustrated the procedure AMPL/CPLEX follows by using a small-sized problem. Because the models for solving the DFLP with budget constraint and the SDFLP model presented in sections 2.4 and 2.5 have additional constraints they are considered as variants to the regular shortest path problem. Thus, they are not solved with the simplex network algorithm.

The AMPL model and a skeleton sample data file used for solving the DFLP proposed in Section 2.3 using node and arc declarations are presented in Appendix C and D, respectively. The AMPL model and a skeleton sample data file for solving the DFLP with budget proposed in Section 2.4 are in Appendix E and F. The AMPL model and a skeleton sample data file for solving the SDFLP proposed in Section 2.5 are presented in Appendix G and H.

5. NUMERICAL RESULTS

In this chapter, the DFLP Parallel Shortest Path (PSP) variation of the Dijkstra algorithm and the Linear Network Model (LNM) methodology are compared and contrasted to several heuristic approaches proposed by previous authors. The comparison is done in terms of computational time and overall cost of the solution.

5.1 DFLP Datasets

Balakrishnan \& Cheng (2000) generated DFLP instances that the research community have been using to test their proposed methodologies. The instances have 6, 15 and 30 departments and 5 and 10-time periods. Under each combination of department and period, there are eight different problems that differ by the matrixes of flow between departments and distance between locations. In this thesis, all problems with 6, 15 and 30 departments and 5 -time periods were selected and tested. The fixed time horizons of 5 periods seemed to make more practical sense. Due to volatility in the economy, fixed periods of 10 -years length seemed less practically implementable. In addition, Moslemipour \& Lee (2012) present a randomly generated problem with 12 departments and 5-time periods. In this thesis, this 12 departments instance is also used for experimentation.

5.2 SDFLP Datasets

Since there is no library of instances for the SDFLP, 4 problems were generated with Excel inspired by the methodology Balakrishnan et al (1992) followed to generate instances for the DFLP. The instances considered five-time periods, six departments and locations and three scenarios for the market that will affect the matrices of flows between departments and the vectors of costs of relocating the departments. The flows between
departments necessary to compute the material handling cost (MHC) and to obtain the values for the $C_{S i t, k(t+1)}$ parameters were randomly generated from a uniform distribution (U[a,b]) with parameters $a=100$ and $b=200$. For each problem, the total material flow between departments was kept constant over the time periods. Then, the flows for three departments were increased by a factor of 5 in three departments (departments 1,4 , and 6). In this way, flow dominance from some departments would motivate relocations and the flow matrixes end asymmetric. The distance (feet) matrix between locations was about the same order of magnitude than the ones provided from the library (d6l5) in Balakrishnan \& Cheng (2000).

The vectors of costs for relocating each department, named uRC in the codes, were generated randomly from a uniform distribution (U[a,b]) with $a=100$ and $b=500$ in each of the three scenarios considered. The procedure to generate flow matrices and vectors of cost of relocating each department was repeated for the 4 problems, and for the 3 scenarios and 5-time periods in each.

5.3 DFLP experimental Setting

The number of different DFLP problems studied is 25 (8 problems with 6, 15 and 30 departments and 1 problem with 12 departments). Each DFLP problem was also run 5 times. The multiple runs are necessary to see the variability of the results to selecting different sets of layouts or permutations to include in the DFLP network.

The number of runs equals to $125(25 * 5)$ for the variant of no-sorting the layouts randomly generated to input to the network. This variant is labeled as no-sorting through this document. A total of $120(24 * 5)$ runs were done for the sorting layouts variant (since the 12 instances was not studied). This variant is labeled as sorting through this document.

Since this thesis compares two methodologies, $P S P$ and $L N M, 250$ runs were executed for the non-sorting variant and 240 for the sorting variant.

The first PSP algorithm implemented was the one that does not sort the permutations or layouts to enter in the network nodes based on its MHC. This PSP was implemented in C language by Kolla (2015) under the supervision of Dr. Apan Qasem and Dr. Clara Novoa. This implementation had some OpenMP calls. Later, Dr. Apan Qasem developed an implementation of the PSP that sorts the permutations to enter to the network nodes in each year based on the annual MHC incurred.

The first C implementation (i.e. the no-sorting variant) was run using the Stampede and Maverick clusters from the Texas Advanced Computing Center (TACC), https://portal.tacc.utexas.edu/. The cluster that was used the most was Stampede (100 runs). Each one of the 6400 Stampede nodes runs under the CentOS 6.4 Operating system and has the following characteristics: CPU Intel Xeon E5-2680 v2 Ivy Bridge, 2.80 GHz , 20 CPU's/node, 12.8 GB memory/core. Also, 25 runs were done in the Maverick cluster equipped with 132 nodes each one with the following characteristics: CentOS, Dell C8220, Intel PQI, C610 Chipset, 2/8 Xeon E5-2680 2.7GHz (turbo, 3.5) 1/61 Xeon Phi SE10P $1.1 \mathrm{GHz}, 10 \mathrm{CPU}$ cores with 32 GB 8 x 4 G DDR3-1600 MHZ 8GB GDDR5. One input to the PSP implementation was the number of permutations to randomly generate for each period. This number was set to 85,000 . As shown in Figure 14, the C program uses flow and distances data from the instances, generates a number of permutations per period equal to min (n !, 85,000), assign them to the nodes in the PSP network, computes MHC at the nodes or vertices and RC at the edges, and performs the $P S P$, a variant of the Dijkstra algorithm described in detail in Chapter 4.

Figure 14. Flow chart to solve the DFLP using the $P S P$ implementation
For the experimentation under sorting (i.e the sorting variant), a larger memory machine named CAPI was used. CAPI (Coherent Accelerator Processor Interface) is available at the Computer Science department at Texas State. The machine was donated by IBM. CAPI runs under CentOS. It has 160 CPU's, min speed 2.061 Ghz and max speed 3.690 Ghz. CAPI has an additional functionality for PCIe slots on CAPI enabled systems. It uses 16 PCIe slots and is layered on top of PCIe Gen 3. CAPI port is determined by the underlying PCIe 3.0×16 technology, peaking at ca $16 \mathrm{~GB} / \mathrm{s}$, bidirectional. PCI Express 3.0's $8 \mathrm{GT} / \mathrm{s}$ bit rate effectively delivers $985 \mathrm{MB} / \mathrm{s}$ per lane, nearly doubling the lane bandwidth relative to PCI Express 2.0 Latest versions of CAPI have been consistently updated. They have more capabilities and can be used in the future research. A comparison of the computational environments used in this thesis is in Appendix M.

To solve the problems under the $L N M$, the $P S P$ implementation in C was modified by deleting the variant of the Dijkstra procedure and introducing additional lines in C code to print the input data files for AMPL following specific syntax required by AMPL under the node and arc declaration style. The C modified implementation was asked to randomly generate only 2,000 permutations to feed the network nodes in each year. This relatively small number of permutations was used, if compared to 85,000 used in the $P S P$ implementation, because when solving larger input data problems there were computer
memory issues and AMPL was unable to provide a solution. The steps to solve under the $L N M$ are presented in Figure 15.

Figure 15. Flow chart to solve the DFLP under the Linear Network Model
To generate the $L N M$ solutions, the 8 problems with 6 departments were run in a personal laptop, Dell studio XPS 1645, Core i7-720QM 1.6 GHz Processor, windows 7 professional, 64-bit OS, 4GB Ram. The rest of the problems were run in the SOLAR lab at Texas State University, http://www.engineering.txstate.edu/Facilities/IE-labs/RFM4244.html, using a Dell Optiplex 5040, Intel Core i5-6500 CPU @3.20 GHZ, 16GB Ram, Quad-Core (i.e. 4 cores), 64 Bit OS, Windows 10 Enterprise.

5.4 SDFLP experimental setting

The data generated in Excel for each of the 4 SDFLP problems studied was saved in text files that were fed to a C program which is another variation of the one described in the previous section. It generates 6 ! random layouts per period and computes MHC and RC for each scenario and period. The C program was run 20 times (4 problems, 5 runs in each) in Leap, a high-performance computing cluster at Texas State University managed by the Division of Information Technology. Leap, http://www.vpit.txstate.edu/rc/leap.html has 120, Intel Xeon E5-2680v4 nodes each one with 28 CPU cores running at 2.4 GHz speed, 128 GB memory running under CentOS. The output of the C program is the input data file to the AMPL model created to solve the SDFLP problem. Figure 16 presents the steps described above.

Figure 16. Flow chart to solve the SDFLP under the Linear Network Model

5.5 DFLP cost results PSP vs. $L N M$

5.5.1 No-sorting

Final costs for both PSP and $L N M$ were collected and averaged over the five runs done on each problem. The standard deviation was also computed. Tables 7-13 show the resulting costs for the variant in which the permutations were randomly generated and not sorted. In the tables, the abbreviation "PN" stands for problem number, the abbreviation "Std Dev" stands for standard deviation and the abbreviation " R " stands for run. The costs for the 6-departments problems are the same for PSP and $L N M$ while for the 12, 15 and 30 departments problems $P S P$ gave slightly better results. However, the $L N M$ gave very competitive results considering that this method has considerably less permutations in the network. $L N M$ costs are no more that 2.17% above those from PSP.

Table 7. Cost Results for DFLP PSP 6 Departments - No-Sorting

PN	R1	R2	R3	R4	R5	Average	Std Dev
1	106419	106419	106419	106419	106419	106419	0
2	105341	105341	105341	105341	105341	105341	0
3	102989	102989	102989	102989	102989	102989	0
4	106399	106399	106399	106399	106399	106399	0
5	105628	105628	105628	105628	105628	105628	0
6	103985	103985	103985	103985	103985	103985	0
7	106439	106439	106439	106439	106439	106439	0
8	103771	103771	103771	103771	103771	103771	0

Table 8. Cost Results for DFLP LNM 6 Departments - No-Sorting

PN	R1	R2	R3	R4	R5	Average	Std Dev
1	106419	106419	106419	106419	106419	106419	0
2	105341	105341	105341	105341	105341	105341	0
3	102989	102989	102989	102989	102989	102989	0
4	106399	106399	106399	106399	106399	106399	0
5	105628	105628	105628	105628	105628	105628	0
6	103985	103985	103985	103985	103985	103985	0
7	106439	106439	106439	106439	106439	106439	0
8	103771	103771	103771	103771	103771	103771	0

Table 9. Cost Results for DFLP PSP and LNM 12 Departments - No-Sorting

PN		R1	R2	R3	R4	R5
1	$P S P$	1273487	1252704	1278564	1278994	1259654
1	$L N M$	1501492	1501176	1418920	1455610	1350250
		Average	Std Dev			
	1268681	11873				
			1431489	63759.6		

Table 10. Cost Results for DFLP PSP for 15 Departments - No-Sorting

PN	R1	R2	R3	R4	R5	Average	Std Dev
1	502383	503061	501022	501945	499324	$501,547.0$	1446.3
2	502968	501203	502653	503398	504767	$502,997.8$	1287.6
3	507007	505240	506566	507488	508116	$506,883.4$	1084.2
4	503146	501079	500181	502232	498535	$501,034.6$	1793.8
5	500253	499790	501644	500077	499796	$500,312.0$	770.0
6	501869	503221	501073	502880	503385	$502,485.6$	985.0
7	504497	506293	502415	502871	504423	$504,099.8$	1534.7
8	505986	505682	508692	506986	509664	$507,402.0$	1726.1

Table 11. Cost Results for DFLP LNM for 15 Departments - No-Sorting

PN	R1	R2	R3	R4	R5	Average	Std Dev
1	509933	511825	512736	511302	509640	$511,087.2$	$1,297.7$
2	515116	513235	505768	516033	513011	$512,632.6$	$4,042.2$
3	514849	519094	516696	511302	514118	$515,211.8$	$2,910.7$
4	509335	508651	507627	506729	508525	$508,173.4$	$1,010.7$
5	508626	507496	512751	512867	513982	$511,144.4$	$2,883.3$

Table 11. (Continued)

6	509046	513107	511075	513996	510268	$511,498.4$	$2,033.0$
7	513470	514088	514020	513943	514864	$514,077.0$	502.3
8	519291	517236	517310	517884	517169	$517,778.0$	892.2

Table 12. Cost Results for DFLP PSP for 30 Departments - No-Sorting

PN	R1	R2	R3	R4	R5	Average	Std Dev
1	601677	602742	603472	603722	604214	$603,165.4$	987.2
2	597363	600518	600037	601620	602501	$600,407.8$	1953.9
3	609946	607188	609449	604782	607237	$607,720.4$	2067.2
4	600429	602334	600736	603536	599272	$601,261.4$	1677.1
5	587114	589020	594161	591567	590409	$590,454.2$	2654.9
6	599630	596776	597768	597645	597601	$597,884.0$	1052.0
7	597888	589807	597501	598014	596290	$595,900.0$	3473.5
8	603205	606773	604466	605378	600036	$603,971.6$	2556.7

Table 13. Cost Results for DFLP LNM for 30 Departments - No-Sorting

PN	R1	R2	R3	R4	R5	Average	Std Dev
1	610863	609194	608418	609015	609364	$609,370.8$	907.2
2	608969	602084	609999	608834	603844	$606,746.0$	$3,536.9$
3	611281	609360	609949	615224	613051	$611,773.0$	$2,394.5$
4	612074	602438	609192	604111	608623	$607,287.6$	$3,934.8$
5	597523	601774	600448	595799	602353	$599,579.4$	$2,818.9$
6	602212	606536	601016	603545	603283	$603,318.4$	$2,057.3$
7	600228	602175	600160	603011	603538	$601,822.4$	$1,564.1$
8	612718	617314	614259	618330	611595	$614,843.2$	$2,901.3$

5.5.2 Sorting

To determine if generating a larger number X of permutations per year and filtering the best first Y in terms of MHC improve the solutions from the two solution approaches ($P S P$ and $L N M$), a total of $X=400,000$ permutations was generated for $P S P$ and $X=85,000$ for $L N M$. The material handling costs for each year and permutation was computed. The $Y=50,000$ permutations having the lowest costs in each year were selected as input to the $P S P$. The $\mathrm{Y}=2,000$ permutations with the lowest cost in each year were selected as input to the $L N M$ approach. This selection of layouts is done using the "Quick sort algorithm".

Quick Sort Algorithm sorts data by dividing large arrays into 2 smaller arrays by utilizing a divide and conquer strategy. Quick Sort Algorithm Sorts the layouts in a particular year based on the following steps:

- Picking a "Pivot" Element
- "Partitioning" the array into 3 parts. In the first part, all elements are less than the pivot.

The second part is the pivot itself (only one element). In the third part, all the elements are greater than or equal to the pivot.

- Applying recursively the Quick Sort Algorithm to the first and the third parts of the array.

Final costs for PSP and $L N M$ were collected and averaged over the five runs done to each problem. The standard deviation was also computed. Tables $14-19$ shows the resulting costs; the abbreviations used in these tables are for problem number (PN), run (R) and standard deviation (Std). The costs for the 6-departments problems for PSP and $L N M$ are the same while for the 15 and 30 department problem $L N M$ gave results not more than 3.40\% above those in PSP.

Table 14. Cost Results for DFLP PSP for 6 Departments - Sorting

PN	R1	R2	R3	R4	R5	Average	Std Dev
1	106419	106419	106419	106419	106419	106419	0
2	105341	105341	105341	105341	105341	105341	0
3	102989	102989	102989	102989	102989	102989	0
4	106399	106399	106399	106399	106399	106399	0
5	105628	105628	105628	105628	105628	105628	0
6	103985	103985	103985	103985	103985	103985	0
7	106439	106439	106439	106439	106439	106439	0
8	103771	103771	103771	103771	103771	103771	0

Table 15. Cost Results for DFLP $L N M$ for 6 Departments - Sorting

PN	R1	R2	R3	R4	R5	Average	Std Dev
1	106419	106419	106419	106419	106419	106,419	0

Table 15. (Continued)							
2	105341	105341	105341	105341	105341	105,341	0
3	102989	102989	102989	102989	102989	102,989	0
4	106399	106399	106399	106399	106399	106,399	0
5	105628	105628	105628	105628	105628	105,628	0
6	103985	103985	103985	103985	103985	103,985	0
7	106439	106439	106439	106439	106439	106,439	0
8	103771	103771	103771	103771	103771	103,771	0

Table 16. Cost Results for DFLP PSP 15 Departments - Sorting

PN	R1	R2	R3	R4	R5	Average	Std Dev
1	500507	495473	499358	498621	497406	$498,273.0$	1,929
2	497275	500387	501017	498662	499142	$499,296.6$	1,472
3	499744	499873	499660	499660	501395	$500,066.4$	748
4	498665	498251	498707	500457	497507	$498,717.4$	1,085
5	498733	499223	499512	499806	499796	$499,414.0$	450
6	499405	499556	499694	497515	500596	$499,353.2$	1,127
7	502451	500889	500052	500109	502345	$501,169.2$	1,170
8	505986	505409	505855	506986	504570	$505,761.2$	881

Table 17. Cost Results for DFLP LNM for 15 Departments - Sorting

PN	R1	R2	R3	R4	R5	Average	Std Dev
1	502383	503061	501022	501945	499324	$501,547.0$	1,446
2	502968	501203	502653	503398	504767	$502,997.8$	1,288
3	507007	505240	506566	504767	509312	$506,578.4$	1,784
4	503146	501079	500181	502232	498535	$501,034.6$	1,794
5	500253	499790	501644	500077	499796	$500,312.0$	770
6	501869	503221	501073	502880	503385	$502,485.6$	985
7	504497	506293	502415	502871	504423	$504,099.8$	1,535
8	505986	505682	508692	506986	509864	$507,442.0$	1,793

Table 18. Cost Results for DFLP PSP for 30 Departments - Sorting

PN	R1	R2	R3	R4	R5	Average	Std Dev
1	601577	605578	604070	600346	604596	603233.4	2187
2	603036	603455	603250	604517	602403	603332.2	771
3	605506	606976	606469	603952	606011	605782.8	1159
4	598641	598470	597683	595931	599272	597999.4	1288
5	585817	589020	585213	588691	586792	587106.6	1697
6	595499	595757	594274	595855	593583	594993.6	1011
7	597802	594831	596663	597906	598693	597179.0	1499
8	601448	602638	601616	602577	600036	601663.0	1059

Table 19. Cost Results for DFLP $L N M$ for 30 Departments - Sorting

PN	R1	R2	R3	R4	R5	Average	Std Dev
1	623712	624958	625140	624347	624161	624463.6	586
2	606868	607110	606678	608297	605593	606909.2	969
3	605593	611584	611584	614039	617973	612154.6	4503
4	600429	602438	602079	604389	599272	601721.4	1964
5	587114	589489	594161	591567	590409	590548.0	2599
6	599819	598573	598124	597645	598853	598602.8	820
7	600898	595211	599727	603858	599984	599935.6	3110
8	603205	606773	598897	605378	600036	602857.8	3371

5.6 DFLP computational time results $P S P$ vs. $L N M$

5.6.1 No-sorting

Data collected for the computational time for the two solution methodologies (PSP and $L N M$) are in Tables 20-27. For PSP, the time measured is the one for generating the layouts, computing MHC and RC and solving the variation of the Dijkstra algorithm (i.e. all steps in Figure 14). For the $L N M$, the time measured is only the one for solving the $L N M$ in AMPL. The time for generating the layouts and computing the MHC and RC is very negligible since the C code has several of these functions parallelized. In the 6-department problem, the computational time for the $P S P$ is very small. For 12,15 , and 30 departments, the $L N M$ gave faster computational times in several cases. However, in the 15 department the first and second problem were solved faster with the PSP. LNM ran faster than PSP in 75 runs. The PSP performed better in the remaining 50 runs. Appendix I has samples of outputs generated by the PSP implementation in C and the $L N M$ implementation in AMPL. The outputs show best solutions found and computational times for some of the problems run under the no-sorting version.

Table 20. Computational Time (Seconds) for PSP for 6 Departments - No-Sorting

PN	R1	R2	R3	R4	R5	Average	Std. Dev
1	0.87	1.19	0.99	0.98	1.11	1.03	0.13
2	0.13	0.13	0.13	0.13	0.13	0.13	0.00

Table 20. (Continued)							
3	0.21	0.13	0.14	0.13	0.12	0.15	0.04
4	0.98	0.94	0.94	0.89	0.87	0.92	0.04
5	4.87	0.40	1.61	0.14	5.19	2.44	2.43
6	0.14	0.30	0.24	0.13	0.13	0.19	0.08
7	0.31	0.31	0.13	0.13	0.13	0.20	0.10
8	0.21	0.13	0.13	0.13	0.13	0.15	0.04

Table 21. Computational Time (Seconds) for $L N M$ for 6 Departments - No-Sorting

PN	R1	R2	R3	R4	R5	Average	Std. Dev
1	5.23	4.98	4.95	5.03	5.06	5.05	0.11
2	10.89	11.20	11.20	11.04	11.39	11.14	0.19
3	10.78	11.17	11.26	10.92	11.59	11.14	0.32
4	10.78	11.23	11.47	11.48	10.98	11.19	0.31
5	11.25	10.76	10.72	11.61	11.20	11.11	0.37
6	10.99	10.89	11.50	11.15	11.29	11.17	0.24
7	11.43	11.34	11.17	10.95	11.33	11.24	0.19
8	11.36	11.34	11.67	11.00	11.98	11.47	0.37

Table 22. Computational Time (Seconds) Results for PSP for 12 Departments -
No-Sorting

PN	R1	R2	R3	R4	R5	Average	Std. Dev
1	94.86	97.21	95.91	99.07	95.48	96.50	1.67

Table 23. Computational Time (Seconds) for $L N M$ for 12 Departments - No-Sorting

PN	R1	R2	R3	R4	R5	Average	Std. Dev
1	65.66	68.27	65.81	59.84	63.27	64.57	3.18

Table 24. Computational Time (Seconds) for PSP for 15 Departments - No-Sorting

PN	R1	R2	R3	R4	R5	Average	Std. Dev
1	35.70	35.65	37.25	38.99	34.73	36.46	1.68
2	96.56	100.06	92.44	98.32	99.69	97.41	3.10
3	400.94	396.36	396.17	395.33	395.05	396.77	2.40
4	394.68	394.61	398.26	397.36	395.39	396.06	1.66
5	394.30	394.79	398.10	399.61	395.36	396.43	2.31
6	395.56	395.41	394.58	399.57	395.19	396.06	1.99
7	396.99	394.97	394.51	394.82	397.53	395.76	1.39
8	399.96	334.96	395.02	396.05	394.25	384.05	27.53

Table 25. Computational Time (Seconds) for $L N M$ for 15 Departments - No-Sorting

PN	R1	R2	R3	R4	R5	Average	Std. Dev
1	61.23	64.16	75.58	61.38	60.92	64.65	6.25
2	62.00	59.95	62.20	60.61	60.95	61.14	0.95
3	64.59	65.42	60.69	59.91	59.80	62.08	2.71
4	59.92	60.33	60.34	59.95	61.02	60.31	0.44
5	60.39	59.52	60.38	60.95	60.94	60.43	0.59
6	59.83	60.42	61.23	61.28	61.67	60.89	0.75
7	60.03	59.63	59.80	60.82	61.17	60.29	0.67
8	59.86	59.61	60.70	60.56	58.86	59.92	0.75

Table 26. Computational Time (Seconds) for PSP for 30 Departments - No-Sorting

PN	R 1	R 2	R 3	R 4	R 5	Average	Std. Dev
1	455.41	457.85	456.14	456.88	458.75	457.01	1.33
2	457.11	453.77	456.55	453.99	465.44	457.37	4.75
3	460.53	456.75	455.43	455.13	454.18	456.40	2.49
4	105.30	110.02	101.16	110.31	104.02	106.16	3.95
5	104.05	107.96	105.31	113.57	107.87	107.75	3.66
6	104.09	111.72	102.79	112.61	108.12	107.86	4.40
7	109.71	103.15	113.62	116.06	113.46	111.20	5.04
8	112.06	106.05	101.63	108.68	107.17	107.12	3.81

Table 27. Computational Time (Seconds) for $L N M$ for 30 Departments - No-Sorting

PN	R1	R2	R3	R4	R5	Average	Std. Dev
1	62.17	60.27	60.48	59.53	79.26	64.34	8.40
2	75.18	76.16	75.01	55.06	78.09	71.90	9.49
3	60.11	60.83	59.48	62.56	60.83	60.76	1.15
4	60.31	59.09	60.45	59.67	60.59	60.03	0.63
5	59.11	60.25	60.45	60.30	60.19	60.06	0.54
6	76.25	77.98	79.09	78.28	76.47	77.62	1.22
7	60.58	60.83	60.36	59.50	59.34	60.12	0.66
8	77.75	75.55	76.52	77.52	76.94	76.86	0.87

5.6.2 Sorting

For the sorting variant, the parallelization in the Shortest Path algorithm was removed and consequently the algorithm is notated as $S P$ in the remainder of this
document. Computational times for the $S P$ method, including the times for sorting the 400,000 generated permutations and filtering the best 50,000 in each year, are in Tables 28-33. These tables also show the time for solving the $L N M$ in AMPL. For the $L N M$, the times reported do not include the time for sorting the 85,000 generated permutations and filtering the best 2,000 in each year.

It is important to mention that for the $S P$ method, two times were collected. The first one is the entire time the algorithm takes to generate the permutations, sort them, and execute the variation of the Dijkstra algorithm (Tables 28-33). The second one is the time to execute just the variation of the Dijkstra algorithm. Out of the entire time collected, the variation of the Dijkstra algorithm accounts for a maximum time of 9.939%. Tables with the time to execute just the variant of the Dijkstra's algorithm are in Appendixes N, O, and P. Appendix N presents the differences in times for doing the variation of the Dijkstra's algorithm for SP sorting vs. PSP no sorting, Appendix O presents the times SP sorting took to perform the variation of the Dijkstra in each of the 5 runs done in each problem, the average and standard deviation. Appendix P presents the differences in times for doing the variation of the Dijkstra's algorithm for $S P$ sorting vs. LNM sorting. Appendix Q presents a graph that shows Problem 1 average computational times over the 5 runs done in the 6,15 , and 30 departments cases. The graph lets to appreciate the trends on the computational times for all the methods studied. SP and $L N M$ showed similar execution times if looking just at the portion of time spent on doing the variation of the Dijkstra algorithm for $S P$-sorting 50,000 layouts and the network simplex method for $L N M$-sorting 2,000 layouts.

If analyzing results in Tables 28-33, in the 6-department problems, the $S P$ computational time is very small and smaller than the one for $L N M$. For 15 , and 30 departments the $L N M$ gave faster computational times. The $L N M$ ran faster than $S P$ in 80 runs while the $S P$ performed better in 40 runs. The number of runs for the sorting case was 120 since the Moslemipour instance of size 12 was not run for the sorting case.

Table 28. Computational Time (Seconds) for SP 6 Departments - Sorting

PN	R1	R2	R3	R4	R5	Average	Std. Dev
1	0.13	0.12	0.12	0.12	0.12	0.122	0.004
2	0.13	0.12	0.12	0.12	0.12	0.122	0.004
3	0.13	0.12	0.12	0.12	0.12	0.122	0.004
4	0.13	0.12	0.12	0.12	0.12	0.122	0.004
5	0.13	0.12	0.12	0.12	0.12	0.122	0.004
6	0.13	0.12	0.12	0.12	0.12	0.122	0.004
7	0.13	0.12	0.12	0.12	0.12	0.122	0.004
8	0.13	0.12	0.12	0.12	0.12	0.122	0.004

Table 29. Computational Time (Seconds) for LNM 6 Departments - Sorting

PN	R1	R2	R3	R4	R5	Average	Std. Dev
1	5.67	5.30	5.17	5.10	5.63	5.374	0.262
2	5.55	5.58	5.24	5.28	5.19	5.368	0.183
3	5.22	5.60	5.50	5.66	5.86	5.568	0.235
4	5.31	5.21	5.41	5.50	5.33	5.352	0.109
5	5.47	5.24	5.27	5.25	5.35	5.316	0.096
6	5.33	5.30	5.30	5.24	5.38	5.310	0.051
7	5.46	5.24	5.22	5.39	5.30	5.322	0.102
8	5.30	5.36	5.39	5.25	5.24	5.308	0.066

Table 30. Computational Time (Seconds) for $S P 15$ Departments - Sorting

PN	R1	R2	R3	R4	R5	Average	Std. Dev
1	513.08	499.31	439.06	439.34	433.62	464.882	38.095
2	502.15	436.10	440.50	437.20	437.05	450.600	28.865
3	440.94	438.57	443.52	435.92	441.85	440.160	2.969
4	441.28	440.55	443.14	439.17	440.34	440.896	1.466
5	438.20	443.68	444.59	467.30	441.99	447.152	11.525

Table 30. (Continued)

6	481.53	457.00	482.22	449.19	474.27	468.842	14.965
7	429.12	467.60	473.71	442.58	440.56	450.714	19.036
8	461.51	474.56	439.29	451.38	455.97	456.542	12.980

Table 31. Computational Time (Seconds) for LNM 15 Departments - Sorting

PN	R1	R2	R3	R4	R5	Average	Std. Dev
1	47.31	45.45	45.07	45.10	45.71	45.728	0.923
2	45.00	45.48	45.29	45.73	46.86	45.672	0.716
3	45.85	46.17	46.26	46.81	53.96	47.810	3.455
4	45.43	45.28	44.62	44.89	44.70	44.984	0.357
5	45.00	44.93	44.64	46.20	45.40	45.234	0.604
6	45.96	45.48	45.10	44.71	45.37	45.324	0.463
7	45.87	45.32	45.46	45.40	44.81	45.372	0.379
8	45.17	44.67	46.48	45.39	44.95	45.332	0.695

Table 32. Computational Time (Seconds) for SP 30 Departments - Sorting

PN	R1	R2	R3	R4	R5	Average	Std Dev
1	624.93	626.75	624.97	627.08	705.14	641.774	35.436
2	706.26	705.23	626.52	703.10	624.31	673.084	43.538
3	626.75	624.77	628.16	628.93	710.84	643.890	37.460
4	628.098	631.011	625.77	628.68	634.08	629.528	3.155
5	627.43	627.65	712.59	710.92	674.91	670.700	42.177
6	632.24	633.35	625.87	714.28	627.29	646.606	37.964
7	627.49	629.84	628.16	632.16	635.71	630.672	3.344
8	630.00	708.11	626.7	710.03	626.28	660.224	44.619

Table 33. Computational Time (Seconds) for LNM 30 Departments - Sorting

PN	R1	R2	R3	R4	R5	Average	Std Dev
1	45.75	47.31	49.28	48.92	47.26	47.704	1.426
2	47.81	47.54	48.96	47.53	47.87	47.942	0.590
3	47.87	48.40	48.21	47.48	47.42	47.876	0.433
4	48.46	48.50	48.71	48.48	48.25	48.480	0.163
5	48.42	48.14	49.39	49.57	48.29	48.762	0.666
6	48.39	48.23	47.75	45.54	49.01	48.345	0.520
7	46.21	45.46	45.53	45.89	45.45	45.708	0.333
8	45.64	45.20	46.10	45.65	46.26	45.770	0.420

5.7 Sorting vs no-sorting costs comparison

The comparison of costs for sorting (S) and no-sorting (NS) variants is provided in tables 34-36. The formula computed in the percentage differences is: $100 *$ (Cost no-sorting - Cost sorting)/Cost no-sorting. Then positive percentages mean that sorting decreased cost while negative percentages mean sorting increased it.

The comparison of sorting and no-sorting for the PSP show the considerable improvement achieved by sorting the 400,000 generated permutations and filtering the best 50,000 in each year instead of just generating 85,000 permutations and using them for all years. Sorting reduces costs by up to 1.34% if compared to no-sorting. However, sorting gave costs higher than no-sorting in 3 instances. In the remaining 21 instances, sorting outperformed no-sorting. All tables have 8 rows. Each row corresponds to each one of the 8 problems tested under the number of departments studied.

The comparison of sorting and no-sorting for the $L N M$ shows the considerable difference achieved by sorting the 85,000 generated permutations and filtering the best 2,000 in each year. Sorting reduces the cost by up to 2.12% if compared to no-sorting. Sorting also gives costs much higher than no-sorting for 3 instances but in the rest of the 21 instances sorting outperforms no-sorting in terms of cost.

5.8 Sorting vs no-sorting computational time comparison

The comparison of computational time for sorting and no-sorting is also in Tables 34-36. The formula computed in the percentage differences is: $100 *$ (Computational Times no-sorting - computational times sorting)/computational times no-sorting. Then positive percentages mean that sorting decreased time while negative percentages mean sorting increased it.

The comparison of SP sorting and PSP no-sorting shows the increase in time if sorting 400,000 permutations by the material handling cost of each year and filtering the best 50,000 instead of just generating 85,000 permutations and using them for all years (PSP no-sorting). The main reasons for the time increase are: (1) the number of permutations considered (400,000 sorting, 85,000 no-sorting) and (2) the lack of parallelization in the sorting variant. It translates into a time increase of up to 1175%. Computational times for 6-department problems in sorting were effective in comparison to the 6 departments problem in no-sorting while no-sorting gave effective computational times for the 15 and 30 department problems.

If comparing the computational time of $L N M$ sorting and LNM no-sorting, sorting gave effective computational time in comparison to no-sorting with a 53% of maximum decrease in times. Both the sorting and no-sorting variants in AMPL use the node-arc formulation and therefore there should be no reason for the vast difference in computational times. It seems the only difference is that AMPL was able to execute the network simplex method faster on the network with the permutations for the sorted case than in the one for the no sorted case.

Table 34. Difference in Cost and Computational Time for PSP and LNM - Sorting (S) vs. No-Sorting (NS) - 6 Departments

	Cost					
Problem Number	$P S P-S$	$P S P-$ $N S$	$\%$ Diff	$L N M-$ S	$L N M-$ $N S$	$\%$ Diff
1	106419	106419	0	106419	106419	0
2	105341	105341	0	105341	105341	0
3	102989	102989	0	102989	102989	0
4	106399	106399	0	106399	106399	0
5	105628	105628	0	105628	105628	0
6	103985	103985	0	103985	103985	0
7	106439	106439	0	106439	106439	0

Table 34. (Continued)							
8	103771	103771	0	103771	103771	0	
	Time (Seconds)						
Problem Number	$S P-S$	$P S P-$ $N S$	$\%$ Diff	LNM-S S	$L N M-$ $N S$	$\%$ Diff	
1	0.12	1.03	88	5.37	5.05	-6	
2	0.12	0.13	6	5.37	11.14	52	
3	0.12	0.15	19	5.57	11.14	50	
4	0.12	0.92	87	5.35	11.19	52	
5	0.12	2.44	95	5.32	11.11	52	
6	0.12	0.19	36	5.31	11.17	52	
7	0.12	0.2	39	5.32	11.24	53	
8	0.12	0.15	19	5.31	11.47	54	

Table 35. Difference in Cost and Computational Time for PSP and LNM - Sorting (S) vs. No-Sorting (NS) - 15 Departments

	Cost					
Problem Number	$P S P-S$	$P S P-N S$	$\%$ Diff	$L N M-S$	$L N M-N S$	$\%$ Diff
1	498273	501547	0.65	501547	511087	1.9
2	499297	502998	0.74	502998	512633	1.9
3	500066	506883	$\mathbf{1 . 3 4}$	507031	515212	1.59
4	498717	501035	0.46	501035	508173	1.4
5	499414	500312	0.18	500312	511144	$\mathbf{2 . 1 2}$
6	499353	502486	0.62	502486	511498	1.76
7	501169	504100	0.58	504100	514077	1.94
8	505761	507402	0.32	507442	517778	2
	Time (Seconds)					
Problem Number	$S P-S$	$P S P-N S$	$\%$ Diff	$L N M-S$	$L N M-N S$	$\%$ Diff
1	464.9	36.5	-1175	45.73	64.65	29
2	450.6	97.4	-366	45.67	61.14	25
3	440.2	396.8	-10.94	47.81	62.08	22.99
4	440.9	396.1	-11.32	44.984	60.31	25.42
5	447.1	396.4	-12.79	45.234	60.43	25.1
6	468.8	396.1	-18.38	45.324	60.89	25.56
7	450.7	395.8	-13.89	45.372	60.29	24.74
8	456.5	384.05	-18.88	45.332	59.92	24.34

Table 36. Difference in Cost and Computational Time for PSP and LNM - Sorting (S) vs. No - Sorting (NS) - 30 Departments

	Cost						
Problem Number	$P S P-S$	$P S P-N S$	$\%$ Diff	$L N M-S$	$L N M-N S$	$\%$ Diff	
1	603233	603165	-0.01	624464	609371	-2.48	
2	603332	600408	-0.49	606909	606746	-0.03	
3	605783	607720	0.32	612155	611773	-0.06	
4	597999	601261	0.54	601721	607288	0.92	
5	587107	590454	0.57	590548	599579	1.51	
6	594994	597884	0.48	598842	603318	0.74	
7	597179	595900	-0.21	599936	601822	0.31	
8	601663	603972	0.38	603848	614843	1.79	
	Time (Seconds)						
Problem Number	$S P-S$	$P S P-N S$	$\%$ Diff	$L N M-S$	$L N M-N S$	$\%$ Diff	
1	641.77	457.01	-40.43	47.7	64.34	25.86	
2	673.08	457.37	-47.16	47.94	71.9	33.32	
3	643.89	456.4	-41.08	47.88	60.76	21.21	
4	629.53	106.16	-493	48.48	60.03	19.23	
5	670.7	107.75	-522.46	48.76	60.06	18.81	
6	646.61	107.86	-499.49	48.35	77.62	37.71	
7	630.67	111.2	-467.15	45.71	60.12	23.97	
8	660.22	107.12	-516.34	45.77	76.85	40.45	

Appendixes J, K and L present the number of network simplex iterations AMPL took to solve the $L N M$ for all problems under the sorting and no-sorting variants studied. A series of paired t-tests with null hypothesis Ho: mean for the number of simplex iterations under sorting $=$ mean for the number of iterations under no-sorting vs. Ha : mean for the number of iterations under sorting < mean for the number of iterations under no sorting show that for the problems with 6 departments the null hypothesis is rejected with a pvalue of $2.99 \mathrm{E}-10$ and for the problems with 15 departments the null hypothesis is rejected with a p-value of $1.92 \mathrm{E}-12$.However, for the 30 -departments case the hypothesis couldn't be rejected (p -value 0.43 vs. alpha 0.05). A paired t -test considering all the sample of 120
values (problems with 6,15 , and 30 departments, 8 in each case) lead to reject the null hypothesis with a p-value of 0.004 . These tests permit to conclude that for problems of size 6 and 15 the number of simplex iterations in the sorting variant was statistically significantly less that for the no-sorting variant.

5.9 Cost and computational time differences between PSP and $L N M$

Tables 37-39 summarize the cost and computational time differences for the comparison between PSP and LNM Model under the two variants studied, sorting (S) and no-sorting (NS). The formulas used to compute the cost differences are: 100*(cost PSP_NS - cost $\left.L N M_{-} N S\right) /$ cost $P S P_{-} N S$ and $100 *\left(\right.$ cost $\left.S P_{-} S-\operatorname{cost} L N M_{-} S\right) /$ cost $S P_{-} S$. Then negative percentages in the first one mean that $P S P _N S$ has lower cost than $L N M_{-} N S$. Similarly, negative percentages in the second one mean that $S P_{-} S$ has lower cost than LNM_S.

However, the formulas used to compute the time differences are: $100 *($ time $L N M_{-} N S$ - time $\left.P S P_{-} N S\right) /$ time $L N M_{-} N S$ and $100 *\left(\right.$ time $L N M_{-} N S$ - time $\left.S P_{-} N S\right) /$ time $L N M _N S$. Then negative percentages in those formulas mean that $L N M$ has lower computational time than $P S P$ or $S P$. The comparison for the times between $S P_{-} S$ and $L N M_{-} S$ is not entirely fair since the times for $S P_{-} S$ include the serial time spent on generating and sorting the permutations which is not included in $L N M_{-} S$. The reader can see a possibly fairer comparison of times between $S P_{-} S$ and $L N M_{-} S$ by looking at Appendix P where the differences in times to perform just the variant of the Dijkstra's algorithm are reported.

Table 37. Cost and Computational Time Differences between PSP and LNM - 6 Departments

	Cost $P S P_{-}$NS vs $L N M_{-} N S$	Time $L N M_{-}$ $N S$ vs $P S P_{-}$NS	Cost $S P_{-} S$ vs $L N M_{-} S$	Time $L N M-$ $N S$ vs $P S P _N S$
D_PN	\% Diff	\% Diff	\% Diff	\% Diff
6_1	0	79.64	0.00	97.73
6_2	0	98.86	0.00	97.73
6_3	0	98.70	0.00	97.81
6_4	0	91.74	0.00	97.72
6_5	0	78.03	0.73	97.71
6_6	0	98.30	0.00	97.70
6_7	0	98.20	0.00	97.71
6_8	0	98.73	0.00	97.70

Table 38. Cost and Computational Time Differences between PSP and $L N M-15$ Departments

	Cost $P S P_{-} N S$ $L N M_{-} N S$	Time $L N M_{-}$ $N S$ $P S v_{-}$ $P S$	Cost $S P _S$ vs $L N M_{_} S$	Time $L N M_{-}$ $N S$ vs $P S P _$NS
D_PN	\% Diff	\% Diff	\% Diff	\% Diff
$15 _1$	-1.90	43.60	-0.66	-922.33
$15 _2$	-1.92	-59.32	-0.75	-886.60
$15 _3$	-1.64	-539.11	-1.37	-820.64
$15 _4$	-1.42	-556.68	-0.46	-880.10
$15 _5$	-2.17	-555.97	-0.18	-888.53
$15 _6$	-1.79	-550.49	-0.62	-934.42
$15 _7$	-1.98	-556.45	-0.58	-893.37
$15 _8$	-2.04	-540.95	-0.33	-907.10

Table 39. Cost and Computational Time Difference Between PSP and LNM - 30 Departments

	Cost $P S P _N S ~ v s ~$ $L N M_{-} N S$	Time $L N M_{-} N S$ vs $P S P _N S$	Cost $S P _S$ vs $L N M _S$	Time $L N M-$ $N S$ vs $P S P _N S$
D_PN	\% Diff	\% Diff	\% Diff	\% Diff
$30 _1$	-1.03	-610.3	$\mathbf{- 3 . 4 0}$	-1245.32
$30 _2$	-1.06	-536.1	-0.59	-1303.95
$30 _3$	-0.67	-651.1	-1.04	-1244.91
$30 _4$	-1.00	-76.9	-0.62	-1198.51
$30 _5$	$\mathbf{- 1 . 5 5}$	-79.4	-0.58	-1275.46
$30 _6$	-0.91	-39.0	-0.64	-1237.47

Table 39. (Continued)				
$30 _7$	-0.99	-85.0	-0.46	-1279.78
$30 _8$	-1.80	-39.4	-0.36	-1342.47

5.10 DFLP costs and computational times comparisons between proposed methods and previous works

Tables 40-42 summarize the average costs and computational times for all the problems under the PSP and LNM methods and the variants (sorting, no-sorting) studied and the percentage cost difference vs. the best known cost from the literature. The computational time comparison vs. other authors couldn't be done since the information is not available. This comparison is also not meaningful since the computational settings used differ. Abbreviations used in Tables 40-42 are: number of departments and problem number (D_PN) and best known cost (BKC). Table 43 presents the average costs obtained by Conway \& Venkataramanan (1994) with their genetic algorithm named CONGA, Balakrishnan \& Cheng (2000) with their nested loop genetic algorithm named NLGA, Baykosaglu \& Gindy (2001) with their simulated annealing (SA) method, Balakrishnan et al. (2003) with their hybrid dynamic programming and genetic algorithm approach named GADP, and McKendall \& Shang (2006) with their hybrid ant systems methods named HASI, HASII, and HASIII.

Table 40. Cost, Computational Time and Percentage (\%) of Cost Difference PSP and LNM - Sorting(S) and No-Sorting(NS) vs. Best Known Cost (BKC) - 6 Departments

	Parallel Shortest Path - no-sorting			Linear Network Model - nosorting			
D_PN	Cost	Time (s)	$\begin{gathered} \text { \% } \\ \text { Cost } \\ \text { vs. } \\ \text { BKC } \end{gathered}$	Cost	Time (s)	$\begin{gathered} \% \\ \text { Cost } \\ \text { vs. } \\ \text { BKC } \end{gathered}$	BKC
6_1	106419	1.03	0	106419	5.05	0	106419
6_2	105341	0.13	0.48	105341	11.14	0.48	104834
6_3	102989	0.15	-1.28	102989	11.14	-1.28	104320
6_4	106399	0.92	0	106399	11.19	0	106399
6_5	105628	2.44	0.34	105628	11.11	0.34	105268
6_6	103985	0.19	0	103985	11.17	0	103985
6_7	106439	0.2	0	106439	11.24	0	106439
6_8	103771	0.15	0	103771	11.47	0	103771
	Shortest Path - sorting			Linear Network Model - sorting			
D_PN	Cost	Time (s)	$\begin{gathered} \% \\ \text { Cost } \\ \text { vs. } \\ \text { BKC } \end{gathered}$	Cost	Time (s)	\% vs. BKC	BKC
6_1	106419	0.12	0	106419	5.37	0	106419
6_2	105341	0.12	0.48	105341	5.37	0.48	104834
6_3	102989	0.12	-1.28	102989	5.57	-1.28	104320
6_4	106399	0.12	0	106399	5.35	0	106399
6_5	106399	0.12	1.07	105628	5.32	0.34	105268
6_6	103985	0.12	0	103985	5.31	0	103985
6_7	106439	0.12	0	106439	5.32	0	106439
6_8	103771	0.12	0	103771	5.31	0	103771

Table 41. Cost, Computational Time and Percentage (\%) of Cost Difference PSP and LNM - Sorting(S) and No-Sorting(NS) vs. Best Known Cost (BKC) - 15 Departments

	Parallel Shortest Path -no-sorting			Linear Network Model - nosorting			
D_PN	Cost	Time (s)	$\begin{gathered} \% \\ \text { Cost } \\ \text { vs. } \\ \text { BKC } \end{gathered}$	Cost	Time (s)	$\begin{gathered} \% \\ \text { Cost } \\ \text { vs. } \\ \text { BKC } \end{gathered}$	BKC
15_1	501547	36.46	4.39	511087	64.65	6.38	480453
15_2	502998	97.41	3.76	512633	61.14	5.75	484761
15_3	506883	396.77	3.71	515212	62.08	5.41	488748
15_4	501035	396.06	3.42	508173	60.31	4.9	484446
15_5	500312	396.43	2.58	511144	60.43	4.8	487722
15_6	502486	396.06	3.25	511498	60.89	5.1	486685
15_7	504100	395.76	3.54	514077	60.29	5.59	486853
15_8	507402	384.05	3.34	517778	59.92	5.45	491016
	Shortest Path - sorting			Linear Network Model - sorting			
D_PN	Cost	Time (s)	$\begin{gathered} \hline \text { \%Cost } \\ \text { vs. } \\ \text { BKC } \end{gathered}$	Cost	Time (s)	$\begin{gathered} \text { \% } \\ \text { vs. } \\ \text { BKC } \end{gathered}$	BKC
15_1	498273	464.88	3.71	501547	45.73	4.39	480453
15_2	499297	450.6	3	502998	45.67	3.76	484761
15_3	500066	440.16	2.32	507031	47.81	3.74	488748
15_4	498717	440.9	2.95	501035	44.98	3.42	484446
15_5	499414	447.15	2.4	500312	45.23	2.58	487722
15_6	499353	468.84	2.6	502486	45.32	3.25	486685
15_7	501169	450.71	2.94	504100	45.37	3.54	486853
15_8	505761	456.54	3	507442	45.332	3.35	491016

Table 42. Cost, Computational Time and Percentage (\%) of Cost Difference PSP and LNM - Sorting(S) and No-Sorting(NS) vs. Best Known Cost (BKC) - 30 Departments

	Parallel Shortest Path - nosorting			Linear Network Model -no- sorting			
D_PN	Cost	Time (s)	$\begin{gathered} \% \\ \text { Cost } \\ \text { vs. } \\ \text { BKC } \end{gathered}$	Cost	Time (s)	$\begin{gathered} \hline \% \\ \text { Cost } \\ \text { vs. } \\ \text { BKC } \end{gathered}$	BKC
30_1	603165	457.01	4.56	609371	64.34	5.63	576886
30_2	600408	457.37	5.27	606746	71.9	6.38	570349
30_3	607720	456.4	5.5	611773	60.76	6.2	576053
30_4	601261	106.16	6.08	607288	60.03	7.15	566777
30_5	590454	107.75	5.75	599579	60.06	7.38	558353
30_6	597884	107.86	5.49	603318	77.62	6.44	566792
30_7	595900	111.2	5.07	601822	60.12	6.12	567131
30_8	603972	107.12	4.99	614843	76.86	6.88	575280
	Shortest Path - sorting			Linear Network Model sorting			
D_PN	Cost	Time (s)	$\begin{gathered} \% \\ \text { Cost } \\ \text { vs. } \\ \text { BKC } \end{gathered}$	Cost	Time (s)	$\begin{gathered} \hline \% \\ \text { Cost } \\ \text { vs. } \\ \text { BKC } \end{gathered}$	BKC
30_1	603233	641.77	4.57	624464	47.7	8.25	576886
30_2	603332	673.08	5.78	606909	47.94	6.41	570349
30_3	605783	643.89	5.16	612155	47.88	6.27	576053
30_4	597999	629.53	5.51	601721	48.48	6.17	566777
30_5	587107	670.7	5.15	590548	48.76	5.77	558353
30_6	594994	646.61	4.98	598842	48.34	5.65	566792
30_7	597179	630.67	5.3	599936	45.71	5.78	567131
30_8	601663	660.22	4.59	603348	45.77	4.97	575280

Table 43. DFLP Average Costs presented by Other Authors for 6-15-30 Departments

Dep.	Problem	CONGA (1994)	NLGA (2000)	SA (2001)	GADP (2003)
6	1	108976	106419	107249	106419
6	2	105170	104834	105710	104834
6	3	104520	104320	104800	104320
6	4	106719	106515	106515	106515
6	5	105628	105268	106282	105628
6	6	105606	104053	103985	104053
6	7	106439	106978	106447	106439
6	8	104485	103771	103771	103771
15	1	504759	511854	501447	484090
15	2	514718	507694	506236	485352
15	3	516063	518461	512886	489898
15	4	508532	514242	504956	484625
15	5	515599	512834	509636	489885
15	6	509384	513763	508215	488640
15	7	512508	512722	508848	489378
15	8	514839	521116	512320	500779
30	1	632737	611794	604408	578689
30	2	647585	611873	604370	572232
30	3	642295	611664	603867	578527
30	4	634626	611766	596901	572057
30	5	639693	604564	591988	559777
30	6	637620	606010	599862	566792
30	7	640482	607134	600670	567873
30	8	635776	620183	610474	575720

Table 43. (Continued)

Dep.	Problem	HAS I (2006)	HAS II (2006)	HAS III (2006)
6	1	106419	106419	106419
6	2	104834	104834	104834
6	3	104320	104320	104320
6	4	106399	106399	106399
6	5	105628	105628	105628
6	6	103985	103985	103985
6	7	106439	106439	106439
6	8	103771	103771	103771
15	1	481511	481395	480453
15	2	484761	484761	484879
15	3	490899	488748	490398
15	4	485561	485658	484446
15	5	489012	487722	489206
15	6	487417	486685	486965
15	7	486853	486853	486853
15	8	493963	492074	491016
30	1	578854	576886	580240
30	2	570349	571528	570349
30	3	578152	576053	578176
30	4	569694	572005	566777
30	5	560433	558353	558353
30	6	569725	570567	566792
30	7	570899	567190	567131
30	8	576980	575998	575280

Figure 17 presents the costs for PSP and LNM for both the sorting and no-sorting variants studied. Figure 18 presents the costs for PSP sorted and $L N M$ sorted vs. the ones from several previous authors, CONGA (1994), HAS III (2006) and SA (2001). Figure 19 presents the cost for PSP and LNM under sorting and no-sorting variants if compared to the best known cost.

Figure 17. Costs for PSP and LNM under the sorting and no-sorting variants studied

Figure 18. Costs PSP sorting and $L N M$ sorting vs. previous authors

Figure 19. Cost for PSP and LNM (sorting and no-sorting) vs. best known cost
Appendix I has samples of output for best solutions found for the PSP and $L N M$ algorithms for the no-sorting variant. The samples for the sorting variant were omitted to keep the document shorter.

5.11 Analysis of the results for the DFLP

The variation in cost and computational times over the 5 runs in each problem (see Tables 7-33) does not reveal any outliers of practical significance. The number of permutations used in the $L N M$ is 2000 . This low number is due to the memory issues experienced when AMPL attempted to solve larger problems. However, the results achieved are incredibly flawless. The comparison of costs for the $L N M$ to the ones in the PSP and to the best known cost supports this statement.

Tables 37-39 show that the maximum increase in cost for $L N M$ (no-sorting) vs. PSP (no-sorting) is only 2.17%. Also, the computational time comparison shows that $L N M$ (no-sorting) results 651.13% faster than $P S P$ (no-sorting). On the other hand, Tables 3739 also show that the maximum increase in cost for $L N M$ (sorting) if compared to SP (sorting) is only 3.40%. Also, the computational time comparison shows that $\mathrm{r} L N M$ (sorting) is up to 1342.47% faster than $S P$ (sorting).

Tables 40-42 show that the maximum difference in cost for PSP (no-sorting) vs. best known cost is 6.08% and for $L N M$ (no-sorting) vs. best known cost is 7.38%. Tables 40-42 also show that the maximum difference in cost for PSP (sorting) vs. best known cost is 5.78% and for $L N M$ (sorting) vs. best known cost is 6.41% (ignoring the 8.25% in the first problem of size 30). Thus, the idea of filtering the permutations in each year performed well and improved the overall results.

A strength found in the $L N M$ is its ability to produce similar accurate results with small number of permutations (i.e. layouts in the network per each period). The $L N M$ gave also smaller computational times more often than the $P S P$. However, the comparison is not straightforward because of the different number of permutations (i.e. layouts) included under each case. Nevertheless, it is predicted that under a low number of permutations both methods are computationally efficient. The maximum running time for PSP (no-sorting) was 457.37 seconds (about 7 minutes) and for LNM (no-sorting) was 77.62 seconds. The maximum running time for $S P$ (sorting) was 673.08 seconds and for $L N M$ (sorting) was 48.76 seconds.

Table 44 shows the performance of the $P S P$ and $L N M$ under the best variant (i.e. the sorted variant) in comparison to 7 algorithms from previous authors studying the DFLP for the 24 problems considered. PSP achieved a better cost on 67 cases out of the total $24 * 7=168$ compared. $L N M$ gave a better cost than the best known cost on 62 cases. Both $L N M$ and PSP equaled the best known cost in 5 occasions and surpassed it 1 case. LNM and $P S P$ ended costlier 16 and 24 cases, respectively.

Table 44. Performance of PSP and $L N M$ vs. Previous Authors Solutions

Algorithms from previous authors	Number of comparisons where Sorted $P S P$ costs are better	Number of comparisons where Sorted $L N M$ costs are better
CONGA (1994)	21	21
NLGA (2000)	20	18
SA (2001)	20	17
GADP (2003)	3	3
HAS I (2006)	1	1
HAS II (2006)	1	1
HAS III (2006)	1	1

5.12 SDFLP results

Table 45 presents the average objective function values resulting from solving the model proposed to solve the SDFLP presented in Chapter 2 Section 5. The periods are assumed to be 5 years. The problems generated have 3 scenarios (high, medium, low) for the budget available for relocations $A_{s t}$, the flows between departments and the costs of relocating each department (UC's). The scenarios have probabilities $0.3,0.5$ and 0.2 . A total of 720 layouts (i.e. $6!$) are included in each year. Costs of relocating each department (UC's) follow a probability distribution because of variations in charges due to labor, fuel and special equipment's used during relocations.

Experimentation was done under three cases. Case 1 corresponds to very high magnitudes for the values of the $A_{s t}$ parameters; still decreasing the numbers over the 3 scenarios considered. In case 1 , the model was run 4 times in each of the 4 six departments problems generated (P1, P2, P3, P4). In cases 2 and 3 the model was run also 4 times but only for 1 of the six departments problem generated (P1). Cases 2 and 3 correspond to medium and low magnitudes for the values for $A_{s t}$, still decreasing the numbers over the

3 scenarios considered. The budgeted money for relocations, $A_{s t}$, includes the loss in production incurred during the time the departments are under relocation.

The terms in the SDFLP objective function and their signs introduced in Chapter 2 are pasted below again.

$$
\begin{equation*}
\min z_{s t o c}=\sum_{s=1}^{s^{\prime}} \sum_{i_{t}}^{L_{t}} \sum_{K_{t+1}}^{L_{t+1}} p_{s} C_{s i_{t} K_{t+1}} x_{i_{t} K_{t+1}}-\sum_{s=1}^{s^{\prime}} p_{s} y_{s_{(N-1)}}(1+r)^{-(N-1)} \tag{11}
\end{equation*}
$$

However, in table 45 , the sign for $z_{s t o c}$ is displayed as minus the value computed in equation (11). This means a negative number for $z_{s t o c}$ represents the case in which besides incurring in MHC and RC, money should be borrowed to relocate the departments (negative values for the y variables) and thus $z_{s t o c}$ ends being a cost. A positive number for $z_{\text {stoc }}$ indicates that the total amount unused from the allocated budget (positive values for the y variables) exceeded the cost incurred in MHC and RC.

These preliminary experiments indicate that the model is sensitive to $A_{S_{t}}$, the available or allocated budget for the relocations occurring between period t and $t+l$ under scenario s. Future work will consider calibrating the model parameters to resemble a company setting and to assess the value of the stochastic solution from this SDFLP model vs. the one from solving a DFLP.

Table 45. Results from Solving the SDFLP - 6 Departments

Case	Problem	$-z_{\text {stoc }}$ (see equation 11)
High magnitudes for the budget for relocations , $A_{s t}$	P 1	195,729
	P 2	62,813
	P 3	34,132
Medium magnitudes for the budget for relocations,$A_{s t}$	P 4	193,948
Low magnitude for the budget for		
relocations , $A_{s t}$		

6. PRACTICAL CASE STUDY

6.1 Micro Power facility layout problem

Micro Power Global, a private green energy technology company started in 2008 and partnered with Texas State University to develop and commercialize a cutting-edge solid-state semiconductor which in the Power Mode converts heat directly into electricity and in the cooling mode converts electricity directly into refrigeration (MicroPower Global; Novoa \& Mai, 2013). Texas State University has provided technical expertise, facilities and equipment to Micro Power.

In 2012, MicroPower starts to relocate its operations to the new STAR park facility in San Marcos, TX in preparation for company's growth. Uncertainty and variability of product demands require a flexible facility layout that may involve shifting of some departments onto new locations inside the building at certain periods of time or a careful decision on the final position of each department if they are not going to be relocated.

The manufacturing process for the wafers produced by MicroPower is sequential and involves 5 production departments in this order: ingot growing, ingot slicing, wafer polishing, MBE, and metrology. MicroPower needs a facility layout to accommodate these departments. The STAR park facility has been divided into 6 equal rectangular locations labeled as shown in Figure 20.

Figure 20. Numerical labels for the locations in the Micro Power STAR Park
facility

Table 46 shows the distances between the locations as labeled and depicted in Figure 20. A dummy department is added to have an equal number of departments and locations. Flows of material (in trips/year) between departments over the next 3 years, based on the product demands and material handling systems used, are collected through meetings with the managers and presented in Tables 47 and 48. MicroPower has provided also estimates for the departments' relocation costs and they are in Table 49. Given the information collected, this problem matches the definition and assumptions in a DFLP problem with deterministic but variable material flow.

Table 46. Distances (in Feet) between Locations at the Micro Power Facility

Location\Location	1	2	3	4	5	6
1	0	32	28	62	56	89
2	32	0	61	29	88	57
3	28	61	0	32	27	60
4	30	29	32	0	59	27
5	56	88	27	59	0	32
6	89	57	60	27	32	0

Table 47. Flows of Material between Micro Power Departments for Year 1 (in Trips/Year)

Departments	Ingot	Slicing	Polishing	MBE	Metrology	Dummy
Ingot growing	0	53000	0	0	5300	0
Slicing	0	0	53000	0	2650	0
Polishing	0	0	0	53000	2650	0
MBE	0	0	0	0	5300	0
Metrology	5300	2650	2650	5300	0	0
Dummy	0	0	0	0	0	0

Table 48. Flows of Material between Micro Power Departments for Year 2 and Year 3 (in Trips/Year)

Departments	Ingot	Slicing	Polishing	MBE	Metrology	Dummy
Ingot growing	0	363,000	0	0	36300	0
Slicing	0	0	363,000	0	18,150	0
Polishing	0	0	0	363,000	18,150	0
MBE	0	0	0	0	36,300	0
Metrology	36,300	18,150	18,150	36,300	0	0
Dummy	0	0	0	0	0	0

Table 49. Departments Relocation Costs at Micro Power

Department	Fixed relocation Cost
Ingot growing	200,000
Slicing	100,000
Polishing	250,000
MBE	$1,000,000$
Metrology	200,000
Dummy	0

6.2. Results

The two methodologies described in this thesis (PSP and $L N M$) are tested to assess their practical suitability for solving the DFLP faced by MicroPower. Because of the relatively small size of this DFLP if modeled as a network problem, $(6!=720$ layouts per period, a network with $720 * 3+2=2162$ nodes and $(\mathrm{T}-1) *(\mathrm{n}!* \mathrm{n}!)+2 \mathrm{n}!=2 *(720 * 720)+$
$2 * 720=1,038,240$ arcs), the input to the PSP and $L N M$ models was to include all 720 layouts or permutations for each year in the networks.
$P S P$ and $L N M$ methodologies gave the same result. The permutation 4-6-5-3-1-2 is the new layout suggested for the MicroPower facility by the two methodologies. It means department 4, MBE, must be in location 1, department 6, Dummy, must be in location 2, department 5, Metrology, must be in location 3, department 3, Polishing, must be in location 4, department 1, Ingot must be in location 5 and department 2, Slicing, must be in location 6. The total cost of such solution is $\$ 84,982,000$. It results from summing the material handling costs incurred over the 3 years. No relocation costs are added since no department is relocated. Figure 21 presents the final facility layout suggested for MicroPower and Figure 22 presents the mirror image of it. The mirror image shows flows between departments from left to right and consequently it agrees more with the flow concepts suggested in facility layout books. The $L N M$ implemented in AMPL takes about 2 seconds to solve this problem and performs 8,576 network simplex iterations. The serial $S P$ takes about 0.06 seconds in the CAPI machine.

4. MBE Location 1	5. Metrology Location 3	1. Ingot Location 5
6. Dummy Location 2	3. Polishing Location 4	2. Slicing Location 6

Figure 21. New layout suggested for Micro Power after solving with PSP and $L N M$ methods

1. Ingot Location 5 2. Slicing Location 6	5. Metrology Location 3	4. MBE Location 1		
Location 4			\quad	6. Dummy
:---				
Location 2				

Figure 22. Mirror image for new layout suggested for Micro Power after solving with PSP and LNM methods

It is nice to see that without imposing any additional constraint the ingot growing and ingot slicing departments ended as neighbors. In previous works (Novoa \& Mai, 2013) managers required to allocate both departments in a single location since in reality it is highly desirable to have these departments closer. The total cost found in this study cannot be directly compared to the one in Novoa \& Mai (2013) because in this thesis 5 different departments are allocated to 5 locations and in Novoa \& Mai (2013) after adding to the non-linear model the constraint that ingot growing and ingot slicing must occupy the same location the solution has 5 departments allocated to 4 locations.

It is also nice to see another couple of results that the managers desired: (1) MBE (department 4) is closer to polishing (department 3) and metrology (department 5), and (2) metrology (department 5) is closer to ingot (department 1), slicing (department 2), polishing (department 3) and MBE (department 4).

A layout for the departments was randomly generated (permutation 5-1-3-6-2-4) and the cost of keeping such layout over the 3-years was computed. This cost is equal to $162,107,300$ and it is significantly higher if compared to the optimal one of $\$ 84,982,000$
(permutation 4-6-5-3-1-2). The random layout doesn't have ingot close to slicing, MBE is relatively close to polishing but not close to metrology, and metrology is located closer to polishing and ingot but not closer to MBE and slicing. In this way, the random layout can be considered as a very poor one. The difference in costs should be a fair assessment of the maximum amount of money that can be saved over 3-years if using optimization techniques in facilities planning.

Also, the cost for one case in which 3 different and sub-optimal layouts are used for each year was computed. Such cost ended equal to $132,319,450$. In this case, some layouts were not as poor as the random one mentioned in the previous paragraph but there were unnecessary relocation costs. For this particular problem, relocation costs are very high for the MBE department and therefore they should be avoided, if possible. Due to the small problem size and the rectangular shape of the facility, it is possible to allocate a department that has high flows with multiple departments in a central location and pair of departments that have high flows as neighbors. Such fact turns into the fact that the optimal solution ends to be a fixed layout instead of a different one for each year.

7. CONCLUSION

In this research, the dynamic facility layout problem (DFLP) and the stochastic and dynamic facility layout problem (SDFLP) have been studied. Two methodologies for solving the DFLP have been compared, Parallel Shortest Path (PSP) solved under a slightly modified version of the Dijkstra algorithm and a Linear Network Model (LNM) solved in AMPL. In the first phase of this study, solutions are obtained without filtering the permutations to include in the network. The efficiency of the proposed methodologies/algorithms is analyzed. This phase is called the non-sorting variant. Later, in the second phase the proposed methodologies are analyzed by filtering out the layouts with the best material handling cost in each year. The methodologies are contrasted in terms of cost of the solutions and computational time. This second phase is called the sorting variant. Both methodologies prove to be efficient and relatively simple to develop if compared to other heuristic algorithms previously published by other authors. They have also acceptable percentages of accuracy.

For the non-sorting variant, this thesis performed the experimental work on the PSP implementation developed by Kolla, (2015) by including a very large number of randomly selected layouts $(85,000)$ to get the best quality results and perform comparisons to methodologies from previous authors. In this study, the sorting variant compared well to other previous works by generating 400,000 layouts and filtering the 50,000 with the best material handling cost in the PSP methodology and by generating 85,000 layouts and filtering the 2,000 ones with the best material handling cost in the $L N M$ methodology.

This thesis proposed a new model for solving the SDFLP and demonstrated that the problem can be solved with a model that is an extension of the $L N M$ used for the DFLP.

Problems with 6 departments and 5-time periods were solved with AMPL. Future research includes to extend the experimentation to see up to what problem sizes are possible to solve with the proposed methodology and to assess the value of the stochastic solution. SDFLP is a more realistic problem arising if considering that product demands (and consequently flows of material between departments) and relocation costs are not known with certainty but only through probability distributions.

This research proves to be the first one in solving models for both DFLP for $6,12,15$ and 30 departments and SDFLP with budget constraints and 6 departments using a linear model and solving directly with an operations research software such as AMPL. It was rewarding to discover that AMPL was able to solve those problems using the network simplex algorithm. By using AMPL this work demonstrated that is possible to include up to 2000 layouts per period in the network. This number is a significant improvement if compared to the numbers reported for the DFLP in Balakrishnan \& Jacobs (1992). These authors are the only ones researching previously on the Linear Network Model approach. They considered two settings, one with 50 layouts per period (small) and the other one with 100 layouts (large) per period.

The computational time reported by AMPL/CPLEX on solving the instances studied evidences that the software is efficient in solving these NP-Hard problems. A computer with more memory could be able to solve the DFLP and SDFLP problems with a larger number of layouts and to possibly get improvements in the costs.

The two methodologies for solving the DFLP can be used in industry. The $L N M$ may be simpler to understand and perform to a supply chain/logistics practitioner than the PSP. LNM is relatively accurate and useful for those companies not in search of the very
optimal solution but just a good solution or a solution that is better to the current implemented one, and efficient in terms of computational time. However, $L N M$ relies on running separately a C program to compute the some of the model input parameters (total costs equal to the sum of material handling cost and relocation costs) and to prepare the very large data file needed to run the model. On the other hand, the $P S P$ is a single C program that can be used by a practitioner as a black box once he/she is trained on running the parallelized code on a parallel environment with OpenMP capabilities. Finally, the comparison of the methods studied in this thesis was not entirely straightforward since the $P S P$ has been parallelized in the non-sorting variant and the $L N M$ has been limited on the number of layouts to include because of computer memory constraints. Both methods were put in the best conditions they can work to identify their solution quality vs. other methods reported in the literature.

From a practical perspective, achieving cost reductions that considerably outperformed other methods in 67 and 62 cases by a percentage between $1-4 \%$ is a result having a substantial value. This is because the $1-4 \%$ cost improvements for the problems studied (6,15 and 30 department's) will positively impact a company budget by freeing a significant amount of money that can be saved or re-allocated to cover other operational costs. From the research point of view, for this NP-hard problem authors have used various methodologies to achieve reduction in cost however for most of the problems no one knows the exact lowest cost but it is of high interest for the research community to know which algorithms are the best performers for the particular instances and which ones do it efficiently. Notoriously, we believe that most of the prior solution approaches have used more complex algorithms to explore the search space to find the minimum cost for the
instances studied. Hence, it is of great value for a company that is considering to implement PSP and $L N M$ to setup their layout to have a not too complex algorithm available that has been contrasted to previous works and it produces good results in terms of costs.

This work helps supply chains to cut operational costs such as material handling and relocation cost. It helps to prioritize relocation of departments each year considering demand forecasts, new products, unexpected disasters, changes in machinery, geography or other issues. The places for applying the proposed methodologies are wide (warehouses, distribution centers, manufacturing plants, telecommunication and healthcare companies, and disaster relief supply chains among others). Future research will extend these models and research on methodologies to solve larger instances of the DFLP and SDFLP. The SDFLP is a facility layout problem where literature is scarce, especially efficient and good quality solution methods.

APPENDIX

APPENDIX A: Table 50: Summary of Literature Reviewed on DFLP

Table 50 (Continued) D		FLP	
Exact		Hybrid	
Author	Approach	Author	Approach
Rosenblatt (1986)	$\begin{aligned} & \text { Dynamic } \\ & \text { Programming } \\ & \text { (DP) } \end{aligned}$	Balakrishnan et al. (2003) Balakrishnan and Cheng (2006)	DP and GA
DFLP			
Exact		Hybrid	
Author	Approach	Author	Approach
Balakrishnan et al. (1992)	Linear programming to solve a network model using a specialized primal shortest-path simplex algorithm (LP)	McKendall and Shang (2006)	Ant Systems and Simulated Annealing
DFLP			
Exact			
Author	Approach		
Urban (1998)	Exact Dynamic Programming (DP) small instances		

APPENDIX B: Table 51: Summary of Literature Reviewed on SDFLP

SDFLP					
Heuristics		Metaheuristics		Exact	
Author	Approach	Author	Approach	Author	Approach
Benjaafar and Sheikhzade h (1997)	CRAFT	Vitayasa k et al. (2017)	Genetic Algorithm(G A) and Backtracking Search Algorithm (BSA)	Palekar et al. (1992)	Dynamic Program ming (DP)
		$\begin{aligned} & \hline \text { Krishnan } \\ & \text { et al. } \\ & (2008) \\ & \hline \end{aligned}$	Generic Algorithm (GA)		
		Tayal et al. (2016) Tayal et al. (2018)	Simulated Annealing (SA) and Chaotic Simulated Annealing (CSA)		

APPENDIX C: Table 52: AMPL Model File for DFLP without Budget

```
set Layouts;
set Arcs within (Layouts cross Layouts);
param supply {Layouts} >= 0; # amounts available at Layouts
param demand {Layouts} >= 0; # amounts required at Layouts
check: sum {i in Layouts } supply[i] = sum {j in Layouts} demand[j];
param cost {Arcs} >= 0;
param capacity {Arcs} >= 0; # max packages that can be shipped
minimize Total_Cost;
node Balance {k in Layouts}: net_in = demand[k] - supply[k];
arc Ship {(i,j) in Arcs } >= 0, <= capacity[i,j],
from Balance[i], to Balance[j], obj Total_Cost cost[i,j];
```

APPENDIX D: Table 53: AMPL Data File for DFLP without Budget

```
set Layouts := 012345678 9.....721;
set Arcs :=
(0, 1 )
(0, 2 )
(0, 3)
.
( 719 , 721 )
720 , 721 );
param supply default 0:= 0 1;
param demand default 0:= 721 1;
param: cost capacity :=
0 1 0 800
0}220080
0 3 0 800
720 721 14401 800;
```

APPENDIX E: Table 54: AMPL Model File for DFLP with Budget

```
set Layouts;
set Arcs within (Layouts cross Layouts);
param supply {Layouts} >= 0; # amounts available at Layouts
param demand {Layouts} >= 0; # amounts required at Layouts
check: sum {i in Layouts} supply[i] = sum {j in Layouts} demand[j];
param cost {Arcs} >= 0;
param capacity {Arcs} >= 0; # max units that can be shipped
param RC {Arcs} >= 0;
param budget >= 0;
minimize Total_Cost;
node Balance {k in Layouts}: net_in = demand[k] - supply[k];
arc Ship {(i,j) in Arcs } >=0,<= capacity[i,j], from Balance[i], to Balance[j], obj
Total_Cost cost[i,j];
subject to BC: sum {(i,k) in Arcs } RC[i,k]*Ship[i,k] <= budget;
```


APPENDIX F: Table 55: AMPL Data File for DFLP with Budget

```
set Layouts := 012345678...............721;
set Arcs :=
(0, 1 )
(0, 2 )
.
( 719 , 721 )
( 720 , 721 );
param supply default 0:= 0 1;
param demand default 0:= 721 1;
param budget := 3600;
param: cost capacity RC :=
0}11\mp@code{0}80090
0 2 0 800 900
719
720 721 14401 800 900;
```


APPENDIX G: Table 56: AMPL Model file for SDFLP with Budget

```
set scenarios;
set years;
set yearminus1;
set Layouts;
set Layouts1;
set Layouts2;
set Layouts3;
set Layouts4;
set Layouts5;
param start in Layouts;
param end in Layouts, <> start;
set Arcs within (Layouts diff {end}) cross (Layouts diff {start});
set Arcs1 within (Layouts1 diff {end}) cross (Layouts2 diff {start});
set Arcs2 within (Layouts2 diff {end}) cross (Layouts3 diff {start});
set Arcs3 within (Layouts3 diff {end}) cross (Layouts4 diff {start});
set Arcs4 within (Layouts4 diff {end}) cross (Layouts5 diff {start});
```

param supply $\{$ Layouts $\}>=0$; \# amounts of imaginary unit available at the nodes or Layouts. Only dummy supply node sends a unit
param demand $\{$ Layouts $\}>=0$; \# amounts of imaginary unit required by the nodes or Layouts. Only destination node demands a unit
param numscen;
param probscen \{scenarios $\}$;
param cost $\{$ Arcs, scenarios $\}>=0$; Material handling cost C plus relocation costs
param capacity $\{$ Arcs $\}>=0$; \# nodes (layouts) have infinite capacity to transfer the single "fictitious" unit passing in the network
param RC \{Arcs, scenarios $\}>=0$; \# Relocation cost from one layout at period t to another layout at period $\mathrm{t}+1$
param budget_avail \{scenarios, years \} >=0; \# Budget allocated to relocations that varies by scenario and year; A in our model
param interest; \# interest rate used as discount in the objective function
var Ship $\{(\mathrm{i}, \mathrm{j})$ in Arcs $\}>=0$; \# X's in our model in the thesis
var Remaining\{scenarios, years \}; \# Y in our model in the thesis
var total_avail\{scenarios,years \}; \# B in our model in the thesis
minimize Total_Cost: sum $\{(\mathrm{i}, \mathrm{j})$ in Arcs, sin scenarios $\}$
probscen $[\mathrm{s}] * \operatorname{cost}[\mathrm{i}, \mathrm{j}, \mathrm{s}] * \operatorname{Ship}[\mathrm{i}, \mathrm{j}]-\operatorname{sum}\{\mathrm{s}$ in scenarios $\}$
probscen[s]*Remaining[s,4]*(1 + interest $)^{\wedge}(-4)$;
\# 4 is to represent the previous to last year

Table 56. (Continued)

subject to Start: sum $\{($ start, $j)$ in Arcs $\}$ Ship $[$ start, j$]=1$;
subject to Balance $\{\mathrm{k}$ in Layouts diff $\{$ start, end $\}\}$:
$\operatorname{sum}\{(\mathrm{i}, \mathrm{k})$ in $\operatorname{Arcs}\} \operatorname{Ship}[\mathrm{i}, \mathrm{k}]=\operatorname{sum}\{(\mathrm{k}, \mathrm{j})$ in Arcs $\} \operatorname{Ship}[k, j] ;$
subject to Rem1to2 $\{\mathrm{s}$ in scenarios $\}:$: sum $\{(\mathrm{i}, \mathrm{k})$ in $\operatorname{Arcs} 1\} \operatorname{RC}[\mathrm{i}, \mathrm{k}, \mathrm{s}] * \operatorname{Ship}[\mathrm{i}, \mathrm{k}]$ + Remaining[s,1] = total_avail[s,1];
subject to Rem2to3 $\{\mathrm{s}$ in scenarios $\}$: $\mathbf{~ s u m ~}\{(\mathrm{i}, \mathrm{k})$ in $\operatorname{Arcs} 2\} \operatorname{RC}[\mathrm{i}, \mathrm{k}, \mathrm{s}] * \operatorname{Ship}[\mathrm{i}, \mathrm{k}]$

+ Remaining[s,2] = total_avail[s,2];
subject to Rem3to4 $\{\mathrm{s}$ in scenarios $\}$: $\mathbf{~ s u m ~}\{(\mathrm{i}, \mathrm{k})$ in $\operatorname{Arcs} 3\} \operatorname{RC}[\mathrm{i}, \mathrm{k}, \mathrm{s}] * \operatorname{Ship}[\mathrm{i}, \mathrm{k}]$ + Remaining[s,3] = total_avail[s,3];
subject to Rem4to5 $\{\mathrm{s}$ in scenarios $\}$: $\mathbf{~ s u m ~}\{(\mathrm{i}, \mathrm{k})$ in $\operatorname{Arcs} 4\} \operatorname{RC}[\mathrm{i}, \mathrm{k}, \mathrm{s}] * \operatorname{Ship}[\mathrm{i}, \mathrm{k}]$
+ Remaining[s,4] = total_avail[s,4];
subject to Tie1to2 $\{\mathrm{s}$ in scenarios $\}$: budget_avail[s, 1$]=$ total_avail[s, 1$]$; subject to Tie2to3 \{s in scenarios\}: budget_avail[s,2] + Remaining $[\mathrm{s}, 1] *(1+$ interest $)=$ total_avail[s,2];
subject to Tie3to4 $\{\mathrm{s}$ in scenarios $\}$: budget_avail[s,3] + Remaining[s,2]*(1+interest) $=$ total_avail[s,3];
subject to Tie4to5 \{s in scenarios\}: budget_avail[s,4] +
Remaining $[\mathrm{s}, 3] *(1+$ interest $)=$ total_avail $[\mathrm{s}, 4]$;

APPENDIX H: Table 57: AMPL Data File for SDFLP with Budget

```
set Layouts := 01234567 8............................721;
set Layouts1:= 122 3 4 4 5 6 6 7 8................144;
set Layouts3 :=289 290 291 292 293 294 295 296.............432;
set Layouts4 := 433 434 435 436 437 438 439 440..............576;
set Layouts5 := 577 578 579 580 581 582 583 584..............720;
set years := 12345;
set scenarios := 12 3;
set yearminus1 := 1 23 4;
set Arcs :=
(0, 1 )
(0, 2 )
.
(719 , 721 )
( 720 , 721 );
set Arcs1 :=
(1, 145 )
( 1, 146 )
.
set Arcs2 :=
( 145 , 289 )
(145 , 290 )
( 288 , 431 )
( 288 , 432 );
set Arcs3 :=
( 289 , 433 )
( 289 , 434 )
.
( 432 , 575 )
( 432 , 576 );
set Arcs4 :=
( 433 , 577 )
(433 , 578)
```

```
Table 57. (Continued)
( 576 , 719 )
( 576 , 720 );
param start := 0;
param end := 721;
param supply default 0:= 0 1;
param demand default 0:= 721 1;
param numscen := 3;
param probscen := 1 0.3 20.5 3 0.2;
param budget_avail :
    1 2 3 4 5:=
122200230002350024000 25000
2350003550036000 36500 37500
345000 45500 4600046500 46500;
param interest := 0.04;
param cost: 1 2 3 :=
0}1
0
.
719}7721 12900 13700 14500 
720 721 12900 13700 14500;
param capacity :=
0 1 800
0 2 800
.
719 721 800
720 721 800;
param RC: 1 2 3:=
llllll
0}22500 525 550 
719}7721 500 525 550 
720 721 500 525 550;
```


APPENDIX I: Samples of best solutions found for the PSP algorithm developed by

Chandra Kolla (2015) and the $L N M$ coded in AMPL by Gowtham Balachandran - no-

sorting

6 Departments 1st problem 3rd Run				
Chandra Parallel Algorithm	Balachandran Network Model - AMPL			
Optimal path:	Total_Cost = 106419		CPLEX 12.6.1.0: optimal solution;	objective 106419
1245368			24972 network simplex iterations.	
124536728	Runtime in seconds:		0 simplex iterations (0 in phase I)	
1245361448	ampl_user_time = 4	95312	Run time for solving the problem =	$=3.609375$ seconds
1245362168				
1245362888	Ship :=			
	$0 \quad 672$ 1	635421		
Cost: 106419	67213921	635421		
	139221121	635421		
real 0m0.994s	211228321	635421		
user 0m1.358s	283235521	635421		
sys 0m0.051s	355236011	635421		

6 Departments 1st Problem 5th Run						
Chandra Parallel Algorithm	Balachandran Network Model - AMPL					
Optimal path:	Total_Cost = 106419			CPLEX 12.6.1.0: optimal solution; objective 106419		
1245368				24972 netw	ork simplex iterations.	
124536728	Runtime in se	econds:		0 simplex it	erations (0 in phase I)	
1245361448	ampl_user_	time $=5$	25	Run time f	solving the problem =	$=3.687500$ seconds
1245362168						
1245362888	Ship :=					
	067211		635421			
Cost: 106419	67213921		635421			
	13922112	1	635421			
real 0m1.111s	21122832	1	635421			
user 0m1.340s	28323552	1	635421			
sys 0m0.056s	355236011	1	635421			

12 Departments 1st Problem 3rd Run											
Chandra Parallel Algorithm		Balachandran Linear Network Model -AMPL									
Optimal path:		Total_Cost $=1418920$			-	CPLEX 12.6.1.0: optimal solution; objective 1418924					
11812162475310977578						86114 network simplex iterations.					
118121624753109162578		Runtime in seconds:					simplex i	iterations (0	(0 in phase I)		
$\frac{118121624753109247578}{118121624753109332578}$		_ampl_user_time $=65.8125$				Run time for solving the problem $=50.640625$ seconds					
		Ship :=									
118121624753109417578											
		014621		106712142811953							
Cost: 1278564		146234621		106712142811953							
		346254621		106712142811953							
real 1m35.907s		546274621		106712142811953							
user 7m6.441s		746294621		106712142811953							
sys Om15.719s		9462100011		106712142811953							

15 Departments 1st Problem 1st Run						
Chandra Parallel Algorithm		Balachandran Linear Network Model - AMPL				
Optimal path:		Total_Cost = 509933		CPLEX 12.6.1.0: optimal solution; objective 509933		
71413102581511341129673341				97397 network simplex iterations.		
121561411281094317513152011		Runtime in seconds:		0 simplex iterations (0 in phase I)		
121561411281094317513237011		ampl_user_time = 61.2344		Run time for solving the problem $=46.640625$ seconds		
121561411281094317513322011						
111512398121446107513376680		Ship :=				
		$0 \quad 9061$	491223515131117814610			
Cost: 502383		90632171	491223515131117814610			
		321752171	489143156107511212113			
real 6m35.699s		521772171	489143156107511212113			
user 37m53.374s		721795831	113108942571315141216			
sys Om39.218s		9583100011	113108942571315141216			

15 Departments 1st Problem 3rd Run						
Chandra Parallel Algorithm		Balachandran Linear Network Model -AMPL				
Optimal path:		Total_Cost = 512736		CPLEX 12.6.1.0: optimal solution; objective 512736		
79612251115134183141024467				111902 network simplex iterations.		
13311521210864119751495963		Runtime in seconds:		0 dual simplex iterations	s (0 in phase I)	
$\begin{array}{\|l\|} 133115212108641197514180963 \\ 133115212108641197514265963 \end{array}$		_ampl_user_time $=75.5825$		Run time for solving the problem $=54.257148$ seconds		
101615812425711931413410389		Ship : 0801				
			715863411131295101412			
Cost: 501022		80123761	715863411131295101412			
		237643761	414821312769111531015			
real 6 m 37.249 s		437663761	414821312769111531015			
user 37 m 53.206 s		637688581	414821312769111531015			
sys 0m37.469s		8858100011	811549716210121331415			

APPENDIX J: Simplex iterations $L N M$ solved in AMPL - 6 departments

Problem Number of departments_problem number_run number	Sorting	No-sorting
6_1_1	24077	24972
6_1_2	24077	24972
6_1_3	24077	24972
6_1_4	24077	24972
6_1_5	24077	24972
6_2_1	19233	24277
6_2_2	19233	24277
6_2_3	19233	24277
6_2_4	19233	24277
6_2_5	19233	24277
6_3_1	21430	23808
6_3_2	21430	23808
6_3_3	21430	23808
6_3_4	21430	23808
6_3_5	21430	23808
6_4_1	22528	26053
6_4_2	22528	26053
6_4_3	22528	26053
6_4_4	22528	26053
6_4_5	22528	26053
6_5_1	21568	22278
6_5_2	21568	22278
6_5_3	21568	22278
6_5_4	21568	22278
6_5_5	21568	22278
6_6_1	20413	24187
6_6_2	20413	24187
6_6_3	20413	24187
6_6_4	20413	24187
6_6_5	20413	24187
6_7_1	20796	20097
6_7_2	20796	20097
6_7_3	20796	20097
6_7_4	20796	20097
6_7_5	20796	20097
6_8_1	25886	28705
6_8_2	25886	28705
6_8_3	25886	28705
6_8_4	25886	28705
6_8_5	25886	28705

APPENDIX K: Simplex iterations $L N M$ solved in AMPL - 15 departments

Problem Number of departments_problem number_run number	Sorting	No- sorting
15_1_1	81002	97397
15_1_2	78272	100476
15_1_3	63112	111902
15_1_4	83060	101290
15_1_5	64469	90641
15_2_1	54170	106389
15_2_2	65007	71097
15_2_3	86644	58733
15_2_4	65043	119468
15_2_5	83704	99292
15_3_1	61579	80660
15_3_2	62807	83790
15_3_3	57092	76346
15_3_4	83704	105136
15_3_5	53195	102944
15_4_1	57716	92498
15_4_2	49208	107528
15_4_3	51300	96242
15_4_4	67496	82229
15_4_5	65228	74709
15_5_1	59238	107148
15_5_2	94007	91955
15_5_3	50953	85983
15_5_4	48668	90162
15_5_5	48497	98718
15_6_1	59404	130186
15_6_2	56373	66529
15_6_3	53270	103436
15_6_4	45773	90543
15_6_5	65619	96583
15_7_1	63025	114633
15_7_2	47440	94429
15_7_3	53514	81625
15_7_4	64860	84925
15_7_5	53815	95910
15_8_1	77389	93352
15_8_2	51431	92172
15_8_3	61620	86898
15_8_4	59069	111351
15_8_5	53236	80978

APPENDIX L: Simplex iterations $L N M$ solved in AMPL - 30 departments

Problem Number of departments_problem number_ run number	Sorting	No-sorting
30_1_1	91052	65260
30_1_2	70818	59679
30_1_3	56930	82167
30_1_4	72040	60940
30_1_5	68203	63519
30_2_1	72421	81854
30_2_2	141896	75925
30_2_3	72850	88339
30_2_4	61028	65568
30_2_5	87913	76070
30_3_1	87913	67162
30_3_2	61980	74932
30_3_3	61980	56268
30_3_4	62711	80280
30_3_5	93690	69650
30_4_1	74625	75723
30_4_2	63769	68761
30_4_3	50258	71067
30_4_4	50638	80099
30_4_5	72403	85473
30_5_1	49323	80500
30_5_2	88280	118737
30_5_3	55895	56139
30_5_4	55807	248608
30_5_5	46001	114839
30_6_1	58509	113537
30_6_2	67823	99685
30_6_3	84082	95670
30_6_4	323556	64152
30_6_5	44423	128863
30_7_1	133985	66140
30_7_2	96465	89949
30_7_3	78469	72823
30_7_4	277163	77819
30_7_5	59042	78040
30_8_1	94777	112548
30_8_2	77368	89997
30_8_3	100458	57206
30_8_4	71470	59438
30_8_5	66207	49142

APPENDIX M: Table 58: Relevant Information about the Computational Environments Used

Problem or Algorithm	Cluster or computer	Operating System	Speed (Ghz)	CPU's	Memory (GB)
PSP, LNM no-sorting	Stampede cluster	CentOS	2.8	20	12.8
PSP, LNM sorting	Maverick cluster	CentOS	2.7	10	32
LNM for DFLP sorting and no- sorting, SDFLP	SOLAR lab PC	Windows	3.2	4	16
SDFLP	LEAP	CentOS	2.4	28	128
LNM sorting, $P S P ~ s o r t i n g ~$	CAPI	CentOS	$2.06-$	160	16

APPENDIX N: Table 59: Costs, Computational Times and Percentage Difference (\% Diff) for PSP and LNM - Sorting (S) vs. No-Sorting (NS) - 15 Departments - Times Shortest Path Sorting (SP-S) are only for doing the variant of the Dijkstra's Algorithm

$P S P-S$	$P S P-N S$	\% Diff	$L N M-S$	$L N M-$ $N S$	\% Diff
498273	501547	0.65	501547	511087	1.9
499297	502998	0.74	502998	512633	1.9
500066	506883	$\mathbf{1 . 3 4}$	507031	515212	1.59
498717	501035	0.46	501035	508173	1.4
499414	500312	0.18	500312	511144	$\mathbf{2 . 1 2}$
499353	502486	0.62	502486	511498	1.76
501169	504100	0.58	504100	514077	1.94
505761	507402	0.32	507442	517778	2
$S P-S$	$P S P-N S$	$\%$ Diff	$L N M-S$	$L N M-$	$\%$ Diff
41.2	36.5	-12.88	45.7	64.7	29
41.6	97.4	57.29	45.7	61.1	25
42.4	396.8	89.31	47.8	62.1	22.99
42.4	396.1	89.3	46	60.3	25.42
42	396.4	89.4	45.2	60.4	25.1
46.6	396.1	88.24	45.3	60.9	25.56
41.2	395.8	89.59	45.4	60.3	24.74
41.4	384.1	89.22	45.3	59.9	24.34

Table 60: Costs, Computational Times and Percentage Difference (\% Diff) for PSP and LNM - Sorting (S) vs. No-Sorting (NS) - 30 Departments - Times Shortest Path Sorting (SP-S) are only for doing the variant of the Dijkstra's Algorithm

$P S P-S$	$P S P-N S$	\% Diff	$L N M-S$	$L N M-$ $N S$	\% Diff
603233	603165	-0.01	624464	609371	-2.48
603332	600408	-0.49	606909	606746	-0.03
605783	607720	0.32	612155	611773	-0.06
597999	601261	0.54	601721	607288	0.92
587107	590454	0.57	590548	599579	1.51
594994	597884	0.48	598842	603318	0.74
597179	595900	-0.21	599936	601822	0.31
601663	603972	0.38	603848	614843	1.79

Table 60 (Continued)

$S P-S$	$P S P-N S$	\% Diff	$L N M-S$	$L N M-$ $N S$	\% Diff
41.6	457	90.9	47.7	64.3	25.86
41.2	457.4	90.99	47.9	71.9	33.32
41.8	456.4	90.84	47.9	60.8	21.21
41.6	106.2	60.81	48.5	60	19.23
41.2	107.8	61.76	48.8	60.1	18.81
41	107.9	61.99	48.4	77.6	37.71
41	111.2	63.13	45.7	60.1	23.97
41.6	107.1	61.17	45.8	76.8	40.45

APPENDIX O: Table 61: Times to Perform only the variant of the Dijkstra algorithm for SP Sorting (S)- 15 and 30 departments

	Problem \#	R1	R2	R3	R4	R5	Average	Std. Dev
15	1	41	41	42	41	41	41.2	0
	2	41	41	42	43	41	41.6	1
	3	42	42	42	43	43	42.4	1
	4	41	42	43	42	44	42.4	1
	5	42	41	42	41	44	42.0	1
	6	41	69	41	41	41	46.6	13
	7	41	41	41	42	41	41.2	0
	8	42	41	42	41	41	41.4	1
	1	41	44	41	41	41	41.6	1
	2	41	41	41	41	42	41.2	0
	3	41	41	41	44	42	41.8	1
	4	41	41	41	41	44	41.6	1
	5	41	41	41	42	41	41.2	0
	6	41	41	41	41	41	41.0	0
	7	41	41	41	41	41	41.0	0
	8	43	42	41	41	41	41.6	1

APPENDIX P: Table 62: Times to Perform LNM Sorting (S) - 15 and 30 Departments including Percentage Difference (\% Diff) for LNM Sorting (S) vs SP Sorting (S) as reported in Appendix O

	Problem	R1	R2	R3	R4	R5	Average	Std. Dev	$\begin{gathered} \text { \% Diff } \\ L N M \\ \text { vs } S P \\ \hline \end{gathered}$
15	1	47.31	45.45	45.07	45.10	45.71	45.728	0.923	9.90\%
	2	45.00	45.48	45.29	45.73	46.86	45.672	0.716	8.92\%
	3	45.85	46.17	46.26	46.81	53.96	47.810	3.455	11.32\%
	4	45.43	45.28	44.62	44.89	44.70	44.984	0.357	5.74\%
	5	45.00	44.93	44.64	46.20	45.40	45.234	0.604	7.15\%
	6	45.96	45.48	45.10	44.71	45.37	45.324	0.463	-2.82\%
	7	45.87	45.32	45.46	45.40	44.81	45.372	0.379	9.20\%
	8	45.17	44.67	46.48	45.39	44.95	45.332	0.695	8.67\%
30	1	45.75	47.31	49.28	48.92	47.26	47.704	1.426	12.80\%
	2	47.81	47.54	48.96	47.53	47.87	47.942	0.590	14.06\%
	3	47.87	48.40	48.21	47.48	47.42	47.876	0.433	12.69\%
	4	48.46	48.50	48.71	48.48	48.25	48.480	0.163	14.19\%
	5	48.42	48.14	49.39	49.57	48.29	48.762	0.666	15.51\%
	6	48.39	48.23	47.75	45.54	49.01	47.784	1.333	14.20\%
	7	46.21	45.46	45.53	45.89	45.45	45.708	0.333	10.30\%
	8	45.64	45.20	46.10	45.65	46.26	45.770	0.420	9.11\%

$\%$ Diff $=100^{*}($ LNM sorting - SP sorting $) / L N M$ sorting

APPENDIX Q: Computational Time Graph for Various Methods Studied

REFERENCES

Azadivar, F., \& Wang, J. (2000). Facility layout optimization using simulation and genetic algorithms. International Journal of Production Research, 38(17), 4369-4383.

Azimi. P, Charmchi, H. R. (2012). A new optimization approach for dynamic facility layout with budget constraint. Operations Research, 168 (2), 57-89.

Balakrishnan, J., Jacobs, R. F., \& Venkataraman, M.A. (1992). Solutions for the constrained Dynamic Facility Layout Problem. European Journal of Operations Research, 57(2), 280-286.

Balakrishnan, J., \& Cheng, C. H. (1998). Dynamic Layout Algorithms: A State-of-the-art Survey. Omega International Journal of Management Science, 26(4), 507-521.

Balakrishnan, J., \& Cheng, C. H. (2000). Genetic search and the dynamic layout problem. Computers \& Operations Research, 27(6), 587-593.

Balakrishnan, J., \& Cheng, C. H., Conway, D.G., Lau, M.C. (2003). A hybrid genetic algorithm for the dynamic plant layout problem. International Journal of Production Economics, 86(2), 107-120.

Balakrishnan, J., \& Cheng, C. H. (2006). A note on "a hybrid genetic algorithm for the dynamic plant layout problem." International Journal of Production Economics, 103(1), 87-89.

Balakrishnan, J., \& Cheng, C. H. (2009). The dynamic plant layout problem: Incorporating rolling horizons and forecast uncertainty. The international journal of management science, Omega, 37(1) 165-177.

Balas, E., \& Mazzola, J.B. (1980). Quadratic 0-1 programming by a new linearization, TIMS/ORSA meeting, Washington, DC.

Ballou, R. J. (2003). Business Logistics/Supply Chain Management and Logware. Pearson/Prentice Hall, Upper Sadle River, NJ.

Ballou, R. H. (1968). Dynamic Warehouse location analysis. Journal of Marketing Research, 5, 271-276.

Baykasoglu, A., Dereli, T., \& Sabuncu, I. (2006). An ant colony algorithm for solving budget constrained and unconstrained dynamic facility layout problems, Omega, 34(4), 385-396.

Baykasoglu, A., \& Gindy, N. N. Z. (2001). A simulated annealing algorithm for dynamic layout problem. Computers \& Operations Research, 28(14), 1403-1426.

Benjaafar, S., \& Sheikhzadeh, M. (1997). Design of flexible plant layouts. IIE Transactions, 32(4), 309-322.

Birge, J. R., Louveaux, F. (2010). Introduction to Stochastic Programming. Second Edition. Springer Series in Operations Research and Financial Engineering. Mikosch, T.V., Resnick, S.I., and Robinson, S.M., Editors. Springer, New York, NY.

Burkard, R. E., \& Bonniger, T. (1983). A heuristic for quadratic Boolean program with applications to quadratic assignment problems. European Journal of Operational Research, 13(4), 374-386.

Bazaraa, S. M., Jarvis, J. J., \& Sherali, H. D. (1990). Linear programming and network flows- Second Edition. John Wiley \& Sons, New York, NY.

Conway, D.G., \& Venkataramanan, M.A. (1994). Genetic search and the dynamic facility layout problem. Computers \& Operations Research, 21(8), 955-960.

Dijkstra, E.W. (1959). A note on two problems in connection with graphs. Number Math. 1, 269-271.

Fourer, R, Gay, D.M., \& Kernighan, B.W. (2003). A Modeling Language for Mathematical Programming, Thomson, Canada, Second edition, 319-351.

Fredman, M. L., \& Tarjan, R. E. (1987). Fibonacci Heaps and their uses in improved network optimization algorithms. Journal of the association for computing machinery, 34(3), 596-615.

Kaku, B.K., \& Mazzola, J. B. (1997). A Tabu search heuristic for the dynamic plant layout problem. INFORMS Journal on Computing, 9(4), 374-384.

Kolla, C.S. (2015). Finding Efficient Solutions to the Dynamic Plant Layout Problem with Dijkstra's Shortest Path Algorithm. Independent Study. Department of Computer Science. Texas State University.

Krishnan, K. K., Cheraghi, H. S., \& Nayak, C.N. (2008). Facility layout design for multiple production scenarios in a dynamic environment. International Journal of Industrial and Systems Engineering, 3(2), 105-133.

Kulturel-Konak, S. (2007). Approaches to uncertainties in facility layout problems: perspectives at the beginning of the $21^{\text {st }}$ century. Journals of Intelligent Manufacturing, 18(2), 273-284.

Lacksonen, T. A., \& Enscore, E. E. (1993). Quadratic assignment algorithms for the dynamic layout problem. International Journal of Production Research, 31(3), 503-517.

Leap: High Performance Computing Cluster. Texas State University. Retrieved from http://www.vpit.txstate.edu/rc/leap.html

Loiola, E. M., De Abreu, N., Boaventura Netto, P., Hahn, P. \& Querido, T. (2007). A survey for the quadratic assignment problem. European Journal of Operational Research, 176(2), 657-690.

McKendall, R. A., \& Shang, J. (2006). Hybrid ant systems for the dynamic facility layout problem. Computers \& Operations Research, 33(3), 790 - 803.

MicroPower. Retrieved from http://MicroPower-global.com
Moselimipour, G., Lee, T.S., \& Rilling, D. (2012). A review of intelligent approaches for designing dynamic and robust layouts in flexible manufacturing systems. International Journal of Advanced Manufacturing Technology, 60(1-4), 11-27.

Moslemipour, G., \& Lee, T.S. (2012). Intelligent design of a dynamic machine layout in uncertain environment of flexible manufacturing systems. Journals of Intelligent Manufacturing, 23(5), 1-12.

Novoa, C. M., \& Mai, N. (2013). Facilities Layout at MicroPower. In Decision Sciences Institute 44th Annual Meeting (pp. 671963-1-14).

Palekar, S. U., Batta, R., Bosch, R.M., \& Elhence, S. (1992). Modeling uncertainties in plant layout problems. European Journal of Operational Research, 63(2), 347-359.

Rosenblatt, M. J. (1986). The dynamics of plant layout. Management Science, 32(1),7686.

Rardin, R. (2017). Optimization in Operations Research Second Edition. Pearson, Hoboken, NJ.

Sahin, R., Ertogral, K. \& Turkbey, O. (2010). A simulated annealing heuristic for the dynamic layout problem with budget constraint. Computers \& Industrial Engineering, 59, 308-313.

Sweeney, D. S. \& Tatham, R. L. (1976). An improved long run model for multiple warehouse location. Management Science, 22(7), 758-758.

Taha, H. A. (2013). Operations Research - An Introduction Ninth Edition. Prentice Hall, Upper Saddle River, NJ.

Tarjan, R. E. (1983). Data Structures and Network Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA.

Tayal, A., Gunasekaran, A., Singh, S. P., Dubey, R., \& Papadopoulos, T. (2017). Formulating and solving sustainable dynamic facility layout problem: a key to sustainable operations. Annals of Operations Research. 253, 621-655. https://doi.org/10.1007/s10479-016-2351-9

Tayal, A., Singh, S. P. (2018). Formulating multi objective stochastic dynamic facility layout problem for disaster relief. Annals of Operations Research. https://doi.org/10.1007/s10479-017-2592-2

Texas Advanced Computing Center (TACC). University of Texas at Austin. Pickle Research Center. https://portal.tacc.utexas.edu

Urban, L. T. (1998). Solution procedures for the dynamic facility layout problem. Journal of Operations Research, 76(0), 323-342.

Vitayasak, S., Pongcharoen, P., \& Hicks, C. (2017). A tool for solving stochastic dynamic facility layout problems with stochastic demand using either a Genetic Algorithm or modified Backtracking Search Algorithm. International Journal of Production Economics, 190C, 146-157.

Winston, W. L. (2004). Operations Research - Applications and Algorithms Fourth Edition. Brooks/Cole, Cengage Learning, Belmont, CA.

