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GAIN OF REGULARITY FOR A KORTEWEG - DE VRIES -
KAWAHARA TYPE EQUATION

OCTAVIO PAULO VERA VILLAGRÁN

Abstract. We study the existence of local and global solutions, and the gain

of regularity for the initial value problem associated to the Korteweg - de Vries

- Kawahara (KdVK) equation perturbed by a dispersive term which appears in
several fluids dynamics problems. The study of gain of regularity is motivated

by the results obtained by Craig, Kappeler and Strauss [8].

1. Introduction

In 1976, Saut and Temam [25] remarked that a solution u of a Korteweg-de
Vries type equation cannot gain or lose regularity. They showed that if u(x, 0) =
ϕ(x) ∈ Hs(R) for s ≥ 2, then u(·, t) ∈ Hs(R) for all t > 0. The same result was
obtained independently by Bona and Scott [3] through a different method. For the
Korteweg-de Vries equation on the line, Kato [17] motivated by work of Cohen [7]
showed that if u(x, 0) = ϕ(x) ∈ L2

b ≡ H2(R) ∩ L2(ebxdx) (b > 0) then the solution
u(x, t) of the KdV equation becomes C∞ for all t > 0. A main ingredient in the
proof was the fact that formally the semi-group S(t) = e−t∂3

x in L2
b is equivalent

to Sb(t) = e−t(∂x−b)3 in L2 when t > 0. One would be inclined to believe that this
was a special property of the KdV equation. This is not however the case. The
effect is due to the dispersive nature of the linear part of the equation. Kruzkov and
Faminskii [21] proved that for u(x, 0) = ϕ(x) ∈ L2 such that xαϕ(x) ∈ L2((0,+∞))
the weak solution of the KdV equation has l-continuous space derivatives for all
t > 0 if l < 2α. The proof of this result is based on the asymptotic behavior of the
Airy function and its derivatives, and on the smoothing effect of the KdV equation
which was found in [17, 21]. Similar work for some special nonlinear Schrödinger
equations was done by Hayashi et al. [13, 14] and Ponce [23]. While the proof of
Kato appears to depend on special a priori estimates, some of its mystery has been
resolved by the result of local gain of finite regularity for various others linear and
nonlinear dispersive equations due to Constantin and Saut [11], Sjolin [26], Ginibre
and Velo [12] and others. However, all of them require growth conditions on the
nonlinear term.
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All the physically significant dispersive equations and systems known to us have
linear parts displaying this local smoothing property. To mention only a few, the
KdV, Benjamin-Ono, intermediate long wave, various Boussinesq, and Schrödinger
equations are included. Continuing with the idea of Craig, Kappeler and Strauss
[10] we study a equation of Korteweg - de Vries - Kawahara type (KdVK) which
appears in fluids dynamics (see [24] and references therein).

ut + ηuxxxxx + uxxx + uux = 0 (1.1)

with −∞ < x < +∞, t > 0 and η ∈ R. It is shown that C∞ solutions u(x, t) are
obtained for all t > 0 if the initial data u(x, 0) decays faster than polynomially on
R+ = {x ∈ R : x > 0} and has certain initial Sobolev regularity. In section three
we prove the main inequality. In section 4 we prove an important a priori estimate.
In section 5 we prove a basic local-in-time existence and uniqueness theorem. In
section 6 we prove a basic global existence theorem. In section 7 we develop a
series of estimates for solutions of equation (1.1) in weighted Sobolev norms. These
provide a starting point for the a priori gain of regularity. In section 8 we prove
the following theorem.

Theorem 1.1. Let T > 0 and u(x, t) be a solution of (1.1) in the region R× [0, T ]
such that

u ∈ L∞([0, T ];H5(W0L0)) (1.2)
for some L ≥ 2 and all σ > 0. Then

u ∈ L∞([0, T ];H5+l(Wσ,L−l,l))
⋂

L2([0, T ];H6+l(Wσ,L−l,l) ∩H7+l(Wσ,L−l−1,l))

for all 0 ≤ l ≤ L− 1.

2. Preliminaries

We consider the initial-value problem

ut + ηuxxxxx + uxxx + uux = 0 (2.1)

with −∞ < x < +∞, t ∈ [0, T ], T an arbitrary positive time, and η ∈ R is a
constant.

As a notation, we use ∂ = ∂/∂x, ∂t = ∂/∂t and uj = ∂ju, ∂j = ∂/∂uj .
Definition. A function ξ(x, t) belongs to the weight class Wσ i k if it is a positive
C∞ function on R× [0, T ], ξx > 0 and there are constant cj , 0 ≤ j ≤ 5 such that

0 < c1 ≤ t−ke−σxξ(x, t) ≤ c2 ∀x < −1, 0 < t < T, (2.2)

0 < c3 ≤ t−kx−iξ(x, t) ≤ c4 ∀x > 1, 0 < t < T, (2.3)(
t|ξt|+ |∂jξ|

)
/ξ ≤ c5 ∀(x, t) ∈ R× [0, T ],∀j ∈ Z+. (2.4)

We remark that, we will always consider σ ≥ 0, i ≥ 1 and k ≥ 0. For example, let

ξ(x) =

{
1 + e−1/x for x > 0
1 for x ≤ 0 ;

then ξ ∈ W0i0.
Definition. Let s be a positive integer. We define the space

Hs(Wσik) = {v : R → R : ‖v‖2 =
s∑

j=0

∫ +∞

−∞
|∂jv(x)|2ξ(x, ·)dx < +∞}
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with ξ ∈ Wσik fixed. Note that Hs(Wσik) depends on t because ξ = ξ(x, t)).

Lemma 2.1 ([6]). For ξ ∈ Wσi0 and σ ≥ 0, i ≥ 0, there exists a constant c > 0
such that, for u ∈ H1(Wσi0),

sup
x∈R

|ξu2| ≤ c

∫ +∞

−∞

(
|u|2 + |∂u|2

)
ξdx

Definition. For fixed ξ ∈ Wσik, we define the spaces

L2([0, T ];Hs(Wσik)) = {v(x, t) : |||v|||2 =
∫ T

0

‖v(·, t)‖2dt < +∞}

L∞([0, T ];Hs(Wσik)) = {v(x, t) : |||v|||∞ = ess sup
t∈[0,T ]

‖v(·, t)‖ < +∞},

where s is a positive integer. Note that The usual Sobolev space Hs(R) is Hs(W000),
i.e., without weight.

We shall derive the a priori estimates assuming that the solution is C∞, bounded
as x → −∞, and rapidly decreasing together with all of its derivatives as x → +∞.
We consider the following KdVK equation

ut + ηu5 + u3 + uu1 = 0 (2.5)

with η ∈ R constant. This equation will be studied for −∞ < x < +∞, t ∈ [0, T ]
with T an arbitrary positive time.

3. Main Inequality

Lemma 3.1. Let u be a solution to (2.5) with enough Sobolev regularity (for in-
stance, u ∈ HN (R), N ≥ α + 5), then

∂t

∫
R

ξu2
αdx +

∫
R

µ1u
2
α+1dx +

∫
R

µ2u
2
α+2dx +

∫
R

θu2
αdx +

∫
R

Rαdx ≤ 0

with

µ1 = −c5(5η + 3)ξ for η < −3/5 (Natural Condition)
µ2 = −5η∂ξ

θ = −ξt − η∂5ξ − ∂3ξ − ∂(ξu)

Rα = O(uα, . . . )

Proof. Taking α-derivatives of (2.5) (for α ≥ 3) over x ∈ R
∂tuα + ηuα+5 + uα+3 + uuα+1 + Rα(uα, uα−1, . . . ) = 0 (3.1)

Multiply this equation by 2ξuα and, integrate over x ∈ R to have

2
∫

R
ξuα∂tuαdx + 2η

∫
R

ξuαuα+5dx + 2
∫

R
ξuαuα+3dx

+2
∫

R
ξuuαuα+1dx + 2

∫
R

ξuαRαdx = 0

Integrating by parts,

∂t

∫
R

ξu2
αdx +

∫
R
(5η∂3ξ + 3∂ξ)u2

α+1dx

+
∫

R
−5η∂ξu2

α+2dx +
∫

R
θu2

αdx +
∫

R
Rαdx = 0
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with θ = −ξt − η∂5ξ − ∂3ξ − ∂(ξu). Using (2.4), it follows for c5 > 0 that

∂t

∫
R

ξu2
αdx− c5(5η + 3)

∫
R

ξu2
α+1dx− 5η

∫
R

∂ξu2
α+2dx +

∫
R

θu2
αdx +

∫
R

Rαdx ≤ 0 ,

from where we obtain the main inequality.

∂t

∫
R

ξu2
αdx +

∫
R

µ1u
2
α+1dx +

∫
R

µ2u
2
α+2dx +

∫
R

θu2
αdx +

∫
R

Rαdx ≤ 0 (3.2)

with

µ1 = −c5(5η + 3)ξ for η < −3/5 (Natural Condition)
µ2 = −5η∂ξ

θ = −ξt − η∂5ξ − ∂3ξ − ∂(ξu)

Rα = O(uα, . . . )

�

Lemma 3.2. For µ2 ∈ Wσik an arbitrary weight function and η < −3/5, there
exists ξ ∈ Wσ,i+1,k that satisfies

µ2 = −5η∂ξ (3.3)

Indeed, we have

ξ = − 1
5η

∫ x

−∞
µ2(y, t)dy (3.4)

Lemma 3.3. The expression Rα in the inequality of Lemma 3.1 is a sum of terms
of the form

ξuν1uν2uα (3.5)
where 1 ≤ ν1 ≤ ν2 ≤ α.

ν1 + ν2 = α + 1 (3.6)

Proof. Differentiating (2.5) once with respect to x and multiplying by 2ξu1 we have

2ξu1∂tu1 + 2ηξu1u6 + 2ξu1u4 + 2ξu1uu2 + ξu1u1u1 = 0 ,

where R1ξu1 = ξu1u1u1. Taking 2-xderivatives of the equation (2.5), and multi-
plying by 2ξu2 we have

2ξu2∂tu2 + 2ηξu2u7 + 2ξu2u5 + 2ξu2uu3 + 6ξu2u1u2 = 0

where R2ξu2 = 6ξu1u2u2. Taking 3-xderivatives of the equation (2.5), and multi-
plying by 2ξu3 we have

2ξu3∂tu3 + 2ηξu3u8 + 2ξu3u6 + 2ξu3uu4 + 8ξu3u1u3 + 6ξu3u2u2 = 0

where R3ξu3 = 8ξu1u3u3 + 6ξu2u2u3. Taking 4-xderivatives of (2.5), and multi-
plying by 2ξu4 we have

2ξu4∂tu4 + 2ηξu4u9 + 2ξu4u7 + 2ξu4uu5 + 10ξu4u1u4 + 20ξu4u2u3 = 0

where R4ξu4 = 10ξu1u4u4 + 20ξu2u3u4. Taking 5-xderivatives of (2.5), and mul-
tiplying by 2ξu5 we have

2ξu5∂tu5+2ηξu5u10+2ξu5u8+2ξu5uu6+12ξu5u1u5+30ξu5u2u4+20ξu5u3u3 = 0

where R5ξu5 = 12ξu1u5u5 + 30ξu2u4u5 + 20ξu3u3u5. Throw away the first terms
in each derivative and the result follows. �
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4. An a priori estimate

We show a fundamental a priori estimate used for a basic local-in-time existence
theorem. We construct a mapping Z : L∞([0, T ];Hs(R)) → L∞([0, T ];Hs(R))
with the following property: Given u(n) = Z(u(n−1)) and ‖u(n−1)‖s ≤ c0 then
‖u(n)‖s ≤ c0, where s and c0 > 0 are constants. This property tells us, in fact,
that Z : Bc0(0) → Bc0(0) where Bc0(0) = {v(x, t); ‖v(·, t)‖s ≤ c0} is a ball in
L∞([0, T ];Hs(R)). To guarantee this property, we will appeal to an a priori estimate
which is the main object of this section. Differentiating (2.5) four times leads to

∂tu4 + ηu9 + u7 + uu5 + 5u1u4 + 10u2u3 = 0 (4.1)

Let u = ∧v where ∧ = (I − ∂4)−1. Then ∂tu4 = −vt + ut by replacing in (4.1) we
have

−vt+η∧v9+∧v7+∧v∧v5+5∧v1∧v4+10∧v2∧v3− [η∧v5+∧v3−∧v∧v1] = 0 (4.2)

The (4.2) is linearized by substituting a new variable w in each coefficient;

−vt+η∧v9+∧v7+∧w∧v5+5∧w1∧v4+10∧w2∧v3−[η∧v5+∧v3−∧w∧v1] = 0 (4.3)

Equation (4.3) is a linear equation at each iteration which can be solved in any
interval of time in which the coefficients are defined. This equation has the form

∂tv = η∧v
(n)
9 + ∧v

(n)
7 + b(1)∧v

(n)
5 + b(2)∧v

(n)
4 + b(3) (4.4)

We consider the following lemma that will help us setting up the iteration scheme.

Lemma 4.1. Let η < −3/5. Given initial data ϕ ∈ H∞(R) =
⋂

N≥0 HN (R)
there exists a unique solution of (4.4) where b(1) = b(1)(∧w), b(2) = b(2)(∧w1) and
b(3) = b(3)(∧w3, . . . ,∧w) are smooth bounded coefficients with w ∈ H∞(R). The
solution is defined in any time interval in which the coefficients are defined.

Proof. Let T > 0 be arbitrary and M > 0 a constant. Let

L = 2ξ(∂t − η∧∂9 − ∧∂7 − b(1)∧∂5 − b(2)∧∂4)

where 0 < c6 ≤ ξ ≤ c7. We consider the bilinear form B : D ×D 7→ R,

B(u, v) = 〈u, v〉 =
∫ T

0

∫
R

e−Mtuv dx dt

where D = {u ∈ C∞0 (R× [0, T ]) : u(x, 0) = 0}. We have∫
R
Lu · udx = 2

∫
R

ξuutdx− 2η

∫
R

ξu∧u9dx− 2
∫

R
ξu∧u7dx

− 2
∫

R
ξb(1)u∧u5dx− 2

∫
R

ξb(2)u∧u4dx

Each term is treated separately. The first term yields

2
∫

R
ξuutdx = ∂t

∫
R

ξu2dx−
∫

R
ξtu

2dx
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In the second term, by integrating by parts we obtain

− 2η

∫
R

ξu∧u9dx

= −2η

∫
R

ξ ∧ (I − ∂4)u∧u9dx− 2η

∫
R

ξ∧u∧u9dx + 2η

∫
R

ξ∧u4∧u9dx

= η

∫
R

∂9ξ(∧u)2dx− 9η

∫
R

∂7ξ(∧u1)2dx + 27η

∫
R

∂5ξ(∧u2)2dx

− 30η

∫
R

∂3ξ(∧u3)2dx− η

∫
R
(∂5ξ − 9∂ξ)(∧u4)2dx + 5η

∫
R

∂3ξ(∧u5)2dx

− 5η

∫
R

∂ξ(∧u6)2dx .

All the others terms are calculated of the same way. We have∫
R
Lu · udx

= ∂t

∫
R

ξu2dx−
∫

R
ξtu

2dx + η

∫
R

∂9ξ(∧u)2dx− 9η

∫
R

∂7ξ(∧u1)2dx

+ 27η

∫
R

∂5ξ(∧u2)2dx− 30η

∫
R

∂3ξ(∧u3)2dx− η

∫
R
(∂5ξ − 9∂ξ)(∧u4)2dx

+ 5η

∫
R

∂3ξ(∧u5)2dx− 5η

∫
R

∂ξ(∧u6)2dx +
∫

R
∂7ξ(∧u)2dx− 7

∫
R

∂5ξ(∧u1)2dx

+ 14
∫

R
∂3ξ(∧u2)2dx− 7

∫
R

∂ξ(∧u3)2dx−
∫

R
∂3ξ(∧u4)2dx + 3

∫
R

∂ξ(∧u5)2dx

+
∫

R
∂5(ξb(1))(∧u)2dx− 5

∫
R

∂3(ξb(1))(∧u1)2dx + 5
∫

R
∂(ξb(1))(∧u2)2dx

−
∫

R
∂(ξb(1))(∧u4)2dx−

∫
R

∂4(ξb(2))(∧u)2dx + 4
∫

R
∂2(ξb(2))(∧u1)2dx

−
∫

R
ξb(2)(∧u4)2dx + 2

∫
R

ξb(2)(∧u4)2dx .

It follows that∫
R
Lu · udx

= ∂t

∫
R

ξu2dx− 5η

∫
R

∂ξ(∧u6)2dx +
∫

R
(5η∂3ξ + 3∂ξ)(∧u5)2dx

+
∫

R
(−η∂5ξ − ∂3ξ + 9η∂ξ − ∂(ξb(1)) + 2ξb(2))(∧u4)2dx

+
∫

R
(−30η∂3ξ − 7∂ξ)(∧u3)2dx−

∫
R

ξtu
2dx

+
∫

R
(27η∂5ξ + 14∂3ξ + 5∂3(ξb(1))− 2ξb(2))(∧u2)2dx

+
∫

R
(−9η∂7ξ − 7∂5ξ − 5∂3(ξb(1)) + 4∂2(ξb(2)))(∧u)2dx
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Using (2.4), ∧un = (I − (I − ∂4))∧un−4 = ∧un−4− un−4 for n positive integer and
standard estimates it follows that∫

R
Lu · udx ≥ ∂t

∫
R
ξu2dx− c

∫
R

ξu2dx (4.5)

Multiply this equation by e−Mt, and integrate with respect to t for t ∈ [0, T ] and
u ∈ D. ∫ T

0

∫
R

e−MtLu · udxdt

≥
∫ T

0

e−Mt
(
∂t

∫
R

ξu2dx
)
dt− c

∫ T

0

∫
R

ξe−Mtu2dxdt

= e−Mt

∫
R

ξu2(x, t)dx|T0 + M

∫ T

0

∫
R

ξe−Mtu2dxdt

− c

∫ T

0

∫
R

ξe−Mtu2dxdt

= e−MT

∫
R

ξ(x, T )u2(x, T )dx + M

∫ T

0

∫
R

ξe−Mtu2dxdt

− c

∫ T

0

∫
R

ξe−Mtu2dx dt.

Thus ∫ T

0

∫
R

e−MtLu · udxdt

≥ e−MT

∫
R

ξ(x, T )u2(x, T )dx + (M − c)
∫ T

0

∫
R

ξe−Mtu2dxdt

≥
∫ T

0

∫
R

ξe−Mtu2dx dt

provided M is chosen large enough. Then 〈Lu, u〉 ≥ 〈u, u〉, for all u ∈ D. Let
L∗ = 2ξ(−∂t + η∧∂9 + ∧∂7 + b(1)∧∂5 − b(2)∧∂4) be the formal adjoint of L. Let
D∗ = {w ∈ C∞0 (R× [0, T ]) : w(x, L) = 0}. In the same way we prove that

〈L∗w,w〉 ≥ 〈w,w〉 ∀w ∈ D∗ (4.6)

From this equation, we have that L∗ is one-one. Therefore 〈L∗w,L∗v〉 is an inner
product on D∗. We denote by X the completion of D∗ with respect to this inner
product. By the Riesz Representation Theorem, there exists a unique solution V ∈
X, such that for any w ∈ D∗, 〈ξb(3), w〉 = 〈L∗V,L∗w〉 where we use that ξb(3) ∈ X.
Then if v = L∗V we have 〈v,L∗w〉 = 〈ξb(3), w〉 or 〈L∗w, v〉 = 〈w, ξb(3)〉. Hence
v = L∗V is a weak solution of Lv = ξb(3) with v ∈ L2(R×[0, T ]) ' L2([0, T ];L2(R)).
Remark To obtain higher regularity of the solution, we repeat the proof with
higher derivatives. It is a standard approximation procedure to obtain a result for
general initial data.

The next step is to estimate the corresponding solutions v = v(x, t) of the equa-
tion (4.3) via the coefficients of that equation.

Lemma 4.2. Let v, w ∈ Ck([0,+∞);HN (R)) for all k, N which satisfy (4.3). Let
0 < c8 ≤ ξ ≤ c9 and η < −3/5. For each integer α there exist positive nondecreasing
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functions G and F such that for all t ≥ 0,

∂t

∫
R

ξv2
αdx ≤ G(‖w‖λ)‖v‖2α + F (‖w‖α) (4.7)

where ‖ · ‖α is the norm in Hα(R) and λ = max {1, α}.

Proof. Differentiating α-times the equation (4.3), for some α ≥ 0, we obtain

−∂tvα + η∧vα+9 +∧vα+7 +
α+5∑
j=6

h(j)∧vj + c10∧v3∧wα+2 + p(∧wα+1, . . . ) = 0 (4.8)

where h(j) is a smooth function depending on ∧wi, . . . with i = 5 + α − j. We
multiply equation (4.8) by 2ξvα, and integrate over R,

−2
∫

R
ξvα∂tvαdx + 2η

∫
R

ξvα∧vα+9dx

+2
∫

R
ξvα∧vα+7dx + 2

α+5∑
j=6

∫
R

ξh(j)vα∧vjdx

+2c10

∫
R

ξvα∧v3∧wα+2dx + 2
∫

R
ξvαp(∧wα+1, . . . )dx = 0

(4.9)

Each of these terms is treated separately. The first term yields

−2
∫

R
ξvα∂tvαdx = −∂t

∫
R

ξv2
αdx +

∫
R

ξtv
2
αdx

In the second term we have, by integrating by parts

2η

∫
R

ξvα∧vα+9dx

= 2η

∫
R

ξ∧(I − ∂4)vα∧vα+9dx

= 2η

∫
R

ξ∧vα∧vα+9dx− 2η

∫
R

ξ∧vα+4∧vα+9dx

= −η

∫
R

∂9ξ(∧vα)2dx + 9η

∫
R

∂7ξ(∧vα+1)2dx− 27η

∫
R

∂5ξ(∧vα+2)2dx

+ 30η

∫
R

∂3ξ(∧vα+3)2dx + η

∫
R
(∂5ξ − 9∂ξ)(∧vα+4)2dx

− 5η

∫
R

∂3ξ(∧vα+5)2dx + 5η

∫
R

∂ξ(∧vα+6)2dx
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The others terms are treated similarly. Replacing the equations obtained, on (4.9),
we have

− ∂t

∫
R

ξv2
αdx +

∫
R

ξtv
2
αdx− η

∫
R

∂9ξ(∧vα)2dx + 9η

∫
R

∂7ξ(∧vα+1)2dx

− 27η

∫
R

∂5ξ(∧vα+2)2dx + 30η

∫
R

∂3ξ(∧vα+2)2dx− 3δ

∫
R

∂3ξ(∧vα+3)2dx

+ η

∫
R
(∂5ξ − 9∂ξ)(∧vα+4)2dx− 5η

∫
R

∂3ξ(∧vα+5)2dx + 5η

∫
R

∂ξ(∧vα+6)2dx

−
∫

R
∂7ξ(∧vα)2dx + 7

∫
R

∂ξ(∧vα+1)2dx− 14
∫

R
∂3ξ(∧vα+2)2dx

+ 7
∫

R
∂ξ(∧vα+3)2dx +

∫
R

∂3ξ(∧vα+4)2dx− 3
∫

R
∂ξ(∧vα+5)2dx

−
∫

R
∂5(ξh(α+5))(∧vα)2dx−

∫
R

∂3(ξh(α+5))(∧vα+1)2dx

− 5
∫

R
∂(ξh(α+5))(∧vα+2)2dx +

∫
R

∂(ξh(α+5))(∧vα+4)2dx

+ 2
α+4∑
j=6

∫
R

ξh(j)vα∧vjdx + 2c10

∫
R

ξvα∧v3∧wα+2dx

+ 2
∫

R
ξvαp(∧wα+1, . . . )dx = 0

and

∂t

∫
R

ξv2
αdx

= 5η

∫
R

∂ξ(∧vα+6)2dx−
∫

R
(5η∂3ξ + 3∂ξ)(∧vα+5)2dx +

∫
R

ξt(∧vα)2dx

+
∫

R
(η∂5ξ + ∂3ξ − 9η∂ξ + ∂(ξh(α+5)))(∧vα+4)2dx

+
∫

R
(30η∂3ξ + 7∂ξ)(∧vα+3)2dx

+
∫

R
(−27η∂5ξ − 14∂3ξ − 5∂(ξh(α+5)))(∧vα+2)2dx

+
∫

R
(9η∂7ξ + 7∂ξ + ∂3(ξh(α+5)))(∧vα+1)2dx

+
∫

R
(−η∂9ξ − ∂7ξ − ∂5(ξh(α+5)))(∧vα)2dx + 2

α+4∑
j=6

ξh(j)vα∧vjdx

+ 2c10

∫
R

ξvα∧v3∧wα+2dx + 2
∫

R
ξvαp(∧wα+1, . . . )dx
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Using (2.4) we have that the first and the second term in the right hand side of the
above expression are nonpositive. Hence

∂t

∫
R

ξv2
αdx ≤

∫
R
(η∂5ξ + ∂3ξ − 9η∂ξ + ∂(ξh(α+5)))(∧vα+4)2dx +

∫
R

ξt(∧vα)2dx

+
∫

R
(30η∂3ξ + 7∂ξ)(∧vα+3)2dx

+
∫

R
(−27η∂5ξ − 14∂3ξ − 5∂(ξh(α+5)))(∧vα+2)2dx

+
∫

R
(9η∂7ξ + 7∂ξ + ∂3(ξh(α+5)))(∧vα+1)2dx

+
∫

R
(−η∂9ξ − ∂7ξ − ∂5(ξh(α+5)))(∧vα)2dx + 2

α+4∑
j=6

ξh(j)vα∧vjdx

+ 2c10

∫
R

ξvα∧v3∧wα+2dx + 2
∫

R
ξvαp(∧wα+1, . . . )dx

Using that ∧vn = ∧vn−4 − vn−4 and standard estimates, the Lemma follows. �

5. Uniqueness and Existence of a Local Solution

In this section, we study the uniqueness and the existence of local strong solutions
in the Sobolev space HN (R) for N ≥ 5 for the problem (2.5). To establish the
existence of strong solutions for (2.5) we use the a priori estimate together with an
approximation procedure.

Theorem 5.1 (Uniqueness). Let η < −3/5, ϕ ∈ HN (R) with N ≥ 5 and 0 < T <
+∞. Then there is at most one strong solution u ∈ L∞([0, T ];HN (R)) of (2.5)
with initial data u(x, 0) = ϕ(x).

Proof. Assume that u, v ∈ L∞([0, T ];HN (R)) are two solutions of (2.5) with ut, vt ∈
L∞([0, T ];HN−5(R)) and with the same initial data. Then

(u− v)t + η(u− v)5 + (u− v)3 + uu1 − vv1 = 0 (5.1)

with (u− v)(x, 0) = 0. By (5.1),

(u− v)t + η(u− v)5 + (u− v)3 + (u− v)u1 + (u− v)1v = 0 . (5.2)

Multiplying (5.2) by 2ξ(u− v) and integrating with respect to x over R,

2
∫

R
ξ(u− v)(u− v)tdx + 2η

∫
R

ξ(u− v)(u− v)5dx

+ 2
∫

R
ξ(u− v)(u− v)3dx + 2

∫
R

ξuu1(u− v)2dx

+ 2
∫

R
ξv(u− v)(u− v)1dx = 0

(5.3)

Each term is treated separately. In the first term we obtain

2
∫

R
ξ(u− v)(u− v)tdx = ∂t

∫
R

ξ(u− v)2dx−
∫

R
ξt(u− v)2dx
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In the others terms, we also integrate by parts,

2η

∫
R

ξ(u− v)(u− v)5dx = −η

∫
R

∂5ξ(u− v)2dx + 5η

∫
R

∂3ξ(u− v)21dx

= −5η

∫
R

∂ξ(u− v)22dx

2
∫

R
ξ(u− v)(u− v)3dx = −

∫
R

∂3ξ(u− v)2dx + 3
∫

R
∂ξ(u− v)21dx

2
∫

R
ξv(u− v)(u− v)1dx = −

∫
R

∂(ξv)(u− v)2dx

Replacing these expression in (5.3), we have

∂t

∫
R

ξ(u− v)2dx−
∫

R
ξt(u− v)2dx− η

∫
R

∂5ξ(u− v)2dx + 5η

∫
R

∂3ξ(u− v)21dx

− 5η

∫
R

∂ξ(u− v)22dx−
∫

R
∂3ξ(u− v)dx + 3

∫
R

∂ξ(u− v)21dx

+ 2
∫

R
ξu1(u− v)2dx−

∫
R

∂(ξv)(u− v)2dx = 0

then

∂t

∫
R

ξ(u− v)2dx +
∫

R
(5η∂3ξ + 3∂ξ)(u− v)21dx− 5η

∫
R

∂ξ(u− v)22dx

+
∫

R
(−ξt − η∂5ξ − ∂3ξ + 2ξu1 − ∂(ξv))(u− v)2dx = 0

By using (2.4), we obtain for c5 > 0 and η < −3/5 that

∂t

∫
R

ξ(u− v)2dx− c5

∫
R
(5η + 3)ξ(u− v)21dx− 5η

∫
R

∂ξ(u− v)22dx

≤
∫

R
(ξt + η∂5ξ + ∂3ξ − 2ξu1 + ∂(ξv))(u− v)2dx

and using Gagliardo-Nirenberg’s inequality and standard estimates, we have

∂t

∫
R

ξ(u− v)2dx ≤ c

∫
R

ξ(u− v)2dx

By Gronwall’s inequality and the fact that (u− v) vanishes at t = 0, it follows that
u = v. This proves the uniqueness of the solution. �

We construct the mapping Z : L∞([0, T ];Hs(R)) → L∞([0, T ];Hs(R)) by

u(0) = ϕ(x)

u(n) = Z(u(n−1)) n ≥ 1,

where u(n−1) is in place of w in equation (4.3) and u(n) is in place of v which
is the solution of equation (4.3). By Lemma 4.1, u(n) exists and is unique in
C((0,+∞);HN (R)). A choice of c0 and the use of the a priori estimate in §4 show
that Z : Bc0(0) → Bc0(0) where Bc0(0) is a bounded ball in L∞([0, T ];Hs(R)) �

Theorem 5.2 (Local solution). Let η < −3/5 and N an integer ≥ 5. If ϕ ∈
HN (R), then there is T > 0 and u such that u is a strong solution of (2.5),
u ∈ L∞([0, T ];HN (R)), and u(x, 0) = ϕ(x)
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Proof. We prove that for ϕ ∈ H∞(R) =
⋂

k≥0 Hk(R) there exists a solution u ∈
L∞([0, T ];HN (R)) with initial data u(x, 0) = ϕ(x) which time of existence T > 0
only depends on the norm of ϕ. We define a sequence of approximations to equation
(4.3) as

− v
(n)
t + η∧v

(n)
9 + ∧v

(n)
7 + ∧v(n−1)∧v

(n)
5 − η∧v

(n)
5

+ 5∧v
(n−1)
1 ∧v

(n)
4 + O(∧v

(n−1)
3 ,∧v

(n−1)
1 , . . . ) = 0

(5.4)

where the initial condition v(n)(x, 0) = ϕ(x) − ∂4ϕ(x). The first approximation is
given by v(0)(x, 0) = ϕ(x) − ∂4ϕ(x). Equation (5.4) is a linear equation at each
iteration which can be solved in any interval of time in which the coefficients are
defined. This is shown in Lemma 4.1. By Lemma 4.2, it follows that

∂t

∫
R

ξ[v(n)
α ]2dx ≤ G(‖v(n−1)‖λ)‖v(n)‖2

α + F (‖v(n−1)‖α) (5.5)

Choose α = 1 and let c ≥ ‖ϕ − ∂4ϕ‖1 ≥ ‖ϕ‖5. For each iterate n, ‖v(n)(·, t)‖ is
continuous in t ∈ [0, T ] and ‖v(n)(·, 0)‖ ≤ c. Define c0 = c9

2c8
c2 + 1. Let T

(n)
0 be the

maximum time such that ‖v(k)(·, t)‖1 ≤ c3 for 0 ≤ t ≤ T
(n)
0 , 0 ≤ k ≤ n. Integrating

(5.5) over [0, t] we have for 0 ≤ t ≤ T
(n)
0 and j = 0, 1.∫ t

0

(
∂s

∫
R

ξ[v(n)
j ]2dx

)
ds ≤

∫ t

0

G(‖v(n−1)‖1)‖v(n)‖2
jds +

∫ t

0

F (‖v(n−1)‖j)ds

It follows that∫
R

ξ(x, t)[v(n)
j (x, t)]2dx

≤
∫

R
ξ(x, 0)[v(n)

j (x, 0)]2dx +
∫ t

0

G(‖v(n−1)‖1)‖v(n)‖2
jds +

∫ t

0

F (‖v(n−1)‖j)ds

hence

c8

∫
R
[v(n)

j ]2dx ≤
∫

R
ξ[v(n)

j ]2dx

≤
∫

R
ξ(x, 0)[v(n)

j (x, 0)]2dx +
∫ t

0

G(‖v(n−1)‖1)‖v(n)‖2jds

+
∫ t

0

F (‖v(n−1)‖j)ds

and ∫
R
[v(n)

j ]2dx ≤ c9

c8

∫
R
[v(n)

j (x, 0)]2dx +
G(c3)

c8
c2
3t +

F (c3)
c8

t

and we obtain for j = 0, 1 that

‖v(n)‖1 ≤
c9

c8
c2 +

G(c0)
c8

c2
0t +

F (c0)
c8

t

Claim: T
(n)
0 does not approach 0

On the contrary, assume that T
(n)
0 → 0. Since ‖v(n)(·, t)‖ is continuous for t ≥ 0,

there exists τ ∈ [0, T ] such that ‖v(k)(·, τ)‖1 = c0 for 0 ≤ τ ≤ T
(n)
0 , 0 ≤ k ≤ n.

Then

c2
0 ≤

c9

c8
c2 +

G(c0)
c8

c2
0T

(n)
0 +

F (c0)
c8

T
(n)
0 .
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as n → +∞, we have( c9

2c8
c2 + 1

)2 ≤ c9

c8
c2 =⇒ c2

9

4c2
8

c4 + 1 ≤ 0

which is a contradiction. Consequently T
(n)
0 6→ 0. Choosing T = T (c) sufficiently

small, and T not depending on n, one concludes that

‖v(n)‖1 ≤ C (5.6)

for 0 ≤ t ≤ T . This shows that T
(n)
0 ≥ T . Hence from (5.6) we imply that there

exists a subsequence v(nj) := v(n) such that

v(n) ∗
⇀ v weakly on L∞([0, T ];H1(R)) (5.7)

Claim: u = ∧v is a solution.
In the linearized equation (5.4) we have

∧v
(n)
9 = ∧(I − (I − ∂4))v(n)

5 = ∧v
(n)
5 − v

(n)
5 = ∂4(∧v

(n)
1︸ ︷︷ ︸

∈L2(R)

)− ∂4(v(n)
1 )︸ ︷︷ ︸

∈H−4(R)

Since ∧ = (I−∂4)−1 is bounded in H1(R) so ∧v
(n)
9 belongs to H−4(R). v(n) is still

bounded in L∞([0, T ];H1(R)) ↪→ L2([0, T ];H1(R)) and since ∧ : L2(R) → H4(R)
is a bounded operator,

‖∧v
(n)
1 ‖H4(R) ≤ c11‖v(n)

1 ‖L2(R) ≤ c12‖v(n)
1 ‖H1(R).

Consequently ∧v
(n)
1 is bounded in L2([0, T ];H4(R)) ↪→ L2([0, T ];L2(R)). It follows

that ∂4(∧v
(n)
1 ) is bounded in L2([0, T ];H−4(R)), and

∧v
(n)
9 is bounded in L2([0, T ];H−4(R)) (5.8)

Similarly, the other terms are bounded. By (5.4), v
(n)
t is a sum of terms each

of which is the product of a coefficient, uniformly bounded on n and a func-
tion in L2([0, T ];H−4(R)) uniformly bounded on n such that v

(n)
t is bounded in

L2([0, T ];H−4(R)). On the other hand, H1
loc(R)

c
↪→ H

1/2
loc (R) ↪→ H−4(R). By Lions-

Aubin’s compactness Theorem [22] there is a subsequence v(nj) := v(n) such that
v(n) → v strongly on L2([0, T ];H1/2

loc (R)). Hence, for a subsequence v(nj) := v(n),
we have v(n) → v a. e. in L2([0, T ];H1/2

loc (R)). Moreover, from (5.8), ∧v
(n)
9 ⇀ ∧v9

weakly in L2([0, T ];H−4(R)).
Similarly, ∧v

(n)
5 ⇀ ∧v5 weakly in L2([0, T ];H−4(R)). Since ‖∧v(n)‖H5(R) ≤

c13‖v(n)‖H1(R) ≤ c14‖v(n)‖H1/2(R) and v(n) → v strongly on L2([0, T ];H1/2
loc (R))

then ∧v(n) → ∧v strong in L2([0, T ];H5
loc(R)) ↪→ L2([0, T ];H4

loc(R)). Thus the
fourth term on the right hand side of (5.4), ∧v(n−1)∧v

(n)
5 ⇀ ∧v∧v5 weakly in

L2([0, T ];L1
loc(R)) as ∧v

(n)
5 ⇀ ∧v5 weakly in L2([0, T ];H−4(R)) and ∧v(n−1) → ∧v

strongly on L2([0, T ];H4
loc(R)). Similarly, the other terms in (5.4) converge to their

limits, implying v
(n)
t ⇀ vt weakly in L2([0, T ];L1

loc(R)). Passing to the limit

vt = ∂4(η∧v5 + ∧v3 + ∧v∧v1)− (η∧v5 + ∧v3 + ∧v∧v1)

= −(I − ∂4)(η∧v5 + ∧v3 + ∧v∧v1)

thus vt+(I−∂4)(η∧v5+∧v3+∧v∧v1) = 0. This way, we have that (2.5) for u = ∧v.
Now, we prove that there exists a solution to (2.5) with u ∈ L∞([0, T ];HN (R)) and
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N ≥ 6, where T depends only on the norm of ϕ in H5(R). We already know
that there is a solution u ∈ L∞([0, T ];H5(R)). It is suffices to show that the
approximating sequence v(n) is bounded in L∞([0, T ];HN−4(R)). Taking α = N−2
and considering (5.5) for α ≥ 2, we define cN−5 = c9

2c8
‖ϕ(·)‖N + 1. Let T

(n)
N−5 be

the largest time such that ‖v(k)(·, t)‖α ≤ cN−5 for 0 ≤ t ≤ T
(n)
N−5, 0 ≤ k ≤ n.

Integrating (5.5) over [0, t], for 0 ≤ t ≤ T
(n)
N−5, we have∫ t

0

(
∂s

∫
R

ξ[v(n)
α ]2dx

)
ds ≤

∫ t

0

G(‖v(n−1)‖α)‖v(n)‖2
αds +

∫ t

0

F (‖v(n−1)‖α)ds.

It follows that∫
R

ξ(x, t)[v(n)
α (x, t)]2dx

≤
∫

R
ξ(x, 0)[v(n)

α (x, 0)]2dx +
∫ t

0

G(‖v(n−1)‖α)‖v(n)‖2
αds +

∫ t

0

F (‖v(n−1)‖α)ds

hence

c8

∫
R
[v(n)

α ]2dx ≤
∫

R
ξ[v(n)

α ]2dx

≤
∫

R
ξ(x, 0)[v(n)

α (x, 0)]2dx +
∫ t

0

G(‖v(n−1)‖α)‖v(n)‖2
αds

+
∫ t

0

F (‖v(n−1)‖α)ds.

Then ∫
R
[v(n)

α ]2dx ≤ c9

c8

∫
R
[v(n)

α (x, 0)]2dx +
G(cN−5)

c8
c2
N−5t +

F (cN−5)
c8

t

≤ c9

c8
‖v(n)(·, 0)‖2

α +
G(cN−5)

c8
c2
N−5t +

F (cN−5)
c8

t

≤ c9

c8
‖ϕ(·, 0)‖2

N +
G(cN−5)

c8
c2
N−5t +

F (cN−5)
c8

t

and we obtain

‖v(n)(·, t)‖2α ≤
c9

c8
‖ϕ(·, 0)‖2N +

G(c3)
c8

c2
3t +

F (c3)
c8

t .

Claim: T
(n)
N−5 does not approach 0.

On the contrary, assume that T
(n)
N−5 → 0. Since ‖v(n)(·, t)‖ is continuous for t ≥ 0,

there exists τ ∈ [0, TN−5] such that ‖v(k)(·, τ)‖α = cN−5 for 0 ≤ τ ≤ T (n), 0 ≤ k ≤
n. Then

c2
N−5 ≤

c9

c8
‖ϕ(·, 0)‖2N +

G(cN−5)
c8

c2
N−5T

(n)
N−5 +

F (cN−5)
c8

T
(n)
N−5.

as n → +∞ we have( c9

2c8
‖ϕ(·, 0)‖2N + 1

)2 ≤ c9

c8
‖ϕ(·, 0)‖2

N =⇒ c2
9

4c2
8

‖ϕ(·, 0)‖4N + 1 ≤ 0
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which is a contradiction. Then T
(n)
N−5 6→ 0. By choosing TN−5 = TN−5(‖ϕ(·, 0)‖2

N )
sufficiently small, and TN−5 not depending on n, we conclude that

‖v(n)(·, t)‖2α ≤ c2
N−5 for all 0 ≤ t ≤ TN−5. (5.9)

This shows that T
(n)
N−5 ≥ TN−5. Thus,

v ∈ L∞([0, TN−5];Hα(R)) ≡ v ∈ L∞([0, TN−5];HN−4(R)).

Now, denote by 0 ≤ T ∗N−5 ≤ +∞ the maximal number such that for all 0 < t ≤
T ∗N−5, u = ∧v ∈ L∞([0, t];HN (R)). In particular TN−5 ≤ T ∗N−5 for all N ≥ 6.
Thus, T can be chosen depending only on the norm of ϕ in H5(R). Approximating
ϕ by {ϕj} ∈ C∞0 (R) such that ‖ϕ−ϕj‖HN (R) → 0 as j → +∞. Let uj be a solution
of (2.5) with uj(x, 0) = ϕj(x). According to the above argument, there exists T
which is independent on n but depending only on supj ‖ϕj‖ such that uj exists on

[0, T ] and a subsequence uj
j→+∞→ u in L∞([0, T ];HN (R)). �

As a consequence of Theorems 5.1 and 5.2 and its proof, one obtains the following
result.

Corollary 5.3. Let ϕ ∈ HN (R) with N ≥ 5 such that ϕ(γ) → ϕ in HN (R). Let
u and u(γ) be the corresponding unique solutions given by Theorems 5.1 and 5.2 in
L∞([0, T ];HN (R)) with T depending only on supγ ‖ϕ(γ)‖H5(R) then

u(γ) ∗
⇀ u weakly on L∞([0, T ];HN (R)),

u(γ) → u strongly on L2([0, T ];HN+1(R)),

u(γ) → u strongly on L2([0, T ];HN+2(R))

6. Existence of Global Solutions

Here, we will try to extend the local solution u ∈ L∞([0, T ];HN (W0i0)) of (2.5)
obtained in Theorem 5.2 to t ≥ 0. A standard way to obtain these extensions
consists into deducing global estimations for the HN (W0i0)-norm of u in terms
of the HN (W0i0)-norm of u(x, 0) = ϕ(x). These estimations are frecuently based
on conservation laws which contain the L2-norm of the solution and their spatial
derivatives. It is not possible to do the same to give a solution of the problem
of global existence because the difficulty here is that the weight depends on the
variables x and t variables. To solve our problem we follow a different method
using the Leibniz rule like in the proof of Theorem 3.1 of Bona and Saut, cf. [5].

Theorem 6.1. For η < −3/5 there exists a global solution to (2.5) in the space
Hs(R)

⋂
HN (W0i0) with N integer ≥ 5 and s ≥ 2.

Proof. The first part was proved in [1], with N ≥ 5 and a nonegative integer i.
Taking ∂α derivatives of the equation (2.5)

∂tuα + ηuα+5 + uα+3 + (uu1)α = 0. (6.1)

We multiply (6.1) by 2ξuα and integrate over R.

2
∫

R
ξuα∂tuαdx+2η

∫
R

ξuαuα+5dx+2
∫

R
ξuαuα+3dx+2

∫
R

ξuα(uu1)αdx = 0. (6.2)
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Each term is treated separately. The first term yields

2
∫

R
ξuα∂tuαdx = ∂t

∫
R

ξu2
αdx−

∫
R

ξtu
2
αdx.

In the second and third term, integrating by parts, we obtain

2η

∫
R

ξuαuα+5dx = −η

∫
R

∂5ξu2
αdx + 5η

∫
R

∂3ξu2
α+1dx− 5η

∫
R

∂ξu2
α+2dx ,

2
∫

R
ξuαuα+3dx = −

∫
R

∂3ξu2
αdx + 3

∫
R

∂ξu2
α+1dx.

In the last term, using the Leibniz rule, we obtain

2
∫

R
ξuα(uu1)αdx

= 2
∫

R
ξuuαuα+1dx + 2α

∫
R

ξu1u
2
αdx + 2

α(α− 1)
2

∫
R

ξu2uα−1uαdx

+ 2
α!

3!(α− 3)!

∫
R

ξu3uα−2uαdx + 2
α!

4!(α− 4)!

∫
R

ξu4uα−3uαdx

+ · · ·+ 2
∫

R
ξu1u

2
αdx.

Integrating by parts it follows that

2
∫

R
ξuα(uu1)αdx

= −
∫

R
∂(ξu)u2

αdx + 2α

∫
R

ξu1u
2
αdx− α(α− 1)

2

∫
R

∂(ξu2)u2
α−1dx

+ 2
α!

3!(α− 3)!

∫
R

ξu3uα−2uαdx + 2
α!

4!(α− 4)!

∫
R

ξu4uα−3uαdx

+ · · ·+ 2
∫

R
ξu1u

2
αdx.

Substituting in (6.2), we have

∂t

∫
R

ξu2
αdx−

∫
R

ξtu
2
αdx− η

∫
R

∂5ξu2
αdx + 5η

∫
R

∂3ξu2
α+1dx

− 5η

∫
R

∂ξu2
α+2dx−

∫
R

∂3ξu2
αdx + 3

∫
R

∂ξu2
α+1dx−

∫
R

∂(ξu)u2
αdx

+ 2α

∫
R

ξu1u
2
αdx− α(α− 1)

2

∫
R

∂(ξu2)u2
α−1dx + 2

α!
3!(α− 3)!

∫
R

ξu3uα−2uαdx

+ 2
α!

4!(α− 4)!

∫
R

ξu4uα−3uαdx + · · ·+ 2
∫

R
ξu1u

2
αdx = 0
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hence

∂t

∫
R

ξu2
αdx +

∫
R
(5η∂3ξ + 3∂ξ)u2

α+1dx− 5η

∫
R

∂ξu2
α+2dx

+
∫

R
(−ξt − η∂5ξ − ∂3ξ − ∂(ξu) + 2αξu1)u2

αdx

− α(α− 1)
2

∫
R

∂(ξu2)u2
α−1dx + 2

α!
3!(α− 3)!

∫
R

ξu3uα−2uαdx

+ 2
α!

4!(α− 4)!

∫
R

ξu4uα−3uαdx + · · ·+ 2
∫

R
ξu1u

2
αdx = 0

then using (2.4), Gagliardo - Nirenberg’s inequality and standard estimates we get

∂t

∫
R

ξu2
αdx +

∫
R
(5η + 3)ξu2

α+1dx− 5η

∫
R

∂ξu2
α+2dx ≤ c

∫
R

ξu2
αdx . (6.3)

Integrating (6.3) in t ∈ [0, Tmax = T ] we obtain∫
R

ξu2
αdx +

∫ t

0

∫
R
(5η + 3)ξu2

α+1dxds− 5η

∫ t

0

∫
R

∂ξu2
α+2dxds

≤ ‖ϕ‖2
α +

∫ t

0

(
c

∫
R

ξu2
αdx

)
ds ,

where ∫
R

ξu2
αdx ≤ ‖ϕ‖2α +

∫ t

0

(
c

∫
R

ξu2
αdx

)
ds.

Using Gronwall’s inequality∫
R

ξu2
αdx ≤ ‖ϕ‖2αect ≤ ‖ϕ‖2

αecT

it follows that ∫
R

ξu2
αdx ≤ C = C(T, ‖ϕ‖).

Then for any T = Tmax > 0, there exists C = C(T, ‖ϕ‖) such that

‖u‖2α +
∫ t

0

∫
R
(5η + 3)ξu2

α+1dxds− 5η

∫ t

0

∫
R

∂ξu2
α+2dxds ≤ C.

This concludes the proof. �

7. Persistence Theorem

As a starting point for the a priori gain of regularity results that will be discussed
in the next section, we need to develop some estimates for solutions of the equation
(2.5) in weighted Sobolev norms. The existence of these weighted estimates is
often called the persistence of a property of the initial data ϕ. We show that
if ϕ ∈ H5(R)

⋂
HL(W0i0) for L ≥ 0, i ≥ 1 then the solution u(·, t) evolves in

HL(W0i0) for t ∈ [0, T ]. The time interval of such persistence is at least as long as
the interval guaranteed by the existence Theorem 5.2.
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Theorem 7.1 (Persistence). Let i ≥ 1 and L ≥ 0 be non-negative integers, 0 <
T < +∞. Assume that u is the solution to (2.5) in L∞([0, T ];H5(R)) with initial
data ϕ(x) = u(x, 0) ∈ H5(R). If ϕ(x) ∈ HL(W0i0) then

u ∈ L∞([0, T ];H5(R)
⋂

HL(W0i0)) (7.1)∫ T

0

∫
R
|∂L+1u(x, t)|2µ1dxdt < +∞ (7.2)∫ T

0

∫
R
|∂L+2u(x, t)|2µ2dxdt < +∞ , (7.3)

where σ is arbitrary, µ1 ∈ Wσ,i,0 and µ2 ∈ Wσ,i−1,0 for i ≥ 1.

Proof. We use induction on α. Let

u ∈ L∞([0, T ];H5(R)
⋂

Hα(W0i0)) for 0 ≤ α ≤ L.

We derive formally some a priori estimate for the solution where the bound, involves
only the norms of u in L∞([0, T ];H5(R)) and the norms of ϕ in H5(W0i0). We do
this by approximating u(x, t) through smooth solutions, and the weight functions
by smooth bounded functions. By Theorem 5.2, we have

u(x, t) ∈ L∞([0, T ];HN (R)) with N = max{L, 5}.
In particular uj(x, t) ∈ L∞([0, T ] × R) for 0 ≤ j ≤ N − 1. To obtain (7.1)-(7.2)
and (7.3) there are two ways of approximation perform. We approximate general
solutions by smooth solutions, and we approximate general weight functions by
bounded weight functions. The first of these procedures has already been discussed,
so we will concentrate on the second.

Given a smooth weight function µ2(x) ∈ Wσ,i−1,0 with σ > 0, we take a sequence
µβ

2 (x) of smooth bounded weight functions approximating µ2(x) from below, uni-
formly on any half line (−∞, c). Define the weight functions for the α-th induction
step as

ξβ(x, t) = − 1
5η

(
1 +

∫ x

−∞
µβ

2 (y, t)dy
)

then the ξβ are bounded weight functions which approximate a desired weight
function ξ ∈ W0i0 from below, uniformly on a compact set. For α = 0, multiplying
(2.5) by 2ξβu, and integrating over x ∈ R.

2
∫

R
ξβuutdt + 2η

∫
R

ξβuu5dx + 2
∫

R
ξβuu3dx + 2

∫
R

ξβu2u1dx = 0. (7.4)

Each term is treated separately. In the first term we have

2
∫

R
ξβuutdx = ∂t

∫
R

ξβu2dx−
∫

R
∂tξβu2dx.

For the others terms, using integration by parts, we have

2η

∫
R

ξβuu5dx = −η

∫
R

∂5ξβu2dx + 5η

∫
R

∂3ξβu2
1dx− 5η

∫
R

∂ξβu2dx.

2
∫

R
ξβuu3dx = −

∫
R

∂3ξβu2dx + 3
∫

R
∂ξβu2

1dx ,

2
∫

R
ξβu2u1dx = −2

3

∫
R

∂ξβu3dx.
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Replacing in (7.4), we obtain

∂t

∫
R

ξβu2dx−
∫

R
∂tξβu2dx− η

∫
R

∂5ξβu2dx + 5η

∫
R

∂3ξβu2
1dx

− 5η

∫
R

∂ξβu2dx−
∫

R
∂3ξβu2dx + 3

∫
R

∂ξβu2
1dx− 2

3

∫
R

∂ξβu3dx = 0

then

∂t

∫
R

ξβu2dx +
∫

R
(5η∂3ξβ + 3∂ξβ)u2

1dx− 5η

∫
R

∂ξβu2
2dx

+
∫

R
(−∂tξβ − η∂5ξβ − ∂3ξβ −

2
3
ξβu)u2dx = 0 .

Using (2.4), for c5 > 0 (η < −3/5),

∂t

∫
R

ξβu2dx− c5(5η + 3)
∫

R
ξβu2

1dx− 5η

∫
R

∂ξβu2
2dx

+
∫

R
(−∂tξβ − η∂5ξβ − ∂3ξβ −

2
3
ξβu)u2dx ≤ 0 .

Using again (2.4) and Gagliardo-Nirenberg’s inequality, we obtain

∂t

∫
R

ξβu2dx− c5(5η + 3)
∫

R
ξβu2

1dx− 5η

∫
R

∂ξβu2
2dx ≤ c

∫
R

ξβu2dx

thus

∂t

∫
R

ξβu2dx ≤ c

∫
R

ξβu2dx.

We apply Gronwall’s lemma to conclude∫
R

ξβu2dx ≤ C = C(T, ‖ϕ‖) (7.5)

for 0 ≤ t ≤ T and c not depending on β > 0, the weighted estimate remains true
for β → 0.

Now, we assume that the result is true for (α−1) and we prove that it is true for
α. To prove this, we start from the main inequality (3.2) with µ1, µ2 and ξ given
by µβ

1 , µβ
2 and ξβ respectively.

∂t

∫
R

ξβu2
αdx +

∫
R

µβ
1u2

α+1dx +
∫

R
µβ

2u2
α+2dx +

∫
R

θβu2
αdx +

∫
R

Rαdx ≤ 0

with

µβ
1 = −c5(5η + 3)ξβ for η < −3/5 (Natural Condition)

µβ
2 = −5η∂ξβ

θβ = −∂tξβ − η∂5ξβ − ∂3ξβ − ∂(ξβu)

Rα = O(uα, . . . )
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then

∂t

∫
R

ξβu2
αdx +

∫
R

µβ
1u2

α+1dx +
∫

R
µβ

2u2
α+2dx ≤ −

∫
R

θβu2
αdx−

∫
R

Rαdx

≤
∣∣− ∫

R
θβu2

αdx−
∫

R
Rαdx

∣∣
≤

∫
R
|θβ |u2

αdx +
∫

R
|Rα|dx .

Using (2.4) and Gagliardo-Nirenberg in the first term of the right side we obtain∫
R
|θβ |dx ≤ c

∫
R

ξβu2
αdx

Thus

∂t

∫
R

ξβu2
αdx +

∫
R

µβ
1u2

α+1dx +
∫

R
µβ

2u2
α+2dx ≤ c

∫
R

ξβu2
αdx +

∫
R
|Rα|dx.

According to (3.5),
∫

R Rαdx contains a term of the form∫
R

ξβuν1uν2uαdx. (7.6)

Let ν2 ≤ α− 2. Integrating (7.6) by parts and using Hölder’s inequality we obtain

c
[( ∫

R
ξβu2

ν2+1dx
)1/2

+
( ∫

R
ξβu2

ν2
dx

)1/2]( ∫
R

ξβu2
α−1dx

)1/2

(7.7)

where (7.7) is bounded by hypothesis. Now suppose that α− 1 = ν1 = ν2, then in
(7.6) we obtain∣∣ ∫

R
ξβuα−1uα−1uαdx

∣∣ ≤ ‖uα−1‖L∞(R)

( ∫
R

ξβu2
α−1dx

)1/2( ∫
R

ξβu2
αdx

)1/2

where ‖uα−1‖L∞(R) is bounded by hypothesis, and the estimate is complete. Finally,
for ν1 = α− 2; ν2 = α− 1 we have∣∣ ∫

R
ξβuα−2uα−1uαdx

∣∣ =
∣∣ ∫

R

√
ξβuα−2uα−1

√
ξβuαdx

∣∣
≤

∥∥√
ξβuα−2

∥∥
L∞(R)

∣∣ ∫
R

uα−1

√
ξβuαdx

∣∣
≤

∥∥√
ξβuα−2

∥∥
L∞(R)

∥∥uα−1

∥∥
L2(R)

( ∫
R

ξβu2
αdx

)1/2

≤ c ‖uα−1‖L2(R)

( ∫
R

ξβu2
αdx

)1/2

.

Using these estimates in (7.5), and applying the Gronwall’s argument, we obtain
for 0 ≤ t ≤ T ,

∂t

∫
R

ξβu2
αdx +

∫
R

µβ
1u2

α+1dx +
∫

R
µβ

2u2
α+2dx ≤ c0e

c1t
( ∫

R
ξβϕ2

α(x)dx + 1
)

where c0 and c1 are independent β such that letting the parameter β → 0 the
desired estimates (7.2) and (7.3) are obtained. �
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8. Main Theorem

In this section we state and prove our main Theorem, which states that if the
initial data u(x, 0) decays faster than polinomially on R+ = {x ∈ R;x > 0} and
possesses certain initial Sobolev regularity, then the solution u(x, t) ∈ C∞ for all
t > 0. For the main Theorem, we take 6 ≤ α ≤ L + 4. For α ≤ L + 4, we take

µ1 ∈ Wσ,L−α+5,α−5 =⇒ ξ ∈ Wσ,L−α+5,α−5 (8.1)

µ2 ∈ Wσ,L−α+4,α−5 =⇒ ξ ∈ Wσ,L−α+5,α−5 (8.2)

Lemma 8.1 (Estimate of error terms). Let 6 ≤ α ≤ L+4 and the weight functions
be chosen as in (8.1)-(8.2), then∣∣ ∫ T

0

∫
R

(
θu2

α + Rα

)
dxdt

∣∣ ≤ c , (8.3)

where c depends only on the norms of u in

L∞([0, T ];Hβ(Wσ,L−β+5,β−5))
⋂

L2([0, T ];Hβ+1(Wσ,L−β+5,β−5)⋂
Hβ+2(Wσ,L−β+4,β−5))

for 5 ≤ β ≤ α− 1, and the norms of u in L∞([0, T ];H5(W0L0)).

Proof. We must estimate both Rα and θ. We begin with a term of Rα of the form

ξuν1uν2uα (8.4)

assuming that ν1 ≤ α− 2. By the induction hypothesis, u is bounded in
L∞([0, T ];Hβ(Wσ,L−(β−5)+,(β−5)+)) for 0 ≤ β ≤ α− 1. By Lemma 2.1,

sup
t>0

sup
x∈R

ζu2
β < +∞ (8.5)

for 0 ≤ β ≤ α − 2 and ζ ∈ Wσ,L−(β−4)+,(β−4)+ . We estimate uν1 using (8.5). We
estimate uν2 and uα using the weighted L2 bounds∫ T

0

∫
R

ζu2
ν2

dxdt < +∞ for ζ ∈ Wσ,L−(ν2−5)+,(ν2−6)+ (8.6)

and the same with ν2 replaced by α. It suffices to check the powers of t, the powers
of x as x → +∞ and the exponential of x as x → −∞.
For x > 1. In the term (8.4), the factor ξ constributed according to (8.1)-(8.2)

ξ(x, t) = t(α−5)x(L−α+5)t−(α−5)x−(L−α+5)ξ(x, t) ≤ c2t
(α−5)x(L−α+5)

by (2.3). Then ξuν1uν2uα ≤ c2t
(α−5)x(L−α+5)uν1uν2uα. Moreover

uν1uν2uα = t
(ν1−4)+

2 x
L−(ν1−4)+

2 t
−(ν1−4)+

2 x
−(L−(ν1−4)+)

2

× uν1t
(ν2−6)+

2 x
L−(ν2−5)+

2 t
−(ν2−6)+

2 x
−(L−(ν2−5)+)

2 uν2

× t
(α−6)+

2 x
L−(α−5)+

2 t
−(α−6)+

2 x
−(L−(α−5)+)

2 uα.

It follows that
ξuν1uν2uα

≤ c2t
MxT t

(ν1−4)+

2 x
L−(ν1−4)+

2 uν1t
(ν2−6)+

2 x
L−(ν2−5)+

2 uν2t
(α−6)+

2 x
L−(α−5)

2 uα

(8.7)
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where M = α− 5− 1
2 (ν1 − 4)+ − 1

2 (ν2 − 6)+ − 1
2 (α− 6)+ and

T = (T − α + 5)− 1
2
(T − (α− 5)+)− 1

2
(T − (ν2 − 5)+)− 1

2
(T − (ν1 − 4)+).

Claim M ≥ 0 is large enough, that the extra power of t can be omitted.

2M = 2α− 10− (ν1 − 4)+ − (ν2 − 6)+ − (α− 6)+

= α− 4− (ν1 − 4)+ − (ν2 − 6)+

= α− 4− ν1 + 4− ν2 + 6

= α + 6− (ν1 + ν2)

= α + 6− (α + 1) = 5 ≥ 0.

Claim T ≤ 0 is such that the extra power xT can be bounded as x → +∞.

T = L− α + 5− 1
2
(L− (α− 5)+)− 1

2
(L− (ν2 − 5)+)− 1

2
(L− (ν1 − 4)+).

Thus

2T = 2L− 2α + 10− (L− (α− 5)+)− L + (ν2 − 5)+ − L + (α− 4)+

= −L− α + ν1 + ν2 − 4
= −L− α + α + 1− 4

= −(L + 3) ≤ 0.

Now, we study the behavior as x → −∞. Since each factor uνj
(j = 1, 2) must grow

slower than an exponential eσ
,
|x| and ξ decays as an exponential e−σ|x|, we simply

need to choose the appropriate relationship between σ and σ
,

at each induction step.
The analysis of all the terms of Rα will be completed with the case of ν1 ≥ α− 1.
Then in (3.6) if 2(α + 1) ≤ α + 1, α ≤ 3, but α ≥ 5 so this possibility is impossible.
For x < 1 the estimate is similar, except for an exponential weight. This completes
the estimate of Rα.

Now we estimate the term θu2
α where θ is given in (3.2). We have that θ involves

derivatives of u only up to order one and hence θu2
α is a sum of terms of the same

type which we have already encountered in Rα. So, its integral can be bounded in
the same manner. Indeed (3.2) shows that θ depends on ξt, ∂

5ξ and derivatives of
lower order. By using (3.3) we have the claim. �

Theorem 8.2 (Main Theorem). Let T > 0 and u(x, t) be a solution of (2.5) in
the region R× [0, T ] such that

u ∈ L∞([0, T ];H5(W0L0)) (8.8)

for some L ≥ 2 and all σ > 0. Then u is in L∞([0, T ];H5+l(Wσ,L−l,l))
∩ L2([0, T ];H6+l(Wσ,L−l,l) ∩H7+l(Wσ,L−l−1,l)) for all 0 ≤ l ≤ L− 1.

Remark 8.3. If the assumption (8.8) holds for all L ≥ 2, the solution is infinitely
differentiable in the x-variable. From (2.5) we have that the solution is C∞ in both
variables.

Proof. We use induction on α. For α = 5, let u be a solution of (2.5) satisfying
(8.8). Therefore, ut ∈ L∞([0, T ];L2(W0L0)) where u ∈ L∞([0, T ];H5(W0L0)) and
ut ∈ L∞([0, T ];L2(W0L0)). Then u ∈ C([0, T ];L2(W0L0))

⋂
Cw([0, T ];H5(W0L0)).

Hence u : [0, T ] 7→ H5(W0L0) is a weakly continuous function. In particular, u(·, t) ∈
H5(W0L0) for all t. Let t0 ∈ (0, T ) and u(·, t0) ∈ H5(W0L0), then there are {ϕ(n)} ⊂
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C∞0 (R) such that ϕ(n)(·) → u(·, t0) in H5(W0L0). Let u(n)(x, t) be a unique solution
of (2.5) with u(n)(x, t0) = ϕ(n)(x). Then by Theorems 5.1 and 5.2, there exists in
a time interval [t0, t0 + δ] where δ > 0 does not depend on n and u is a unique
solution of (2.5) u(n) ∈ L∞([t0, t0 + δ];H5(W0L0)) with u(n)(x, t0) ≡ ϕ(n)(x) →
u(x, t0) ≡ ϕ(x) in H5(W0L0). Now, by Theorem 7.1, we have

u(n) ∈ L∞([t0, t0 + δ];H5(W0L0))
⋂

L2([t0, t0 + δ];H6(WσL0) ∩H7(Wσ,L−1,0))

with a bound that depends only on the norm of ϕ(n) in H5(W0L0). Furthermore,
Theorem 7.1 guarantees the non-uniform bounds

sup
[t0,t0+δ]

sup
x

(1 + |x+|)k|∂αu(n)(x, t)| < +∞

for each n, k and α. The main inequality (3.2) and the estimate (8.3) are therefore
valid for each u(n) in the interval [t0, t0 + δ]. µ2 may be chosen arbitrarily in its
weight class (8.1) and then ξ is defined by (3.4) and the constant c1, c2, c3, c4 are
independent of n. From (3.2) and (8.1)-(8.2) we have

sup
[t0,t0+δ]

∫
R

ξ[u(n)
α ]2dx+

∫ t0+δ

t0

∫
R

µ1[u
(n)
α+1]

2dxdt+
∫ t0+δ

t0

∫
R

µ2[u
(n)
α+2]

2dxdt ≤ c (8.9)

where by (8.3), c is independ of n. Estimate (8.9) is proved by induction for
α = 5, 6, . . . Thus u(n) is also bounded in

L∞([t0, t0 + δ];Hα(Wσ,L−α+5,α−5))
⋂

L2([t0, t0 + δ];Hα+1(Wσ,L−α+5,α−5))⋂
L2([t0, t0 + δ];Hα+2(Wσ,L−α+4,α−5))

(8.10)
for α ≥ 5. Since u(n) −→ u in L∞([t0, t0 + δ];H5(W0L0)). By Corollary 5.3 it
follows that u belongs to the space (8.10). Since δ is fixed, this result is valid over
the whole interval [0, T ]. �
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