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ABSTRACT 

Drawing on concepts of disproportionality and privileged access to guide the 
research, this project explores the nature of environmental inequality in the Houston-
Sugarland-Baytown Metropolitan Statistical Area. Using pollution data from the 2015 
Toxics Release Inventory (TRI), sociodemographic data from 2015 American 
Communities Survey Estimates and distance based methods, this project addresses what 
groups are more likely to experience heightened levels of toxic releases from TRI sites. 
Specific variables examined include tract-level racial/ethnic composition, percent non-
native, and percent below the poverty level. Segregation variables in this project include 
a tract-level Multigroup entropy index, Hispanic-white dissimilarity index, and black-
white dissimilarity index. Moderating variables include tract level median home value 
and percent within the manufacturing industry, while population total per tract serves as a 
control variable in OLS and geographically weighted regression modelling. Findings 
highlight the impact spatial data have on analysis as well as methodological challenges 
caused by disproportionality in pollution data. Additionally, results regarding exposure to 
point-source pollution from TRI sites indicate that Hispanic and white groups were more 
likely to experience environmental inequality via residential proximity, suggesting that 
the burden of environmental inequality may be different in urban areas with a majority-
minority population such as the Houston-Sugarland-Baytown MSA.  
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I. INTRODUCTION 

The United States’ Environmental Protection Agency (EPA) defines environmental 

justice as the “fair treatment and meaningful involvement of all people regardless of race, 

color, national origin, or income, with respect to the development, implementation, and 

enforcement of environmental laws, regulations and policies” (U.S. Environmental 

Protection Agency 2016). The EPA goes on to clarify that environmental justice, 

sometimes referred to as environmental equity, will be achieved when all persons receive 

the same amount of protection from environmental health hazards and have “equal access 

to the decision making process” (U.S. Environmental Protection Agency 2016). 

Environmental inequality “focuses on broader dimensions of the intersection between 

environmental quality and social hierarchies” (Pellow 2000) with an emphasis on the unfair 

and unequal distribution of environmental burdens, or bads, along socially structured lines 

of class, race/ethnicity, national origin and other demographic and community 

characteristics. This thesis will focus on social structural forces that shape environmental 

inequality and will utilize quantitative methodology and publicly available data from the 

EPA and U.S. Census Bureau to weigh these outcomes.  

Pellow (2000) reminds us that unequal distribution of environmental health 

hazards has historically been “disproportionally distributed around geographic areas with 

high concentrations of working poor, ethnic minorities, and/or politically disempowered 

groups” (2000: 591), specifically citing cases of the unequal distribution of human waste 

in ancient Rome, and he effectively demonstrates that instances of environmental 

inequality are embedded into our global history. Though instances of environmental 

injustice can be found across time and place, the environmental justice movement in the 
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U.S. is often cited as having origins in Warren County, North Carolina (Bullard, Johnson, 

and Lewis 2000). In 1978 Warren Country was a rural, predominantly African American, 

working class community. That year, residents of Warren County became aware that the 

state intended to place a landfill to hold roughly 40 thousand cubic yards of carcinogenic 

Polychlorinated Biphenyl (PCB) contaminated soil that was removed from along 

highways in North Carolina in Warren County. Residents and activists mounted a four- 

year resistance to the landfill placement, drawing national attention to issues related to 

environmental inequality.  

Following the organized protests and national media coverage Warren County 

protesters received, the environmental justice (EJ) movement was born. Activists and 

community-based organizations worked with individuals in at-risk communities to 

champion environmental equity. In the late 1980s, the first scholarly and quantitative 

examination of environmental inequality in the United States was released by the United 

Church of Christ (UCC) Commission for Racial Justice.  The UCC report (1987) found 

race/ethnicity was the strongest predictor of the location of toxic waste sites in the United 

States. This report marked the beginning of a flurry of empirical environmental justice 

(EJ) research released throughout the 1990s and early 2000s that investigated 

environmental inequality through residential proximity. Largely, EJ scholarship focuses 

on understanding and ameliorating environmental inequality.  

Though this paper, and many studies across EJ literature, focus environmental 

inequality as measured by residential proximity to hazardous sites, including Superfund 

sites, landfills, and toxics release inventory (TRI) sites, the environmental justice 

scholarship is a broad and multidimensional scholarship that discusses and evaluates 
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elements of environmental inequality as related to community access to greenspace, 

exposure to health hazards in the workplace, and the structural responses to 

environmental crises to name a few.  Each of these scholarly endeavors strives to 

measure and understand environmental inequality in hopes of better addressing and 

ameliorating cases of environmental injustice.  This scholarship, coupled with efforts by 

those in the EJ movement and public awareness of devastating environmental 

catastrophes across the globe, led to the 1986 Emergency Planning and Community Right 

to Know Act (EPCRA). This legislation was designed to assist local communities in their 

attempts to protect the environment and public health, while preserving public safety 

from environmental hazards. It is based largely on the formation of local emergency 

planning committees created by local fire fighters, health officials, community groups, 

industrial facilities, emergency managers and representatives from local government and 

media (U.S. Environmental Protection Agency 2016).  

The explicit goal of the EPCRA is to make information on potential 

environmental health hazards known and readily available to the American public. In 

order to streamline the process of making data on environmental hazards available for 

public access, section 313 of the EPCRA created the EPA’s Toxics Release Inventory 

(TRI) program, an annual inventory of sites across the nation that release and process 

chemicals both on and offsite. The TRI documents and measures roughly 600 chemicals 

released at TRI sites above acceptable thresholds that are known to pose environmental 

and health risks in a report available to anyone with internet access and interest through 

the EPA’s Toxics Release Inventory website. Additionally, the EPA has created a user-

friendly EJ screening tool that allows the public to view and assess the environmental 
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quality of regions in which there is an interest.  

Since its inception, data from the EPA’s Toxics Release Inventory data have been 

used in scholarship employing quantitative methods to measure and understand 

environmental inequality. These studies commonly seek to measure environmental 

inequality through proximity and potential exposure to sites determined to negatively 

impact the environment that have negative impacts on human health. Examinations of the 

locations of Superfund sites, nuclear waste dumping, and Toxics Release Sites are 

common across the EJ literature. This thesis aims to add to that scholarship by examining 

environmental inequality as measured by geographic and residential proximity to toxics 

release sites while at the same time carefully considering dimensions of race/ethnicity, 

immigration status, socioeconomic status, segregation, and the path of least resistance, 

such as land value and available workforce. The basis for examining these variables 

specifically, as well as the motivation for selected methodology, stems from the 

following review of the literature.  
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II. LITERATURE REVIEW 
 

An overview of the environmental justice literature reveals a few key themes. 

First, several scholars have quantified environmental inequality through an examination 

of residential proximity to TRI sites and also documented the ways in which geographic 

proximity to TRI sites has a negative impact on health and well-being (Agency for Toxic 

Substances and Disease Registry 2006; Atlas 2007; Bevc, Marchall and Picou 2005; 

Burningham and Thrush 2002; Downey and Willigen 2005; Johnson, Washington, Kind 

and Gomez 2014; Natural Resources Defense Council 2004). Second, the research 

reviewed indicates that vulnerable populations, particularly poor communities and 

communities of color, are at higher risk of experiencing environmental inequality than 

their affluent and white counterparts (Bullard, Mohai, Saha, and Wright 2008; Cushing, 

Gause, Meehan, Cendak, Wildean, and Aleeef 2015; Denq, Constance, and Joung 2000; 

Downey 2006; Fricker and Hengartner 2001; Grant, Traunter, Downey, and Thiebaud 

2010; Hipp and Lakon 2010; Jones, Diez-Roux, Hajat, Kershaq, O’Neill, Guallar, Post, 

Kaufman, and Navas Acien 2014; Lejano and Iseki 2001; Lersch and Hart 2014; Mohai 

and Saha 2007, 2015;  Pastor, Sadd, and Hipp 2001; Pellow 2001; Sicotte 2014; Smith 

2007, 2009; Wu and Heberling 2013). Finally, the literature indicates that the inconsistent 

methodological approaches used to measure environmental inequality results in a wide 

variation of results. This portion of the literature is also characterized by a lively debate 

as to which methods are most appropriate for addressing environmental inequality, with 

many scholars across the discipline calling for a more uniform, comprehensive, and 

longitudinal approach to measuring environmental inequality. (Ash, Boyce, Chang, and 

Scharber 2013; Bullard, Mohai, Saha, and Wright 2008; Chakraborty, Maantay, Brender 
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2011; Conley 2011; Downey 2006; Mohai and Saha 2006, 2007, 2015; Mennis 2002).  

Residential Proximity and Toxics Release Inventory Data  

Because this thesis focuses upon Toxics Release Inventory (TRI) data, it is first 

necessary to highlight the literature on residential proximity to TRI data.  Such data have 

been used as a way to measure environmental inequality, as many scholars suggest that 

geographic residential proximity to TRI sites increases the likelihood of exposure to 

environmental health hazards (Brender, Maantay, and Chakraborty 2011; Chakraborty et 

al. 2011).   Scholars have found residential proximity, generally defined as being within a 

1-, 3-, or 5- mile radius of a TRI site, increases the likelihood of exposure to poor air 

quality, contaminated sources of water, lead, polychlorinated biphenyl (PCBs), and 

pollutants that are known to have negative health impacts (Agency for Toxic Substances 

and Disease Registry 2006; Bevc, Marchall and Picou 2005; Johnson, Washington, Kind 

and Gomez 2014; Natural Resources Defense Council 2004; Paigen, Goldman, Magnant, 

Highland, and Steegmann 1987).  These same studies have found higher rates of chronic 

and acute illness, including asthma, dermatitis, and even depression and anxiety, occur 

among persons who live within defined geographic distances of TRI sites.  

Additionally, research found evidence that proximity to TRI sites may also 

account for an increased sense of neighborhood disorder and weak community ties (Bevc 

et al. 2005; Downey and Willigen 2005). Survey research conducted with individuals 

living near TRI sites finds residential proximity to TRI is correlated with poor mental 

health, including participants who describe feelings of personal powerlessness, perceived 

neighborhood disorder, increased concern about personal health, as well as higher levels 

of the physiological markers for stress associated with residential proximity to a TRI site 
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(Downey and Willigen 2005; Peek, Freeman, Stowe, and Goodwin 2009). Though a good 

deal of the literature examined for the purpose of this project, and in this theme in 

particular, focuses on TRI sites,  it is important to note that similar results have been 

found in studies focusing on other point sources of pollution (Adeola 2000; Burningham 

and Thrush 2003; Fleming, O’Keefe, and Baum 1991), with results indicating that 

residential proximity to environmental hazards, whether they are TRI sites, Superfund 

sites, or landfills, generally has a negative impact on both physical and psychological 

well-being.  

Race, Class, and Environmental Inequality  

Findings across the literature indicate that poor communities and communities of 

color are more likely to experience environmental inequality (Bullard et al. 2008; 

Cushing et al. 2015; Downey 2006; Fricker and Hengartner 2001; Grant, Traunter, 

Downey, and Thiebaud 2010; Hipp and Lakon 2010; Lejano and Iseki 2001; Lersch and 

Hart 2014). Research indicates that a fairly strong relationship between socioeconomic 

status and environmental inequalities exists (Denq et al. 2000; Krieg 2005; Sicotte 2014; 

Smith 2007, 2009; Mennis 2002; Mohai and Saha 2006, 2015; Mohai, Lantz, Moernoff, 

House, and Mero 2009; Wu and Heberling 2013) with several studies finding 

socioeconomic factors such as economic deprivation and poverty to be the strongest 

indicators of residential proximity and exposure to hazardous facilities. These findings 

have been supported by other research that asserts that as distance from a TRI site 

increases, the density and percentage of persons living below the poverty line decreases 

(Mennis 2002); that poverty is the strongest predictor of landfill presence (Smith 2007, 

2009; Pastor Sadd and Hipp 2001), exposure to chemical air releases (Wu & Heberling 
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2013) and that household income and level of education are strong predictors of 

proximity to toxic release sites (Mohai et al 2009).  

In addition,  findings across the environmental justice literature also suggest the 

relationship between race and exposure to environmental inequality is strong,  with the 

bulk of the research suggesting race is the strongest predictor of environmental inequality 

(Cushing, Faust, August, Cendak, Wieland, and Alexeef 2015; Downey 2006; Frickner 

and Hengartner 2001; Grant et al 2010; Hipp and Lakon 2010; Jonston, Werder and 

Sebastian 2016; Lejano and Iseko 2001; Lersch and Hart 2014; Mohai and Saha 2015; 

Mohai et al 2009; Pastor, Sadd, and Hipp 2001; Pastor, Sadd, and Morello Frosch 2004; 

Pine, Marx, and Lakshmanan 2002; Sicotte 2014). When controlling for socioeconomic 

status, Fricker and Hengartner (2001) found that race/ethnicity is strongly associated with 

the presence of environmental bads in New York City, noting in particular that the 

relationship between percent Hispanic and the presence of environmental hazards is 

significant.   Similarly, a few scholars noted the significant relationship between exposure 

to environmental toxins and the percent non-white in the region (Cushing et al. 2015; 

Hipp and Lakon 2010; Jones et al. 2014; Lejano and Iseki 2001; Pine, Marx, and 

Lakshmanan 2002; Ringquist 1997). Most recently, work by Mohai and Saha (2015) 

considered the relationship between race, class, and proximity to TRI sites through 

longitudinal analysis that accounted for sociopolitical and historical changes to the area 

surrounding TRI sites overtime. This analysis, possibly the first of its kind, suggested that 

though class matters, the most consistent determinant of proximity to TRI sites is race. 

However, their findings also indicate that over time the residential areas surrounding TRI 

sites only saw an increase in percent minority and percent poor composition. Noteworthy 
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meta analyses that examine the environmental justice literature found that though a “race 

v. class” debate exist, with the majority of the literature examined found stronger 

evidence for race based environmental inequality and weaker evidence for environmental 

inequality based on class (Ringquist 2005). 

An interesting yet smaller portion of the literature reviewed suggests that it is 

neither poverty nor race alone that are the best predictors of residential proximity to TRI 

sites; rather it is a combination of factors that creates a path of least resistance for 

corporations to place their facilities in certain areas (Anderton, Anderson, Oaks, and 

Fraser 1994; Brulle 2000; Hird and Reese 1998). The kind of available workforce, 

political participation, resistance, land value and proximity to primary channels of travel 

(such as major roads and seaports) are all variables that have been found by some 

scholars to be the best predictor of exposure to environmental inequality.   However, this 

literature (Anderton, Anderson, Oaks, and Fraser 1994; Brulle 2000; Hird and Reese 

1998)   is a notably smaller and less developed portion of the environmental justice 

research as an overwhelming portion of the literature reviewed focuses on race and class 

in attempts to tease out which really determines experiences of environmental inequality. 

These conflicting findings across the EJ literature that focus on either race or class are 

known as the ‘race vs. class debate’ and have been attributed to differences in methods 

and approach (Downey 2006; Mohai and Saha 2006, 2015; Mohai et al 2009).  

Though there has been considerable research that considers race and class 

separately, some scholars (Brulle and Pellow 2006; Lievanos 2015; Mohai and Saha 

2015) call for an intersectional approach to environmental justice studies that considers 

the impact of both race and socioeconomic status simultaneously. This proposition is 
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backed empirically by research that indicates strong interactions exist between race and 

class (Lievanos 2015), noting that when examining poor communities of color in addition 

to community characteristics such as immigration status and political engagement, the 

importance of examining the relationship between race and class is highlighted. 

 Brulle and Pellow (2006:315) effectively summarize the need to consider race and 

class together in addition to variables not largely considered by the extant literature in 

examinations of environmental inequality by asserting the following:  

The social production of environmental inequality cannot be understood through a 
singularly focused framework that emphasizes one form of inequality to the exclusion 
of others. Environmental injustices impact human beings unequally along lines of 
race, gender, class, and nation, so an overemphasis on any one of these factors will 
dilute the explanatory power of any analytical approach.  
 

Different methods yield different results 

 The call for a change in the way environmental justice scholarship measures 

environmental inequality leads us to the final theme found across the literature: different 

methods yield different results. As previously mentioned, TRI data are widely used as a 

way to measure environmental inequality with several scholars using geographic 

proximity as a way to quantify exposure to environmental inequality. These studies 

employ a unit hazard method, also known as spatial coincidence method, to examine the 

demographic characteristics of areas surrounding TRI sites and compare them with the 

demographics of the larger surrounding area. The unit of measurement used in unit 

hazard analysis is the often census tract, a straight forward and sensible approach because 

census data are most commonly delivered as census tracts. Census tracts are one of the 

earliest quantitative methods used to examine environmental inequality and they use 

demographic data from the census in conjunction with data from the TRI.  This method 
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adequately provides insights into the geographic nature of environmental inequality, but 

has been criticized for failing to fully address exactly where people live in relation to TRI 

sites as there is great variation in census tract size. Additionally, using the census tract as 

a basis for analysis can be problematic depending on where the TRI is located, as a TRI 

site may sit within one tract but be geographically closer to persons living in a different 

tract (Bullard, Mohai, Saha, and Wright 2008; Chakraborty, Maantay, Brender 2011) 

 Following critiques of unit hazard analysis, distance-based methods were 

developed in an attempt to address limitations of the previously established method 

(Chakraborty, Maantay, and Brender 2011; Conley 2011; Downey 2006; Mohai and Saha 

2006). Distance based methods, like unit hazard analysis, make use of TRI data and 

community demographics. However, rather than using the census tract as the unit of 

analysis, scholars that employ distance based methods develop circular geographic 

‘buffers’ and only consider the demographics of those living within a specific geographic 

radius to TRI sites. This method uses geographic information systems (GIS) in analysis to 

develop these buffers and is able to control for variation in host-tract size while 

examining who specifically resides near TRI sites. Though this approach addresses the 

limitations of spatial-coincidence analysis, it has its own set of limitations in attempting 

to measure environmental inequality.  Most notably, the selection of distance ranges that 

form the circular geographic buffers around sites of interest vary significantly without 

apparent justification with distances ranging anywhere from .5 to 3 km or 1 to 5 miles of 

a site of interest (Chakraborty, Maantay, and Brender 2011; Mohai and Saha 2006) often 

with little to no explanation given as to why these distances were chosen.  

 Pollution plume modeling is a recent development in environmental justice 
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methods that has been hailed as the best and most sophisticated method available to 

measure environmental inequality. Like distance-based methods, pollution plume 

modeling sets geographic buffers surrounding TRI sites, but rather than being simple, 

circular buffers, the buffers generated in pollution plume modeling may vary in shape and 

size based on local meteorological conditions, composition of chemical released, and 

dispersion patterns of chemicals of interest (Ash, Boyce, Chang, and Scharber 2013; 

Chakraborty, Maantay, Brender 2011; Conley 2011).  This method also makes use of GIS 

for analysis, but accounts for differences in chemical dispersion patterns by adding air 

dispersion modeling into the analysis. This method addresses the limitations of distance 

based-methods and unit-hazard analysis, but it faces severe challenges because of the 

requirement of significant amounts of data on chemical/pollutant properties and local 

meteorological conditions (Chakraborty, Maantay, Brender 2011), and it is the most time 

consuming and expensive of all methods available for measuring environmental 

inequality. These data requirements often make it an impractical and difficult option for 

environmental justice researchers (Chakraborty, Maantay, Brender 2011; Conley 2011; 

Mennis 2002; Mohai and Saha 2006, 2015) 

 Though a few options are available to researchers seeking to measure 

environmental inequality, across the environmental justice scholarship researchers are 

calling for careful consideration of methods employed and a more uniform approach be 

employed across future studies. However, the same scholars are careful to note that a 

change in methodical approach, much like a change in unit of analysis, will result in 

different estimations of risk and exposure to environmental inequality based on 

demographic characteristics (Downey 2006; Mohai and Saha 2006, 2015; Mohai et al 
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2009). Mohai and Saha (2006) demonstrated this when they applied both distance based 

methods and unit hazard analysis to the same set of data and found that results differed 

based on the method employed. Results from distance based methods indicated greater 

disparities existed between race, socioeconomic status, and proximity to toxic facilities 

than when applying unit hazard analysis. Additionally, Conley (2011) points out that 

though methods more sophisticated than unit hazard analysis exist, it does not mean that 

they will always be the most appropriate methods, nor do they ensure more reliable or 

valid results.  

Gaps in the Literature 

Examining Environmental Inequality in Relation to Segregation 

          A great deal of the quantitative Environmental Inequality literature measures 

environmental inequality in terms of TRI site proximity in urban areas. Using methods 

ranging from straight forward unit hazard analysis to more complex pollution plume 

modeling, significant research considers potential exposure to environmental toxins in 

relation to demographic composition of the area near or around a TRI site. However, with 

some exceptions (Smith 2007, 2009; Jones et al. 2014), most of the literature fails to 

consider the relationship between segregation, considered to be the geographic and 

measurable manifestation of a complex series of political, social, and economic 

inequalities, and environmental inequality. The underdeveloped nature of this portion of 

the literature is noteworthy and surprising, as segregation has been identified as “a major 

contributor to the creation and maintenance of environmental inequality” (Mohai and 

Saha 2015: 317) because sources of pollution have been found to be sited near 

neighborhoods that lack political influence and are socially isolated site locally unwanted 
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land uses in such neighborhoods because they are socially isolated and relatively 

powerless politically (Bullard, Johnson and Torres 2000; Massey and Denton 1993).  

Disaggregated Consideration for Race/Ethnicity 

Most of the literature reviewed for the purpose of this project considers 

racial/ethnic variables to examine potential differences in exposure to pollution by 

race/ethnicity. However, a considerable portion of the literature aggregates the 

racial/ethnic categories or even fails to consider non-black racial/ethnic minorities. In 

cases where non-black racial/ethnic minorities are included in analysis, they are, at times, 

aggregated with black groups to create an overall non-white group to be compared to 

their white racial/ethnic counterparts. Consideration for differences between black versus 

white groups relative to experiences of environmental inequality are necessary and have 

provided a foundation upon which environmental justice work of all kinds, including 

researcher and activism, occurs. However, consideration for other racial/ethnic minorities 

alongside analyses that reviews differences between white and black groups’ experience 

environmental inequality can only increase the richness of the data and such 

consideration has the potential to tell researchers of the similarities and differences 

between each groups exposure to pollution. 
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III. THEORETICAL FRAMEWORK 
 

 Disproportionality is a concept conceived by Freudenburg that outlines the 

immense inequalities that exist among polluters in regard to the amount of pollution 

emitted per polluter. It is characterized by a double diversion that first involves an 

unequal pattern or disproportionality of “privileged access” (Freudenburg 2005: 89) to 

environmental resources. This includes not only access to green space or raw materials, 

but also to the environments’ ability to absorb toxic wastes. Freudenburg (2005) notes 

that the expulsion of waste into the natural environment is done on a highly 

disproportional basis with profits from the disposal of waste benefiting a few individuals 

or entities while the costs of such disposal are borne by the entire society. The second 

diversion is considered a diversion of attention, in which disproportional access to 

environmental resource are normalized. That is, the unequal access to and use of 

environmental resources is assumed to be necessary and is rarely questioned.  

 This theory of privileged access was followed by empirical work identifying a 

small proportion of facilities that account for a large amount of total pollution. Analysis 

using a Gini Coefficient to measure inequalities in terms of toxicity rather than pounds of 

releases found that 8% of the two top polluting industries (SIC Code 33: Primary Metals 

Industry and SIC Code 28: Chemical and Allied Products) account for almost 80% of the 

toxicity risk from emissions (Freudenburg 2005: 98). This disproportionality only 

increased when Freudenburg examined sources of pollution within industry sectors, 

finding that a single facility accounted for more than 95% of the total pollution emitted 

within its industry sector (SIC Code 333: Nonferrous Metals).  

Disproportionality, measured in either or both total pounds emitted and toxicity, 
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provides a strong theoretical framework for empirical environmental justice research 

examining specific sources of pollution. Consideration for disproportionality in pollution 

has most recently been used by Jorgenson, Longhofer and Grant (2016) and has provided 

a clearer picture of what industries most directly and aggressively contribute to 

environmental degradation.  Considering individual industries and facilities in 

examinations of pollution will allow for the consideration of disproportionality to be 

factored into analysis and will shed light on who is responsible for pollution and how 

much pollution they are responsible for. Additionally, this methodology has the potential 

to supplement our understanding of the developing environmental inequality literature.  
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IV. RESEARCH DESIGN  
 

 The research design for this project is outlined below and includes a discussion of 

the variables used in both the initial and second round of analyses, as well as how the 

variables are calculated. The gaps in the literature and the theoretical framework, along 

with the overarching themes across the literature, shape the research design.  I will use 

GIS to employ distance-based methods to investigate the relationship between pollution 

and the demographic composition of the areas in Houston, Texas, that face exposure to 

pollution through geographic proximity. Houston has a historical significance to EJ 

scholarship, as it has been the focus of a number of classic and groundbreaking academic 

and legal cases including Bean v. Southwestern Management, Inc., one of the first 

lawsuits to charge environmental inequality as a civil rights violation and ‘Solid Waste 

Sites and the Black Houston Community’ (Bullard 1983), an influential quantitative 

analysis of environmental inequality that asserts that the siting or placing of solid waste 

sites in Houston were disproportionately placed near Black communities. Additionally, 

the Houston-Sugarland-Baytown Metropolitan Statistical Area (MSA) is one of the 

largest urban agglomerations in the state of Texas and hosts 495 TRI sites, more than the 

Austin and Dallas MSAs combined. 

Unit of Analysis  

The census tract is a widely accepted unit of analysis for environmental justice 

scholarship that focuses on proximity while it serves as a proxy for examining 

neighborhood exposure to environmental inequality. Additionally, the census tract is 

commonly the smallest, conventional, unit of measure across sources of data like the 

census and Toxics Release Inventory. Because of the spatial components of this research 
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project, using the smallest available unit of measure is most appropriate in order to try to 

minimize the effects of the Modifiable Areal Unit Problem (MAUP) that occurs when 

spatial analysis of geographic data differs significantly on the basis of the selected 

geographic unit (ESRI 2016).  That is, the larger the geographic unit of measure, the 

higher the chance that data and analysis will be skewed. For these reasons as well as the 

availability of the data, the unit of analysis for this project will be the census tract. In the 

Houston-Sugarland-Baytown MSA, there are 1070 census tracts spread across 9 counties. 

For a list of the counties and the census tracts that compose them, please refer to 

Appendix A.  

Data Sources & Data Collection 

For the purpose of this project, secondary sociodemographic, economic, and 

chemical release data were compiled and used in the analysis to investigate the nature of 

environmental inequality in the Houston-Sugarland-Baytown MSA.  

TRI Data 

 At the time of analysis, the most recently available and completed version of the 

Toxics Release Inventory was collected in 2015. Chemicals listed on the annual TRI 

report fall into one of the following three categories: carcinogens or chemicals that cause 

other chronic human health issues, chemicals that cause acute human health issues, and 

chemicals that have a significant and negative impact on the environment (EPA 2016). 

Since each of the chemicals tracked by the TRI pose potential harm to human health and 

the environment, all individually listed chemicals (approximately 595) on the 2015 TRI 

will be considered to be part of the total releases. 

Sociodemographic Data 
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 Like the TRI data, the most recently available sociodemographic data at the tract 

level are from 2015 estimates available from the U.S. Census’ American Communities 

Survey. In addition to providing sociodemographic variables, listed in detail below, the 

U.S. Census’ American Communities Survey website map maker feature was used to 

create shapefiles, the most common geospatial data format, that form the basis for 

geospatial analysis in GIS.  

Independent and Dependent Variables 

 Census tracts will be used as the geographic parameters from which data on a 

number of socio-demographic variables measuring Race/Ethnicity, Segregation, National 

Origin and Poverty will be reported.  

  Race/ethnicity will be reported as percent composition, measured continuously 

from 0 to 100 percent. Using racial/ethnic data reported by the census, the following 

variables were constructed. WHITE reports the percent total of non-Hispanic white 

persons residing in each tract and was calculated as follows: total non-Hispanic white 

population per tract/total population per tract*100. The same method is used for the 

calculation of subsequent racial/ethnic variables. BLACK reports the percent total of non-

Hispanic Black persons residing in each tract while HISPANIC reports the percent total 

of Hispanic persons from any racial background living in each tract. The OTHER 

variable reports the cumulative percent total of persons residing in each tract that fall into 

one or more of the following racial/ethnic groups: American Cherokee, American 

Chippewa, American Navajo tribal, American Sioux tribal, Asian, Native Guamanian, 

Native Samoan, Native Other Pacific Islander, Some Other Race, and Two or More races. 

The abovementioned racial/ethnic groups were combined as a result of the low 
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population numbers of each of these groups. Additionally, the percent totals for all non-

white persons living in each tract were aggregated to create the NWHITE variable.   

 The desire to examine residential segregation, or residential pattern measures 

(Iceland 2004), across multiple groups the Multigroup Entropy Index, or Thiel’s H, was 

employed. The Multigroup Entropy Index, which will be referred to simply as the 

Entropy Index from here on, measures patterns of evenness among groups distributed 

across a geographic unit (Massey and Denton 1988). Though other commonly used 

measures of evenness exist, this measure allows for an examination of an unlimited 

number of groups, whereas other measures commonly examine evenness as a 

dichotomous measure (Reardon and Firebaugh 2002). The Entropy Index equation used 

for the purpose of this project will be measured using the following equation as discussed 

by White (1986):  

 

where k is the number of racial/ethnic groups of interest, pij is the proportion of the jth 

racial/ethnic group in tract I, nj is the total population of the jth racial/ethnic group in tract 

I, and Ni is the total population in tract I (White 1986). Note that the maximum score for 

hi is dependent on the number of racial ethnic groups examined, or ln(k), with tracts that 

hold higher values being more diverse, or less segregated, than tracts with lower values. 

For the purpose of this project, the maximum value of hi is 1.386. So a tract with a score 

of 1.386 would have proportional amounts of persons from each racial/ethnic category 

examined whereas a tract with a score of 0 would have only a single racial/ethnic group 

represented in its population.  
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Though entropy is a previously established and acceptable proxy measure for 

segregation, the entropy scores measure a diversity of non-white groups within tracts 

rather than diversity as the researcher would define it. A score that increases along with 

the increasing non-white diversity could, and in this case does, result in a measure that 

reflects a smaller percentage of non-Hispanic whites than would be necessary for true and 

proportionate diversity.  As a result, higher scores may not actually reflect higher levels 

of diversity, rather higher scores reflect higher levels of diversity within non-white 

communities. Thus, tracts that have higher entropy index scores often have smaller 

portions of non-Hispanic white persons but a greater range and distribution of Hispanic, 

black, and racial/ethnic other groups.  

After consideration of the Entropy score and the implications of its consideration 

in initial analyses, the researcher elected to calculate tract level dissimilarity index scores 

as a means of comparison. Though a bulk of the segregation literature has done so at 

larger units of analysis such at the city or MSA level, researchers have previously 

employed the dissimilarity index at the tract-level to examine segregation that may be 

obscured if a larger unit of analysis, such as the city or MSA, is used (Akins 2009; 

Massey and Denton 1993; Smith 2009). Additionally, as the most commonly used 

measure of segregation, inclusion of the dissimilarity indices along side the entropy 

scores per tract would provide more robust insight.  

          The dissimilarity index to be used for the purpose of this project will be measured 

using the equation developed by Massey and Denton (1998) that has been previously 

used to measure segregation at the tract level where b represents the number of, in this 

example, black persons residing within the smaller geographic unit (in this case, the 
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census block group), B represents the number of black persons living within the larger 

geographic unit (the census tract), while w represents the number of non-Hispanic white 

persons living in census block and W represents the number of non-Hispanic white 

persons living with the census tract.  

D= [0.5Σ |b/B-w/W||*100 

 This equation was used to calculate dissimilarity indices between both black and 

non-Hispanic white groups, and non-Hispanic white and Hispanic groups. Since Hispanic 

is an ethnic rather than a racial category, the point was made to ensure that black 

Hispanics were not double counted in analysis. In order to do so, Black-Hispanics were 

considered as part of the black group rather than the Hispanic group in order to simplify 

analysis.   

 The dissimilarity index calculates “the percentage of a group’s population that 

would have to change residence for each neighborhood to have the same percentage of 

that that group as the metropolitan area overall” (US Census Bureau 2002: 119) and will 

produce a score ranging continuously from 0.0 (total integration) to 1.0 (complete 

segregation). Scores ranging from 0 to .30 are indicative of low levels of segregation, 

measures between .30 and .60 indicate moderate levels of segregation, and measures 

above .60 indicate high levels of segregation (Massey & Denton 1993).  

 The variable measuring national origin (NNATIVE) reports a percent 

composition of all persons reported as being U.S. citizens by naturalization or not a U.S. 

citizen and is measured continuously from 0 to 100. This variable was calculated as 

follows: U.S. citizen by naturalization+not a U.S. citizen/total population per tract*100.  

  Poverty (POVERTY) is measured as a percent total per tract of persons for whom 
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poverty status has been determined in the last 12 months. This variable is continuous, 

ranges from 0 to 100, and was calculated as follows: population for whom poverty status 

has been determined in the last 12 months/total population*100.  

Moderating & Control Variables 

 Median home value will be measured continuously in U.S. Dollars based on 2015 

estimates, and is reported per tract by the Census. The workforce composition variable is 

measured continuously from 0 to 100 and (PERCMAN) reports the percent composition 

of persons per tract over the age of 16 that are active in the workforce and that work a 

Manufacturing job in any industry. These two variables serve as proxy measures for the 

path of least resistance. The path of least resistance asserts that pollution producers will 

base the siting of their facilities on an ideal combination of land value and available 

workforce that will present the least amount of resistance to the building and continued 

operation of their facility. As a result, these variables will be used as moderating 

variables, in order to assess the strength of the relationship between the independent and 

dependent variables. Finally, Population Total, is a continuous measure that reports the 

total population per tract and will serve as a control variable in the analysis.  

Dependent Variables 

 The TRI is a self-reported annual inventory collected by the EPA that provides 

valuable data on pollution. For the purpose of this project, the dependent variable will 

include the total amount of on/offsite chemical releases, measured continuously in 

millions of pounds, released both on and offsite into the surrounding air, water, and land 

reported on the 2015 TRI for the Houston-Sugarland-Baytown MSA.  

Shapefile Creation 
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   As mentioned previously, shapefiles based on the tracts of interest were created 

using the ‘Map Maker’ feature on the U.S. American Communities Survey website. 

These shapefiles provide the geographic basis for analysis in GIS, but had no 

sociodemographic or TRI data associated with them. Rather, the shapefiles generated 

held only spatial data and outlined the individual tracts of interest. For a visual 

representation of what the original shapefiles downloaded look like, please refer to 

Appendix B. Following the download of the sociodemographic data in Excel format, I 

used the Join feature in GIS to combine data on the variables of interest with their 

respective tracts. This join resulted in a shapefile that had both geographic and 

sociodemographic data for the area of interest.  

The raw TRI data including information on the total on/offsite releases was 

downloaded in Excel format and contained a variety of geographic data per site. The 

geographic data provided by the TRI included a SITE ID assigned by the EPA per TRI 

site, the longitude/latitude per site and, most relevant to this project, the physical street 

address per site. This information allowed for the use of a Geocoding tool in GIS to 

create a point on the map document that corresponds with the geographic location of each 

TRI site creating a visual representation of the physical locations.  

Due to the structure of the raw data, which reports data from a single site via 

multiple data point entries, the layer resulting from the initial round of geocoding 

included multiple points per site. This structure prevents proper statistical analysis from 

being conducted, as each site has the potential to be represented more than once. In order 

to amend this issue, I used the Dissolve feature in GIS to combine all points that share the 

same geographic location. This created a layer in GIS that that combined all the data 
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previously represented with multiple points with a single point. For a visual 

representation of the resulting shapefile, see Appendix C. At this stage in data 

preparation, the amount of toxic releases is demonstrated by individual static points. 

However, this does not represent the nature of pollution. As defined by the TRI itself, the 

reported chemicals are released into the air, land, and water surrounding the TRI site.  

Interpolation 

In attempts to accurately represent the nature of TRI releases with the tools and 

skills I am currently equipped with, I employed the use of the interpolation tool in 

GIS.  Interpolation estimates the value of the input variable, in this case Total TRI 

Releases, across cells on my shapefile by using a “linearly weighted combination” (ESRI 

2017) of a sample of points. By using the Interpolation tool estimates of the total toxic 

releases per tract were generated, even in tracts that did not have TRI sites within their 

geographic boundary. Generally speaking, chemical releases, especially releases to air 

and water, do not respect constructed geographic boundaries such as tract boundaries. To 

classify area as being exposed to pollution and one as not on the basis of whether or not it 

hosts or is within a specific geographic proximity to a TRI site does not adequately shed 

light onto the dynamic and often pervasive nature of pollutants. Thus, Interpolation 

provides more robust analysis, as it provides a more accurate representation of what 

exposure to chemical emissions from TRI sites may look like. 

IDW Interpolation 

Though there are multiple methods of Interpolation available, the locally 

dependent nature of the Toxic Release Data made the Inverse Distance Weighted (IDW) 

method the most appropriate method, as it is weighted based on, as the name implies, an 
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inverse distance function. This means that the farther away from the input variable 

source, in this case the TRI site, the less impact that TRI site will have on the estimated 

Total Releases per tract. IDW interpolation will consider and quantify the estimated 

releases for tracts near multiple TRI sites by taking into account the total releases across 

multiple sites simultaneously and weighting their estimated impact on a target area 

accordingly. In addition to being the most appropriate method for interpolation due to the 

nature of the data, IDW interpolation has been found to provide the best estimation for 

releases such as TRI releases and addresses Tobler’s first law of geography (Vorapracha, 

Phonpransert, Khanaruksombat, and Pijarn 2015). For a visual representation of the 

resulting map, see Appendix D.  

The review of the data following initial analysis revealed intense 

disproportionality to be discussed in the following sections of this paper, prompting 

concern that the largest outliers in the MSA may be driving the results from initial 

modelling. In order to investigate whether the disproportionality in total TRI releases per 

site was skewing the model, estimation of the total releases per tract was re-run using 

IDW interpolation without the largest two outliers. The re-interpolation generated 

estimates per tract that did, in fact, deviate from the initial interpolation estimates. For a 

visual representation of the new IDW results please see Appendix G.  
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V. ANALYSIS/RESULTS  

Analysis for this project are discussed below as follows. First, an overview of the 

descriptive statistics are provided to give insight into the test area. Second, discussions of 

the exploratory regression models used to develop subsequent models and vet the 

variables of interest are discussed. Finally, ordinary least squares models and subsequent 

geographically weighted regression models are discussed. Note that there are two sets of 

all analyses, with exception of geographically weighted regression. The first set of 

analyses presented in each case are run with the entirety of the TRI data that are 

available, while the second set of analyses for each test are run with the largest two 

outliers excluded.  

According to 2015 estimates, the Houston-Sugarland-Baytown MSA (here forth 

just referred to as Houston) is home to 6,346,652 people that live across 1,070 census 

tracts. There are nine counties that comprise the MSA, including Austin, Brazoria, 

Chambers, Fort Bend, Galveston, Harris, Liberty, Montgomery and Waller county. 

Notable municipalities include Houston, Galveston, Lake Jackson, Sugarland and The 

Woodlands to name a few. Its population is 38.20% White, 36.11% Hispanic. 16.75% 

Black, and 8.95% Other, making it a majority minority MSA as just over 61% of the 

population fall into racial/ethnic minority groups.  2.26% of the total population for the 

MSA are non-native, having either being naturalized citizens or non-citizens, while 

15.64% of the total population was classified as below the poverty line in 2015. 

In 2015, the TRI reports that Houston was home to 495 TRI sites that released a 

combined 91.3 million pounds of on/offsite releases into the air, land, and water 

surrounding each TRI site ranking it among the top 20 urban areas in regard to total 
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releases per square mile. According to the TRI report, the majority of the releases in the 

Houston area were to land (56.9 million lbs), followed by releases to air (18.1 million 

lbs.) and then water (6.1 million lbs) with only 10.1 million pounds reported as being 

Off-Site.  

An examination into the amount of total releases per site quickly revealed grave 

disproportionality in the amount of releases per site. A handful of TRI sites located in the 

densest part of the MSA reported 0 releases, an outcome that warranted further 

investigation leading to the identification of a potential issue with the raw data. In the 

TRI dataset 0 actually means 0, and is not indicative of releases below a certain threshold 

established by the TRI. However, by their very nature, sites listed on the TRI are 

responsible for toxic releases into their surrounding communities. Due to the self-

reported nature of the TRI, and the lack of incentive to report releases, or to report them 

accurately, it is quite possible that any or all of the reported releases are incomplete or 

inaccurate.  

In addition to several sites reporting 0 releases, two sites account for roughly half 

of the total releases in the Houston MSA. The largest single site in terms of total releases 

accounts for roughly 36% of the total releases in the MSA. Ascend’s Performance 

Materials Chocolate Bayou plant, located in Alvin, TX, manufactures “and supplies 

chemicals, fibers, and plastic products” (ASCEND 2017) for commercial and industrial 

use and reports that 99.37% of its releases were to Land.  Meanwhile, the second largest 

site in the MSA, TM Deer Park Services, accounts for 14.1% of the total releases in the 

Houston MSA. TM Deer Park Services is a Hazardous Waste Treatment and Disposal 

Facility and, in 2015, reported that 99.95% of its releases were to surrounding land.  It is 
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noteworthy that though both Ascend and TM Deer Park report an overwhelming majority 

of their releases are land releases, both sites are closer to the coast of the Gulf of Mexico 

than most of the TRI sites in the MSA. 

The statistical analysis and results reported below were all conducted using the 

Statistical Analyst tools built in to ArcGIS 10.4, including Exploratory Regression, 

Ordinary Least Squares Regression, and Geographically Weighted Regression when 

appropriate. These tests were run in the order that they are mentioned above as a way to 

test the strength and validity of the variables and dataset, and to ensure that the model 

was properly developed.   

Exploratory Regression Results with Largest Two Outliers 

Exploratory Regression was run in order to help determine whether the 

independent/explanatory variables selected would yield “any properly specified OLS 

models” (ESRI 2017). Though the resulting report generated by the Exploratory 

Regression on the variables of interest generated a great deal of information, including 

the strength of a possible OLS models and the variable stability, the information utilized 

was provided by the Summary of Variable Significance and the Summary of 

Multicollinearity portions of the generated report.  

The Summary of Variable Significance table indicates how consistent variable 

relationships are along with the proportion of times the variable was found to be 

statistically significant during testing. As mentioned, the Summary of Variable 

Significant table also provides information on how consistent variable relationships were 

found to be during testing. Strong independent or explanatory variables will be found to 
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be consistently and primarily either positive or negative as well as consistently 

significant.  

The Summary of Multicollinearity table is used alongside the Summary of 

Variable Significance to determine which explanatory variables should be removed, if 

any, in order to strengthen subsequent analysis. Specifically, the Summary of 

Multicollinearity table indicates how many times each variable ran into issues of 

Multicollinearity when run in the exploratory regression models and which variables 

were also included in those models. In essence, this table indicates whether or not the 

model will suffer from multicollinearity and will indicate what variables are problematic 

by reporting the VIF (<10 within acceptable range, with investigation warranted if 

VIF>4), the number of violations (how many times the variable resulted in 

multicollinearity), and its covariates.  

The first exploratory regression run on the independent variables measuring home 

value, poverty, segregation (entropy), nativity, non-white population, percent 

manufacturing, and total population size provided the most promising results. Results for 

this model are reported in Table 1A below. Note that, for the exploratory models, 

variables are ordered from largest to smallest in terms of significance.  All variables were 

found to have consistent explanatory power, with 4 variables (Population, Nativity, 

Percent Manufacturing, and Home Value) found to be significant 100% of the time. More 

specifically, Population, Nativity, and Home Value were found to have a negative 

relationship with total releases per tract 100% percent of the time while Percent 

Manufacturing was found to have a positive relationship with total releases per tract 

100% of the time.  
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The dichotomous race variable, Non-white, was significant 78.95% of the time 

and indicated a mostly negative relationship with total releases per tract. In this 

exploratory model, poverty was found to be significant 70.18% of the time and had a 

mostly positive relationship with the dependent variable. Entropy, the measure of 

segregation in this model, was the least statistically significant of all variables and was 

only found to be significant 26.32% of the time. Of the times it was found to be 

statistically significant, Entropy exhibited a primarily positive relationship with the 

dependent variable. Due to the way Entropy is measured, this means that as diversity 

within a tract increased, so did the number of total releases per tract.   

 

TABLE 1A: SUMMARY OF VARIABLE SIGNFICANCE | EXPLORATORY REGRESSION 
MODEL I 

 %Significant %Negative %Positive 
POPULATION 100.00 100.00 0.00 

NATIVITY 100.00 100.00 0.00 
MANUFACTURING 100.00 0.00 100.00 

HOME VALUE 100.00 100.00 0.00 
NON-WHITE 78.95 89.47 10.53 

POVERTY 70.18 36.84 63.16 
ENTROPY 26.32 8.77 91.23 

 

The Summary of Multicollinearity report for the first exploratory regression run 

are reported in Table 1B below. None of the variables measured revealed any violations 

of multicollinearity, and the VIF for each variable (reported below) were well within the 

acceptable range. As a result of both the summary of Variable Significance and the 

Summary of Multicollinearity, this model moves on to the next phase of analysis and is 

fit for both OLS and GWR modelling.  
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TABLE 1B: SUMMARY OF MULTICOLLINEARITY | EXPLORATORY REGRESSION 
MODEL I  

 VIF Violations Covariates 
POPULATION 1.10 0 ----- 

POVERTY 2.15 0 ----- 
NON-WHITE 2.70 0 ----- 

NATIVITY 1.58 0 ----- 
MANUFACTURING 1.07 0 ----- 

HOME VALUE 1.45 0 ----- 
ENTROPY 1.18 0 ----- 

 

The second exploratory regression was run on the independent variables 

measuring Home Value, Poverty, Segregation (Entropy), Nativity, Percent 

Manufacturing, and the disaggregated race variables on the White, Hispanic, Black, and 

Other populations per tract. Like the first exploratory regression, all variables were found 

to have consistent and explanatory power, with variables (Home Value and Nativity) 

found to be significant 100% of the time. More specifically, both Home Value and 

Nativity were found to have a negative relationship with total releases per tract 100% 

percent of the time.  

The Other race variable was found to be significant 96.32% of the time and 

indicated a mostly negative (60.74%) relationship with the dependent variable. The 

‘Hispanic’ variable was statistically significant 78.53% of the time, and also had a mostly 

negative relationship with the dependent variable (62.58%). The ‘Black’ variable was 

found to be significant 63.19% of the time, and indicated a mostly negative relationship 

(98.77%) with the dependent variable while the ‘White’ variable was just barely mostly 

significant (55.21%) and indicated a mostly positive relationship with the dependent 

variable (69.33%).   
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Manufacturing was found to be significant 76.69% of the time and had a mostly 

positive relationship with the dependent variable (95.09%). Poverty was found to be 

significant 73.62% of the time and had a mostly negative relationship with the dependent 

variable. Again, segregation as measured by Entropy was found to be significant the least 

amount of the time only being found significant 26.38% of the time. Of the times it was 

found to be significant, it was found to have a mostly positive relationship with the 

dependent variable. 

TABLE 2A: SUMMARY OF VARIABLE SIGNFICANCE | EXPLORATORY REGRESSION 
MODEL II   

 %Significant %Negative %Positive 
POPULATION 100.00 100.00 0.00 
HOME VALUE 100.00 100.00 0.00 

NATIVITY 100.00 100.00 0.00 
OTHER 96.31 60.74 39.26 

HISPANIC 78.53 62.58 37.42 
MANUFACTURING 76.69 4.91 95.09 

POVERTY 73.62 87.12 12.88 
BLACK 63.19 98.77 1.23 
WHITE 55.21 30.67 69.33 

ENTROPY 26.38 15.34 84.66 
 
The Summary of Multicollinearity report for the second exploratory regression 

run yielded mostly positive results. Only one variable, Nativity, revealed potential issues 

with multicollinearity and had a VIF outside of the acceptable range. An interesting 

finding surrounds the failure of the Summary of Multicollinearity to report any co-

variates. However, an examination of the VIFs reported per variable led the researcher to 

deduce that there were potential multicollinearity issues with the Non-Native variable and 

the Hispanic and Other race variables, as the VIF for both the Hispanic and Other 

variables are higher than the remaining race variables and within the VIF range that 
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warrants investigation. After considering both the summary of variable significance and 

the summary of multicollinearity, it became apparent that for this model, the non-native 

variable should not be included in the subsequent OLS and GWR modelling. 

TABLE 3A: SUMMARY OF MULTICOLLINEARITY | EXPLORATORY REGRESSION 
MODEL II 

 VIF Violations Covariates 
POPULATION 1.50 0  
HOME VALUE 1.26 0 ----- 

HISPANIC 6.52 0 ----- 
WHITE 2.90 0 ----- 
BLACK 1.41 0 ----- 
OTHER 6.52 0 ----- 

POVERTY 2.47 0 ----- 
NATIVITY 11.06 22 ----- 

MANUFACTURING 3.85 0 ----- 
ENTROPY 1.30 0 ----- 

 

Following guidance provided by the summary of multicollinearity and variable 

significance for Model I, exploratory regression was re-run with the revised model in 

order to assess how the removal of the nativity variable influenced the relationship 

between variables. With the removal of the nativity variable from the model, significance 

for the percent manufacturing variable increased sharply, from 76.69% to 100.00% 

significant, though the relationship with total releases per tract remained the same (as 

expected).  The resulting exploratory regression generated the following summary of 

variable significance and resulted in further refining of the model. Additionally, variable 

significance among the disaggregated racial/ethnic variables shifted across all three 

groups, with a decrease in percent significance for the Hispanic and White racial/ethnic 

groups and increase in significance for the Black group. Again, the nature of the 

relationship between these variables and the total releases per tract remained the same 
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directionally, but was clarified. Poverty lost some significance across the test models run, 

whereas entropy gained significance.  

TABLE 3B: SUMMARY OF VARIABLE SIGNFICANCE | REVISED EXPLORATORY 
REGRESSION MODEL II   

 %Significant %Negative %Positive 
POPULATION 100.00 100.00 0.00 
HOME VALUE 100.00 100.00 0.00 

OTHER 100.00 100.00 0.00 
MANUFACTURING 100.00 0.00 100.00 

WHITE 96.93 3.68 96.32 
HISPANIC 73.01 77.30 22.70 

BLACK 70.55 67.48 32.52 
POVERTY 46.63 62.58 37.42 
ENTROPY 39.88 15.95 84.05 
 
The Summary of Multicollinearity report for the revised exploratory regression 

run on Model II yielded results that indicated further refinement needed to occur once the 

nativity variable was removed. The racial ethnic groups for Hispanic, Black, and White 

all indicated severe multicollinearity that would present problems for further analysis. 

However, the racial/ethnic group ‘Other’ was not collinear with the rest of the 

racial/ethnic groups, but underwent an increase in VIF indicating its inclusion in the 

model may be the source of some of the collinearity seen across the Hispanic, Black, and 

White groups. After careful consideration for the substantive impacts of excluding the 

racial/ethnic ‘Other’ group, this group was removed from subsequent analysis and the 

exploratory regression was run for a third and final time. 
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TABLE 3C: SUMMARY OF MULTICOLLINEARITY | REVISED EXPLORATORY 
REGRESSION MODEL II  

 VIF Violations Covariates 
POPULATION 1.10 0 ----- 

POVERTY 2.19 0 ----- 
MANUFACTURING 1.13 0 ----- 

HOME VALUE 1.53 0 ----- 
ENTROPY 1.57 0 ----- 
HISPANIC 33.00 13 WHITE, BLACK 

WHITE 41.18 22 HIPSANIC, BLACK 
BLACK 23.08 6 WHITE, HISPANIC 
OTHER 6.01 0 ----- 

 

The final exploratory regression model tested the relationship between the 

variables measuring population total, percent manufacturing, median home value, percent 

white, percent Hispanic, percent black, poverty rates, and entropy per tract. This model 

generated satisfactory results that indicated subsequent analysis with these variables, 

including OLS and GWR modelling, could be conducted. The Summary of variable 

significance clarified variable significance for all of the variables selected. Just as in 

previously exploratory regression models population, percent manufacturing, and home 

value per tract were found to be strong variables that were significance 100% of the time. 

Population and home value both exhibited a negative relationship with the dependent 

variable whereas percent manufacturing indicated a positive relationship with the 

dependent variable. In this model, the significance for percent white per tract increased to 

100%, with a strong positive relationship with the dependent variable. Percent black and 

percent Hispanic both indicated mostly negative relationships with the dependent 

variable, and entropy was found to have a mostly positive relationship with the variable 

but decreased drastically in the number of times it was found to be significant in testing.    
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TABLE 4A: SUMMARY OF VARIABLE SIGNIFICANCE | FINAL EXPLORATORY 
REGRESSION MODEL II  

 %Significant %Negative %Positive 
POPULATION 100.00 100.00 0.00 
HOME VALUE 100.00 100.00 0.00 

MANUFACTURING 100.00 0.00 100.00 
WHITE 100.00 0.00 100.00 
BLACK  69.70 57.58 42.42 

HISPANIC  67.68 63.64 36.36 
POVERTY 42.42 50.51 49.49 
ENTROPY 4.04 26.26 73.74 

 

The resulting summary of multicollinearity for the final exploratory regression 

run for this model indicated that the removal of the racial/ethnic ‘Other’ group did in fact 

alleviate some of the issues revealed in the previous model, but did not completely 

address collinearity entirely. This model, though indicative of some collinearity between 

the Hispanic and white racial/ethnic groups, is strong enough for additional analysis. 

Additionally, further removal of the racial/ethnic groups for the sake of addressing 

collinearity would weaken the substantive implications of any analysis as the removal of 

additional racial/ethnic groups, especially ones that comprise a substantial portion of the 

population in the MSA, would fail to accurately represent the test area.  

TABLE 4B: SUMMARY OF MULTICOLLINEARITY | FINAL EXPLORATORY 
REGRESSION MODEL II  

 VIF Violations Covariates 
POPULATION 1.10 0 ----- 

POVERTY 2.19 0 ----- 
MANUFACTURING 1.13 0 ----- 

HOME VALUE 1.47 0 ----- 
ENTROPY 1.34 0 ----- 
HISPANIC 8.59 7 WHITE 

WHITE 10.96 16 HISPANIC 
BLACK 6.13 0 ----- 
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Exploratory Regression Results without Top Two Sites 

The first set of exploratory regressions tested the same variables as the initial 

models, but included the new IDW estimates. For the first exploratory regression run, 

variables measuring population, poverty, percent non-white, percent manufacturing, 

home value, and entropy were tested in order to test if the relationships that were evident 

in the first round of testing would hold in the absence of the extreme outliers.  

For this model, 4 variables were found to have consistent explanatory power, with 

three variables (non-native, percent manufacturing, and home value) indicating 100% 

variable significance with the variable for non-white indicating significance most of the 

time (68.42% of the time). Of the variables that were found to have 100% variable 

significance, percent manufacturing held a positive relationship with the dependent 

variable, and percent non-native and home value held a negative relationship with the 

dependent variable. The non-white variable was significant 68.42% of the time and was 

found to have a mostly negative relationship with the dependent variable (73.68%). 

Population, which had been significant 100% of the time in the previous model, lost a 

substantial portion of its significance during this exploratory regression and was found to 

be significant only 19.30% of time. Of the times it was fond to be significant, it held a 

negative relationship with the variable as it had in previous analysis. Finally, entropy in 

this test lost all significance.  

TABLE 5A: SUMMARY OF VARIABLE SIGNIFICANCE  | EXPLORATORY 
REGRESSION MODEL I 

 %Significant %Negative %Positive 
NATIVITY 100.00 100.00 0.00 

MANUFACTURING 100.00 0.00 100.00 
HOME VALUE 100.00 100.00 0.00 
NON-WHITE 68.42 73.68 26.32 

POVERTY 24.56 40.35 59.65 
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TABLE 5A CONTINUTED: SUMMARY OF VARIABLE SIGNIFICANCE  | 
EXPLORATORY REGRESSION MODEL I 

 %Significant %Negative %Positive 
POPULATION 19.30 100.00 0.00 

ENTROPY 0.00 28.07 71.93 
 

No issues of multicollinearity were made apparent by the summary of 

multicollinearity generated for this exploratory regression, as it was identical to the 

previous summary of multicollinearity generated for the independent variables examined. 

TABLE 5B: SUMMARY OF MULTICOLLINEARITY | EXPLORATORY REGRESSION 
MODEL I  

 VIF Violations Covariates 
POPULATION 1.10 0 ----- 

POVERTY 2.15 0 ----- 
NON-WHITE 2.70 0 ----- 

NATIVITY 1.58 0 ----- 
MANUFACTURING 1.07 0 ----- 

HOME VALUE 1.45 0 ----- 
ENTROPY 1.18 0 ----- 
 

The second set of exploratory regressions were run with the new IDW estimates 

on the independent variables measuring population, poverty, percent manufacturing and 

the disaggregated racial/ethnic variables (percent white, percent Hispanic, and percent 

black) yielded the following results. Just as with the first set of exploratory regressions, 

as a precaution, the black-white and Hispanic-white dissimilarity indices were run 

separately. The first exploratory regression was run with the Hispanic-white dissimilarity 

index and the previously mentioned variables.  

For this model, 5 variables were found to have consistent explanatory power, with 

two variables (percent manufacturing and home) indicating 100% variable significance, 
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while the remaining variables indicated healthy levels of variable significance more than 

half of the time, indicating sufficient variable stability. Of the variables that were found 

to have 100% variable significance, percent manufacturing held a positive relationship 

with the dependent variable while home value held a negative relationship with the 

dependent variable. The percent white variable was significant 81.82% of the time and 

was found to have a positive relationship with the dependent variable 100% of the time. 

Percent black was found to be significant 56.57% of the time and held a mostly negative 

relationship with the dependent variable (83.84% of the time).  

The percent Hispanic variable was mostly found to have a positive relationship 

with the dependent variable and was significant 79.80% of the time. Unlike in previous 

exploratory models, poverty was found to have a mostly negative relationship with the 

dependent variable (61.62% of the time) and was only significant in 20.20% of the 

models run. Similar deviations from previous models were found with the population 

variable, which only held significance 34.34% of the time but, like previous models, was 

found to have a negative relationship with the dependent variable. Finally, Hispanic-

white dissimilarity was found to be significant only 4.04% of the time and held a negative 

relationship 100% of the time.  

 
TABLE 6A: SUMMARY OF VARIABLE SIGNIFICANCE  | EXPLORATORY REGRESSION 

MODEL IIA 
 %Significant %Negative %Positive 

MANUFACTURING 100.00 0.00 100.00 
HOME VALUE 100.00 100.00 0.00 

WHITE 81.82 0.00 100.00 
BLACK 56.57 83.84 16.16 

HISPANIC 51.52 20.20 79.80 
POPULATION 34.34 100.00 0.00 

POVERTY  20.20 61.62 38.38 
HW DISSIMILARITY 4.04 100.00 0.00 
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The Summary of Multicollinearity generated for this model revealed some 

multicollinearity between the variables measuring the percent Hispanic and percent 

white. Though some multicollinearity is present between the two aforementioned 

variables, the VIFs for both are within a technically acceptable range. After weighing the 

potential impacts of removing one of these groups for the sake of decreasing collinearity, 

I decided to keep both the percent Hispanic and percent white variables as removing them 

could potentially weaken both the statistical and substantive significance of any further 

analysis. The remaining variables all held VIFs that fell well within the accepted 

parameters. As a result, OLS modelling was conducted to generate coefficients for each 

of the variables in question.  

TABLE 6B: SUMMARY OF MULTICOLLINEARITY | EXPLORATORY REGRESSION MODEL 
IIA 

 VIF Violations Covariates 
POPULATION 1.06 0 ----- 

POVERTY 2.25 0 ----- 
MANUFACTURING 1.13 0 ----- 

HOME VALUE 1.45 0 ----- 
HISPANIC 7.70 2 WHITE 

WHITE 9.51 16 HIPSANIC 
BLACK 5.90 0 ----- 

HW DISSIMILARITY 1.12 0 ----- 
 

Findings from the exploratory regression model run with the black-white 

dissimilarity index mostly mirrored the findings of the exploratory regression model with 

the Hispanic-white dissimilarity index. Six variables were found to have consistent 

explanatory power, with two variables (percent manufacturing and home) indicating 

100% variable significance, while the remaining variables indicated healthy levels of 
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variable significance more than half of the time, indicating variable stability. Like the 

previous version of this model run, out of the variables that were found to have 100% 

variable significance, percent manufacturing held a positive relationship with the 

dependent variable while home value held a negative relationship with the dependent 

variable. The percent white variable was significant 82.83% of the time and was found to 

have a positive relationship with the dependent variable 100% of the time. The black-

white dissimilarity index held significance 64.65% of the time and held a negative 

relationship with the dependent variable 100% of the time. The percent black variable 

held the same significance and directional relationship as in the previous version of this 

model, and was found to be significant 56.57% of the time and held a mostly negative 

relationship with the dependent variable (83.84% of the time).  

The percent Hispanic variable was mostly found to have a positive relationship 

with the dependent variable and was significant 53.54% of the time. Population, again, 

was found to have a negative relationship with the dependent variable (100% of the time) 

and was only significant in 36.36% of the models run. Similar deviations from previous 

models were found with the poverty variable, which only held significance 22.22% of the 

time and held a negative relationship with the dependent variable 100% of the time.  

 
TABLE 7A: SUMMARY OF VARIABLE SIGNIFICANCE  | EXPLORATORY REGRESSION 

MODEL IIA 
 %Significant %Negative %Positive 

MANUFACTURING 100.00 0.00 100.00 
HOME VALUE 100.00 100.00 0.00 

PERCENT WHITE 82.83 0.00 100.00 
BW DISSIMILARITY 64.65 100.00 0.00 
PERCENT BLACK 56.57 83.84 16.16 

PERCENT HISPANIC 53.54 19.19 80.81 
POPULATION 36.36 100.00 0.00 

POVERTY  22.22 64.65 35.35 
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The Summary of Multicollinearity generated for second version of this model 

revealed the same multicollinearity between the variables measuring the percent Hispanic 

and percent white. Just as in the previous model, though multicollinearity is present 

between the two aforementioned variables, the VIFs for both are within an acceptable and 

both variables were included in subsequent OLS modelling. 

TABLE 7B: SUMMARY OF MULTICOLLINEARITY | EXPLORATORY REGRESSION MODEL 
IIB 

 VIF Violations Covariates 
POPULATION 1.06 0 ----- 

POVERTY 2.17 0 ----- 
MANUFACTURING 1.13 0 ----- 

HOME VALUE 1.45 0 ----- 
HISPANIC 7.70 2 WHITE 

WHITE 9.51 16 HIPSANIC 
BLACK 5.90 0 ----- 

BW DISSIMILARITY 1.00 0 ----- 
 

OLS Results 

 Following the vetting of the variables during exploratory regression testing, two 

sets of Ordinary Least Squares regression models were developed to provide a global set 

of parameter estimates for the area of interest. The first set of models includes the 

aggregated race variable, non-white along with variables measuring poverty, nativity, 

manufacturing, entropy as well as home value and total population. The adjusted R2 for 

this model is .16. and all variables except for the variable measuring poverty rates per 

tract were found to be statistically significant at α=0.01. However, though the measure 

for poverty was not statistically significant, a close look at the directional nature of the 
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result is worth consideration as it’s p=0.07 value falls just outside of significance at 

α=0.05.  

TABLE 8A: OLS MODEL I RESULTS 
 Coefficient  Std. Error T-Statistic Prob. VIF 

POPULATION -4.728 1.28 -3.67 0.00* 1.099 
MANUFACTURING 3913.77 824.65 4.74 0.00* 1.07 

HOME VALUE -0.23 0.03 -6.37 0.00* 1.47 
POVERTY 995.30 558.19 1.78 0.07 2.18 

NON-WHITE -1074.57 287.87 -3.73 0.00* 2.72 
NON-NATIVE -3345.11 448.88 -7.47 0.00* 1.58 

ENTROPY 52146.41 19225.27 2.71 0.00* 1.20 
*Significant at 0.01 
R2: .17 
Adjusted R2: .16  
AICc: 28689.84 
Moran’s I: .21 
 

The second model includes the disaggregated racial/ethnic variables that passed 

the exploratory regression testing for variables significance and fell within reasonably 

acceptable range for multicollinearity. This includes variables measuring the percent 

white, Hispanic, and black categories along with variables measuring poverty, 

manufacturing, home value and entropy. The adjusted R2 for this model is .11. Variables 

measuring population total, manufacturing, median home value, and the racial/ethnic 

variables for percent white and percent black were all found to be statistically significant  

at α=0.01. Non-significant variables for this model include variables measuring the 

percent Hispanic, segregation (entropy), and poverty rates per tract. However, though 

these variables were not significant, they fell just out of range for statistical significance 

(α=0.07) so their relationship with the dependent variable  is worth consideration for 

their substantive implications. For a visual representation of the OLS models, see 

Appendix E.  
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TABLE 8B: OLS MODEL II RESULTS 
 Coefficient Std. Error T-Statistic Prob. VIF 

POPULATION -5.27 1.32 -3.99 0.00* 1.10 
MANUFACTURING 3655.57 872.74 4.18 0.00* 1.13 

HOME VALUE -0.28 0.03 -7.34 0.00* 1.49 
POVERTY 42.24 582.22 0.07 0.94 2.24 
ENTROPY 38358.16 21264.00 1.80 0.07 1.39 
HISPANIC 1105.71 612.53 1.80 0.07 9.25 

WHITE 3009.33 596.334 5.04 0.00* 10.99 
BLACK 1339.73 618.51 2.16 0.03* 6.39 

 
*Significant at 0.01 
R2: .12 
Adjusted R2: .11 
AICc: 28695.01 
Moran’s I: 0.30 

OLS Model Results without Top Two Sites 

Ordinary Least Squares models were developed for each version of the 

exploratory regression models outlines in the previous section. The first model includes 

the aggregated racial/ethnic non-white variable, alongside variables measuring poverty, 

nativity, population, home value, and entropy. With the exclusion of the two largest 

outliers there was a loss of significance across the variables measuring population, 

percent non-white, and entropy. In this model only variables measuring nativity, percent 

manufacturing, and home value retained their significance with percent manufacturing 

being the only statistically significant variable to hold a positive relationship with the 

dependent variable. The adjusted R2 for this model is .07 and results can be seen in the 

table below.  
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TABLE 9: REVISED OLS MODEL I RESULTS 
 Coefficient  Std. Error T-Statistic Prob. VIF 

POPULATION -1.70 1.07 -1.58 0.11 1.09 
MANUFACTURING 3301.36 690.01 4.78 0.00* 1.07 

HOME VALUE -0.14 0.03 -4.55 0.00* 1.47 
POVERTY 323.59 4567.05 0.69 0.48 2.18 

NON-WHITE -311.71 240.87 -1.29 0.19 2.72 
NON-NATIVE -1676.05 375.59 -4.46 0.00* 1.58 

ENTROPY 17189.98 16086.26 1.06 0.28 1.20 
*Significant at 0.01 
R2: .08 
Adjusted R2: .07 
AICc: 28252.716337 
Moran’s I: 0.16 
 

The second OLS model run includes the disaggregated racial/ethnic variables 

along with the remaining independent variables examined previously in Model II. Most 

notably, population and percent black lost significance with the new IDW estimates for 

the dependent variable and percent Hispanic gained significance. However, significance 

was retained for percent white, home value, and percent manufacturing as was the 

direction of these relationships.  

TABLE 10: REVISED OLS MODEL II RESULTS 
 Coefficient Std. Error T-Statistic Prob. VIF 

POPULATION -2.09 1.08 -1.93 0.05 1.10 
MANUFACTURING 2802.95 714.82 3.92 0.00* 1.13 

HOME VALUE -0.15 0.03 -4.98 0.00* 1.49 
POVERTY -308.43 476.87 -0.64 0.51 2.24 
ENTROPY 25504.86 17416.39 1.46 0.14 1.39 
HISPANIC 1325.60 501.70 2.64 0.00* 9.24 

WHITE 1799.99 488.43 3.68 0.00* 10.99 
BLACK 909.52 506.59 1.79 0.07 6.39 

*Significant at 0.01 
R2: .07 
Adjusted R2: .06 
AICc: 28267.865202 
Moran’s I: 0.17 
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The following model includes the aggregated race variable, non-white race 

variable along with the variables measuring poverty, percent manufacturing, home value, 

and the Hispanic-white dissimilarity index calculations. Results for this OLS model can 

be seen in Table 11 and are as follows. Variables measuring percent manufacturing, 

median home value, and the aggregated racial/ethnic non-white variable were all found to 

be statistically significant  at α=0.01. Non-significant variables for this model include 

variables measuring population, poverty, and the Hispanic-white dissimilarity index 

variable. However, though these variables were not significant, they fell just out of range 

for statistical significance (α=0.07) so their relationship with the dependent variable  is 

worth consideration.  

TABLE 11: REVISED OLS MODEL I RESULTS 
 Coefficient  Std. Error T-Statistic Prob. VIF 

POPULATION -1.79 1.06 -1.68 0.09 1.06 
MANUFACTURING 3172.24 689.94 4.59 0.00* 1.05 

HOME VALUE -0.16 0.03 -5.59 0.00* 1.40 
POVERTY 140.55 456.64 0.30 0.75 2.05 

NON-WHITE -791.40 210.97 -.375 0.00* 2.05 
HW DISSIMILARITY -177.62 237.48 -0.74 0.45 1.08 

*Significant at 0.05 
** Significant at 0.01 
R2: .26 
Adjusted R2: .06 
AICc: 28269.51 
Moran’s I: 0.17 

  
   The second set of OLS models correspond with the set of exploratory 

regression models discusses previously that include variables that measure the 

disaggregated racial/ethnic variables percent white, percent black, percent Hispanic, and 

variables measuring home value, percent manufacturing, population and poverty per 

tract. The first model includes the aforementioned variables and the Hispanic-white 
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dissimilarity index calculations. For this model, variables measuring percent 

manufacturing, home value, and the percent white variable were statistically significant at 

α=0.01, while the percent Hispanic variable was significant at α=0.05. Non-significant 

variables for this model include population, poverty, percent black and the Hispanic-

white dissimilarity index. Results for this model can be seen in table 12 below. 

TABLE 12: OLS MODEL IIA RESULTS 
 Coefficient Std. Error T-Statistic Prob. VIF 

POPULATION -1.76 1.06 -1.65 0.09 1.06 
MANUFACTURING 2742.63 714.59 3.83 0.00** 1.13 

HOME VALUE -0.16 0.03 -5.18 0.00** 1.46 
POVERTY -342.87 482.18 -0.71 0.47 2.29 
HISPANIC 1065.66 465.22 2.29 0.02* 7.93 

WHITE 1567.90 456.90 3.43 0.00** 9.60 
BLACK 760.67 493.39 1.54 0.12 6.05 

HW DISSIMILARITY  -172.82 241.73 -0.71 0.47 1.12 
*Significant at 0.05 
** Significant at 0.01 
R2: .06 
Adjusted R2: .06 
AICc: 28269.51 
Moran’s I: 0.17 
 
 The second model includes the above listed variables and the black-white 

dissimilarity calculations. For this model, variables measuring percent manufacturing, 

home value, and percent white were all statistically significant at α=0.01, with the 

percent Hispanic variable holding significance at α=0.05. Non-significant variables for 

this model include percent black, population, poverty, and the black-white dissimilarity 

index and the adjusted R2 value was .06. 
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TABLE 13: OLS MODEL IIB RESULTS 
 Coefficient Std. Error T-Statistic Prob. VIF 

POPULATION -1.81 1.06 -1.69 0.08 1.06 
MANUFACTURING 2756.35 714.70 3.85 0.00** 1.13 

HOME VALUE -0.16 0.03 -5.26 0.00** 1.45 
POVERTY -412.61 471.81 -0.87 0.38 2.19 
HISPANIC 1054.30 464.89 2.26 0.02* 7.92 

WHITE 1538.55 455.19 3.38 0.00** 9.52 
BLACK 712.36 488.92 1.45 0.14 5.94 

BW DISSIMILARITY  -2.39 5.49 -0.43 0.66 1.00 
*Significant at 0.05 
** Significant at 0.01 
R2: .06 
Adjusted R2: .06 
AICc: 28269.83 
Moran’s I: 0.17 

Geographically Weighted Regression Results 
 

The models reported above both generate a single set of parameter estimates 

across the entire test area. As discussed previously, the data and variables in question 

include spatial components that are not thoroughly addressed by the OLS parameter 

estimates. In order to better address and understand the relationship between variables 

with consideration to the spatial nature of the data, localized model should be developed 

that. As a result, the same models tested and reported above were used to conduct 

Geographically Weighted Regression (GWR). GWR runs thousands of regression models 

across the entirety of the test area in bandwidths based on manually selected “kernel type, 

bandwidth method, distance and number of neighbors” (ESRI 2017) so that the spatial 

nature of the data may be accounted for. 

Prior to shifting from a global OLS model to a local and geographically weighted 

model, an investigation into whether the variables are spatially autocorrelated is 

necessary. Using the Global Moran’s I tool in ArcGIS, I tested for spatial autocorrelation 

on the residuals of OLS models. This tests whether geographic patterns in the residuals of 
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the variables are clustered, dispersed, or random (ESRI 2017), and will generate a score 

that indicates whether spatial autocorrelation will provide challenges during analysis. The 

Moran’s I values are reported below AICc values in the tables above and indicate that, for 

both models, spatial autocorrelation is not an issue. As a result, GWR testing is possible 

and will face no challenges stemming from spatial autocorrelation. 

   Geographically Weighted Regression  

The GWR model I corresponds to OLS model I and includes variables on 

Population total, Poverty, the dichotomous Non-White variable, Nativity, Percent 

Manufacturing, Home Value, and Entropy. The resulting output generated an adjusted R2 

value of .81. The GWR model II corresponds to the OLS model II and includes the 

disaggregated race variables for White, Hispanic, Black along with variables for Poverty, 

Manufacturing, Home Value, and Entropy. The model generated an adjusted R2 value of 

.80.  

Since both GWR models generated a similar adjusted R2 value, a closer look at 

the AICc was taken to determine the most appropriate model and gauge the explanatory 

power of each. The AICc is “measure of model performance” (ESRI 2017) and is most 

helpful in situations like this one where comparing different GWR models is necessary. 

Generally speaking, the model with the lower AICc is a better fit for the data. If the AICc 

for models in question varies by less than three, then the explanatory power of each 

model is considered equivalent. However, if the AICc differs by more than three, then the 

model with the lower value is considered a better fit. Additionally, comparing AICc 

values for a GWR model to the OLS AICc value provides insight into the benefits and 

motivation of moving from a global model (OLS) to a local model (GWR).  
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TABLE 14: ADJUSTED R2 AND AICC VALUES FROM OLS AND GWR MODELS 

 OLS R2 AICc OLS  GWR R2 AICc GWR 
MODEL I .16 28634.19 .81 27057.19 
MODEL II .11 28695.01 .80 27116.60 

 

Even though both GWR models generated the similar adjusted R2 values, the 

results of the AICc comparison allows for the strongest model, Model I, to be identified. 

However, the AICc comparison of both models suggests that though they both hold 

statistical significance and considerable explanatory power the model with the aggregated 

racial/ethnic variable as well as the dichotomous variable on nativity in analysis is a more 

appropriate fit for the research question.  For the map corresponding to the GWR 

analysis, see Appendix F.  
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VI. DISCUSSION  
 

Results from the exploratory regression Model I (Table 5A) suggest that as 

Population per tract increases (β=-4.728), the total releases per tract decreases. This is an 

interesting finding considering population has been previously found to be positively 

associated with other measures of pollution. This finding could be the result of 

disproportional releases from TRI sites located in less densely populated areas within the 

MSA, a suggestion supported by the map resulting from IDW interpolation (see 

Appendix D) that indicates the largest sources of pollution from the TRI are located in 

rural and suburban areas near the coast.  

Median home value was found to have a slightly negative relationship with the 

total releases per tract (β=-0.23), meaning that as home values increase the total releases 

per tract decrease (and vice versa). This finding lends support to the notion that a path of 

least resistance, composed in part by land value, is a factor in identifying where TRI 

facilities are located.  

As the percentage of persons working a manufacturing job increases, so does the 

total number releases per tract (β=3913.77). This finding, like the finding for home value, 

lends support to the ‘path of least resistance’ explanation for exposure to pollution and is 

indicative of the tendency for persons to live and work within the same area.  

Finally, as entropy increased within a tract so did the total pollution per tract 

(β=52146.41). This finding was considered with great caution, as it could be misleading. 

Entropy, as discussed previously, considers residential patterns across multiple groups 

and measures evenness with higher scores indicating higher levels of diversity with the 

maximum score (1.386 in this case) indicating an evenness that reflects the distribution of 
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racial/ethnic groups within the total test area. Taking the racial/ethnic composition of the 

MSA into consideration, this means that a tract with a score of 1.386, for example, would 

have a racial/ethnic composition that mirrors the MSA. Specifically, a tract with a score 

of 1.386 would have 38.20% White, 36.11% Hispanic. 16.75% Black, and 8.95% Other.  

As the number of naturalized or non-citizens’ increases, the total releases per tract 

decreases (β=-2245.11). This could be indicative of a demographic trend for immigrant 

communities to be located in more densely populated parts of the test area. Similarly, 

when looking at race as an aggregated variable, as the non-white population per tract 

increased the total releases per tract decreased (β=-1074.57). However, this finding 

contradicts not only the existing environmental inequality literature, but also contradicts 

the second model. In the second OLS model, disaggregated racial/ethnic variables were 

included rather than an aggregated non-white variable. Results from the OLS model 

indicate that a positive and statistically significant relationship exists between the total 

amount of TRI releases per tract and the percent black and white in a tract. This 

contradiction is further evident when considering the positive directional, yet non-

statistically significant, findings in regard to the percent Hispanic and overall 

diversity/segregation as measured by the Entropy index. Though the results of the first 

OLS model could be a function of population density and residential patterns for non-

white communities, the inconsistency with the literature and even the second model in 

this project warrant further investigation.  

The OLS Model I indicates a statistically significant relationship exists between 

all of the variables in Model I with the exception of the variable that measures poverty 

per tract. Though the relationship between total TRI releases per tract and poverty rates is 
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not statistically significant, its positive relationship (β=995.30) it falls just outside of the 

range of significance (α=0.07) so it’s implications and the directional findings are 

considered here.  This finding suggests that as there is a unit increase in the population 

that falls below the poverty line, there is an increase in the total releases per tract, and 

falls in line with previous research that indicates the same relationship exists between the 

concentration of poverty per tract and exposure to pollution.   

The OLS model coefficients reported above are for the general global model 

applied to the entire test area, without the consideration or weighting of spatial data. This 

OLS model generated an adjusted R2 of .16, indicating that there is a missing component 

while addressing the relationship between the total releases per tract and the variables 

selected. However, when accounting for the spatial nature of the TRI release data and 

weighting variables across the test area accordingly, the GWR for this model generates an 

adjusted R2 of .81, increasing the explanatory power the variables have relative to the 

total TRI releases per tract.  
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VII. IMPLICATION OF RESULTS  

First and perhaps most striking is the considerable amount of support the 

descriptive statistics have for Freudenberg’s theory of Disproportionality. Two sites out 

of more than 400 account for roughly half of the total releases in the Houston-Sugarland-

Baytown MSA, with a single site accounting for over 32% of the total releases in the 

MSA. Furthermore, the single largest source of TRI releases in the test area falls into the 

SIC Code 28: Chemicals and Allied Products industry that was found to be one of the two 

industries that account for almost 80% of toxicity risk (Freudenburg 2005: 98).  

That the findings highlight severe disproportionality provided support to 

Freudenburg’s theory and aligns with the corresponding literature, but required additional 

analysis be conducted as the disproportionality provided challenges to statistical 

investigation. Subsequent analysis on the test area with the exclusion of the two largest 

outliers confirmed the suspicion that these outliers likely had an undue influence upon the 

results and were driving the results.  That the disproportionate nature of TRI releases 

seems to have driven some of the results for the first model touches upon a 

methodological conundrum that should be explored in future research. Though outliers 

present challenges to statistical analysis. For comparison, the two largest outliers in the 

TRI were excluded during the secondary analysis, removing them from the dataset fails 

to provide a complete picture of what pollution in Houston looks like and who is 

potentially exposed via residential proximity. Though taking the results from both the 

initial and secondary models congruently allows for some insight, I am unsure if either 

model addresses the research question completely as each captures a potentially 

incomplete picture of what environmental inequality looks like in the test area.  Any 
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subsequent analysis should be considered carefully and additional methods to address the 

disproportionate releases should be investigated.  

Results from the first model (both OLS and GWR) indicate that total releases, or 

pollution, per tract is a function of geographic location and displays the power that the 

addition of spatial data have on determining the relationship between the independent 

variables of interest and total releases per tract. This model also indicates that TRI 

releases in the Houston MSA are highest in tracts that are more proportionately diverse, 

less densely populated and are adequately described as suburban/rural.  Additionally, this 

model supports the notion that tracts that have those within the manufacturing industry 

and experiencing poverty are most likely to experience increased exposure to TRI 

releases.  

These findings lend support to previous research and would be enhanced by 

additional, time-series based analysis that could indicate how the relationship between the 

variables of interest and proximity to TRI sites/exposure to total TRI releases may or may 

not changes with demographic trends in the area. Though the implications of the findings 

fit within the boundaries of previously established research, each of the resulting 

coefficients are small relative to the estimated total releases emitted per tract should be 

considered as the estimated total releases per tract is very throughout the entire test area. 

Even tracts with low total releases were still estimated to have an exposure to 8 million 

pounds TRI releases when estimates were calculated with the inclusion of the largest two 

TRI sites. Though initially unintentional, the inclusion of two measures for segregation in 

analysis, the dissimilarity and entropy indices, allowed for a more robust and in depth 

quantitative examination of the relationship between the residential patterns of different 
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racial/ethnic groups and their potential exposure to pollution from TRI sites. The initial 

models suggest that as diversity increases, or segregation decreases, within a tract, the 

total pollution per tract decreases. This is counter-intuitive to previous findings in the 

literature and is what prompted further investigation and the inclusion of dissimilarity 

indices for Hispanic-white and black-white groups. Results from those analyses 

confirmed what the initial models were suggesting that as segregation (as measured by 

dissimilarity indices) increased, total estimated pollution per tract decreases. These 

findings held for models run with and without the largest two TRI sites included in 

estimates.  

In addition to the findings relative to segregation and diversity contradicting the 

literature, the findings on potential exposure to pollution by race and ethnicity do not 

align with previous environmental inequality literature in general, and even 

environmental inequality literature specific to the area. Specially, findings from analyses 

that removed the largest outliers while using the disaggregated racial/ethnic variables 

suggest that Hispanic and white populations were the more likely to reside in tracts that 

have higher TRI releases than their black counterparts. Though there is a directional 

finding that suggests that black groups also experience some increased exposure to TRI 

releases, it lacks statistical significance. Additionally, the coefficients generated by the 

analysis indicate that though some increase in estimated TRI releases may occur, the 

estimated increase in TRI releases for black groups is not nearly as high as the estimated 

increases seen for Hispanic and white groups. Though counter and contradictory to the 

existing literature, these findings prompt future investigation into potential social-

structural factors.  
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First, these findings could be a function of the test area. The test area for this 

project is much larger than the test area in previous research that examines environmental 

inequality. Specifically, previous research on the test area focuses primarily on Houston 

city proper or Harris county alone (Bullard 1983; Johnson et al. 2014). This project 

expands the test area to include eight additional counties that encompass the entire MSA, 

as the researcher feels that the sprawling nature of the urban area makes considering only 

the city or single county alone an arbitrary decision considering the distribution of the 

population. The larger test area, though arguably more appropriate than consideration of a 

single city given the urban sprawl throughout the MSA, may be the reason for some of 

the deviations between the findings of this project and the existing literature.  

Second, the Houston-Sugarland-Baytown MSA is a majority-minority urban 

agglomerate. The racial/ethnic composition of the MSA alone could result in 

environmental inequalities that may not be found in other areas. It may be that, for areas 

in which the racial/ethnic minority populations compose a substantial or majority of the 

total population, that environmental burdens look differently than they would in areas in 

which whites are the majority or in which Hispanics are a much smaller portion of the 

population. That is, in areas with a majority or substantial Hispanic population, or any 

racial/ethnic minority, environmental inequality may fall along different and unexpected 

cleavages of race/ethnicity than the literature has previously found.  

Though the MSA is a majority-minority area, this is a relatively recent 

development. A great deal of previous environmental inequality research was conducted 

in the 1980’s and early 1990’s, when minority groups may not have accounted for a 

majority of the total population (Anderton et al. 1994; Bullard 1983; United Church of 
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Christ 1987). Though consideration and comparison of environmental inequality via 

proximity to TRI sites via longitudinal analysis would be the only way to make any 

definitive commentary on the nature of this relationship over time, brief consideration of 

racial/ethnic demographic trends reveals that the Hispanic population in the MSA has 

grown substantially. That the Hispanic population accounts for one third of the total 

population in the MSA, along with other changes in the demographic composition of the 

MSA, could mean that the environmental burden of proximity to pollution via TRI sites 

has shifted along with these changing trends.  
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VII. LIMITATIONS AND FUTURE RESEARCH  

This project’s limitations, of which there are many, provide an outline from which 

future research can be informed and strengthened. The research project discussed here is 

cross sectional in nature, considering data that are from a single year. The inclusion of 

time-series analysis, particularly with a test area that bears historical and cultural 

significance for environmental justice like Houston, would allow researchers to 

investigate how the relationship between exposure to pollution/chemical releases changes 

or remains constant over time. It would also allow for results derived from 2015 data to 

be contextualized and could confirm whether or not the results here are an anomaly or if 

they are indicative of relationships that hold constant over time.  

The inclusion of longitudinal analysis on the test area and selected variable could 

also provide more insight into the finding between home value and total releases per 

tract. Currently, the results suggest that as total releases per tract increase, home values 

decrease. This finding could provide support to the path of least resistance hypothesis, 

lending any support to this claim would require consideration for whether locations for 

these TRI sites were based on home value (as a proxy for land value) or whether the 

home values decreases following the presence of a TRI site. As this is a cross-sectional 

project the data are only able to shed light on what was occurred in 2015.  

Consideration for on-site releases separate from total releases in future research 

could provide a stronger basis from which interpolation could occur, and might more 

accurately represent the way chemical releases are distributed across the test area. 

Pollution plume modelling that includes data for elevation, topology, climate and wind 

direction could also strengthen future analysis, so long as the researcher remained 
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focused on the research question and was able to derive substantive answers from the 

data and analysis. Additionally, this project only includes a single source of pollution and 

does not include measures for other sources of pollution. The inclusion of multiple 

sources of pollution into the analysis would enhance the analysis and such inclusion 

could address some of the questions that have been raised by the results of this research.  

 Though it has been well established in many ways by the literature that proximity 

to TRI sites and sources of pollution in general is detrimental, there was no inclusion of 

public health data or any quality of life measure in this study. Adding these kinds of data 

in future research would allow for a more robust discussion of the implications of 

proximity to pollution for those living closest to these sits. It, like the additional analysis 

of on-site releases with a time series approach, would strengthen the potential 

explanatory power of the models used and could provide more meaningful answers to the 

research question. Finally, this research project employs a strictly quantitative approach. 

Though appropriate for the specific research question, the addition of qualitative data 

allowing for persons living within the test area to be represented by more than secondary 

data estimates would more personally tie the research and findings to the communities 

being studied.  

 

 

 

 
 
 
 
 
 



 

 62 

APPENDIX SECTION  
Appendix A: List of Counties in Test Area 

 
Austin 
Brazoria 
Chambers 
Fort Bend 
Galveston 
Harris  
Liberty  
Montgomery  
Waller 
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Appendix B: Tract Delineated Shapefile 

N=1070  
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Appendix C: Tract Delineated Shapefile with TRI point Data 

N=1070 
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Appendix D: IDW Shapefiles 
IDW Estimates with Top Two Outliers 
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 IDW Estimates without Top Two Outliers 
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Appendix E: OLS Models

  



 

 68 

 
  

  
  

 
 
 



 

 69 

Appendix F: GWR Models  
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