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LOW REGULARITY SOLUTIONS FOR DIRAC-KLEIN-GORDON
EQUATIONS IN ONE SPACE DIMENSION

YUNG-FU FANG

ABSTRACT. We establish the existence of local and global solutions for Dirac-
Klein-Gordon equations in one space dimension. This is done using a null form
estimate and a fixed point argument.

1. INTRODUCTION AND MAIN RESULTS

In this paper, we study the Cauchy problem for the Dirac-Klein-Gordon system.
The unknown quantities are a spinor field ¥ : R x R! — C* and a scalar field
¢ : R x R! — R. The evolution equations for these fields are

DY = ¢y, (t,z) € RxRY;

O¢ = ¥3; (1.1)
w((),m) = wO(x)a (15(0,1‘) = ¢0($)7 d),t(ovx) = ¢1(x)a
where D is the Dirac operator, D := —iv*0,, u = 0,1, and * are the Dirac

matrices, the wave operator [0 = —0;; + Oyz,and ¥ = 9140, and 1 is the complex
conjugate transpose.

The purpose of this work is to demonstrate a variant null form estimate, by
employing the solution representations in Fourier transform of the DKG equations.
We will take advantage of the null form structure depicted in the nonlinear term
11p, which has been observed by [I1] and [3]. We interpret the null form in a way
that is different from that given in Bournaveas’ paper [3]. Equipping with this
estimate, we can lower the regularity of the spinor field.

For the DKG system, there are many conserved quantities which are not positive
definite, such as the energy. However the known positive conserved quantity is the
law of conservation of charge,

/ |4 (t)|* dz = constant (1.2)

which is applicable to lead to the global existence result, once the local existence
result is established, see [3] and [7].

In 1973, Chadam showed that the Cauchy problem for the DKG equations has
a global unique solution for 1y € H', ¢pg € H', ¢ € L2, see [4]. In 1993, Zheng
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proved that there exists a global weak solution to the Cauchy problem of a modified
DKG equations, based on the technique of compensated compactness, with 1) € L?,
b0 € H', ¢1 € L2, see [14]. In 2000, Bournaveas derived a new proof of a global
existence for the DKG equations, via a null form estimate, if 1y € L2, ¢9 € H!,
¢1 € L?, see [1]. In 2002, Fang gave a direct proof for , based on a variant null
form estimate, which is straight forward, and the result is parallel to Bournaveas’,
see [7]

The outline of this paper is as follows. First we derive some solutions represen-
tations in Fourier transform, depending on various purposes. Next we prove some
a priori estimates of solutions for Dirac equation and for wave equation. Then we
show a local and global results for , employing the null form estimate together
with other estimates derived previously, and a fixed point argument. Finally we
show the null form estimate.

The main result in this work is as follows.

Theorem 1.1 (Local Existence). Let 0 < € < i and 0 < & < 2e. If the initial
data of Yo € H 1€, ¢g € H2VS ¢y € H- 219 then there is a unique local
solution for .

Theorem 1.2 (Global Existence). Let § > 0. If the initial data of (1.1)) vo € L2,
do € H2V0 ¢y € H-20 then there is a unique global solution for (1.1)).

Remarks. 1. The DKG equations follow from the Lagrangian

/Rul {IVo[* = || — Dy — ¢ }dux dt. (1.3)
2. The Dirac-Klein-Gordon system must be
Dy = ¢op; O + mPp = P, (1.4)

3. @2 = I/jI7 where [ is the 4 x 4 identity matrix.
4. Pip = pTy00 = |91 |2+ [ha|> — [1h3]% — [14]?, where 1), are the component functions
of the vector function 1, which take values in C.

The case § = 0 is critical in the following sense. Assuming that the initial data
(¢o, P1) are in Hz x H /2 does not imply that ¢(¢,-) is bounded. In fact, it is a
BMO function. One of the motivations for proving the existence of global solution
with low regularity, is based on an observation made by Grillakis, which is that the
initial data of : o € L2, ¢ € H%, o1 € H = isa right space for the existence
of an invariant measure, see [1] and [12], resulted from the DKG equations.

2. SOLUTION REPRESENTATION

In what follows, we denote by (¢,z) the time-space variables and by (7,£) the
dual variables with respect to the Fourier transform. We will use o = % — € in this

paper. We will also often skip the constant in the inequalities. For convenience, we
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also denote the multipliers by

E(r,6) = 7|+ ¢ + 1
S(r,6) = [I| = ¢l| + 1

(Ta f) = T - |§‘2
D(r,6) =17 +7"¢
M() = |¢] + 1.

We use W and D as the symbols of the wave and Dirac operators respectively.
Consider the Dirac equation,

Dy =G, (tz)€c R xR,

$(0) = vo. @1)

First by taking the Fourier transform on ([2.1]) over the space variable and solving
the resulting ODE, we can formally write down the solution as follows.

zt\ \ 72t\

et(t=s)IEl t e—it—s)lg] ~
¥ / e D€L OiC €) ds + / ewma—g)ia(s,s) ds.
(2.2)
Rewriting the inhomogeneous terms in gives
_ itlg| e—itlEl ~
Bit.€) = [ZM DA€ €) + 3 DU1gl O] Wo(€)
eitT o 1t\§\ th _ e*lt‘g‘ ~ (23)
_— —_ G(r,&)dr
+ | ey 2069 + i ey D€ —€1G()

Now we split the function G into several parts in the following manner. Consider
a(7) a cut-off function equals 1 if |7| < 3 and equals 0 if |7] > 1, @g(7) = @(%), and
denote by h(7) the Heaviside function. For simplicity, let us write

Gu(r.€ ) h(&n)a(r £ [€)G(r.€),
Gr(r.6) = G(r.6) — (C+(r.6) + C_(r.)),

~

Dy = D(|¢|, £€).

Note that G are supported in the regions {(7,€) : £7 > 0,|r F [¢]| < 1} re-
spectively. Using the decomposition of the forcing term G = Gy + G + G_, the
inhomogeneous term in (2.3) can be written as

et _ gitlé] et _ o—itlé] R
/[m (1€1,6) + PECENGE) D(|¢|, =€) Gy (T, &)dr

it (T §) A ite] D+ D, Gy —'t|§|ﬁ* Gy
= [ &7 G dr — ¢’ dr —e YISl — dr,
/ —1€]? 21 ) =€l 21l ) T+ €]

(2.4)
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it _ it|€|
/LD+(G++G )dr

28l — [&D)
_ ztmggl i | (;__|£|)£|_1(@++a(7')@_)d7' (2.5)
JIE o 1390
P
| ey -6+ G-
= _nlélflél eit(jf:lf Lama, + G )ar (2.6)
v em(lisﬁr)ﬁf? i _Ztmi\ 1 |?|G+d

Combining —, we can give a formula for 1[1, namely

o0

D(r,6) = (0 (1, A4 1(6) + 0P (1, ) A 1(€)) + K(1,6),  (2.7)

k=0

where 0 (7,€) are the delta functions supported on {7 = +[¢|} respectively, §(%)
mean derivatives of the delta function, and

D(r,§) »  (1—dg(r))DyG_  (1—dg)D_Gy

Kir.8):= m,g) [ |s|> RS 28)
A\:I:,O(g) . 2|§| 0 0 - / Gf + )\ F |£‘ ))G:F d)‘] (29)
Ap k(€)= D;(ﬂ_k!) /(A T1E)F 1[G +as(\) G dA. (2.10)

Now we split ¢ in a different manner. Consider the cut-off function 3(7’) equals
1if |7] < R, and equals 0 if |7| > 2R. Let b(7) + ¢(7) = 1. Applying (2.3), we can
give the following formula for .

oo

D(1,6) = (6P (1, U4 1(&) + 8P (1, )U_ 1(€)) + U(,€), (2.11)

k=0
where N
~ D ~ c(A

o~ ) —_ k o~ o~
O sl) = 22l [0 160507 lehGan (212)
Fim ey o (D2 —[6) | DT +[ED 5,
Um0 = g1y * 2eer+1e) ¢

Consider the wave equation,
Op=F, (t,z) R xR,

$(0) = ¢o,  ¢+(0) = ¢1. (2.13)
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Taking Fourier transform on (2.13)) and solving the resulting ODE gives

3(t,€) = costeldo(€) + S2EIT (6 ¢ / St =)l p s, (214)

€l iy
Thus we can rewrite it as follows.
~ it|¢] —itg] __ it|g] _ o—itlg]
3.6 = 5 ——d0(&) + g —1(©)
-1 ettt _ zt\&\ J ettt _ efit\ﬁ\ F\ g (215)
Yo T (Tf)”ma/ I
For convenience, we define the followmg
- 1o cAFIED)
== F A,
S / (D50 F [ED PO ax (2.16)
+.k =+ 2|§|k' + + ) ’ .
cr—lE) _cr 418D 5
F .
v = 2|£| A e e
Combining and (| , and invoking the cut-off function, we have
$(r. ) =D (Vik(r©) + Voi(.0) + V(1,8 + > Niu(r,6) + N(7,€), (2.17)
k=0 k=0

where
Vin(r,8) = (1-a(6)0% (r, )0+ 4 (6),
V(r,8) = (1-a(&)d(r,€),
Ni(r,€) = (&) [0 (7, )04 1(€) + 8“) (7, €)5_ 1(€)].
N(7,€) = a(§)v(r,€).

Remark. We need to localize the solutions for Dirac equation and wave equation
due to the presence of the delta function.

3. ESTIMATES

To localize the solution in time, let ¢(t) be a cut-off function such that ¢(t)
equals 1 if |t| < 1/2, and equals 0 if [¢| > 1, and pr(t) = ¢(¢t/T). Notice that, for
an arbitrary function f(t,z), we have

67 * fllz = llorfliz < ezl fllze- (3.1)
For the Dirac equation (2.1, using (2.11]), we define
(oo}
Ur(r,€) =g+ »_ (0T +0WT_ 1) (r,6) + U(r.9), (3.2)
k=0
Lemma 3.1. Let e >0 and TR ~ 1. If¢g € H™“, then we have
S iag o G
I8 ey < ol + TN =S G

We will only outline the proof. For more details, please see [§].
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Proof. Applying formulae (2.11]), we can derive the following bounds:
. G
533250 + (000) 2 < CllWollr—o + Tl =2 T

):

(4RT)* é
I < Tum =

||§%M7a@T * (5:(tk)ﬁ:|:’k)

~

G

[S3 870 sy < OT =g o

Combining these estimates, we have (3.3)). O
Consider two Dirac equations,
Dw]:G]a j:172a
¥;(0) = to;-

For the solutions of this system, we have the following key estimate whose proof
will be presented in the last section.

Lemma 3.2 (Null Form Estimate). Let € > 0, and 11, ¥ be the solutions for
. Ifwoj € H=%, we have

(3.4)

/\ /\

% ¢ V2)
=g e <CDWoilla- +||A S lle) (loz - +||A o)
(3.5)
For the wave equation (2.13)), we define
Sr(1,6) = Prx Y (Vix+ Vi) (1) + V(1,0 +@r+ Y Ny(r,6)+ N(7,€). (3.6)
k=0 k=0

Thus we have the following estimate.

Lemma 3.3. Let ¢ > 0, 0 > 0, TR ~ 1, and ¢ be the solution of (2.13). I
do € H2VS and ¢y € H-210 then

~

~ 1 ~ F
|S3ATE08, ], < o(||¢o||H%+5 ol ges + Tl mmmgylli)- - B
Proof. Applying formula (2.17), we can derive the following bounds:
~1 =1 —~ s € ﬁ
HS§M§+6SDT % Vi,OHLZ’ < C(||¢0”H%+‘; + ”¢1”H’%+5 +T HW||L2)
~1 —~ ~ -5 € F\
[SE 34430« R 12 < (160300 + 164l + Tl =gz o),
AT D URT)* . F
~1 —~1 ~ =5 (4RT) € ﬁ
HS;Mé—HS(PT*NkHLz <C k T |]/\4\§765§75HL27
JOSE F
(37497, < oT

~1 —~1 5> F
R PR s e

2
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Combining the above inequalitites, we complete the proof. ([

We will also need some technical lemmas.

Lemma 3.4 (Hardy-Littlewood-Polya). Let r =2 — % - %. Then we have
f
[ P25 dsar < il (5.5)
Rixgl |8t

Lemma 3.5. Let f(t,z) and g(t,x) be any functions such that f € LI(L*(R™))
and SPG € L?>(L*(R™)). Assume that € > O, =l-¢l=1-8 and2<r<ooc.
Then we have

=L

S2—¢

g/l L2 @ny) < ClISPGllL2 (L2 @ny)- (3.10)

Proof. The proofs for (3.9) and (3.10) are analogous. Therefore, we will only prove

the case of (3.10). Taking the inverse Fourier transform in the time variable over
the identity

HL2(L2(R7Z)) < C||f||Lq(L2(]R"))a (39)

g= 5 SﬁA (3.11)

gives

pEi(t—s)I€] N
gt &) = / F1(SPG)(s,€) ds. (3.12)

t—s|t=p

Then we use duality and Hardy-Littlewood-Polya inequality to compute

tS)\é\ —
(ool = 1@ =1 [[ [ s (579 st arae

172 (D Ol 4, (3.13)
£ 5|1

< CIF 1 (5%9) 122118l

122y = 87l e llell o pe-
This completes the proof of (3.10)). O

4. LoCAL AND GLOBAL EXISTENCE

Now we are ready to prove the local existence for the (DKG) equations.

Proof of Theorem[1.1 Consider the DKG equations
Dy = proy,
O¢ = oy,

and the map 7 (¢, ¢) = (U, Dr). We want to show that 7 is a contraction under
the norm

(4.1)

N, 9) = [SFA9|| o + [SFAL49 . (42)

For convenience, we define

J(0) = lloll 35 + 91l 35 + Ioll3-n + 1. (4.3)
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First we apply (3.7) and (3.5)) to compute

-

L7495 o PTVY || PTOY
[S3A75 7% | < C(IO) + T = 5w Mlse) < CUO + T =5 1a)-
(4.4)
To bound the term above, we first compute
[ME260 (1) 12 ~ [1Ga * (60) )22 < S| n< |G % (1) 12 (4.5)
<o 345 1@ -,
where G (z) is an L'-function such that
Gal(&) ~ (1+ €)™, (4.6)
see [13]. Then we invoke (B.9), and obtain
H <PT¢¢ H H oY H
Fiegt iz < raz2) -
< ||¢||L2q(H§+5)||7/}||L2q(H—a) ’
< [|SEMTEG| |5
Thus we get
<2, < NG, 0. (45)

Next we want to bound the term involving Up. The estimate (3.3) implies

185 A | o g < 1ol + 77 Wiﬁ l)- @)
Hence, using , , and , we have
N(T(6,8)) < C(J(0) + TN (1), ). (4.10)
Choosing sufficiently large L, for suitable T, we have
N, ¢) < L= N(T(4,¢)) < L, (4.11)

provided that C(J(0) +T<L*) < L.
Now we consider the difference 7 (¢, ¢) — 7 (¢, ¢’). Base on the observations

P~ T = s @)+ 9+ S FEEN ),

. : (4.12)
B — ' = 56— )W+ ) + 5(6+ )W — ),
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Using (3.7), (3.5), (.12), and (4.8)), we first calculate
||5§M§+57( T — o) ||Lz
F(( =¥ +9")

<ore (P Dy, 4 %gé I2)

f / !
<or (I FeDrly, ) HeDe=y)
< 0+ P )

< CT(|SEM340G — /|| 12 + |83 M=% — || 12) L(J(0) + L?)
< CTL(|SEM3+0¢ — @2 + | SE M) — || 12)
Analogously, we get

|SEAT—(wr —Wh)|| o < CTL(|SEM 0 = ¥||1a + |SEMTET6 = 3| 12).
(4.14)
Combining ([4.13)and (4.14)), we have
N(T(p =4 ¢—¢)) <CTL’N(p— ¢, ¢ — ¢'). (4.15)
Therefore for suitable T', we obtain
1
N(T@W—¢',¢—¢)) < §N(¢—¢'7¢—¢/)7 (4.16)
provided that CTL? < % We can conclude that the map 7 is indeed a contraction
with respect to the norm N, thus it has a unique fixed point. (Il
We now prove existence of a gobal solution.
Proof of Theorem[I-3 (From the law of conservation of charge, we have
sup [[¢(t)]|z2 = [[voll 2 (4.17)
(0,7]

To bound ¢ we apply the formula ,

T+ z+t— 5
26(t,7) = (bo(a+1) +do(e—D)+ | duly)dy+ / / O(s,y)dyds. (4.18)
x—t xTr—

t+s
First we write ¢ = ¢ + ¢n, the homogeneous and inhomogeneous parts of the
solution, then we obtain

oL (Ol < 1oLl ;145 < Nl 315 + 1l - 145 < J(0), (4.19)
and
r+t—s
lon (B~ < / | ualdvds <CTlli (@20)
r—t+s
Combining (4.19)) and ( , we obtain
||¢( Nz < C(T, J(0)). (4.21)

Taking Fourier transform of the solution ¢(t), we have

3(1,6) = cos t€ldo(€) + LT (6 ¢ / sin(t = 981D Tus, s, (4.22)
G ST
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Then we invoke (3.5)), (3.9), (for e = i), and (4.20) to compute

t
o ;145 < ol y1vs + lPrll - 140 +/0 ||90TE¢(3)”H—%+5d5
¢T¢¢

’\1 5HL2

< J(0) + T

< J(0) + T3 lor v .z

H @bew (4.23)

< J(0)+

< J(0 )+TPII¢T¢1/JHL2

< J(O)+T° / [SO2 w [6(8) 2 0t
< C(1,0),

Iz

where p is some positive number. The calculation for ||¢t(t)||H‘% +s is analogous.

Thus the above bounds ensure us to proceed the construction of solution beyond
T. d

5. NuLL FORM ESTIMATE

In this section, we demonstrate the key estimate in Lemma[3.2} Let € > 0 and 1,
19 be the solutions for the Dirac equations (3.4)). If the initial data 1, € H‘i‘“,
7 =1,2, then we have

/\ /\

wa Y2 < ) (ol a+HA 5 l22) (el a+||A 51ll2)- 61

MO‘S2O‘

The proof of this estimate is based on the duality argument and it will be given
in a number of steps. Without loss of generality, we assume that ¢; = 12, and
prove: if ¢ is a solution of the Dirac equation ([2.1)), then

~

SOTW/J G 2
HMO‘S2 HL2 < C(T)(”?/’OHH—” + HWHLZ) . (5.2)

Recall the notation:

E(1,6) == 7|+ €| +1, S(r,€) = ||r| - l¢]| + 1,
W(r,&) =72 — €%, D(r,€) =1+,
Dy == D(¢],+¢), D- := D([¢], —€),

The formula for 12, as in (2.7), for the Dirac equation ({2.1]) is given by

o0

=3 (P A () + 0P (1, OA_ Q) + K(rO),  (5.3)

k=0
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where 6.4 (,€) are the delta functions supported on {7 = ||} respectively, 6¢)

mean derivatives of the delta function, and

"ot e 2+ 1eD)
Aso(€) ::%[%_ /Gf+< |€<A>>G¢ o,

~ Di(—1)k ~ ~
Aeate) = ZHE [OF I G+ G ]
Moreover we write 5
Ay p(€) = 2|£|fi k(§),

and set K = IAQ + IA(Q, where

}'?1 = 2(775) af, 1?2 — b1D+G_jAb2D_G+7
W(r,§) ES

D(r.§) 5 , (1=a(r)DiG-  (1-ad)D_Cy

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

and by, by are bounded functions. The Fourier transform of the quadratic expres-

sion, np = 1 * 1, can be written as the sum of the following terms.

3 (WAL )« (60 As),

k,l

> (0 Ak ) (59 ),

)

k
Ky s Ry + Ky # Ky + Ko # Ky + Ko % Koy,

Note that
Al (€)= AL (—0),  FE(6) = FL(-9),
Tan©) = FL @%vf& K(r.¢) = Bi(—r, &),
and

D) = (09 (r, A4 k(€) + 08 (1, A 1(9)) + K(7,9),

k=0
Lemma 5.1. Let a < 1/4. Then the following estimate holds

(P G5 + 00 B P

ST [
< Clk+ 1+ )T 3| i il | fal -

Proof. Let

~

Do ~ .
iy = 5f)ﬁfi,k = 5§Ek)Ai’k.

Z (5$)ii,k) * (I?1 + f?z) Kl + K2 Z (5( )Ai k , labeled.8c
k

(5.9)
(5.10)
(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)
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Using duality, we demonstrate the case (—, +), while the case (4, —) is being similar.
We first compute the fractional term

D(¢],—€)7°D(|nl, n) {o, if &n > 0,

l[n] 270 £ 241, if &n < 0.
Throughout elementary analysis we have the bound:

(1+€)(1 + [n)° e (517)
(L+ L&+ (||1E]+ Il = 16 +nl| + 1)

for én < 0. Thus
’ {o1Z -k Z11,9) !

ﬁ _ Oﬁ - e
| / 7 2 %Tm W) 7. ) F rg (el + Inl. € + m)dedn]

< Cllf - kllar-o I f+ e | M* S th+ org]| 2,

and through some computations, we have
1M S2 4R prgl| e < Ok + 1+ 1)THH=3 | 12§20 .. (5.18)
This completes the proof. O
Lemma 5.2. Let o < 1/4. The following estimate holds
5 (k) ¢t D () Dz 7
HWT * (5¥ fi,kﬁ’yo) * (6i ﬁfivl) H
M&S\Qa L2
< O+ 1+ T2 fepll ol felli-o

Proof. Using duality, we demonstrate the case (4, +), while the case (—, —) is being
similar. We first compute the fractional term

D(¢],€)7°D(|nl,n) {07 if & < 0,

[€lIn] 2 F 29!, if&n>0.
Throughout elementary analysis we have the bound:

(1 + €D~ (L + [m))™
L+ 1€+ 0D (|| = 1l + Inl] = 1€ +nl| + 1)
for £n > 0. Thus

<C (5.19)

200 —

| (orZ 1k Zs1,9) |

D 0D R —_
~ | / o2 ("f"ﬂ?ﬂ Tf‘) W) 7. )T org(—le] + Inl, € + n)dedn|

< O\ fllm-oll frallz-o || M S+ Horg|| 2.

This together with ([5.18)) complete the proof. |
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Lemma 5.3. With the notation above, the following two estimates hold

~

G
I f.0llz-o < C(llollg-o + HTA%HLZ), (5.20)

Ifnll—e < Oy || g L2 (5.21)

The proof for the Lemma is stralght forward so that we skip it. Notice that,
in the (5.21)), S ~ 1 on the support of Gy.
Lemma 5.4. With the notation above, the following estimate holds
D1 * K * f(l
"=z < Cl=5 Il (5-22)
M S2e MaSi

Proof. For simplicity, we write G=G ¢ and K=K 1. We use dyadic decomposi-
tion to handle this case. Assume that

G=> Gy (5.23)
k=1

where @i,tk(r, €) is supported in one of the following four types of regions:

Yo o={(r8) 7> 0,428 <7 —J¢] < $2MFY

Spo={(r8) 7> 0,2 <7 — ¢ < —2871, (524
Eop={(ng) 7 <0428 <7 jg] < 428, '
= {(1,8) T <0, 2" <74 |¢] < 2871}
The decomposition of G induces a decomposition for K , namely
. D~
Ky k= WG:t + k- (5.25)
To compute the convolution in ([5.22)),
Kigp#Kypi(—1,—€) = /Fi,i,k(_T —0,—& —n)Kx 1 1(0,n)dody
(5.26)

/Ki cp(TH+o &+ MY’ K+ +1(0,n)dodn,

we have 16 cases resulted from (5.24]) and ( as follows.
{(r,0,¢&, 77):7'—|—0>0,a>0,7'—|—cr—|§+77| ~ 2k o — 7] Nj:ZZ}

{(r,0,&,m) : T—|—0<O,U<O,T+cr—|—|§+n|~:|:2k,a+\77|Nj:2l}
{(r,0,6&n) i T+0 < 0,0 >0,7+0+|{+n| ~x2" 0 — |y ~ £2'}
{(r,0,&n) : 7+ 0>0,0 <0,7+0—|{+n| ~£2" 0+ |n| ~ £2'}

We label them as Xy, ;[(+, j:) (%, £)], and denote by Y, without spec1fy1ng which

one precisely. We also use Kk for abbreviation of Ki +.% and Gk for Gi +.k -
Let g be an arbitrary function. We first compute

[V (r+0) =+ ()] [+ 0] = [(r+o)o—(E+n)n] +4" [(T+o)n—o(E+n)].
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Thus, we have

~ 0 1 0 1
= SN _| [ At V(r+0)=7'(€+n) o a+v'n4
|<Kk*Kl,g>|—‘/Gk(T-I—U,ﬁ—i-n) T o) = (€+1)° g Gi(o,n)

% 3(—7, —€)do dn dr dg’

q G /
<2 a2l ([ Buatr@)la(-r,—€)Pardg)
where
M2 (& 4 )M ())Q(7, 0,&,7)

I €)= — — dodn, 5.27
k,l(T 5) Dy1 W2(7+Uaf+77)W2(Ua 77) - ( )
Qo) = [(r+0)o— (€ +mm]” + [(r+om—olc+n)]",  (5.28)

and Dy, (7, €) is a slice of Xy for fixed (7,€); i.e.,
Dy(7,€) = {(0,n) : (1,0,&,m) € Tk} (5.29)

We need to sort the cases into two sets,

Ek,l[(ia )7 (ia )} and Ek,l[(iv )a (:':7 )]a (530)

due to the fact that the computation for the 8 cases in each set is similar. For
simplicity, we will assume k > [, while the other case is similar.

Cases H. We have the following estimate

% . *[? . C 1 G‘ . @ .
”%HL2 - gQ(%—a)kH ]j\ja’kHLZH Z/\—}QJHLZ’ (531)
%, Lk I/(\', . C 1 @7 _ @7
HWHL? < gQ(%fa)kH MakHL'zH ]\’4,\’0:[“[/27 (5.32)

In these cases, we have (7 4+ 0)o > 0. Throughout some algebraic manipulation,
the expression @ can be written as

2Q=(r+o—[E+n)*(c+ )+ (T+o+[E+n)*(c—nl)?

(5.33)
+8(1 + o) [|€ + nllnl — (£ +n)n].

Take the case of
Ky ppx Ky, (5.34)

as an example and in which Dy; = {(n,0) : 7+ 0 — |+ 7] ~ 28,0 — |n| ~
2L (1,0,6,m) € Sial(+,+); (+,+)]}. In this case 7+ o > 0 and o > 0. In the
no-plane, this is the region of the intersection of two forward cones. One has the
thickness of 2¥ and the translation of (—¢, —7), while the other has thickness of 2'.
It is bounded mostly, except for the extreme case which is when one cone moves
along the other cone such that the intersection region is unbounded.
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For the first part, we distinguish three cases: |£ +n| < |n|, [€ + 71| > |n|, and the
extreme case. For the first two cases, we have

MO ( + )M (n)(r + 0 — [ +0))*(0 + |n])?
Dy W2(7+07£ +”7)VV2(03 77)

M2 (€ + ) M2 (n)
— dod
AmJT+U+K+MVW—7m20n
Ll AP M) (5.35)
28 )b, @R+ +m)?

do dn

Ili,l (Ta E) =

1/ 1 —,
< = dnM=
S o, @ v

C

< WMM(@SM&(T’ £).

For the extreme case, we obtain

1/ M2 (€ + 1) M>*(n)

I (1,6) ~ =
O o @ e

1 / 1
<= dn (5.36)
2 Jp,, (2K + &+ n))2—te

C

A2 Qda
sa—sa M (£)57(7, £).

<

For the second part, again we distinguish three cases: |£+n| < |nl, |E+n| > |7,
and the extreme case. For the first two cases, we get

M\Qa M\Qa 20 2
Bing = [ LU0 to et e - lf
7 Di,1 W2(r + 0,6 +n)W2(o,n)
12 A2
:/ M (£+n)1\24 (n) dodn
Dy (T +o - |£ + 77|) (U + ‘77|)
R (& + )M () (5.37)
2251 by, 25+ |nl)?
1 1 —
< — —  dnM**
= 22k—l /Ek,l (21+ |n|)2_2a n (f)
< C M\2a §4o¢
S SErza ()S™(7,9).
For the extreme case, we have
1 M2 (€ +n)M** (1)
2
~Y d
RO~ g [ e
1 1 —
< dnM>* (5.38)
= 22k—l /ﬁkJ (21+ |m>2_4a n (5)

IN

C Ir [e% I (6%
WMQ (€)5*(7,€).



16 YUNG-FU FANG EJDE-2004/102

For the third part, we get

172 172 _
124(r6) ::/ M (§+n)1\£2 ()7 + o)o[|€ +nlll = €+ mn] ;o)
Dr, W (T+Uaf+77)W2(U,77)
C M2 (€ + ) M>*(n)(r + 0)a ¢ + |||
= g / N | P ) R (5.30)
C — —
< goim [, P+ 03 )y

C

= 2(1-2a)k+1

M2 (€) 8 (1, €).

The extreme case will not cause trouble since £ + 1 and 7 are of the same sign
except on a bounded region, i.e. [|€+n|[n| — (£ 4+ n)n] = 0 except on a bounded
region. Let us denote the small region by R

\ 2o §+77)M20‘( )(T + a)al§ +nlln]
I (r,8) < 22k+2l / (t+o+E+n])2%(c+n))? dodn

< 722k+2l /RM2°‘(§ + n)Mza(n)den

c (5.40)
< guera | o2 W0
C —~ ~
< SamamE M8 (7,6),
Cases E We have the following estimate
% . *[?,, C 1 G ’\7
H%’|L2_2€2(*—a)k’| = kHLZH M’ ’lHLz, (5.41)
N :
ot < C LSt Sty G

In these cases, we have (7 4+ o)o < 0. Throughout some algebraic manipulation,
the expression () can be written as

2Q = (t+o+ [+ (c+n)* + (r+0 = +n)*(o — n])?
—8(t +o)a[|E+nllnl + (€ +mn)n].

Take the case of
K_pxxKq (5.43)

as an example and in which Dy; = {(n,0) : T+ o+ |£+n| ~ 25,0 — |n| ~
2L (1,0,6,m) € Sral(—,+); (4+,+)]}, In this case 7+ 0 < 0 and ¢ > 0. In no-plane,
this is the region of the intersection of a forward cone with a truncated backward
cone. One has the thickness of 2¥ and the translation of (—¢, —7), while the other
has thickness of 2!. It is bounded for all cases. We still have the extreme case which
is when one cone moves along the other cone, though the region of intersection can
be as large as possible, nevertheless it is bounded.
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Again for the first part, we can estimate

M2 (& + ) M>*(n) (7 + 0 + € +))%(o + |n])?
It = L . dod
k,l (T, 5) /;kvl W2 (T + Ua g + U)WQ (07 T’) 7 T]
M2 (€ + ) M2 (n)
= dod 5.44
AMJT+0—K+MP@—VMQJH (54)
SN N (S e (R Vi

=22 ., (THo—lE+n])?

To estimate the above integral, we separate the cases for |£+n| > |n|, |£+n| < |nl,
and the extreme case. Throughout some calculations, in each case, we have

1 1 A72a Qo
1%71(7,5) < ?WM2 She, (5.45)

For the second part, we derive

M2 (€ + )M (n) (1 + 0 — [€ +1))*(0 — |n)?

I (1,6 = S - dodn
! D1 W2(T + 0',5 —|—77)W2(O', 77)
M\Qa M\2a
:/ (E+mn) / (n) dody
Des o+ [0+ o] (5.46)
O 1 2 1 2
SRy (S RV VRSV
2%% Jp,. (o +Inl)
L 02 (€ tnl+ 1)

S o ol L l.h2x2a N
228 Iy, 2+ Inl)*+

To estimate the above integral, we separate the cases for |£+n| > |n], |£+n| < |nl,
and the extreme case. Throughout some calculations, in each case, we have

1 1 A72a Qdo
Il%,l(ﬂﬁ) < ?WMQ Ste, (5.47)

For the third part, we have

Bio - | M2 (¢ + )M ()l + oo (1€ + nllnl + €+ mn] -
’ Dy W2(T+ 0’,€—|—77)W2(0', 77)
C M2(& + ) M>* ()| + olol¢ + nlln| 5 48
Sz%ﬂhéw otz oW (5:45)

c . .
< W/ (1€ + 0l + 1)%*(In| + 1)**dodn.
Dy

To estimate the above integral, we separate the cases for |£+n| > |n|, |£+n| < |nl,
and the extreme case. Notice that for the extreme case, we have |€ + n||n| + (£ +
7)n = 0 except on a small part of the region of the intersection. Throughout some
calculations, in each case, we have

1 1 1720 Gda
Lia(1,6) < gmﬂp Ste (5.49)
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Now we return to the proof of 1) Combine the above, we get

|(KiKi,g) \<0H HLZH =l / fk,zw)!@(—n —¢)|"drde)'”
c 1 G .
= 25 oG-k || - HL2H S| 12052 2 (5.50)
1126’@” HLQHA g1t ||L2HM&SZQ [l 2

Finally, we have

%*I? K « K
IIWIILQ—ZH =,

MOtSQa MaSQa (5 51)
¢ , G é -
SggmﬁmpgmuM%Jm_qAAmp
This completes the proof. 0

The estimates for the remaining cases are given in the following Lemma.

Lemma 5.5. For j=1,2 and k=0,1,2,---. The following estimates hold
Q/O\T % (5(k)fT Dy ,)/0) ([/(\’) A
e o e T
Pr * K, * (5(16);;;&) G
B T I S PN S-S
eraFicky <o O
]/\Za§2o¢ L2 - J/\ZQAI L2’
@T * FQ * EJ A
||WHL2 < CH]\/ﬁgl [

The proof of this lemma is a repetition of the arguments presented in Lemmas
(1] B-2, and [5.4] so that we omit it.

Acknowledgement. The author want to express his gratitude to Manossos Gril-
lakis and Chang-shou Lin for their encouragement and help.
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