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ASYMPTOTIC FORMULAS FOR q-REGULARLY VARYING

SOLUTIONS OF HALF-LINEAR q-DIFFERENCE EQUATIONS

KATARINA S. DJORDJEVIĆ

Communicated by Pavel Drabek

Abstract. This article studies the asymptotic behavior of positive solutions

of the q-difference half-linear equation

Dq(p(t)Φ(Dq(x(t)))) + r(t)Φ(x(qt)) = 0, t ∈ qN0 := {qn : n ∈ N0},
where q > 1, Φ(x) = |x|α sgnx, α > 0, p : qN0 → (0,∞), r : qN0 → R, in the
framework of q-regular variation. In particular, if r is eventually of one sign,

p and |r| are q-regularly varying functions such that tα+1r(t)/p(t) → 0, as

t → ∞, we obtain asymptotic formulas for the q-regularly varying solutions.
Moreover, when p(t) ≡ 1 and r is an eventually positive or eventually negative

function, we obtain an asymptotic formula of a q-slowly varying solution. Using

generalized regularly varying sequences, we apply these results to the half-
linear difference equation case. At the end, we illustrate the obtained results

with examples.

1. Introduction

This article studies the asymptotic behavior of q-regularly varying solutions of
the half-linear q-difference equation

Dq(p(t)Φ(Dq(x(t)))) + r(t)Φ(x(qt)) = 0, (1.1)

on the lattice qN0 = {qn : n ∈ N0}, where q > 1, Φ(x) = |x|α sgnx, and α >
0. To this end we use Karamata’s theory which is a powerful tool in the study
of regularly varying functions and the asymptotic properties of differential and
difference equations.

The study of half-linear differential equations in the framework of regular vari-
ation started with papers [4, 5]. Namely determining necessary and sufficient con-
ditions for the existence of regularly varying solutions in the case p(t) ≡ 1, and
generalized regularly varying functions in the case p is positive, continuous func-
tion on [a,∞), for some a ∈ R, with r : [a,∞) → R being continuous function, of
the equation

(p(t)Φ(x′(t)))′ + r(t)Φ(x(t)) = 0, t ∈ [a,∞). (1.2)

For recent papers investigating asymptotic behavior of positive solutions of (1.2)
see [13, 14, 15]. Once the existence of regularly varying solutions is proved, main
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investigation becomes the asymptotic behavior of these solutions. Results con-
cerning asymptotic behavior of regularly varying solutions of half-linear differential
equation (1.2) can be found in [8, 9, 13].

The results obtained in both the continuous and discrete case suggested investi-
gating q-difference equations in the framework of q-regular variation. The theory
of q-regularly varying functions has been applied in the asymptotic analysis of q-
difference linear equations (see [11, 17, 19]), half-linear equations with p(t) ≡ 1 (see
[16, 18]) and nonlinear equations (see [7]). Results concerning asymptotic formulas
of q-regularly varying solutions, as far as we know, exist only for a linear equation
(see [11]).

In [3], necessary and sufficient conditions for the existence of q-regularly varying
solutions of the half-linear q-difference equation (1.1), with p being a positive, q-
regularly varying function and with no sign condition on r, have been given. We
state here the theorem proved in [3], which will be very useful throughout the
paper, since it provides the existence of q-regularly varying solutions of certain
indices, whose asymptotic behavior will be examined. This result was proved by
using the Karamata’s theory of regular variation and Banach fixed point theorem.
Note that RVq(ρ) denotes the set of all q-regularly varying function of index ρ

and the symbol [a]q = qa−1
q−1 , a ∈ R will be used throughout the paper. In Section

2 we recall the definition and some basic properties of q-Karamata functions and
introduce notation that will be used through this paper.

Theorem 1.1 ([3, Theorems 3.1, 3.2]). Let p ∈ RVq(λ), λ 6= α. Then (1.1) has
eventually positive solutions

x ∈ RVq(ρ1) and y ∈ RVq(ρ2),

where ρ1 and ρ2 are such that λ1 = Φ([ρ1]q) and λ2 = Φ([ρ2]q) are real and different
roots of the equation

hq(x)− x+
c

[α]q
= 0, (1.3)

if and only if

lim
t→∞

qαtα+1r(t)

p(qt)
= c ∈

(
−∞,

∣∣∣[α− λ
α+ 1

]
q

∣∣∣α+1)
, (1.4)

where hq :
(
Φ
(

1
1−q
)
,∞
)
→ R is defined by

hq(x) =
x

1− q−α
(

1− q−λ
(
1 + (q − 1)Φ−1(x)

)−α)
.

To continue in this direction, our next goal is to establish asymptotic formu-
las for q-regularly varying solutions. Throughout this paper we will consider two
approaches for establishing asymptotic formulas of q-regularly varying solutions of
(1.1) in the case c = 0. First, in Section 3, we will consider equation (1.1) under the
assumptions that coefficient p is a q-regularly varying function, i.e., p ∈ RVq(λ),
λ 6= α and r is a function of eventually one sign such that |r| ∈ RVq(λ−α−1). Un-
der those assumptions, using the Karamata’s integration theorem and reciprocity
principle, asymptotic formulas for the existing q-regularly varying solutions of (1.1)
will be established. Later, in Section 4, we will consider the special case of equation
(1.1) with p(t) ≡ 1,

Dq(Φ(Dq(x(t)))) + r(t)Φ(x(qt)) = 0, t ∈ qN0 , (1.5)
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but without assumption that |r| is q-regularly varying function. Namely, under
the assumption that r is eventually positive or eventually negative function, using
the Riccati technique and Banach fixed point theorem, an asymptotic formula of a
q-slowly varying solution will be given.

Results considering asymptotic behavior of positive solutions of the half-linear
q-difference equation, will also give results about asymptotic behavior of some of
the positive solutions of the half-linear difference equation, in the framework of
generalized regularly varying sequences with respect to τ : N0 → qN0 , τ(k) = qk,
defined in [12]. These results, presented in Section 5, are also new for the half-linear
difference equation

∆(a(n)Φ(∆(x(n)))) + b(n)Φ(x(n+ 1)) = 0, n ∈ N0, (1.6)

since, as far as we know, the only type of equation (1.6) that was studied in the
framework of regular variation, was with a(n) ≡ 1 (see [10]). In Section 6, the
obtained results will be illustrated through the examples.

2. Preliminaries and classification

For the sake of completeness, we recall the definition and some of the basic
properties of q-regularly varying functions. For some of the basic concepts of q-
calculus, see [19]. First of all, let us state the notation that will be used through
this paper. As usual, the symbol ∼ denotes asymptotic equivalence of two functions:

f(t) ∼ g(t), as t→∞ ⇔ lim
t→∞

f(t)

g(t)
= 1.

The interval [t0,∞)q represents [t0,∞) ∩ qN0 . Moreover, let

R+
t0 = {δ : [t0,∞)q → R : t(q − 1)δ(t) + 1 > 0, t ≥ t0}

and for δ ∈ R+
1 let us introduce the q-exponential function

eδ(t, s) =


∏
u∈[s,t)q

((q − 1)uδ(u) + 1), s < t;

1, s = t;
1/
∏
u∈[t,s)q

((q − 1)uδ(u) + 1), s > t,

where s, t ∈ qN0 .
Řehák and Vı́tovec [19], defined q-regularly varying functions as follows.

Definition 2.1. A function f : [a,∞)q → (0,∞) is said to be q-regularly varying
of index ρ, ρ ∈ R, if there exists a function α : [a,∞)q → (0,∞) satisfying

lim
t→∞

f(t)

α(t)
= c and lim

t→∞

tDqα(t)

α(t)
= [ρ]q, (2.1)

with c being a positive constant. If ρ = 0, then f is said to be q-slowly varying.

The totality of q-regularly varying functions of index ρ is denoted by RVq(ρ),
while the totality of q-slowly varying functions is denoted by SVq. For q-regularly
varying functions defined as above, most of the properties of regular variation in
the continuous and discrete case are preserved, but because of the structure of qN0 ,
there are much simpler characterizations than in the continuous or discrete case.
Řehák and Vı́tovec established in [19] several characterizations of such functions,
we are presenting here a few of them. See [19] for more details.
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Theorem 2.2. (i) (Simple characterization) For a positive function f , f ∈
RVq(ρ) if and only if f satisfies

lim
t→∞

f(qt)

f(t)
= qρ.

Moreover, f ∈ RVq(ρ) if and only if f satisfies just the later condition in
(2.1).

(ii) (Representation I) f ∈ RVq(ρ) if and only if f has the representation

f(t) = ϕ(t)eδ(t, 1),

where ϕ : qN0 → (0,∞) tends to a positive constant, δ : qN0 → R satisfies
limt→∞ tδ(t) = [ρ]q and δ ∈ R+

1 . Without loss of generality, in particular
in the only if part, the function ϕ can be replaced by a constant.

Further, q-regularly varying functions have the following properties, proved in
[11, 19]. Let us emphasize that the Karamata’s integration theorem will play a
central role in establishing the main results of this paper.

Proposition 2.3. (i) f ∈ RVq(ρ), ρ ∈ R if and only if f(t) = tρ`(t), where
` ∈ SVq.

(ii) Let f ∈ RVq(ρ), ρ ∈ R and γ ∈ R. Then fγ ∈ RVq(γρ).
(iii) Let f ∈ RVq(ρ1) and g ∈ RVq(ρ2), ρ1, ρ2 ∈ R. Then fg ∈ RVq(ρ1 + ρ2).
(iv) If f ∈ RVq(ρ), with ρ ∈ R, ρ 6= 0, then |Dqf | ∈ RVq(ρ− 1). For ρ = 0 the

statement may fail, even for monotone f .

(v) If f ∈ SVq, then Dq ln f(t) ∼ Dqf(t)
f(t) as t→∞.

Theorem 2.4 (Karamata’s integration theorem, direct half). Let ` ∈ SVq and
a ∈ qN0 .

(i) if α > −1, then
∫ x
a
tα`(t) dqt ∼ xα+1

[α+1]q
`(x) as x→∞;

(ii) if α < −1, then
∫∞
x
tα`(t) dqt ∼ − xα+1

[α+1]q
`(x) as x→∞;

(iii) if
∫∞
a

`(t)
t dqt = ∞, then L(x) =

∫ x
a
`(t)
t dqt for x ∈ [a,∞)q is a SVq func-

tion and limx→∞
L(x)
`(x) =∞;

(iv) if
∫∞
a

`(t)
t dqt < ∞, then L(x) =

∫∞
x

`(t)
t dqt for x ∈ [a,∞)q is a SVq

function and limx→∞
L(x)
`(x) =∞.

Before we start establishing asymptotic formulas, let us consider a classification
of the non-oscillatory solutions of (1.1). Since x is a solution of (1.1) if and only if
−x is a solution of this equation, we restrict our attention only to eventually positive
solutions of (1.1). Since the coefficient r is an eventually positive or eventually
negative function, all of the eventually positive solutions can be divided into two
classes:

M− = {x ∈M : Dqx(t) < 0 for t large enough},
M+ = {x ∈M : Dqx(t) > 0 for t large enough},

where M is the set of all eventually positive solutions of (1.1). Furthermore, these
classes will be divided into subclasses which will give more precise information
about the asymptotic behavior at infinity of positive solutions. The asymptotic
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behavior of positive solutions of (1.1) depends on the divergence of the integrals

Ip =

∫ ∞ 1

p(s)1/α
dqs, Ir =

∫ ∞
r(s) dqs.

We list the subclasses of positive solutions of (1.1), which will be used throughout
this paper:

M+
∞,∞ = {x ∈M+ : lim

t→∞
x(t) =∞, lim

t→∞
x[1](t) =∞},

M+
∞,B = {x ∈M+ : lim

t→∞
x(t) =∞, lim

t→∞
x[1](t) = c ∈ (0,∞)},

M+
B,∞ = {x ∈M+ : lim

t→∞
x(t) = c ∈ (0,∞), lim

t→∞
x[1](t) =∞},

M+
∞,0 = {x ∈M+ : lim

t→∞
x(t) =∞, lim

t→∞
x[1](t) = 0},

M+
B,0 = {x ∈M+ : lim

t→∞
x(t) = c ∈ (0,∞), lim

t→∞
x[1](t) = 0},

M−B,0 = {x ∈M− : lim
t→∞

x(t) = c ∈ (0,∞), lim
t→∞

x[1](t) = 0},

M−0,B = {x ∈M− : lim
t→∞

x(t) = 0, lim
t→∞

x[1](t) = c ∈ (−∞, 0)},

M−0,∞ = {x ∈M− : lim
t→∞

x(t) = 0, lim
t→∞

x[1](t) = −∞},

M−B,∞ = {x ∈M− : lim
t→∞

x(t) = c ∈ (0,∞), lim
t→∞

x[1](t) = −∞},

M−0,0 = {x ∈M− : lim
t→∞

x(t) = 0, lim
t→∞

x[1](t) = 0},

(2.2)

where x[1](t) = p(t)Φ(Dqx(t)), t ∈ qN0 . In the case of positive solutions of a differ-
ence equation, we will use the same notation, with MZ instead of M. Moreover,
let us introduce notations MRV (ρ) = M ∩ RVq(ρ), MSV = M ∩ SVq and when
we consider solutions of difference equations, the notation MZSVτZ = MZ ∩ SVτZ,
MZRVτZ (ρ) = MZ ∩RVτZ(ρ) will be used.

(I) r is eventually negative. In this case, any nontrivial solution of (1.1) is non-
oscillatory, eventually strictly monotone and both classes M+ and M− of solutions
of (1.1) are nonempty. To prove this, let us transform equation (1.1) to difference
equation (1.6), where

a(n) =
p(τ(n))

((q − 1)τ(n))α
and b(n) = (q − 1)τ(n)r(τ(n)), n ∈ N0. (2.3)

An application of [2, Lemma 1] provides that all nontrivial solutions of (1.6) are
non-oscillatory and eventually strictly monotone. Also, Cecchi et al. [2] proved that
the classes MZ+ and MZ− of (1.6) are nonempty. Since x is a solution of (1.6)
if and only if y = x ◦ τ−1 is a solution of (1.1), we conclude that all nontrivial
solutions of (1.1) are non-oscillatory, eventually strictly monotone and the classes
M+ and M− of (1.1) are nonempty.

If we assume the integral Ip diverges, it can be easily shown that

M+ = M+
∞,∞ ∪M+

∞,B and M− = M−B,0 ∪M−0,0.

Indeed, if x is a positive and increasing solution of (1.1) on [t0,∞)q for some

t0 ∈ qN0 , then x[1] is positive, increasing function, thus x[1](t) ≥ c1 > 0, t ≥ t0.

This further implies x(t) ≥ x(t0) + c
1/α
1

∫ t
t0

dqs

p(s)1/α
, t ≥ t0 and since Ip diverges, we

conclude x(t) → ∞, t → ∞. Similarly, if x is a decreasing solution of (1.1), then
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x[1](t)→ −c ≤ 0 as t→∞. If we assume x[1](t)→ −c < 0, t→∞, analogously to

the previous consideration, we obtain x(t) ≥ −c2
∫ t
t0

dqs

p(s)1/α
, t ≥ t0 for some t0 ∈ qN0

and c2 > 0, which bearing in mind the divergence of Ip implies x(t)→ −∞, t→∞,

so we obtain a contradiction. Hence, it must be x[1](t)→ 0 as t→∞.
Let us discuss what happens with the asymptotic behavior of positive solutions

of (1.1) in the case of divergence of the integral Ir. Then

M+ = M+
B,∞ ∪M+

∞,∞ and M− = M−0,B ∪M−0,0.

Indeed, if x is an increasing solution on [t0,∞)q, then x(t) ≥ x(t0), t ≥ t0. Since

x[1](t) = x[1](t0)−
∫ t

t0

r(s)x(qs)αdqs ≥ −x(t0)α
∫ t

t0

r(s)dqs→∞, t→∞,

it follows that limt→∞ x[1](t) =∞. Similarly, if x is a decreasing solution of (1.1),
assumption limt→∞ x(t) = c > 0 leads to limt→∞ x[1](t) =∞, which is a contradic-
tion since x[1](t) < 0, for t large enough. Therefore, limt→∞ x(t) = 0.

(II) r is eventually positive. First, let us consider the asymptotic behavior of
positive solutions under the assumption Ip = ∞. Under this assumption, all of
the positive solutions of (1.1) are increasing. Indeed, if we suppose the existence
of a decreasing solution x, then, since x[1] is negative and decreasing function, it
satisfies x[1](t) ≤ −c < 0, t ≥ t0, for some t0 ∈ qN0 . This further implies x(t) ≤
x(t0)− c1/α

∫ t
t0

dqs

p(s)1/α
→ −∞, t→∞, so we obtain a contradiction. Furthermore,

it can be easily checked that increasing solutions can be divided into three classes:

M+ = M+
∞,0 ∪M+

∞,B ∪M+
B,0.

It is left to consider the case Ir = ∞. Under this assumption, the set M+ is
empty, while the set of decreasing solutions can be divided into three classes,

M− = M−0,∞ ∪M−0,B ∪M−B,∞.

This can be checked by standard techniques used in previous paragraphs.

3. Asymptotic formulas for some classes of q-regularly varying
solutions of (1.1)

In what follows, we suppose that the coefficients in (1.1) satisfy the following
conditions: p ∈ RVq(λ), λ 6= α, r is eventually of one sign such that |r| ∈ RVq(λ−
α− 1) and use expressions

p(t) = tλlp(t), r(t) = sgn(r(t))tλ−α−1lr(t), t ∈ qN0 , (3.1)

where lp, lr ∈ SVq. We will consider separately cases λ < α and λ > α which
provide the divergence of Ip and Ir, respectively. The case λ = α will be excluded
from our consideration. In this case, in general, convergence or divergence of the
integrals Ip and Ir cannot be determined.

In this section we establish asymptotic formulas for SVq andRVq(1− λ
α ) solutions

of (1.1). Notice that under the above-mentioned assumptions for the coefficient p,
Theorem 1.1 states that these solutions exist if and only if condition (1.4) is satisfied
for c = 0. Regarding (3.1), condition (1.4) is then equivalent to

lim
t→∞

lr(t)

lp(t)
= 0. (3.2)
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Moreover, under these assumptions, in the case r is eventually negative, it is proved
in [3] that all of the eventually positive solutions of (1.1) are q-regularly varying by
using the theory of q-regular variation and reciprocity principle. In that manner,
by establishing asymptotic formulas of q-regularly varying solutions, in this case,
we are establishing asymptotic formulas of all of the eventually positive solutions
of (1.1). Here we state mentioned result.

Theorem 3.1 ([3, Theorem 4.1]). Let p ∈ RVq(λ), λ 6= α, r is eventually negative,
such that |r| ∈ RVq(λ− α− 1) and (3.2) is satisfied.

(i) If λ < α, then M+ = MRV (1− λ
α ) and M− = MSV .

(ii) If λ > α, then M− = MRV (1− λ
α ) and M+ = MSV .

In what follows, we will use the notation

δ = Φ−1
( 1

[λ− α]q

)
, G(t) = Φ−1

( tr(t)
p(t)

)
, t ∈ qN0 . (3.3)

Next auxiliary lemma will be very useful in determining the asymptotic formula of
a q-slowly varying solution of (1.1).

Lemma 3.2. Let p ∈ RVq(λ), λ 6= α, r is eventually of one sign such that |r| ∈
RVq(λ− α− 1). If x is a q-slowly varying solution of (1.1), then

Dq lnx(t) = −(1 + o(1))δG(t), t→∞. (3.4)

Proof. Suppose that x is a SVq solution of (1.1) defined on [a,∞)q, for some a ∈ qN0 .
Then, condition (3.2) is satisfied. Without loss of generality, suppose r is of one
sign on [a,∞)q.

(i) Let us first consider the case r(t) < 0, t ≥ a and λ < α. Application
of Theorem 3.1 implies that x is a decreasing solution, while assumption λ < α
implies Ip = ∞, hence, it must be limt→∞ x[1](t) = 0. After integrating (1.1) on
the interval [t,∞)q, we obtain

x[1](t) =

∫ ∞
t

r(s)x(qs)α dqs = −
∫ ∞
t

sλ−α−1lr(s)x(qs)α dqs, t ≥ a, (3.5)

using expression (3.1) for r. Application of the Karamata’s integration theorem in
(3.5) leads to

x[1](t) ∼ −tr(t)x(t)α

[λ− α]q
, t→∞,

which gives
Dqx(t)

x(t)
∼ Φ−1

( −tr(t)
p(t)[λ− α]q

)
, t→∞.

Since x ∈ SVq, using Proposition 2.3 (v), we obtain

Dq lnx(t) ∼ Φ−1
( −tr(t)
p(t)[λ− α]q

)
, t→∞,

which leads to the desired asymptotic formula (3.4).
If we suppose λ > α, an application of Theorem 3.1 implies x ∈ M+. Since,

in this case, the integral Ir diverges, limt→∞ x[1](t) = ∞ holds for the solution x.
Integration of (1.1) on [a, t]q gives

x[1](t) = x[1](a)−
∫ t

a

r(s)x(qs)αdqs = x[1](a) +

∫ t

a

sλ−α−1lr(s)x(qs)αdqs, t ≥ a.
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Proceeding exactly as in the previous part, application of Proposition 2.3 (v) and
Theorem 2.4 imply that in this case, x also satisfies (3.4).

(ii) Next, we assume r(t) > 0, t ≥ a. Let us consider the case λ < α. Since in
this case M− = ∅, x must be an increasing solution satisfying limt→∞ x[1](t) = 0.
So, after integrating (1.1) on the interval [t,∞)q and applying the Karamata’s
integration theorem we have

x[1](t) =

∫ ∞
t

r(s)x(qs)α dqs =

∫ ∞
t

sλ−α−1lr(s)x(qs)αdqs ∼
−tr(t)x(t)α

[λ− α]q

as t→∞. The above asymptotic relation leads to

Dq lnx(t) ∼ Dqx(t)

x(t)
∼ Φ−1

(−tr(t)x(t)α

[λ− α]q

)
= −δG(t), t→∞,

so we come to the desired conclusion. It is left to verify if (3.4) holds in the case
λ > α. Then, x ∈M− and limt→∞ x[1](t) =∞, so we integrate (1.1) on the interval
[a, t]q to obtain

x[1](t) = x[1](a)−
∫ t

a

sλ−α−1lr(s)x(qs)αdqs ∼
−tr(t)x(t)α

[λ− α]q
, t→∞.

Proceeding exactly as in the previous part, when r is eventually negative and λ < α,
we obtain (3.4). �

Next two theorems give asymptotic formulas for q-slowly varying solutions of
(1.1). We consider separately the cases when r is eventually negative and eventually
positive function.

Theorem 3.3. Assume that p ∈ RVq(λ), λ 6= α, r is eventually negative such that
|r| ∈ RVq(λ − α − 1) and (3.2) is satisfied. Every q-slowly varying solution x of
(1.1) satisfies:

(i) If
∫∞

G(t)dqt =∞, then

x(t) = exp
(
− (1 + o(1))δ

∫ t

a

G(s)dqs
)
, t→∞, (3.6)

for some a ∈ qN0 . Moreover, if λ < α, then M− = M−0,0 = MSV , while if

λ > α, then M+ = M+
∞,∞ = MSV .

(ii) If
∫∞

G(t)dqt <∞, then

x(t) = N exp
(

(1 + o(1))δ

∫ ∞
t

G(s)dqs
)
, t→∞, (3.7)

where N = limt→∞ x(t) ∈ (0,∞). Moreover, if λ < α, then M− = M−B,0 =

MSV , while if λ > α, then M+ = M+
B,∞ = MSV . In addition,

lr(t)
1/α

lp(t)1/α(N − x(t))
= o(1), t→∞. (3.8)

Proof. Without loss of generality, suppose r(t) < 0 on [a,∞)q, for some a ∈ qN0 and
x is a q-slowly varying solution of (1.1) defined on [a,∞)q. Condition (3.2) ensures
the existence of such solution. Also, conditions of Lemma 3.2 are satisfied, so this
solution satisfies asymptotic formula (3.4). Moreover, conditions of Theorem 3.1
are also satisfied, so in the case λ < α this implies M− = MSV , while in the case
λ > α, M+ = MSV .
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(i) Assume
∫∞

G(t)dqt =∞. Integrating (3.4) on [a, t]q we have

lnx(t) = lnx(a)− δ
∫ t

a

(1 + o(1))G(s)dqs, t→∞. (3.9)

Using the q-L’Hôpital rule (see [1, Theorem 1.119]) it can be easily verified that

lnx(a)− δ
∫ t

a

(1 + o(1))G(s)dqs ∼ −δ
∫ t

a

G(s)dqs, t→∞,

which further, using (3.9), leads to asymptotic formula (3.6) for a solution x. In the
case λ < α, condition

∫∞
G(t)dqt = ∞ implies limt→∞ x(t) = 0. Moreover, since

in this case Ip =∞, it must be limt→∞ x[1](t) = 0, thus we obtain x ∈M−0,0. Since

x was an arbitrary SVq solution, it follows MSV ⊆ M−0,0. According to Theorem

3.1(i), we have M− = M−0,0 = MSV .
Similarly, if we consider the case λ > α, the divergence of integral Ir implies

limt→∞ x[1](t) = ∞, while condition
∫∞

G(t)dqt = ∞ implies limt→∞ x(t) = ∞,
thus x ∈ M+

∞,∞. Again, since Theorem 3.1(ii) implies that in this case all of the

increasing solutions are q-slowly varying, it follows M+ = M+
∞,∞ = MSV .

(ii) Assume
∫∞

G(t)dqt <∞. Integrating (3.4) on [t,∞)q we have

lnx(t)− lnN = δ

∫ ∞
t

(1 + o(1))G(s)dqs, t→∞, (3.10)

where N = limt→∞ x(t). Using the q-L’Hospital rule it can be easily verified that

δ

∫ ∞
t

(1 + o(1))G(s)dqs ∼ δ
∫ ∞
t

G(s)dqs, t→∞,

which, using (3.10), gives

lnx(t) = lnN + δ(1 + o(1))

∫ ∞
t

G(s)dqs, t→∞,

which is equivalent to (3.7). In the case λ < α, for every decreasing solution x
limt→∞ x[1](t) = 0 holds, thus we have MSV ⊆ M−B,0. Application of Theorem

3.1(i) gives M− = M−B,0 = MSV .

To prove (3.8), we notice that for a SVq solution x, we have

x(t)−N =

∫ ∞
t

L(s)

s
dqs, t ≥ a,

where

L(t) = −tΦ−1
( 1

p(t)

∫ ∞
t

r(u)x(qu)αdqu
)
, t ≥ a,

is a q-slowly varying function, according to Theorem 2.4. The Karamata’s integra-

tion theorem also implies that limt→∞
L(t)

x(t)−N = 0. Considering

L(t) ∼ δtG(t)x(t) ∼ −Nδ
( lr(t)
lp(t)

)1/α

, t→∞,

we obtain (3.8). In the case λ > α, similarly it can be verified that every SVq
solution x belongs to the class M+

B,∞. Moreover, for a solution x, we have

N − x(t) =

∫ ∞
t

( 1

p(s)
Φ−1

(
x[1](a)−

∫ s

a

r(u)x(qu)αdqu
))
dqs
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∼
∫ ∞
t

Φ−1
( 1

p(s)

(
−
∫ s

a

r(u)x(qu)αdqu
))
dqs, t→∞ .

Proceeding exactly as in the previous case, we prove that (3.8) also holds. �

Theorem 3.4. Assume that p ∈ RVq(λ), λ 6= α, r is eventually positive such that
r ∈ RVq(λ− α − 1) and (3.2) is satisfied. Then every q-slowly varying solution x
of (1.1) satisfies:

(i) If
∫∞

G(t)dqt =∞, then x satisfies (3.6). Moreover, if λ < α, then MSV ⊆
M+
∞,0, while if λ > α, then MSV ⊆M−0,∞.

(ii) If
∫∞

G(t)dqt < ∞, then x satisfies (3.7), where N = limt→∞ x(t) ∈
(0,∞). Moreover, if λ < α, then MSV = M+

B,0, while if λ > α, then

MSV = M−B,∞. In addition, (3.8) is satisfied.

Proof. Without loss of generality, suppose r(t) > 0 on [a,∞)q, for some a ∈ qN0

and x is a q-slowly varying solution of (1.1) defined on [a,∞)q. Condition (3.2)
ensures the existence of such solution. Also, Lemma 3.2 claims that such solution
x satisfies (3.4).

(i) Assume
∫∞

G(t)dqt =∞. Integrating (3.4) from a to t, we obtain (3.9) which
leads to the desired asymptotic formula (3.6) for the solution x. Further, let us first
consider the case λ < α. In this case, since Ip = ∞, the solution x is an incre-

asing function satisfying limt→∞ x[1](t) = 0. Moreover, condition
∫∞

G(t)dqt =∞
implies that limt→∞ x(t) = ∞, so we obtain MSV ⊆ M+

∞,0. Similarly, if λ > α,

every SVq solution x is decreasing and satisfies limt→∞ x[1](t) = ∞. In this case,∫∞
G(t)dqt =∞ implies limt→∞ x(t) = 0, so we obtain MSV ⊆M−0,∞.

(ii) Assume
∫∞

G(t)dqt <∞. Integrating (3.4) on [t,∞)q we have (3.10) which
is equivalent to (3.7). This implies that limt→∞ x(t) = N ∈ (0,∞). Thus, in
the case λ < α, since every SVq solution x is an increasing function satisfying

limt→∞ x[1](t) = 0, we have conclusion MSV = M+
B,0, while in the case λ > α it can

be noticed that MSV = M−B,∞. Proceeding similarly as in the proof of Theorem

3.3, we obtain (3.8). �

In following two theorems we will establish asymptotic formulas for RVq(1− λ
α )

solutions of (1.1) under certain conditions. To provide this we will use reciprocity
principle, which is based on following. Let p(t) 6= 0 , r(t) 6= 0, t ∈ [a,∞)q. Then, x

is a solution of (1.1) defined on [a,∞)q if and only if u(t) = x[1](t) is a solution of
the equation

Dq

(
Φ−1

( 1

r(t)

)
Φ−1(Dqu(t))

)
+ qΦ−1

( 1

p(qt)

)
Φ−1(u(qt)) = 0. (3.11)

Since we have stronger assumptions for the coefficients p and r of (1.1) throughout
this section, let us check which conditions will be satisfied by the coefficients in
(3.11), under those assumptions. Assume that p ∈ RVq(λ), λ 6= α, r is of one sign
on [a,∞)q such that |r| ∈ RVq(λ− α− 1) and (3.2) holds. Denote by

α̂ =
1

α
, λ̂ = 1− λ

α
+

1

α
, p̂(t) =

1

|r(t)|1/α
, r̂(t) = sgn(r(t))

q

p(qt)1/α
, t ∈ qN0 .

Then equation (3.11) is equivalent to the equation

Dq (p̂(t)Φα̂(Dqu(t))) + r̂(t)Φα̂(u(qt)) = 0, (3.12)
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where Φα̂(x) = sgn(x)|x|α̂, x ∈ R. Notice that, p̂ ∈ RVq(λ̂), λ̂ 6= α̂ and |r̂| ∈
RVq(λ̂−α̂−1). Moreover, if lp̂ and lr̂ denote q-slowly varying parts of the functions
p̂ and r̂, we have

lr̂(t)

lp̂(t)
= q

lr(t)
1/α

lp(qt)1/α
∼ q
( lr(t)
lp(t)

)1/α

, t→∞.

Thus, condition (3.2) implies limt→∞
lr̂(t)
lp̂(t) = 0. We will use the notation

Ĝ(t) =
tαr(t)

p(t)
and δ̂ = −Φ

( 1

[ λα − 1]q

)
.

Notice that δ̂Ĝ(t) ∼ Φ
(

1
[λ̂−α̂]q

)
Φ
( tr̂(t)
p̂(t)

)
as t → ∞. Moreover, the notation for the

classes of positive solutions of (3.12) will be analogue to the one in (2.2) with M̂
instead of M.

Theorem 3.5. Assume that p ∈ RVq(λ), λ 6= α, r is eventually negative such
that |r| ∈ RVq(λ − α − 1) and (3.2) holds. Every solution x of (1.1), such that

x ∈ RVq(1− λ
α ) satisfies

(i) If
∫∞

Ĝ(t)dqt =∞, then

x(t) =
t

p(t)1/α
exp

(
− (1 + o(1))

δ̂

α

∫ t

a

Ĝ(s)dqs
)
, t→∞, (3.13)

for some a ∈ qN0 . Moreover, if λ < α, then M+ = M+
∞,∞ = MRV (1− λ

α ),

while if λ > α, then M− = M−0,0 = MRV (1− λ
α ).

(ii) If
∫∞

Ĝ(t)dqt <∞, then in the case λ < α,

x(t) = A+

∫ t

a

( N̂

p(s)

)1/α

exp
(

(1 + o(1))
δ̂

α

∫ ∞
s

Ĝ(u)dqu
)
dqs, t→∞, (3.14)

for some a ∈ qN0 , A ∈ (0,∞) and M+ = M+
∞,B = MRV (1 − λ

α ), while in
the case λ > α,

x(t) =

∫ ∞
t

( N̂

p(s)

)1/α

exp
(

(1 + o(1))
δ̂

α

∫ ∞
s

Ĝ(u)dqu
)
dqs t→∞, (3.15)

and M− = M−0,B = MRV (1− λ
α ), where N̂ = limt→∞ |x[1](t)|. In addition,

lr(t)

lp(t)(N − |x[1](t)|)
= o(1), t→∞. (3.16)

Proof. Let x be an arbitrary RVq(1− λ
α ) solution of (1.1), defined on [a,∞)q and

let r be negative on [a,∞)q, for some a ∈ qN0 . Condition (3.2) ensures the existence

of such solution. Then, u = |x[1]| is a q-slowly varying solution of (3.12). Moreover,

note that u ∈ M̂±u,v ⇔ x ∈M±v,u, for u, v ∈ {0, B,∞}.
(i) Assume

∫∞
Ĝ(t)dqt = ∞. From the above observations, we can see that

conditions of Theorem 3.3(i) are satisfied, so it can be applied to the SVq solution
u of (3.12) and this leads to the asymptotic formula

u(t) = exp
(
− (1 + o(1))δ̂

∫ t

a

Ĝ(s)dqs
)
, t→∞.
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Consequently, the solution x of (1.1) is satisfies

|Dqx(t)| = 1

p(t)1/α
exp

(
− (1 + o(1))

δ̂

α

∫ t

a

Ĝ(s)dqs
)
, t→∞. (3.17)

Let us consider the case λ < α, that is λ̂ > α̂. In this case, Theorem 3.3(i) also

implies that the solution u of (3.12) belongs to the class M̂+
∞,∞ of positive solutions

of (3.12). For equation (3.12) M̂+ = M̂+
∞,∞ = M̂SV holds, as well. This further

implies that solution x of (1.1) belongs to the class M+
∞,∞ and the classes of this

equation satisfy M+ = M+
∞,∞ = MRV (1 − λ

α ). Integrating asymptotic relation
(3.17) from a to t we obtain

x(t) = x(a) +

∫ t

a

1

p(s)1/α
exp

(
− (1 + o(1))

δ̂

α

∫ s

a

Ĝ(u)dqu
)

∼ t

[1− λ
α ]q

1

p(t)1/α
exp

(
− (1 + o(1))

δ̂

α

∫ t

a

Ĝ(s)dqs
)

=
t

p(t)1/α
exp

(
− (1 + o(1))

δ̂

α

∫ t

a

Ĝ(s)dqs
)
, t→∞,

by applying the Karamata’s integration theorem, since u is a SVq function. This
further implies that x satisfies formula (3.13). Similarly, we obtain that in the case
λ > α for equation (1.1), M− = M−0,0 = MRV (1 − λ

α ) holds. Integration of the

asymptotic relation (3.17) on [t,∞)q leads to the desired asymptotic formula (3.13)
for x.

(ii) Assume
∫∞

Ĝ(t)dqt < ∞. Then, an application of Theorem 3.3(ii) to the
SVq solution u of (3.11) leads to the asymptotic formula

u(t) = N̂ exp
(

(1 + o(1))δ̂

∫ ∞
t

Ĝ(s)dqs
)
, t→∞,

where limt→∞ u(t) = N̂ . This implies that for the solution x of (1.1) satisfies

|Dqx(t)| =
( N̂

p(t)

)1/α

exp
(

(1 + o(1))
δ̂

α

∫ ∞
t

Ĝ(s)dqs
)
, t→∞. (3.18)

Moreover, Theorem 3.3(ii) implies lr̂(t)α

lp̂(t)α(N−u) = o(1) as t → ∞; hence (3.16)

satisfied.
To obtain the asymptotic formula for x, let us first consider the case λ < α,

that is λ̂ > α̂. Under this assumption, for the positive solutions of (3.12), M̂+ =

M̂+
B,∞ = M̂SV holds. This implies that for (1.1), M+ = M+

∞,B = MRV (1 − λ
α ).

Integrating (3.18) on [a, t]q we obtain that x satisfies asymptotic formula (3.14).

Similarly, if λ > α, we obtain M− = M−0,B = MRV (1− λ
α ), while integrating (3.18)

on [t,∞)q implies the asymptotic formula (3.15) for the solution x. �

Theorem 3.6. Assume that p ∈ RVq(λ), λ 6= α, r is eventually positive such
that r ∈ RVq(λ − α − 1) and (3.2) holds. Every solution x of (1.1) such that

x ∈ RVq(1− λ
α ) satisfies

(i) If
∫∞

Ĝ(t)dqt =∞, then (3.13) holds. Moreover, if λ < α, then

MRV (1− λ
α ) ⊆M+

∞,0, while if λ > α, then MRV (1− λ
α ) ⊆M−0,∞.
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(ii) If
∫∞

Ĝ(t)dqt < ∞, then in the case λ < α (3.14) holds and M+
∞,B =

MRV (1− λ
α ), while in the case λ > α (3.15) holds and M−0,B = MRV (1− λ

α ).

In addition, (3.16) is satisfied.

Proof. Applying Theorem 3.4 to the SVq solution u = |x[1]| of (3.12), as in the

previous theorem, leads to desired results. Moreover, u ∈ M̂±u,v ⇔ x ∈M∓v,u, where
u, v ∈ {0, B,∞}. �

Remark 3.7. When taking formally the limit as q → 1+ in Theorems 3.3 and 3.5,
the obtained results coincide with the corresponding results in the continuous case
(see [14, Theorems 4.1, 5.1]). Under the analogue assumptions of Theorems 3.4 and
3.6 in the continuous case, the asymptotic formulas of regularly varying solutions
of (1.2), with r being eventually positive, as far as we know, were not considered
in the existing literature. So, letting q → 1+ in Theorems 3.4 and 3.6 predicts
corresponding results in the continuous case.

4. Asymptotic formula of a q-slowly varying solution of (1.5)

In this section, we consider equation (1.5) and assume that r is eventually
positive or eventually negative function. Moreover, a condition stronger than
limt→∞ tα+1r(t) = 0, which ensures the existence of a SVq solution, will be as-
sumed for the coefficient r. We will use the notation

Q(t) = tα
∫ ∞
t

r(s)dqs, t ∈ qN0 . (4.1)

Let us recall that the condition limt→∞ tα+1r(t) = 0 is equivalent to limt→∞Q(t) =
0 as t→∞. As shown in [18, Lemma 6], this is the consequence of the fact, specific
just for q-calculus, that the existence of the finite limit limt→∞ tα

∫∞
t
f(s)dqs is

equivalent to the existence of the finite limit limt→∞ tα+1f(t), where f : qN0 →
R and α > 0. More precisely, limt→∞ tα

∫∞
t
f(s)dqs = A ∈ R if and only if

limt→∞ tα+1f(t) = −[−α]qA ∈ R.
The next theorem shows the existence of a q-slowly varying solution affected

with the decaying property of the function Q, while the second theorem establishes
the asymptotic formula of the such solution.

Theorem 4.1. Let r be eventually of one sign. Suppose that there exists a decre-
asing function φ : qN0 → (0,+∞) which tends to 0 as t→∞ and satisfies |Q(t)| ≤
φ(t) for t large enough. Then, (1.5) possesses a q-slowly varying solution x on
[t0,∞)q, for some t0 ∈ qN0 , expressed in the form

x(t) = eη(t, t0), t ≥ t0, (4.2)

where η(t) = Φ−1
(
v(t)+Q(t)

tα

)
, t ≥ t0 and v(t) = O

(
φ(t)1+ 1

α

)
, t→∞.

Proof. We will seek for a solution x of (1.5) expressed in the form (4.2), for some
t0 ∈ qN0 . Function x expressed in the form (4.2) is a q-slowly varying function on
[t0,∞)q if and only if

lim
t→∞

Φ−1 (v(t) +Q(t)) = 0 (4.3)

and η ∈ R+
t0 , according to Theorem 2.2(ii). Moreover, such x is the positive solution

of (1.5) defined on [t0,∞)q if and only if w(t) = v(t)+Q(t)
tα , t ≥ t0 is a solution of
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the Riccati q-difference equation on [t0,∞)q,

Dqw(t) + r(t) +
w(t)

(q − 1)t

(
1− 1(

Φ−1(w(t))(q − 1)t+ 1
)α) = 0. (4.4)

Let us note that Φ−1(w(t))(q−1)t+ 1 = x(qt)
x(t) , t ≥ t0. Furthermore, w is a solution

of (4.4) on [t0,∞)q if and only if v is a solution of the equation

Dq

(v(t)

tα

)
+
v(t) +Q(t)

(q − 1)tα+1

(
1− 1

(Φ−1(v(t) +Q(t))(q − 1) + 1)
α

)
= 0, (4.5)

defined on [t0,∞)q. Condition (4.3), since Q(t) → 0, t → ∞ is equivalent to
v(t)→ 0 as t→∞, hence integrating (4.5) on [t,∞)q gives the integral equation

v(t) = tα
∫ ∞
t

v(s) +Q(s)

(q − 1)sα+1

(
1− 1(

Φ−1(v(s) +Q(s))(q − 1) + 1
)α) dqs, (4.6)

for t ≥ t0. Finally, finding a q-slowly varying solution x of (1.5) in the form (4.2) is
equivalent to finding a solution v of the integral equation (4.6) satisfying v(t)→ 0
as t → ∞ and η ∈ R+

t0 . To show the existence of such a solution, we will use the
Banach fixed point theorem.

Let us choose t0 ∈ qN0 such that the following 3 conditions

Φ−1(Q(t))(q − 1) + 1 > 0, (4.7)

−(q − 1)(α+ 1)Φ−1(Q(t))

(Φ−1(Q(t))(q − 1) + 1)α+1
≤ −1

2
[−α]q, (4.8)

φ(t)1/α ≤ min
{2−1/α

q − 1
,− [−α]q2

−1−α− 1
α

α
,− [−α]q2

−1−α− 1
α

(α+ 1)(q − 1)

}
(4.9)

are satisfied on [t0,∞)q and Q is of a constant sign on [t0,∞)q. This is possible,
since φ and Q tend to zero as t→∞.

Consider the Banach space X of bounded functions f : [t0,∞)q → R converging
to zero at infinity, endowed with the supremum norm and let us denote by

Ω = {v ∈ X : 0 ≤ v(t) ≤ φ(t), t ≥ t0}.

The operator F : Ω→ X , defined as

(Fv)(t) = tα
∫ ∞
t

v(s) +Q(s)

(q − 1)sα+1

(
1− 1(

Φ−1(v(s) +Q(s))(q − 1) + 1
)α) dqs,

for v ∈ Ω, has following properties:
(i) Operator F maps Ω into itself. Let v ∈ Ω. One can see that

sgn
(
v(t) +Q(t)

)
= sgn

(
1− 1

(Φ−1(v(t) +Q(t))(q − 1) + 1)
α

)
, t ≥ t0,

which implies (Fv)(t) ≥ 0 for t ≥ t0. On the other hand,

(Fv)(t) ≤ tα
∫ ∞
t

2φ(s)

(q − 1)sα+1

(
1− 1(

Φ−1(2φ(s))(q − 1) + 1
)α) dqs

≤ tα
∫ ∞
t

2φ(s)

(q − 1)sα+1

((
Φ−1(2φ(s))(q − 1) + 1

)α
− 1
)
dqs, t ≥ t0.
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Using the Lagrange mean value theorem and (4.9), we obtain(
Φ−1(2φ(s))(q − 1) + 1

)α − 1 = α
(
θΦ−1(2φ(s))(q − 1) + 1

)α−1
Φ−1(2φ(s))(q − 1)

≤ α
(
Φ−1(2φ(s))(q − 1) + 1

)α
Φ−1(2φ(s))(q − 1)

≤ α2αΦ−1(2φ(s))(q − 1), ∀s ≥ t0,

for some 0 < θ < 1. Therefore, using the monotonicity of the function φ, we obtain

(Fv)(t) ≤ α2α(2φ(t))1+ 1
α tα

∫ ∞
t

dqs

sα+1
=
−α2α

[−α]q
(2φ(t))1+ 1

α , t ≥ t0.

Using (4.9), we finally obtain (Fv)(t) ≤ φ(t), for t ≥ t0, which provides that F
maps Ω into itself.

(ii) Operator F is a contraction mapping. Let v, w ∈ Ω and observe that

(Fv)(t)− (Fw)(t)

= tα
∫ ∞
t

1

(q − 1)sα+1

(
H(v(s) +Q(s))−H(w(s) +Q(s))

)
dqs,

(4.10)

for t ≥ t0, where H(x) = x
(
1 − 1

(Φ−1(x)(q−1)+1)α

)
for x ∈ R. Using the Lagrange

mean value theorem, we obtain

H(v(s) +Q(s))−H(w(s) +Q(s)) = H ′(ξ(s))(v(s)− w(s)),

for some min{v(s)+Q(s), w(s)+Q(s)} ≤ ξ(s) ≤ max{v(s)+Q(s), w(s)+Q(s)}, s ≥
t0. Note that Q(s) ≤ ξ(s) ≤ 2φ(s) for s ≥ t0. So, if Q is positive on [t0,∞)q, ξ is
also positive on this interval, while in the case when Q is negative on [t0,∞)q, ξ
can take both, positive and negative values on this interval. We will prove that

|H ′(ξ(s))| ≤ −1

2
[−α]q, s ≥ t0. (4.11)

Indeed, in the case ξ(s) > 0, for some s ≥ t0, using the Lagrange mean value
theorem and (4.9), we obtain

|H ′(ξ(s))| = H ′(ξ(s)) =
(Φ−1(ξ(s))(q − 1) + 1)α+1 − 1

(Φ−1(ξ(s))(q − 1) + 1)α+1

≤ (Φ−1(ξ(s))(q − 1) + 1)α+1 − 1

= (α+ 1)(θΦ−1(ξ(s))(q − 1) + 1)αΦ−1(ξ(s))(q − 1)

≤ (α+ 1)2α(2φ(s))1/α(q − 1)

≤ −1

2
[−α]q,

for some 0 < θ < 1. On the other hand, if ξ(s) < 0, for some s ≥ t0, similarly to
the previous case, using (4.8), we obtain

|H ′(ξ(s))| = −H ′(ξ(s)) =
1− (Φ−1(ξ(s))(q − 1) + 1)α+1

(Φ−1(ξ(s))(q − 1) + 1)α+1

≤ 1− (Φ−1(Q(s))(q − 1) + 1)α+1

(Φ−1(Q(s))(q − 1) + 1)α+1

≤ −(α+ 1)(θΦ−1(Q(s))(q − 1) + 1)αΦ−1(Q(s))(q − 1)

(Φ−1(Q(s))(q − 1) + 1)α+1
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≤ −(α+ 1)Φ−1(Q(s))(q − 1)

(Φ−1(Q(s))(q − 1) + 1)α+1

≤ −1

2
[−α]q,

for some 0 < θ < 1, so (4.11) is satisfied. According to (4.10) and (4.11),

|(Fv)(t)− (Fw)(t)| ≤ −1

2
[−α]qt

α

∫ ∞
t

1

(q − 1)sα+1
|v(s)− w(s)|dqs

≤ 1

2
||v − w||, t ≥ t0,

which leads to the conclusion that F is a contraction mapping.
Thus, all the hypotheses of the Banach fixed point theorem are fulfilled, implying

the existence of a fixed point v ∈ Ω of F satisfying (4.6). Moreover, x defined

by (4.2), with such v, satisfying v(t) = O
(
φ(t)1+ 1

α

)
as t → ∞, is the desired

solution. �

Theorem 4.2. Let r be eventually of one sign. Suppose that there exists a decre-
asing function φ : qN0 → (0,+∞) which tends to 0 as t→∞ and satisfies

|Q(t)| ∼ φ(t), t→∞. (4.12)

(i) If
∫∞ Φ−1(Q(t))

t dqt =∞, then (1.5) possesses a q-slowly varying solution x

defined on [t0,∞)q, for some t0 ∈ qN0 , such that

x(t) = exp
(

(1 + o(1))

∫ t

t0

Φ−1(Q(s))

s
dqs
)
, t→∞. (4.13)

Moreover, if r is eventually negative, then x ∈M−0,0, while if r is eventually

positive, x ∈M+
∞,0.

(ii) If
∫∞ Φ−1(Q(t))

t dqt <∞, then (1.5) possesses a q-slowly varying solution x

defined on [t0,∞)q, for some t0 ∈ qN0 , such that

x(t) = N exp
(
− (1 + o(1))

∫ ∞
t

Φ−1(Q(s))

s
dqs
)
, t→∞, (4.14)

where N = limt→∞ x(t). Moreover, if r is eventually negative, then x ∈
M−B,0, while if r is eventually positive, x ∈M+

B,0.

Proof. Condition (4.12) implies |Q(t)| ≤ (k + 1)φ(t) for t large enough and k > 0,
so the conditions of Theorem 4.1 are satisfied for φ(t) replaced with (k + 1)φ(t).
Therefore, there exists q-slowly varying solution x of (1.5) in the form (4.2), defined

on [t0,∞)q, for some t0 ∈ qN0 , where v(t) = O(φ(t)1+ 1
α ), t → ∞. This solution

satisfies
Dqx(t)

x(t)
=

Φ−1(v(t) +Q(t))

t
, t ≥ t0.

Since Q satisfies condition (4.12), we obtain

Dqx(t)

x(t)
=

Φ−1
(
O(φ(t)1+ 1

α ) +Q(t)
)

t
∼ Φ−1(Q(t))

t
, t→∞. (4.15)

An application of Proposition 2.3(v) then yields

Dq lnx(t) ∼ Φ−1(Q(t))

t
, t→∞. (4.16)
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(i) Suppose
∫∞ Φ−1(Q(t))

t dqt =∞. Integrating (4.16) from t0 to t, we obtain

lnx(t)− lnx(t0) ∼
∫ t

t0

Φ−1(Q(s))

s
dqs, t→∞. (4.17)

The divergence of the integral on the right-hand side of the above asymptotic re-
lation, when t → ∞, implies that the function on the left-hand side of (4.17) also
tends to∞ when t→∞. If r is eventually negative, (4.17) implies x(t)→ 0, t→∞,
while (4.15) implies x ∈M−. According to the classification, we conclude x ∈M−0,0.

Similarly, if r is eventually positive, (4.17) implies x(t)→∞ as t→∞ and (4.15)
implies x ∈M+, so it must be x ∈M+

∞,0. Asymptotic relation (4.17) further implies

lnx(t) ∼
∫ t

t0

Φ−1(Q(s))

s
dqs, t→∞,

which leads to the conclusion

lnx(t) = (1 + o(1))

∫ t

t0

Φ−1(Q(s))

s
dqs, t→∞

and hence we obtain the desired asymptotic expression (4.13) for the nontrivial
q-slowly varying solution x.

(ii) Suppose
∫∞ Φ−1(Q(t))

t dqt <∞. Integrating (4.16) from t to ∞, we obtain

lnN − lnx(t) ∼
∫ ∞
t

Φ−1(Q(s))

s
dqs, t→∞, (4.18)

where N = limt→∞ x(t), which further yields asymptotic formula (4.14) for the
solution x. Similarly to the previous case, we come to the conclusion that in the
case when r is eventually negative x belongs to M−B,0, while if r is eventually

positive, x ∈M+
B,0. �

Remark 4.3. Let us compare the obtained asymptotic formulas for a q-slowly
varying solution of (1.5), where r is eventually of one sign such that |r| ∈ RVq(−α−
1). Then the Karamata’s integration theorem implies Q(t) ∼ tα+1r(t)

−[−α]q
, as t → ∞,

which further implies Φ−1(Q(t))
t ∼ −δG(t), as t → ∞, according to the notation

in (3.3) and (4.1). Thus, in this case, asymptotic formulas (4.13) and (4.14) are
equivalent to the asymptotic formulas (3.6) and (3.7), respectively, as expected.

Remark 4.4. When taking formally the limit as q → 1+ in Theorem 4.2(i), the
obtained results agree with the corresponding results in the continuous case (see [9,
Theorem 3.1]). To be more precise, [9, Theorem 3.1] requires stronger conditions
on the functions Q and φ, but it gives a more precise asymptotic formula. On the

other hand, since the case
∫∞ Φ−1(Q(t))

t dt < ∞ is not considered in [9], letting
q → 1+ in Theorem 4.2(ii) predicts corresponding results in the continuous case.

5. Half-linear difference equations in the framework of discrete
regular variation with respect to τ

Řehák [12] introduced a new class of regularly varying sequences with respect to
τ , where τ : N0 → qN0 , q > 1, τ(k) = qk.

Definition 5.1. Let x be a positive sequence. It is said that x is a regularly varying
sequence with respect to τ and written x ∈ RVτZ(ρ), if and only if x◦τ−1 ∈ RVq(ρ).
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The following 4 statements are equivalent (see [12]):

(i) x ∈ RVτZ(ρ);

(ii) limk→∞
4x(k)

x(k)(q−1) = [ρ]q;

(iii) limk→∞
x(k+1)
x(k) = qρ;

(iv) x(k) = Cqkρ exp{
∑k−1
j=1 Ψ(j)}, Ψ(j)→ 0, j →∞ and C ∈ (0,+∞).

Since a half-linear q-difference equation can be transformed into a half-linear
difference equation, our main results can be applied to obtain some new results in
the discrete case. Indeed, if τ : N0 → qN0 , τ(k) = qk, it can be easily shown that
x : N0 → R is a solution of difference equation (1.6), which coefficients satisfy (2.3),
if and only if y = x ◦ τ−1 is a solution of q-difference equation (1.1).

Therefore, with the assumption that the sequences a = {a(n)}n∈N0 and |b| =
{|b(n)|}n∈N0 are regularly varying sequences with respect to τ of a certain regularity
index and b is eventually of one sign, obtained results can be applied to the half-
linear difference equation (1.6), giving the asymptotic formulas of SVτZ andRVτZ(1−
λ
α ) solutions of this equation. To prove the following results it is enough to conclude
that the assumptions a ∈ RVτZ(ρ) and p ∈ RVq(ρ + α) are equivalent, as well as
the assumptions |b| ∈ RVτZ(ρ) and |r| ∈ RVq(ρ− 1). Let us use expressions

a(n) = nρla(n), |b(n)| = nρlb(n), n ∈ N0,

where la, lb ∈ SVτZ. Next we present corollaries of Theorems 3.3–3.6.

Corollary 5.2. Assume a ∈ RVτZ(ρ), ρ 6= 0, b is eventually negative such that
|b| ∈ RVτZ(ρ) and

lim
n→∞

b(n)

a(n)
= 0. (5.1)

Every solution x ∈ SVτZ of (1.6) satisfies:

(i) If
∑∞
n=1 Φ−1

(
b(n)
a(n)

)
=∞, then

x(n) = exp
(

(1 + o(1))
1

Φ−1(1− qρ)

n−1∑
k=n0

Φ−1
( b(k)

a(k)

))
, n→∞, (5.2)

for some n0 ∈ N. Moreover, if ρ < 0, then MZ− = MZ−0,0 = MZSVτZ , while

if ρ > 0, then MZ+ = MZ+
∞,∞ = MZSVτZ .

(ii) If
∑∞
n=1 Φ−1

( b(n)
a(n)

)
<∞, then

x(n) = N exp
(

(1 + o(1))
1

Φ−1(qρ − 1)

∞∑
k=n

Φ−1
( b(k)

a(k)

))
, n→∞, (5.3)

where N = limn→∞ x(n) ∈ (0,∞). Moreover, if ρ < 0, then MZ− =
MZ−B,0 = MZSVτZ , while if ρ > 0, then MZ+ = MZ+

B,∞ = MZSVτZ . In
addition,

lb(n)1/α

la(n)1/α(N − x(n))
= o(1), n→∞. (5.4)

Corollary 5.3. Assume a ∈ RVτZ(ρ), ρ 6= 0, b is eventually positive such that
|b| ∈ RVτZ(ρ) and (5.1) is satisfied. Every solution x ∈ SVτZ of (1.6) satisfies:

(i) If
∑∞
n=1 Φ−1

( b(n)
a(n)

)
= ∞, then x satisfies (5.2). Moreover, if ρ < 0, then

MZSVτZ ⊆MZ+
∞,0, while if ρ > 0, then MZSVτZ ⊆MZ−0,∞.
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(ii)
∑∞
n=1 Φ−1

( b(n)
a(n)

)
< ∞, then x satisfies (5.3), where N = limn→∞ x(n) ∈

(0,∞). Moreover, if ρ < 0, then MZSVτZ = MZ+
B,0, while if ρ > 0, then

MZSVτZ = MZ−B,∞. In addition, (5.4) holds.

Corollary 5.4. Assume a ∈ RVτZ(ρ), ρ 6= 0, b is eventually negative such that
|b| ∈ RVτZ(ρ) and (5.1) is satisfied. Every solution x ∈ RVτZ

(
− ρ
α

)
of (1.6) satisfies:

(i) If
∑∞
n=1

b(n)
qna(n) =∞, then

x(n) =
1

a(n)1/α
exp

(
(1 + o(1))

1

αΦ(qρ/α − 1)

n−1∑
k=n0

b(k)

a(k)

)
, n→∞, (5.5)

for some n0 ∈ N0. Moreover, if ρ < 0, then MZ+ = MZ+
∞,∞ = MZRVτZ

(
−

ρ
α

)
, while if ρ > 0, then MZ− = MZ−0,0 = MZRVτZ

(
− ρ

α

)
.

(ii) If
∑∞
n=1

b(n)
qna(n) <∞, then in the case ρ < 0,

x(n) = A+

n−1∑
k=n0

( N̂

a(k)

)1/α

exp
(

(1 + o(1))
1

αΦ(1− qρ/α)

∞∑
j=k

b(j)

a(j)

)
, (5.6)

as n→∞, for some A ∈ N0, and MZ+ = MZ+
∞,B = MZRVτZ

(
− ρ
α

)
. While

in the case ρ > 0,

x(n) =

∞∑
k=n

( N̂

a(k)

)1/α

exp
(

(1 + o(1))
1

αΦ(1− qρ/α)

∞∑
j=k

b(j)

a(j)

)
, (5.7)

as n→∞, and MZ− = MZ−0,B = MZRVτZ
(
− ρ
α

)
, where N̂ = limt→∞ |x[1](n)|.

In addition,

lb(n)

la(t)(N − x[1](n))
= o(1), t→∞. (5.8)

Corollary 5.5. Assume a ∈ RVτZ(ρ), ρ 6= 0, b is eventually positive such that
|b| ∈ RVτZ(ρ) and (5.1) is satisfied. Every solution x ∈ RVτZ

(
− ρ
α

)
of (1.6) satisfies:

(i) If
∑∞
n=1

b(n)
qna(n) =∞, then (5.5) holds. Moreover, if ρ < 0, then MZRVτZ

(
−

ρ
α

)
⊆MZ+

∞,0; while if ρ > 0, then MZRVτZ
(
− ρ

α

)
⊆MZ−0,∞.

(ii) If
∑∞
n=1

b(n)
qna(n) < ∞, then in the case ρ < 0, (5.6) holds and MZ+

∞,B =

MZRVτZ
(
− ρ

α

)
; while in the case ρ > 0, (5.7) holds and MZ−0,B =

MZRVτZ
(
− ρ

α

)
. In addition, (5.8) is satisfied.

The next corollary of Theorem 4.2 gives the asymptotic formula of a slowly
varying solution with respect to τ of equation (1.6), with a(n) = 1

((q−1)qn)α , n ∈ N0

and b being an arbitrary sequence eventually positive or eventually negative.

Corollary 5.6. Let a =
{

1
((q−1)qn)α

}
n∈N0

and b be eventually of one sign. Suppose

that there exists a decreasing sequence {ϕ(n)}n∈N0
which tends to 0 as n→∞ and

satisfies ∣∣qnα ∞∑
k=n

b(k)
∣∣ ∼ ϕ(n), n→∞.
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(i) If
∑∞
n=1 q

nΦ−1
(∑∞

k=n b(k)
)

= ∞, then (1.6) possesses a slowly varying
solution {x(n)}n≥n0 with respect to τ , for some n0 ∈ N, such that

x(n) = exp
(

(1 + o(1))(q − 1)

n−1∑
k=n0

qkΦ−1
( ∞∑
j=k

b(j)
))
, n→∞.

Moreover, if b is eventually negative, then x ∈MZ−0,0, while if b is eventually

positive, x ∈MZ+
∞,0.

(ii) If
∑∞
n=1 q

nΦ−1
(∑∞

k=n b(k)
)
< ∞, then (1.6) possesses a slowly varying

solution {x(n)}n≥n0 with respect to τ , for some n0 ∈ N, such that

x(n) = N exp
(
− (1 + o(1))(q − 1)

∞∑
k=n

qkΦ−1
( ∞∑
j=k

b(j)
))
, n→∞,

where N = limn→∞ x(n). Moreover, if b is eventually negative, then x ∈
MZ−B,0, while if b is eventually positive, x ∈MZ+

B,0.

6. Examples

The first example illustrates Theorems 3.3, 3.4 and 4.2 simultaneously, while the
second example illustrates Theorems 3.3–3.6.

Example 6.1. Consider the half-linear q-difference equation (1.5) with

r(t) =
ϕ(t)

tα+1(ln t)αθ
,

on [q,∞)q, for some α > 0, θ > 0, θ 6= 1 and ϕ being an arbitrary function such that
ϕ(t)→ c ∈ R\{0}, t→∞. First of all, let us remark that this equation possesses a
q-slowly varying solution, since assumptions imply tα+1r(t)→ 0, t→∞. Further,
let us verify if the conditions of Theorem 3.3 for eventually negative ϕ and the
conditions of Theorem 3.4 for eventually positive ϕ, are satisfied. Note that

r(t) ∼ c

tα+1(ln t)αθ
, t→∞,

so we conclude r is eventually of one sign and r ∈ RVq(−α− 1). Definition of the
q-integral for δ and G defined in (3.3), a = qn0 , t = qn, n0, n ∈ N0, in the case
θ ∈ (0, 1) implies

δ

∫ t

a

G(s)dqs ∼ Φ−1
( c

[−αq]

)
(q − 1)

∑
s∈[a,t)q

1

(ln s)θ

= Φ−1
( c

[−αq]

) (q − 1)

(ln q)θ

n−1∑
k=n0

1

kθ

∼ Φ−1
( c

[−αq]

) (q − 1)

(ln q)θ
n1−θ

1− θ

= Φ−1
( c

[−αq]

) q − 1

(1− θ) ln q

1

(ln t)θ−1
→∞, t→∞.

Theorem 3.3(i) can be applied to any SVq solution of (1.5) if ϕ is eventually neg-
ative, or Theorem 3.4(i) if ϕ is eventually positive, which leads to the asymptotic
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formula of the such solution

x(t) = exp
(

(1 + o(1))Φ−1
( c

[−αq]

) q − 1

(θ − 1) ln q

1

(ln t)θ−1

)
, t→∞. (6.1)

Furthermore, if θ > 1, then

δ

∫ ∞
t

G(s)dqs ∼ Φ−1
( c

[−αq]

) q − 1

(θ − 1) ln q

1

(ln t)θ−1
→ 0, t→∞.

An application of Theorem 3.3(ii) for eventually negative r, or Theorem 3.4(ii) for
eventually positive r implies that every SVq solution of (1.5) satisfies

x(t) = N exp
(

(1 + o(1))Φ−1
( c

[−αq]

) q − 1

(θ − 1) ln q

1

(ln t)θ−1

)
, t→∞, (6.2)

where N = limt→∞ x(t).
To verify that the conditions of Theorem 4.2 are satisfied, let

φ(t) =
|c|

−[−α]q

1

(ln t)αθ
, t ∈ [q,∞)q.

Using the Karamata’s integration theorem, we obtain

Q(t) ∼ tα
∫ ∞
t

c

tα+1(ln t)αθ
dqs ∼

c

−[−α]q

1

(ln t)αθ
∼ sgn(c)φ(t), t→∞,

which implies that condition (4.12) is satisfied. Thus, Theorem 4.2(i) shows the
existence of a q-slowly varying solution with the same asymptotic formula (6.1), in
the case θ ∈ (0, 1), while in the case θ > 1, Theorem 4.2(ii) claims the existence
of a q-slowly varying solution with asymptotic formula (6.2), as we have already
noticed in Remark 4.3.

Example 6.2. Consider the q-difference half-linear equation

Dq(t
λ(ln t)θ1ϕ1(t)Φ(Dqx(t))) + tλ−α−1(ln t)θ2ϕ2(t)Φ(x(qt)) = 0, (6.3)

on [q,∞)q, where α > 0, λ 6= α, θ1, θ2 ∈ R, θ1 > θ2, ϕ1(t) → c1 > 0 and

ϕ2(t)→ c2 6= 0, as t→∞. Such equation possesses SVq and RVq(1− λ
α ) solutions.

Indeed, since

lim
t→∞

tα+1r(t)

p(t)
= lim
t→∞

(ln t)θ2ϕ2(t)

(ln t)θ1ϕ1(t)
= 0,

Theorem 1.1 leads to the such conclusion. To obtain the asymptotic formulas for
these solutions, notice that

G(t) ∼ Φ−1
(c2
c1

) (ln t)θ2−θ1

t
and Ĝ(t) ∼ c2(ln t)θ2−θ1

c1t
, t→∞.

For the sake of simplicity, we use the notation

I(a, t,−δ,G) = exp
(
− δ(1 + o(1))

∫ t

a

G(s)dqs)
)
.

Similarly as in Example 6.1 we obtain that above defined I in formulas (3.6) and
(3.7) satisfies

I(a, t,−δ,G) = exp
(
− (1 + o(1))Φ−1

(c2
c1

) (q − 1)δ

( θ2−θ1α + 1) ln q
(ln t)

θ2−θ1
α +1

)
= I(t,∞, δ, G), t→∞,



22 K. S. DJORDJEVIĆ EJDE-2021/50

where the left-hand relation holds if θ2 − θ1 > −α, while the second relation holds
if θ2 − θ1 < −α. Analogously, above defined I in formulas (3.13) and (3.14) i.e.
(3.15) satisfies

I(a, t,− δ̂
α
, Ĝ) = exp

(
− (1 + o(1))

(q − 1)δ̂c2
αc1(θ2 − θ1 + 1) ln q

(ln t)θ2−θ1+1
)

= I(t,∞, δ̂
α
, Ĝ), t→∞,

where the first relation holds for θ2− θ1 > −1 and the second one for θ2− θ1 < −1.
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Department of Mathematics, University of Nǐs, Faculty of Science and Mathematics,
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