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Stable evaluation of differential operators and

linear and nonlinear multi–scale filtering ∗

Otmar Scherzer

Abstract

Diffusion processes create multi–scale analyses, which enable the gen-
eration of simplified pictures, where for increasing scale the image gets
sketchier. In many practical applications the “scaled image” can be char-
acterized via a variational formulation as the solution of a minimization
problem involving unbounded operators. These unbounded operators can
be evaluated by regularization techniques. We show that the theory of sta-
ble evaluation of unbounded operators can be applied to efficiently solve
these minimization problems.

1 Introduction

Morel and Solimini describe in their book [10] a multi–scale analysis:

Multi–scale analysis is concerned with the generation of a se-
quence of simplified pictures uλ from a single initial picture uδ0, where
uλ appears to be a rougher and sketchier version of uδ0 as λ increases.

In the literature various possibilities for generating multi–scale analyses have
been proposed. One common method to generate a multi–scale analysis is by a
diffusion process, such as

∂u
∂t (x, t) = ∆u(x, t)
u(x, 0) = uδ0(x) .

(1)

It is easy to see that in R2 convolution of the signal uδ0 at each scale is equivalent
to the solution of the heat equation with the signal as initial datum [9]. The
solution of (1) for the initial datum uδ0 with bounded quadratic norm is

u(x, t) = Gt ? u
δ
0(x) =

∫
Gt(x− y)u

δ
0(y) dy
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where Gσ(x) = 1
4πσ exp(−‖x‖2/4σ) (x ∈ R2). The sequence uλ(.) = u(., λ)

defines a multi–scale analysis, which satisfies the following properties: Let Sλ
be the mapping uδ0 → Sλ(u

δ
0) := uλ

1. uλ → uδ0 as λ→ 0

2. Sλ(u
δ
0) only depends on Sλ′(u

δ
0) if λ > λ′

3. If A is an isometry, then Sλ(u
δ
0 ◦A) = (Sλ(u

δ
0)) ◦A.

In image processing and image enhancement techniques one easily understands
the necessity of a previous low–pass filtering, i.e., by convolution of the signal
with a Gaussian kernel: If the signal uδ0 is noisy, the gradient has a lot of
irrelevant spikes, which have to be eliminated.

As we will see in Section 3 the linear multi–scale analysis based on (1) has a
tendency to over smooth data. Many attempts have been made in the literature
to construct diffusion processes which satisfy a strong causality principle, that
is, the associated multi–scale analysis reconstructs edges and corners of images,
while simultaneously eliminating highly oscillating noise in the image. Diffusion
processes where the associated multi–scale analysis satisfies a strong causality
principle have been found to be mostly nonlinear. In Section 2 we give an outline
of linear and nonlinear diffusion processes and motivate associated multi–scale
analysis. The multi–scale analysis can be the basis for efficient algorithms for
denoising images and edge–detection. In Section 3 we will outline the concept
of stable evaluation of unbounded operators and we show in Sections 3, 4 that
this concept is relevant for the multi–scale analysis associated with diffusion
processes. In Section 5 we will discuss the numerical implementation of a multi–
scale analysis associated with a nonlinear diffusion process and we will show
some numerical results.

2 Variational formulations of diffusion processes

2.1 The Hildreth–Marr theory

The energy functional associated with the differential equation (1) is

E(u) =

∫
|∇u|2 .

This functional gives an evaluation of the amount of information in u. The
energy semi norm is the right functional to be associated with (1) since the heat
equation is the descent method associated with this energy. If we discretize (1)
we end up with

u(x, t)− uδ0(x) = t∆u(x, t)
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which is the solution of a variational problem: roughly speaking, numerically
solving the heat equation is therefore equivalent to minimizing the following
functional iteratively with t = λ2 small:

Eλ(u) = λ2

∫
Ω

|∇u|2 +

∫
Ω

(u− uδ0)
2.

In this formulation the scaling parameter appears explicitly as the multiplier
of the smoothing term. The solution uλ of this problem can be defined as the
“analysis of u at scale λ” as well as the solution of the heat equation at time
t = λ2.

2.2 The Perona and Malik theory

For an edge–detection filtering technique Perona and Malik (see e.g. [10]) sug-
gested the nonlinear diffusion process

∂u
∂t (x, t) = ∇. (f(|∇u|)∇u) (x, t)
u(x, 0) = uδ0(x) ,

(2)

where f is a smooth non-increasing function satisfying

f(0) = 1, f(s) ≥ 0 and lim
s→∞

f(s)→ 0 .

The idea of using this type of nonlinear filtering technique is that the smoothing
process is conditional: if ∇u(x) is large, then the diffusion will be low and
therefore the exact location of the edges in the image are preserved. If ∇u(x)
is small, then the diffusion will tend to smooth around x. Similarly to the
Hildreth–Marr theory one can derive a variational formulation of the Perona
and Malik model. In fact, if we set f̃(a) = f(

√
a) then equation (2) can be

rewritten as

∂u
∂t

(x, t) = ∇.
(
f̃(|∇u|2)∇u

)
(x, t)

u(x, 0) = uδ0(x) ,

which yields a multi–scale analysis

Eλ(u) = λ2

∫
Ω

F̃ (|∇u|2) +

∫
Ω

(u− uδ0)
2 , (3)

where F̃ (t) =
∫ t

0
f̃(s) .
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2.3 A nonlinear filtering technique studied by Osher and
Rudin

Based on the Perona and Malik theory Osher and Rudin [12] considered a non-
linear diffusion process for edge detection:

∂u
∂t

(x, t) = ∇.
(
∇u
|∇u|

)
(x, t)

u(x, 0) = uδ0(x) .
(4)

The energy functional associated with this diffusion process is

E(u) =

∫
Ω

|∇u| .

As above an associated multi–scale analysis can be motivated in terms of the
functional:

Eλ(u) = λ2

∫
Ω

|∇u| +

∫
Ω

(u− uδ0)
2 . (5)

2.4 Higher order nonlinear filtering techniques

Diffusion filters of higher order play an important role in parameter estima-
tion problems [14]. An appropriate filtering technique for enhancing jumps in
derivatives of signals is

∂u

∂t
(x, t) = H.

(
Hu

|Hu|

)
(x, t) . (6)

Here Hu denotes the Hessian of u and H. = (∇.∇.). The multi–scale analysis
associated with this diffusion process is

Eλ(u) = λ2

∫
Ω

|Hu| +

∫
Ω

(u− uδ0)
2 .

3 Unbounded operators

In this section we consider the problem of computing values of an unbounded
operator L. Here and in the following of this section, we will always denote
by L : D(L) ⊆ H1 → H2 a closed densely defined unbounded linear operator
between two Hilbert spaces H1 and H2. The problem of computing values
y = Lu0, for u0 ∈ D(L), is then ill–posed in the sense that small perturbations
in u0 may lead to data uδ0 satisfying ‖u0 − uδ0‖ ≤ δ, but uδ0 /∈ D(L), or even if
uδ0 ∈ D(L), it may happen that Luδ0 6→ Lu0 as δ → 0. Morozov has studied a
stable method for approximating the value Lu0 when only approximate data uδ0
is available (see [11] for information on Morozov’s work). This method takes as
an approximation to y = Lu0 the vector

yδλ2 = Lzδλ2 ,
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where zδλ2 minimizes the functional

‖z − uδ0‖
2 + λ2‖Lz‖2 (λ2 > 0)

over D(L). For L = ∇ the approximate zδλ2 of u0 is the solution of the Hildreth–
Marr problem at level λ2. In [7] we discussed the optimal choice of the scaling
parameter λ2 in relation to the noise level δ and smoothness assumptions on
the solution and the numerical realization. Of particular interest for image
reconstruction and image enhancement techniques is the choice of the scaling
parameter. The theory developed for the stable evaluation of unbounded oper-
ators to optimally choose the regularization parameter is directly applicable to
optimally choosing the scaling parameter in the Hildreth–Marr theory. In order
to clarify the choice of the scaling parameter we cite a result developed in [7].

Theorem 3.1 If u0 ∈ D(L∗L) and u0 6∈ N (L), then ‖yδλ2(δ) − Lu0‖ = O(
√
δ) ,

when λ2(δ) is chosen such that

‖uδλ2(δ) − u0‖ = O(
√
δ) . (7)

Roughly speaking in the particular case L = ∇ the assumption u0 ∈ D(L∗L)
means u0 ∈ H2, and the derivative of u0 can be reconstructed with a rate O(

√
δ)

if λ2(δ) is chosen according to the discrepancy principle (7).
Other strategies for optimally choosing the regularization parameters when

calculating unbounded operators can be found in [7]. For more background on
the stable evaluation of unbounded operators we refer to [6].

From a simple example, by taking L = ∇, D(L) = H1(R), the Sobolev space
of functions possessing a weak derivative in L2(R), it follows that zδλ2 ∈ H1(R).
This shows that at any scale discontinuities of the original image are smeared
out, and thus the method is not strongly causal. Nonlinear filtering techniques
have turned out to be strongly causal and therefore, we study below numerical
implementation of nonlinear filtering techniques based on the nonlinear diffusion
process developed by Rudin, Osher, and Fatemi [13].

4 Unbounded operators in nonlinear multi–scale
analysis

The multi–scale analysis associated with the nonlinear diffusion process devel-
oped by Osher and Rudin is sometimes called regularization with functions of
bounded variation, since the scale–energy functional (5) is finite for any function
u ∈ BV, that is, the space of all functions which satisfy

∫
Ω

|∇u| := sup


∫
Ω

u∇.vdx : v ∈ C∞0 (Ω,Rd), |v(x)| ≤ 1, x ∈ Ω

 <∞ .
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In practical applications, since the functional (5) is not differentiable, the min-
imizer of (5) is frequently approximated by the solution of the (nonlinear) least
squares problem (see e.g. [4, 2, 3])

min
u∈L2(Ω)

{
1

2
‖u− uδ0‖

2
L2(Ω) + λ2Jβ(u)

}
, (8)

where

Jβ(u) :=

∫
Ω

√
|∇u|2 + β2 ; (9)

here Ω ⊆ Rd. The term Jβ(u) is used for stabilization and is therefore called
the regularizing term.

Vogel and Oman [15] introduced a fixed point iteration method to minimize
(8), (9): The corresponding (formally derived) Euler–Lagrange equation is

u− λ2∇.

(
1√

|∇u|2 + β2
∇u

)
= uδ0 ,

which can be expressed in operator notation as

(I +Aλ2β(u))u = uδ0, (10)

where

Aλ2β(u)v := −λ2∇.

(
1√

|∇u|2 + β2
∇v

)
.

A fixed point iteration for (10) can be defined by

un+1 = (I +Aλ2β(u
n))−1uδ0 =: F (un), n = 0, 1, ...

In actual computations the minimization of (8) is difficult to handle, since it
involves evaluations of the unbounded operator ∇. To overcome this difficulty
we proposed in [3] to approximate the values of the unbounded operator ∇ and
use the minimizing element of

min
u∈L2(Ω)

{
1

2
‖u− uδ0‖

2
L2(Ω) + λ2Jβγ(u)

}
, (11)

where

Jβγ(u) :=

∫
Ω

√
|Lγu|2 + β2, (12)

as an approximation for the desired image. In practical applications the operator
Lγ might be, for instance, a finite difference scheme, where the parameter γ
represents the grid-size. Denoting by L∗γ the adjoint of Lγ , the Euler–Lagrange
equation for a minimizer of (11) is

u+ λ2L∗γ

(
1√

|Lγu|2 + β2
Lγu

)
= uδ0 .
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Extending the ideas of Vogel and Oman [15] and Dobson and Vogel [4] we
studied (in [3]) the iterative scheme

un+1 = (I +Aλ2βγ(u
n))−1uδ0 =: F (un), (13)

where

Aλ2βγ(u)v :=
λ2

β
L∗γ

 1√
|Lγu|2

β2 + 1
Lγv

 . (14)

As long as the parameters λ2, β, γ are chosen appropriately (13),(14) is conver-
gent. This setting reflects computational relevance since in numerical simula-
tions the operator ∇ is (almost) never calculated exactly, but approximately
evaluated, e.g. by some finite difference scheme.

In numerical calculations (see e.g. [2, 1]) regularization with functions of
bounded variation turned out to be very efficient to determine discontinuities in
signals and images. This can be motivated both by arguing that the associated
diffusion process (4) is designed to optimally enhance edges in images (see e.g.
[12, 10]) or from arguing for the least squares functional (8) (respectively (5))
directly. Namely, efficient regularizing schemes have to satisfy the following two
properties:

1. The regularizing term evaluated at the function to be recovered is finite;
in signal and image processing, the images of most interest are piecewise
constant and thus have finite bounded variation (see e.g. [5, 16]), i.e.,

∫
Ω

|∇u0| := sup


∫
Ω

u0∇.vdx : v ∈ C∞0 (Ω,Rd), |v(x)| ≤ 1, x ∈ Ω

 <∞ .

2. The recovery of images from noisy measurements is ill–posed, in the sense
that small perturbations in the data uδ0 may lead to significant distortions
of the picture (mathematically the ill-posedness is due to the fact that
the bounded variation semi norm – which represents a natural norm in
measuring the distortion of the picture – does not depend continuously on
the L2 – norm – which represents the natural norm for noise in the data),
the regularizing term has to have appropriate stabilizing properties.

In practical applications (such as in non–destructive testing) frequently dis-
continuities in derivatives have to be recovered instead of the function itself.
Examples include electrical conductivity problems in R1,R2, where the ideal-
ized model is the following: Given some domain Ω in R1 or R2; the voltage
potential u0 inside of Ω satisfies

∇.(σ∇u0) = 0 in Ω. (15)
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If the electrical conductivity σ is discontinuous, then by jump relations (see e.g.
[8]) the resulting solution of (15), the voltage potential u0, reveals discontinu-
ities in the derivatives of u0. Therefore, discontinuities in the material (i.e.,
discontinuities in σ) can be detected from measurement data uδ0 of u0 and by
denoising uδ0 and detecting discontinuities in derivatives of u0.

For estimating discontinuities in electrical conductivity problems by denois-
ing the data uδ0 the two demands on an efficient regularization scheme suggest
the use a regularizing (semi) norm which satisfies the two properties:

1. For functions with jumps in derivatives the regularizing norm is finite

2. The stabilizing term has to cope with the ill–posedness.

A reasonable semi norm satisfying both properties is

|Hu| =
d∑
i=1

d∑
j=1

∣∣∣∣ ∂2u

∂xi∂xj

∣∣∣∣ ;
here Hu denotes the Hessian of u, i.e.,

H =


∂2u
∂x2

1
.... ∂2u

∂x1∂xd

... ... ...
∂2u

∂xd∂x1
.... ∂2u

∂x2
d

 .

For the numerical solution of the parameter estimation problem described in
(15) we propose to use a higher order bounded variation denoising algorithm

min
u∈L2(Ω)

1

2
‖u− uδ0‖

2
L2(Ω) + λ2Jβγ(u), (16)

where

Jβγ(u) :=

∫
Ω

√
|Hγu|2 + β2 ;

here the meaning of Hγ is a stable approximation of the Hessian in Rd.
Formally (16) looks like (12), and actually the analysis of the fixed point

iteration is formally the same (see [14]).

5 Numerical results: Higher order bounded vari-
ation regularization in comparison to a linear
multi–scale algorithm

In this section we present some numerical experiments to estimate discontinu-
ities in derivatives of a one-dimensional signal from its noisy measurements. We
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solved the denoising problem both with regularization with higher order bounded
variations and with a linear multi–scale algorithm and compared the numerical
results.

In the numerical experiments presented below, when functions with deriva-
tives of bounded variation were used for regularization, we applied the iterative
scheme (16) in a discrete setting.

Example 5.1 Regularization with functions with derivatives of higher
order bounded variations: The first example is to determine the discontinu-
ity in the derivative of the piecewise continuously differentiable function

f : [0, 1] → R .
x → 1

2 −
∣∣ 1

2 − x
∣∣ (17)

In Figure 1 the unperturbed signal and its derivative are plotted. We added
to 97 uniformly distributed measurement points random noise to the data (see
Figure 2) to simulate noisy measurements of the signal. Figures 3, 4 show recon-
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Figure 2:

structions with regularization with higher order derivatives of bounded variation.
In each of the Figures 3, 4 the dotted line represents the reconstructed func-
tion, while the dashed dotted line represents its derivative, which was calculated
by a forward difference scheme. In the bottom line of these figures the actual
parameter setting of λ2, β, γ is plotted.

Example 5.2 A linear multi–scale algorithm: Here the same denoising
problem as in Example 5.1 is studied, but as resolving algorithm we used a
linear multi–scale algorithm. In Figures 5, 6 we have plotted the Tikhonov
regularized solutions, i.e., the minimizing elements of

min ‖u− uδ0‖
2
L2 + λ2‖uxx‖

2
L2 (18)

for different values of the regularization parameter λ2. The reconstruction in
Figures 5 - 6 the ?–line shows reconstructions with a linear multi–scale algorithm
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Figure 3: λ2 = 1.e − 4, β = 1.e − 2,
γ = 1/m, m = 96
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Figure 4: λ2 = 1.e − 3, β = 1.e − 2,
γ = 1/m, m = 96

if it is implemented with noisy boundary data, and the “×”–line shows its
derivative; lines −· and −− denote the reconstruction and its derivative if “a–
priori” information on exact boundary data is available and implemented.
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Figure 5: λ2 = 1.e− 4, m = 96
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Figure 6: λ2 = 1.e− 3, m = 96

It is apparent from the numerical experiments that regularization with higher
order bounded variation resolves discontinuities in derivatives efficiently; in com-
parison with a linear multi–scale algorithm the location of the discontinuities
can be sharply estimated. Of course there is a price to pay: a linear multi–
scale algorithm requires only the solution of one sparse matrix problem. For
regularization with functions of higher order bounded variation a sparse matrix
problem (of the same dimension as in a linear multi–scale algorithm) has to be
solved in each iteration.
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