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ABSTRACT 

The Dunes Sagebrush Lizard (Sceloporus arenicolus - DSL) is a highly cryptic, 

habitat specialist that shows a preference for environments comprised of large wind-

blown sand dune complexes and dense arrays of shinnery oak (Quercus harvardii). This 

species occupies a narrow range in the Monahans Sandhills of Texas and the Mescalero 

Sands of New Mexico and like many habitat specialists, they are sensitive to disturbances 

within their environment. Conservation of this species relies upon precise assessments of 

the occurrence, abundance, and the trends in both metrics for this lizard. The standard 

method for detecting the DSL, visual encounter surveys (VES), was utilized to estimate 

the probability of detection, across sites that had varying degrees of reported suitability. 

Three separate VES methodologies were analyzed: 1) plot size: 200m x 200m; survey 

duration: 15 minutes, 2) plot size: 400m x 400m; survey duration: 60 minutes, and 3) plot 

size: 200m x 200m; survey duration: 30 minutes. The probability of detection, for S. 

arenicolus, was compared to two more commonly detected species, Uta stansburiana and 

Aspidoscelis marmoratus. The minimum number of surveys, needed to reliably detect 

these species, was then calculated from detection estimates. A total of 1,135 individual 

lizards were recorded, 12 of which were S. arenicolus. The mean detection probability for 

U. stansburiana = 0.38, followed by A. marmoratus = 0.28, and finally the DSL = 0.13 to 

0.19. Less surveys were needed to be 95% confident that a lizard was detected, if that 

lizard had a higher probability of detection. Results of the study indicated that while VES 

may be suitable for many common species of lizards, it may not be the most efficient 

method for accurately determining presence of rarer species of lizards (i.e., the DSL). 

This could indicate that a more intensive survey methodology (i.e., pitfall traps) may be 

needed when trying to make reliable occupancy or abundance estimates.
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I. AN ASSESSMENT OF VISUAL ENCOUNTER SURVEYS FOR AN ELUSIVE 
SPECIES - THE DUNES SAGEBRUSH LIZARD (Sceloporus arenicolus) 

 
Introduction 

Many long-term wildlife management plans focus on evaluating trends in animal 

populations. As a result, many plans necessitate extensive monitoring programs that will 

1) accurately assess the number of individuals in a given population (i.e., abundance) and 

2) identify areas where those individuals occur (i.e., occupancy) (Pollock, 2002; 

MacKenzie and Royle, 2005; Pellet and Schmidt, 2005; MacKenzie et al., 2006; Olea and 

Mateo-Tomás; 2011). This framework can be particularly important for species of 

conservation concern. Categorizing potential habitats for threatened/endangered species 

can be difficult, not only because these species are rare (low occupancy), but also because 

some species are highly cryptic and are therefore not easily encountered (low detection 

probabilities) (Shannon et al., 2014). The effects of imperfect detection rates are 

profound, especially when managing species of concern. If biologists misunderstand 

population parameters, it can create complications that ultimately affect their 

management decisions. For example, imperfect detections can lead to 1) underestimation 

of naïve occupancy (MacKenzie et al., 2002), 2) erroneous or biased abundance counts 

(Royle et al., 2005) 3) poor predictive performance of species distribution models 

(Lahoz-Monfort et al., 2014), and 4) inaccurate estimates of local colonization and 

extinction events (MacKenzie et al., 2003). Concluding a species is absent, when it is 

really present, is a form of sampling error that must be avoided in order to make effective 

management decisions. It is therefore imperative that biologists and managers utilize 

protocols that will 1) accurately determine the occupancy of a species and 2) allow 

individuals of the species to be routinely detected for population monitoring.  
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The characteristics of a species and the environment that it resides in, are not the 

only factors that can cause variation in detection probabilities. In fact, the type of survey 

methodology may affect the overall detectability of a species (Mazerolle et al., 2007; 

Martin et al., 2007; Williams et al., 2002). Specific survey methods might be ineffective 

in some circumstances but when applied in the proper situation, they can be considered 

useful [e.g., point count surveys (Mazerolle et al., 2007)]. For example, visual transect 

surveys have been deemed unreliable when targeting rare or elusive species (Barea-

Azcón et al., 2006), but this methodology can also be extremely useful when targeting 

other species (Sung et al., 2011). The success of a study can, therefore, rely heavily upon 

knowing the costs and benefits of different survey methods in various situations.  

There are numerous survey methods that are frequently utilized for the detection 

of reptile species. These methods can be classified into two main categories: passive 

sampling methods (animals captures are accumulated over time, with marginal human 

intervention) and active sampling methods (observers search for and sometimes 

physically capture animals) (Willson and Gibbons, 2010; Hubert et al., 2012). Pitfall and 

camera traps are prime examples of conventional passive trapping methods that have 

been utilized for surveying herpetofaunal species, specifically lizards (Degenhardt, 1966). 

Pitfall traps and camera traps alike, may be effective for obtaining high numbers of 

captures (Towns, 1991; Greenberg et al., 1994; Welbourne et al., 2015). While these 

methodologies are both highly successful, neither is unbiased. Pitfall traps, for example, 

may have disadvantages such as high mortality rates (Todd et al., 2007) and the inability 

to accurately detect certain ecological groups (i.e. arboreal and fossorial species) 

(Greenberg et al., 1994). Unfortunately, camera traps are also imperfect, as this method 



 

 3 

may be problematic with regard to species identification (Welbourne et al., 2015). These 

types of issues can contribute to the appeal for using active sampling methods such as 

visual encounter surveys (VES). VES has proven to be effective over other sampling 

methods in situations where there are time and/or cost restraints because VES is 

relatively inexpensive and can be completed in short timespans (Smolensky and 

Fitzgerald, 2010). VES, while useful, is also largely dependent upon the sampling effort 

and the expertise of the individuals conducting the survey (Ribeiro-Júnior et al., 2008). 

Acknowledging these types of strengths and weaknesses among methodologies is crucial 

to the success of any study and should not be overlooked when making management 

decisions.  

The Dune Sagebrush Lizard (Sceloporus arenicolus: DSL, hereafter; Figure 1) is 

listed as endangered by the New Mexico Department of Game and Fish (2016) and was a 

candidate for federal listing in 2012 (U.S. Fish and Wildlife Service , 2012). The DSL 

occupies a narrow geographic range that encompasses the Monahans Sandhills of Texas 

and the Mescalero Sands of New Mexico (Figure 2) (Smolensky and Fitzgerald, 2010; 

Center for Biological Diversity and Defenders of Wildlife, 2018). Studies have explicitly 

suggested that the current range of this endemic lizard, is relatively small when compared 

to other North American lizard species (Fitzgerald et al., 1997). The DSL is categorized 

as a habitat specialist showing a strong preference for environments comprised of large 

dune complexes and dense arrays of shinnery oak (Quercus harvardii) (Chan et al., 

2009). In addition to restricted habitat types, individuals can routinely go undetected 

because of their behavior [i.e., basking and retreating into the shade for thermoregulation 

purposes (Sartorius et al., 2002)] and low abundances that are mostly due to habitat 
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fragmentation (Leavitt and Fitzgerald, 2013). The DSL, like many habitat specialists, is 

sensitive to disruptions in its environment (Leavitt and Fitzgerald, 2013). A substantial 

network of roads and oil pads (infrastructure for the expanding energy industries) is 

currently dispersed throughout the habitat, fragmenting and destabilizing the 

homogeneous sand dune landscape (Walkup et al., 2017). Studies suggest that these roads 

block connectivity between dunes and disrupt the dispersal of the species (Hibbitts et al., 

2017; Young et al., 2018). Hibbitts et al. (2017) indicated that most individuals will avoid 

the industrial caliche roads altogether. This type of extreme behavior can confine 

individuals to noncoastal islands, ultimately increasing the likelihood for local 

extirpations to occur (Young et al., 2018). Overall, anthropogenic changes to habitat and 

landscapes, coupled with the potential to inefficiently detect and estimate occupancy, is 

detrimental to the conservation of this species.   

Unfortunately, there are few studies that provide reliable survey guidelines for 

detecting the DSL. Moreover, there are not many studies that utilize the current standard 

for locating this species (i.e., visual encounter surveys). In fact, prior studies are mainly 

focused on utilizing capture-mark-recapture methods for evaluating abundance and other 

demographic factors (Leavitt and Fitzgerald, 2013; Ryberg et al., 2013; Ryberg et al., 

2015). Additionally, the few studies that do employ VES were predominately conducted 

within habitats that were categorized as highly suitable for the DSL (Fitzgerald et al., 

2011; Ryberg et al., 2016). This implies that efforts are mainly focused within large dune 

blowouts that are surrounded by Q. harvardii (Fitzgerald et al., 1997; Fitzgerald et al., 

2011). While this technique may be effective for detecting DSL individuals, it does not 

evaluate the true ability of VES across habitat types. The primary goals of this study were 
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1) to assess the efficiency and accuracy of VES for detecting the DSL and 2) to determine 

the minimum survey effort needed to reliably infer absence, of various lizard species, 

within the Shinnery – Sands ecoregion. Visual encounter surveys may be less labor 

intensive when compared to other more robust survey methodologies (i.e., pitfall trap 

arrays), but they can provide highly variable detection rates, especially when attempting 

to detect highly cryptic species (Olsen et al., 2016; Willson and Gibbons, 2010). As 

stated before, there is concern for the proper conservation management of the DSL and 

any inaccurate occupancy estimates could be detrimental for this species. Understanding 

the trade-offs of any survey method could inform biologists of the biases associated with 

that specific method. Once those biases are acknowledged, surveyors could use that 

information to potentially 1) increase the probability of detecting this species when it is 

present or 2) minimize the probability of non-detection when a population is actually 

present at a given location or habitat type. Therefore, it is possible that assessing VES as 

a detection method, for this elusive species, will provide biologists with better 

information that is necessary to mitigate the issues surrounding this method. The 

amendments could then be used to improve conservation and management efforts, by 

ensuring that the most efficient form of this method is being utilized when monitoring 

and surveying populations.  

 

Methods 

Study Site. – The sites for this study are located in the Monahan Sandhills of Texas 

(Andrews, Ward, and Winkler counties). All sites were either 1) properties that were 

owned by the University of Texas System 2) within the Monahans Sandhills State Park or 
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3) privately-owned parcels that were enrolled in the now defunct Texas Conservation 

Plan (TCP) for the DSL (Office of the Texas Comptroller, 2012). This region is 

characterized by a variety of habitat types, including open dune blowouts, open active 

dunes, shinnery oak and grassland dune complexes, and mesquite flats. In order to avoid 

potential detection biases, this study was conducted on sites that had varying degrees of 

reported suitability for the DSL. The sites ranged from highly suitable to those considered 

to represent unsuitable habitat. An equal number of sites were selected, for each habitat 

suitability type, using a stratified random sampling approach (Table 1; Forstner et al., 

2018). It is important to note that the number of sites were not uniform between the two 

sampling years because of additional site access restrictions (2017, n = 60; 2018, n = 30). 

In addition to the 60 sites that were originally selected in 2017, access was also granted 

within other Permian Basin locations (n = 43). It is also important to note, that while all 

sites in 2017 were surveyed once per month, the sites in 2018 were actually visited twice 

per month because of limited access to sites.  

 

Sampling. – Visual encounter surveys were conducted for two sampling seasons (May – 

September 2017; May – July 2018) in the Monahans Sandhills ecosystem. In addition to 

these two periods, another sampling interval was completed during July of 2017 in the 

Yoakum Dunes Wildlife Management Area (YDWMA). A total of 15 individual 

observers conducted the VES over the two survey years. Those 15 individuals were 

randomly arranged into pairs, with the intention of having every plot assessed by two 

observers simultaneously and independently. Observers were randomly partnered, before 

sampling was initiated, to prevent creating bias among observer pairs. Each pair of 
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observers used a Kestrel 2500 Weather Meter to record abiotic environmental conditions 

(i.e., air temperature, wind speed, humidity and barometric pressure). The only abiotic 

condition not recorded with the Kestrel was substrate temperature. Instead, this factor 

was recorded with an infrared laser thermometer. Surveyors were also equipped with a 

GPS unit (GPSMAP 64st – Garmin) to record the quasi-random path they walked 

throughout the survey. Observers were required to record every individual lizard that they 

encountered (including non-target species) and document their locations on both the GPS 

and on AppSheet (i.e., a customizable mobile app building program) (Seshadri et al., 

2019).  

Initially, in the 2017 sampling period, surveys were conducted for 15 minutes, in 

a 4-hectare plot (200m x 200m or 40,000 m2) (15’200 m2 hereafter). The best estimates 

of the home range, for the DSL (average = 436 m2), were used to determine plot size 

(Hill and Fitzgerald, 2007). Thus, 400 m2 was used as the starting point for plot size in 

this study, mimicking that of Crump and Forstner (2019).  In an attempt to maximize 

survey efficiency, alterations were made to the study design. Beginning in May 2018, 

plot size and survey time were quadrupled (i.e., plot size: 400m x 400m or 160,000 m2; 

survey time: 60 minutes; 60’400 m2 henceforth). A catch-per-unit-effort (CPUE) analysis 

was then performed to determine the effectiveness of the modified study design. The 

remaining surveys in the 2018 sampling period (i.e., June – July), were subsequently 

conducted for 30 minutes, in a 4-hectare plot (30’200 m2 hereafter).  

 

Statistical Analysis. – A suite of generalized linear mixed models (GLMM) were 

analyzed in Program R (R Core Team, 2013; Package: lme4), to compare detection 
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probabilities among the various lizard species in the Monahans Sandhills complex. 

Several environmental factors were included to account for heterogeneity among the 

detection probability estimates. Substrate temperature (st), air temperature (at), 

barometric pressure (bp), relative humidity (rh), wind speed (ws), and the survey type 

were included in the models to determine if they had any effect on the overall detections 

of lizards, at sites known to be occupied. Moreover, the survey type was added, along 

with these environmental covariates, to account for any variation among the three survey 

treatments (i.e., 15’200 m2, 30’200 m2 and 60’400 m2). All of the models that were 

compared included observer, as a random effect, to account for presumed observer biases 

(Crump and Forstner, 2019). Observer and survey type were both coded as factors, before 

the analysis began, to indicate the type of survey that was utilized and who completed the 

survey. These two variables were considered the independent variables and were added to 

test the effects they might have on the dependent variable (i.e. lizard detections). Once 

the models were built, an Akaike Information Criterion analysis, corrected for small 

sample size (AICc), was executed for model selection (R package: AICcmodavg). A full 

model (e.g., including all of the covariates) was selected for the AICc analysis, along 

with six models that excluded one of each of the covariates, six univariate models, and an 

intercept model. All of the models selected included the random effect (i.e., observer). 

The delta AIC (ΔAIC) and Akaike weight values were used in the model selection 

process. A ΔAIC value of <2 is known to suggest strong evidence for the selection of that 

particular model, therefore this threshold was used when selecting the top model 

(Mazerolle, 2006). Note that these procedures were completed, not only for the species of 

interest, the DSL, but for two more common species of lizards (i.e., The Common Side-
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blotched Lizard – Uta stansburiana and The Marbled Whiptail – Aspidoscelis 

marmoratus) as well. Furthermore, the analysis was only performed using the data from 

sites where a lizard was detected at least once by an observer. All other sites that did not 

have a prior detection were removed from the dataset. Finally, the YDWMA plots were 

removed from all analyses because the plot size and shape associated with these sites was 

not comparable to plots at other sites.  

 Initial attempts to analyze the DSL detections, with the GLMM, resulted in model 

convergence issues. Therefore, estimates were obtained by calculating the weighted naïve 

detection (WND) probabilities in Microsoft Excel. This was completed through the use of 

the following formula, where ps was the proportion of surveys where at least one DSL 

was detected and pr was the proportion of surveys conducted at that given site.  

WND =	"  ps ∗ 	pr

n

i=0

 

These values were then compared to detection probabilities that were estimated with a 

series of bootstrap analyses, conducted with 10,000 iterations. In order to account for 

differences among the three survey methodologies, the analyses were split into three 

groups (i.e., one for each VES configuration utilized in this study). After these values 

were verified, 95% confidence intervals were obtained from the bootstrap analysis. All 

bootstrap analyses were conducted in Program R (Code: Appendix A; R Core Team, 

2013; R package: boot).  

 Finally, in order to further assess the efficiency of VES, the detection probabilities 

were used to determine the total number of surveys needed to be 95% confident that a 

species was absence at a given site. Utilizing the equation described by Pellet and 

Schmidt (2005), the average survey effort was calculated for the same three lizards 
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located in the sand dune ecoregion. Standard deviations (U. stansburiana and A. 

marmoratus) and confidence intervals (DSL) were used to obtain the maximum number 

of surveys needed to be 95% confident in the detection of these species. All statistical 

analyses were completed in Program R (Code: Appendix A; R Core Team, 2013).  

 

Results 

Total Lizard Observations. – There were 891 surveys conducted during the two years of 

survey work. The total number of detections varied greatly among species (Table 2). Raw 

detection counts showed that a total of 1,135 individual lizard observations were made, 

encompassing 7 genera and 13 species (Table 2). Among these lizard detections, 903 of 

the observations were identified at the species level (Figure 3). However, after the 

YDWMA sites were removed the total number of detections was 1,065, with 865 of those 

detections identified at the species level. U. stansburiana and A. marmoratus were the 

two most frequently reported lizard species, in both datasets, with 447 and 211 individual 

detections respectively (Table 2). All other lizards were reported less frequently, most of 

which had < 150 individual detections. The DSL, for instance, was recorded a total of 12 

times throughout the entirety of the study (Table 2).  

 In addition to species, the total number of detections also varied among the three 

survey methods used in this study. U. stansburiana had the lowest number of detections 

within the 15’200 m2 survey plots and greatest number of observations within the 60’400 

m2 survey design (n = 109 and n = 193 respectively; Figure 4). Similar to U. 

stansburiana, the 15’200 m2 survey type yielded the lowest counts for A. marmoratus (n 

= 39; Figure 4). However, A. marmoratus was detected the most when the 30’200 m2 
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survey design was utilized (n = 101; Figure 4). Unlike the other two species, the 

relatively few detections of the DSL suggest that as time and plot size increased, the 

number of detections decreased. Moreover, the highest number of detections for the DSL 

was recorded when the 15’200 m2 surveys were performed (n = 6; Figure 4).   

 As seen above, the DSL was detected a total of 12 times, within sites used in the 

analysis. Expectedly, all detections for the DSL occurred in areas where sand was the 

dominant substrate (Figure 5; Figure 6). Within those sites, the majority of the detections 

were located within open dune blowout habitats (Figure 5). However, the DSL was not 

restricted to the sites classified as open dune blowouts, as has often been portrayed in the 

literature for the species. In fact, individuals were detected within a variety of areas 

including: 1) sand flats dominated by thick expanses of Q. harvardii, 2) habitat on the 

edge of small open dunes, and 3) within sandy areas near roadways (Figure 6). 

 

AICc Model Selection. –  The ΔAIC and AICc model weights, calculated in the AICc 

analysis indicated that there were four competing detection models for U. stansburiana 

(Table 3). The highest ranked AICc model in the analysis, was the model that included all 

of the covariates except relative humidity (ΔAIC = 0.00, AIC Weight = 0.42; Table 3). 

Substrate temperature, air temperature, and survey type were all considered important 

covariates for explaining the variation among U. stansburiana detections. In fact, these 

covariates were consistently selected for inclusion, not just within the highest ranked 

model, but in the top four models of the AICc analysis as well (Table 3).  

 Out of the six competing AICc models for A. marmoratus, the univariate model 

that included wind speed had the highest rank (ΔAIC = 0.00, AIC Weight = 0.35; Table 
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4). Unlike the AICc analysis for U. stansburiana, substrate temperature was not included 

in any of the competing models (Table 4). Instead the top two competing models showed 

that wind speed and survey type were the two most important variables for detecting A. 

marmoratus (Table 4). Interestingly, for A. marmoratus, all of the univariate models were 

selected over the models that included combinations of the covariates. The higher ranked 

models, that did include more than one covariate however, consistently included wind 

speed and survey type (Table 4).  

 

Probability of Detection Among Lizards. – The probability of detecting the lizards in this 

study varied greatly among species. The top model for, U. stansburiana, yielded a higher 

probability of detection than the other two lizard species (mean = 0.38 ± 0.17). 

Barometric pressure and air temperature were identified as significant variables for 

detecting this U. stansburiana (bp: p< 0.0001; at: p = 0.015; Table 5). More specifically, 

as barometric pressure decreased and air temperature increased, the probability of 

detecting U. stansburiana increased (Table 5). The top model for A. marmoratus, on the 

other hand, yielded a mean detection rate of approximately 28% (mean = 0.28 ± 0.09). It 

was found that as wind speed increased, so did the probability of detecting A. 

marmoratus (p<0.0305; Table 6). Finally, after the bootstrap analyses were conducted for 

the DSL, there were three separate uncorrected detection probabilities, one for each of the 

survey types. It was observed that all three values were lower than the other two lizards. 

When the values for the DSL were compared to one another however, all three were 

relatively close in value and the confidence intervals overlapped substantially. The 

15’200 m2 yielded the greatest mean probability of detection followed by the 30’200 m2 
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and then the 60’400 m2, respectfully (15’200 m2: mean = 0.19, 95% C.I. = 0.039, 0.35; 

30’200 m2: mean = 0.13, 95% C.I. = 0.00, 0.25; 60’400 m2: mean = 0.17, 95% C.I. = 

0.00, 0.33).   

 

Inferring Absence. – The absence analysis showed that less surveys were needed when 

trying to detect the more common species of lizards. In fact, it was found that a total of 

six surveys (mean = 6.30, max = 22.86) were needed to be 95% confident that U. 

stansburiana was truly absent from a site where it was known to occur (Figure 7). In 

addition to this, A. marmoratus, which was detected less frequently than U. stansburiana, 

needed a larger number of surveys for reliable detection. If A. marmoratus was present at 

a site, roughly 9 surveys would be needed to be 95% confident that this species was 

detected (mean = 9.03, max = 41.77; Figure 7). 

The surveys needed to reliably detect the DSL, were divided into three groups 

based on survey methodology. When conducting a survey with the 15’200 m2 

methodology, the average number of surveys needed was approximately 19 (mean = 

19.23; Figure 7). The confidence intervals also yielded a minimum of 7 surveys and a 

maximum of 76 surveys (95% C.I. =  7.05, 76.30). When utilizing the 30’200 m2 survey 

design, roughly 22 surveys were needed to reliably detect a DSL in a positive site (mean 

= 22.43; 95% C.I. = 10.41, ∞; Figure 7). Finally, when conducting surveys using the 

60’400 m2 methodology, an average of 16 surveys were needed to be 95% confident that 

the DSL was detected, at a site of known occurrence (mean = 16.43; 95% C.I. = 7.39, ∞; 

Figure 7). However, judging by the confidence intervals, lack of detections and the 
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inability to assess environmental covariates for the DSL, may have confounded the 

results for this species. 

 

Discussion 

A critical aspect of any management strategy is the ability to accurately detect and 

monitor the species of concern (Kéry and Schmidt, 2008; Crump and Forstner, 2019). 

Threatened and endangered species should be regularly monitored using guidelines in 

conservation management plans. As above, species that fall within these categories can 

be difficult to monitor because they present unique challenges (i.e., low occupancy rates) 

(Shannon et al., 2014; Walkup et al., 2018). This does not however, change the fact that 

threatened or endangered species rely heavily upon the management strategies put in 

place for their recovery. It is therefore imperative, that the methods utilized when 

monitoring populations, are efficient in yielding accurate estimates. Results from this 

study emphasize the importance of tailoring survey methodologies to the species of 

concern, by highlighting the variation in detection probabilities among the different lizard 

species when using identical methods. 

The main focus of this study was to assess the adequacy of VES as a tool for 

accurately detecting the DSL. To achieve this, the detection rates of the two most 

common lizards, U. stansburiana and A. marmoratus were compared to the species of 

interest. Results of the comparison showed varying rates of detection among the three 

species. U. stansburiana had the greatest probability of being encountered (p = 0.38), 

followed by A. marmoratus (p = 0.28) and DSL (p = 0.13 – 0.19). The results of this 

study coincide with other studies conducted in west Texas. Fitzgerald et al. (2011), also 
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found U. stansburiana and A. marmoratus to be the two most frequently encountered 

lizard species. While the initial pattern of the data is similar, the detection rates in this 

study were considerably lower than other rates presented in the literature. This is 

especially apparent when comparing the detection rates of the DSL. For example, one 

study showed that the probability of detecting DSL individuals was approximately 52%, 

a large difference when compared to 13% - 19% probability seen at sites in this study 

(Walkup et al., 2018). While this is strikingly different, the results from this study were 

collected using a different survey design. Recall that the DSL is a habitat specialist and is 

not commonly detected in habitats without large wind-blown dunes and Q. harvardii 

(Leavitt and Fitzgerald, 2013; Walkup et al., 2017; Walkup et al., 2018). This is 

important, as much of the current literature focuses the majority of the effort within areas 

classified as highly suitable for the DSL (Fitzgerald et al., 2011; Ryberg et al., 2016; 

Walkup et al., 2018). In the previously mentioned study, for instance, the majority of the 

surveys were conducted in highly suitable habitats, with only 13 surveys focused in the 

lower quality sites (Walkup et al., 2018). In this study, however, the surveys were 

conducted equally across a gradient of habitat types. The sites surveyed here included 

habitats considered unsuitable for the DSL (Table 1). This study more closely followed 

the methods published by Crump and Forstner (2019), which specifically encompassed a 

breadth of habitat types (i.e., mesquite grasslands, sand flats covered in dense vegetation, 

etc.). Furthermore, the results in that study, not unlike this one, report lower overall 

detection probabilities for the DSL than what is found in the literature (i.e. for studies that 

more often target blowout habitats) (Crump and Forstner, 2019).  
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Results of this study show that the DSL was not detected as frequently as other 

species. In fact, only 12 observations of DSL were made over the two years (i.e., 2017 = 

6; 2018 = 6). This is a significant difference from the other two species in this analysis, 

both of which had over 200 individual observations. Furthermore, out of the 15 

observers, less than half detected a DSL, with several of those observations being made 

exclusively by four observers. It is entirely possible that variation in detection rates could 

be attributed to the overall behavior of these species. While all three of these species 

occupy many of the same sites, their life history traits are different. The two more 

commonly detected lizards are generalist species that can thrive in many habitats, 

including fragmented areas (Sartorius et al., 2002; Walkup et al., 2017). In fact, one 

study, that compared capture rates in disturbed and undisturbed sites, found that U. 

stansburiana has been captured more frequently in fragmented areas (Leavitt and 

Fitzgerald, 2013). This is quite different from habitat specialists, such as the DSL. The 

DSL is highly sensitive to habitat alterations and is found less frequently in these 

fragmented areas (Leavitt and Fitzgerald, 2013). The fact that the more common lizard 

species are more abundant in some areas, makes these species readily available for 

observation. The behavior differences could be responsible for the extreme contrast in the 

total number of detections (Table 2).  

It is possible that detection rate is altered by more than differences in habitat 

preference. It is also possible that some animal behaviors and the habitat that they reside 

in, might influence the observer’s ability to detect the individual. The two more common 

species in this study, have a natural response to flee when threatened (Punzo, 2008; Zani 

et al., 2009). However, when the DSL is threatened, this species shows a natural desire to 
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burrow under the sandy surface (Fitzgerald et al., 1997; Smolensky and Fitzgerald, 2010). 

In addition to this behavior, many environmental variables were included in the models to 

account for any additional variation. The top model for U. stansburiana, for instance, 

emphasized the significance of barometric pressure and air temperature when attempting 

to detect that species of lizard (Table 5). However, it is possible that the analysis did not 

account for every possible source of variation. For example, the habitat of the DSL is 

colonized by an endemic species of oak shrub, Q. harvardii. According to the current 

literature, the DSL shows a preference for areas where this shrub is present (Walkup et 

al., 2018). Therefore, it could be assumed that occupancy rates would increase in sites 

containing Q. harvardii. However, this species of oak is unique in that it rarely surpasses 

a stature of one meter (Mayes et al., 1998). This presents a rare obstacle for scientists 

using a visual method of detection because seldom are visual types of observations 

attempted above the canopy cover in a forest. In this situation, the Q. harvardii “forest” is 

shorter than the human observer, ultimately obscuring the ground surface that the lizards 

are utilizing. Unfortunately, there is little literature that discusses the possible effects that 

vegetation cover can have on the visual detection of reptile species. The majority of 

studies that do discuss visibility bias are mainly focused on detecting large vertebrate 

species from the perspective of an aircraft. In these situations, vegetation cover was 

known to greatly affect the reliability of aerial surveys conducted on elk (Cervus elaphus) 

and other wildlife populations (Samuel et al., 1987; Fleming and Tracey, 2008). Future 

studies that utilize VES, for the DSL, may benefit from accounting for the variation in 

detection rates as a result of visibility bias. More importantly, both of the issues 

mentioned above demonstrate the how the DSL can occupy a site and not be available for 
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detection. This type of behavior can have adverse effects on detection, especially when 

observers are using a visual survey method. It is imperative that researchers are aware of 

this type of behavior, as it could potentially increase the likelihood of recording a lizard 

as absent when it is truly present (false negative).  

Many studies have commented on the overall efficiency of VES for detecting 

certain species. Specifically, visual encounter surveys, were viewed as ineffective when 

trying to detect rare or elusive species (Barea-Azcón, 2006). In this study, VES was 

effective at detecting more common species of lizards and enough data was collected to 

make accurate model estimations. However, as previously stated, the DSL is a highly 

cryptic species (elusive), that is considered endangered (rare) in much of the currently 

occupied range. As a result, VES did not yield very many DSL detections and model 

convergence was not achieved for this species. Instead, values had to be separated by 

survey methodology and then bootstrapped to provide detection estimates. Unfortunately, 

the overall lack of sufficient data for this species, decreased the precision of estimates 

and made comparisons with other species difficult. Future studies may want to 1) apply a 

more robust survey method for detecting the DSL or 2) utilize a statistical analysis that is 

more suited for rare species. Pitfall traps are commonly praised for their ability to 

accumulate large capture numbers and could be beneficial for similar studies (Towns, 

1991; Greenberg et al., 1994; Welbourne et al., 2015). Visual encounter surveys could 

also continue to be an option for detecting the DSL. However, based on results from this 

study, the total number of required surveys, needed to detect the species, should be 

considered when designing the study. Moreover, a GLMM may not be the most effective 

method for analyzing data collected for rare species. Occupancy covariates (i.e., 
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vegetation type, substrate type, etc.) were not recorded throughout the course of this 

study. Future studies may benefit from recording this data so that an occupancy study can 

be performed. There have been various articles published that discuss occupancy models 

that target rare and elusive species (MacKenzie et al., 2002; MacKenzie et al., 2003). A 

model framework that follows these procedures should be considered for the DSL.  

While little data was collected for the DSL, this study did in fact yield interesting 

results in regard to this species. The DSL is routinely reported to be restricted to large 

open dune blowouts and therefore many of the studies are focused in these areas 

(Fitzgerald et al., 1997; Fitzgerald et al., 2011). It is worth mentioning that while the DSL 

was, in fact, detected in areas that met this description (Figure 5), this study, contrary to 

some reporting, found that the DSL inhabited areas outside of large open dune blowouts 

(i.e., sand flats with dense shinnery, small dune complexes, near roadways, etc.; Figure 

6). It is imperative that researchers and managers are aware of these occurrences, if the 

proper conservation methods are to be applied for this species. As stated earlier, the DSL 

is a highly cryptic species and many aspects make it difficult to visually detect. In 

addition to this, much of the current literature for this species can be misleading because 

it portrays large open dune blowouts to be the only areas where this species occurs 

(Fitzgerald et al., 1997; Fitzgerald et al., 2011). This is problematic because it may deter 

surveyors from searching the “non-suitable” areas. The DSL is located within the 

Permian Basin, one of the most popular areas for oil development in the world (Walkup 

et al., 2018). Not detecting the species in areas where it actually occurs, or worse only 

searching within the currently restricted areas, could be detrimental to this species and the 

habitat it relies upon. The results of this study show that areas often reported as 



 

 20 

unsuitable for the DSL, are of equal importance, as they may represent habitat corridors 

or connectivity areas. Therefore, individuals should include these areas when making 

management or regulatory decisions.  

Overall, efficient survey methods should be used to detect species of concern, 

especially if those species are considered rare or vulnerable. If the detection methods are 

not reliable for the species, population estimates may be inaccurate and inappropriate 

management decisions could be implemented. In this study, VES provided accurate 

results for two commonly encountered lizards, but did not provide accurate estimates for 

detection of the DSL. It is because of this, that VES should be thoroughly analyzed, and 

the most reliable survey method be utilized when making future management decisions. 

As stated before, the habitat of the DSL is located within the Permian basin, an area that 

is highly susceptible to anthropogenic alterations emanating from the oil industry. 

Therefore, any detection method that does not yield accurate results could prove 

destructive for this species and the surrounding habitat. It is important to note that this 

study did not address the scale at which VES will determine absence. Any inferences 

about scale in this study are restricted to the size of the plots that were utilized. A study 

similar to Chan et al. (2009), that uses microsatellite data, could be used to identify the 

level of genetic variation throughout the range of this species (Chan et al., 2009). This 

type of study, conducted in Texas, could be beneficial for not only identifying critical 

areas but for determining the size of occupied patches that are linked by dispersal. Such 

information can then better define the connectivity habitats, among the blowout dune 

fields, required for the persistence of this species overtime.  
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Tables 
 
Table 1. Total number of sites selected for Sceloporus arenicolus – Dunes Sagebrush 
Lizard. The sites were selected using a stratified random approach within the Shinnery 
– Sands ecoregion. The number of surveys were kept equal across the suitability types. 
Habitat Suitability Total Sites – 2017 Total Sites – 2018 
High 20 10 
Medium 20 10 
Low 20 10 

* Does not include additional Permian Basin sites or the YDWMA sites.  
 
 
 
 
Table 2. Total number of raw lizard observations recorded during visual encounter 
surveys. The table shows the number of lizards that were detected between the 
sampling periods and among the sampling months. Highlighted are the species used in 
data analyses. Aspidoscelis spp. = Lizards that could only be identified to the 
Aspidoscelis genus level. Plestiodon spp. = Lizards that could only be identified to the 
Plestiodon genus level. Sceloporus spp. = Lizards that could only be identified to the 
Sceloporus genus level. Spp. = Lizards that were not identified to a genus or species 
level. All surveys were conducted on sites located within the Shinnery – Sands 
ecoregion. 

 2017 2018 
Lizard Species May June July Sept. May June July Total 
Aspidoscelis gularis 5 0 1 0 3 9 17 35 
Aspidoscelis marmoratus 3 27 4 5 71 53 48 211 
Aspidoscelis sexlineatus 9 9 16 4 10 29 15 92 
Aspidoscelis tesselatus 5 0 1 0 2 6 0 14 
Aspidoscelis spp. 11 14 15 6 33 18 18 115 
Gambelia wislizenii 0 0 0 0 1 0 0 1 
Holbrookia maculata 11 0 6 0 10 0 4 31 
Phrynosoma cornutum 1 0 0 0 3 2 0 6 
Plestiodon obsoletus 0 0 2 0 0 0 0 2 
Plestiodon spp. 0 0 1 0 0 0 0 1 
Sceloporus arenicolus 0 4 0 2 2 3 1 12 
Sceloporus consobrinus 0 0 25 2 12 5 2 46 
Sceloporus cowlesi 0 1 0 0 1 0 0 2 
Sceloporus spp. 3 0 30 3 6 2 1 45 
Urosaurus ornatus 3 0 0 1 0 0 0 4 
Uta stansburiana 12 30 41 26 193 75 70 447 
Spp. 8 1 8 3 34 15 2 71 
Total 71 86 150 52 381 217 178 1135 
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Table 3. AICc model selection results for Uta stansburiana. Models are ordered by 
their associated AICc rank. K = the number of parameters, AICc = Akaike Information 
Criterion value (corrected for small sample size), ΔAIC = the difference, in AICc 
value, from the top model, Wt. = likelihood the selected model represents the best 
supported model and Log. Lik. = log likelihood value for that model. Abbreviations are 
as follows: st = substrate temperature (°C), at = air temperature (°C), rh = relative 
humidity, bp = barometric pressure (inHg), ws = wind speed (km), and survey = type 
of survey performed. 
Model* k AICc ΔAIC Wt. Log. Lik. 
 p(st + at + bp + ws + survey) 8 712.96 0.00 0.42 -348.35 
p(st + at + rh + bp + survey) 8 714.35 1.39 0.21 -349.05 
p(st + at + rh + bp + ws + survey) 9 714.40 1.43 0.20 -348.04 
p(at + rh + bp + ws + survey) 8 715.24 2.27 0.13 -349.49 
p(st + rh + bp + ws + survey) 8 718.17 5.21 0.03 -350.96 
p(st + at + rh + bp + ws) 7 723.27 10.31 0.00 -354.54 
p(bp) 3 726.34 13.38 0.00 -360.15 
p(st + at + rh + ws + survey) 8 736.99 24.03 0.00 -360.37 
p(survey) 4 742.55 29.59 0.00 -367.24 
p(ws) 3 745.31 32.35 0.00 -369.63 
p(st) 3 747.28 34.32 0.00 -370.62 
p(at) 3 748.29 35.33 0.00 -371.12 
p(rh) 3 750.03 37.07 0.00 -371.99 

*Observer was included as a random covariate in all models 
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Table 4. AICc model selection results for Aspidoscelis marmoratus. Models are 
ordered by their associated AICc rank. K = the number of parameters, AICc = Akaike 
Information Criterion value (corrected for small sample size), ΔAIC = the difference, 
in AICc value, from the top model, Wt. = likelihood the selected model represents the 
best supported model and Log. Lik. = log likelihood value for that model. 
Abbreviations are as follows: st = substrate temperature (°C), at = air temperature (°C), 
rh = relative humidity, bp = barometric pressure (inHg), ws = wind speed (km), and 
survey = type of survey performed. 
Model* k AICc ΔAIC Wt. Log. Lik. 
p(ws) 3 570.00 0.00 0.35 -281.97 
p(survey) 4 570.17 0.17 0.32 -281.04 
p(rh) 3 573.28 3.28 0.07 -283.62 
p(bp) 3 574.29 4.29 0.04 -284.12 
p(at) 3 574.30 4.30 0.04 -284.12 
p(st) 3 574.30 4.30 0.04 -284.12 
p(st + at + rh + ws + survey) 8 574.85 4.85 0.03 -279.27 
p(st + rh + bp + ws + survey) 8 574.99 5.00 0.03 -279.34 
p(st + at + bp + ws + survey) 8 575.20 5.20 0.03 -279.45 
p(at + rh + bp + ws survey) 8 575.72 5.72 0.02 -279.71 
p(st + at + rh + bp + survey) 8 576.77 6.78 0.01 -280.24 
p(st + at + rh + bp + ws + survey) 9 576.92 6.93 0.01 -279.27 
p(st + at + rh + bp + ws) 7 577.06 7.06 0.01 -281.41 

*Observer was included as a random covariate in all models. 
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Table 5. Estimates for the top model selected for Uta stansburiana. Model was selected 
using an AICc model selection analysis. Observer was included as a random variable, 
to account for additional variation. Analysis included data from sites where Uta 
stansburiana was known to occur. All sites were located in the Monahans Sandhills 
complex. 
Fixed Effects Estimate Std. Error z-value Pr(>|z|) 
Intercept -0.93 0.154 -6.056 <0.0001 *** 
Substrate Temperature 0.12 0.080 1.520 0.13 
Air Temperature 0.18 0.075 2.437 0.015 * 
Barometric Pressure -0.39 0.079 -4.909 <0.0001 *** 
Wind Speed 0.12 0.076 1.623 0.10 
30x200 – Survey 
Method 

-0.16 0.180 - 0.907 0.36 

60x400 – Survey 
Method 

0.60 0.208 2.865 0.004 ** 

 
 
 
 
 
Table 6. Estimates for the top model selected for Aspidoscelis marmoratus. Model was 
selected using an AICc model selection analysis. Observer was included as a random 
variable, to account for additional variation. Analysis included data from sites where 
Aspidoscelis marmoratus was known to occur. All sites were located in the Monahans 
Sandhills complex. 
Fixed Effects Estimate Std. Error z-value Pr(>|z|) 
Intercept -1.19 0.144 -8.325 <0.0001 *** 
Wind Speed 0.18 0.083 2.163 0.0305* 
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Figures  

 
Figure 1. Photographic image of the Dunes Sagebrush Lizard – Sceloporus arenicolus. 
This gravid female was scaling a dune bank, covered in dense shinnery oak, when she 
was captured. Females develop the characteristic yellow and orange markings during the 
breeding season. Images were obtained May 25, 2018 in New Mexico. Both images 
represent the same individual.  
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Figure 2. Total geographical range of the Dunes Sagebrush Lizard – Sceloporus 
arenicolus. This lizard encompasses a range that includes the Mescalero Sands of New 
Mexico and the Monahans Sandhills of Texas. Image obtained from a petition created by 
the Center of Biological Diversity and the Defenders of Wildlife in 2018. 
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Figure 3. Lizard species level observations recorded during visual encounter surveys. 
This figure includes all of the detections recorded over the entire study. The number of 
observations for each species is shown above bars. All surveys were conducted on sites in 
the Monahans Sandhills complex. 
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Figure 4. Individual lizard detections among survey types. This figure displays the total number of observations for each of the species 
analyzed in this study. The observations were separated into groups by the survey method that was used to obtain the observation. 
White = observations made with the 15’200 m2 survey method. Stripes = observations made with the 30’200 m2 survey method (n = 
240. Black = observations made with the 60’400 m2 survey method (n = 120). The number of observations is present above the bars in 
the graph. All surveys were conducted at sites within the Shinnery – Sands ecoregion. Species included in the analyses were Uta 
stansburiana, Aspidoscelis marmoratus, and Sceloporus arenicolus.
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Figure 5. Sceloporus arenicolus detections located within large open dune blowouts. 
Exact locations of DSL individuals at the time of detection can be viewed in yellow. The 
white waypoints represent the corners of the plot. Detections were marked with a 
handheld GPS unit (i.e. Garmin GPSMAP 64st) and on AppSheet. Google Earth was 
used to obtain aerial images.  
 
 
 
 
 
 
 
 
 



 

 30 

 
Figure 6. Sceloporus arenicolus detections located outside large open dune blowouts. 
Exact locations of DSL individuals at the time of detection can be viewed in yellow. The 
white waypoints represent the corners of the plot. Detections were marked with a 
handheld GPS unit (i.e. Garmin GPSMAP 64st) and on AppSheet. Google Earth was 
used to obtain aerial images.  
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Figure 7. Comparison of lizard surveys to associated detection probability. This figure 
shows all of the detections for Aspidoscelis marmoratus, Sceloporus arenicolus, and Uta 
stansburiana. The surveys used to detect these lizards were conducted within the 
Monahans Sandhills complex. Detection probabilities are presented in the top panel. The 
number of surveys is presented in the bottom panel. As the probability of detection 
decreases, the number of surveys needed increases. Error bars for the number of surveys 
needed to detect Sceloporus arenicolus are not shown because numbers reach infinity.   
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APPENDIX SECTION 

APPENDIX A: R – Code  

library(lme4) 
library(AICcmodavg) 
library(boot) 
 
#Raw Data - UTA# 
URAW = read.csv(file.choose()) 
URAW 
str(URAW) 
 
#Uta detections 
UDF = data.frame(URAW$U..stansburiana) 
UDFu = UDF 
UDFu[(UDF)!=0] = 1 
str(UDFu) 
 
#Observation Covariates UTA 
date = data.frame(scale(URAW$julian_day)) 
stemp = data.frame(scale(URAW$substrate_temp)) 
atemp = data.frame(scale(URAW$air_temp)) 
rhum = data.frame(scale(URAW$X._relative_humidity)) 
baro = data.frame(scale(URAW$barometric_pressure)) 
windsp = data.frame(scale(URAW$mean_wind_speed..km.h.)) 
observer = data.frame(as.factor(URAW$observer)) 
survey = data.frame(as.factor(URAW$survey_type)) ## converts to a factor 
 
lizardUTA <- cbind(stemp,atemp,rhum,baro,windsp,observer,survey,UDFu)  
names(lizardUTA) <-
c("stemp","atemp","rhum","baro","windsp","observer","survey","detect") 
unique(lizardUTA$observer) 
lizardUTA = data.frame(lizardUTA) 
str(observer) 
## check for correlations 
str(lizardUTA) 
cor(lizardUTA[,1:5]) 
 
#GLMM - UTA 
control=glmerControl(optimizer="bobyqa",optCtrl=list(maxfun=2e4)) 
 
#FULL MODEL split to prevent the drop of a variable 
#PLOT MODELS 
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UTA1 = glmer(formula = 
detect~stemp+atemp+rhum+baro+windsp+survey+(1|observer), data=lizardUTA, family 
= binomial(link="cloglog")) 
summary(UTA1) 
 
UTA2 = glmer(formula = detect~stemp+atemp+rhum+baro+windsp+(1|observer), 
data=lizardUTA, family = binomial(link="cloglog")) 
UTA3 = glmer(formula = detect~stemp+atemp+rhum+baro+survey+(1|observer), 
data=lizardUTA, family = binomial(link="cloglog")) 
UTA4 = glmer(formula = detect~stemp+atemp+rhum+windsp+survey+(1|observer), 
data=lizardUTA, family = binomial(link="cloglog")) 
UTA5 = glmer(formula = detect~stemp+atemp+baro+windsp+survey+(1|observer), 
data=lizardUTA, family = binomial(link="cloglog")) 
UTA6 = glmer(formula = detect~stemp+rhum+baro+windsp+survey+(1|observer), 
data=lizardUTA, family = binomial(link="cloglog")) 
UTA7 = glmer(formula = detect~atemp+rhum+baro+windsp+survey+(1|observer), data = 
lizardUTA, family = binomial(link="cloglog")) 
 
UTA8 = glmer(formula = detect~stemp+(1|observer), data=lizardUTA, family = 
binomial(link="cloglog")) 
UTA9 = glmer(formula = detect~atemp+(1|observer), data=lizardUTA, family = 
binomial(link="cloglog")) 
UTA10 = glmer(formula = detect~rhum+(1|observer), data=lizardUTA, family = 
binomial(link="cloglog")) 
UTA11 = glmer(formula = detect~baro+(1|observer), data=lizardUTA, family = 
binomial(link="cloglog")) 
UTA12 = glmer(formula = detect~windsp+(1|observer), data=lizardUTA, family = 
binomial(link="cloglog")) 
UTA13 = glmer(formula = detect~survey+(1|observer), data=lizardUTA, family = 
binomial(link="cloglog")) 
 
 
Cand.mod<-list()   
Cand.mod[[1]]=UTA1 
Cand.mod[[2]]=UTA2 
Cand.mod[[3]]=UTA3 
Cand.mod[[4]]=UTA4 
Cand.mod[[5]]=UTA5 
Cand.mod[[6]]=UTA6 
Cand.mod[[7]]=UTA7 
Cand.mod[[8]]=UTA8 
Cand.mod[[9]]=UTA9 
Cand.mod[[10]]=UTA10 
Cand.mod[[11]]=UTA11 
Cand.mod[[12]]=UTA12 
Cand.mod[[13]]=UTA13 
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ModnamesUTA1=c(1:13) 
AICuFIN=aictab(cand.set=Cand.mod,modnames=ModnamesUTA1,second.ord=T) 
evidence(AICuFIN) 
summary(AICuFIN) 
AICuFIN 
 
#detection probability for top models 
detection_probFINAL = predict(object = UTA5, newdata = lizardUTA, type = 
"response", allow.new.levels =TRUE) 
summary(UTA1) 
#Avg/observer - UTA 
UTA1 <- cbind(observer,detection_probFINAL) 
 
names(UTA1) = c("observer","det_prob") 
UTA1 = data.frame(UTA1) 
 
avg1 = aggregate(.~observer,data=UTA1, FUN = mean) 
avg1 
 
sd1 = aggregate(.~observer,data=UTA1, FUN = sd) 
sd1 
 
#Avg/sd_DP 
Umean = mean(detection_probFINAL) 
Umean 
sdU = sd(detection_probFINAL) 
sdU 
 
#Mean no. of Surveys for both of the top Models 
#UTA# 
dU = log(0.05) 
fU = log(1-0.378273) 
mnU = dU/fU 
mnU 
 
#Confidence Interval 
ubU = log(1-0.1654683) 
uU = dU/ubU 
uU 
 
 
#RAW DATA - MAR# 
MARMRAW2 = read.csv(file.choose()) 
MARMRAW2 
str(MARMRAW2) 
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#Marmoratus detections 
AM = data.frame(MARMRAW2$A..marmoratus) 
AM1 = AM 
AM1[(AM)!=0] = 1 
str(AM1) 
 
#Observation Covariates MAR 
DATEM = data.frame(scale(MARMRAW2$julian_day)) 
STEMPM = data.frame(scale(MARMRAW2$substrate_temp)) 
ATEMPM = data.frame(scale(MARMRAW2$air_temp)) 
RHUMM = data.frame(scale(MARMRAW2$X._relative_humidity)) 
BAROM = data.frame(scale(MARMRAW2$barometric_pressure)) 
WINDSM = data.frame(scale(MARMRAW2$mean_wind_speed..km.h.)) 
OBSERM = data.frame(as.factor(MARMRAW2$observer)) 
SURVEYM = data.frame(as.factor(MARMRAW2$survey_type)) 
 
 
LAM = 
cbind(STEMPM,ATEMPM,RHUMM,BAROM,WINDSM,OBSERM,SURVEYM,AM1) 
names(LAM)=c("STEMPM","ATEMPM","RHUMM","BAROM","WINDSM","OBSER
M","SURVEYM","AM1") 
LAM = data.frame(LAM) 
unique(LM$OM) 
 
## check for correlations 
cor(LAM[1:5]) 
 
 
#GLMM - MAR 
MRa = glmer(formula = 
AM1~STEMPM+ATEMPM+RHUMM+BAROM+WINDSM+SURVEYM+(1|OBSER
M), data=LAM, family = binomial(link="cloglog")) 
 
MRb = glmer(formula = 
AM1~STEMPM+ATEMPM+RHUMM+BAROM+WINDSM+(1|OBSERM), 
data=LAM, family = binomial(link="cloglog")) 
MRc = glmer(formula = 
AM1~STEMPM+ATEMPM+RHUMM+BAROM+SURVEYM+(1|OBSERM), 
data=LAM, family = binomial(link="cloglog")) 
MRd = glmer(formula = 
AM1~STEMPM+ATEMPM+RHUMM+WINDSM+SURVEYM+(1|OBSERM), 
data=LAM, family = binomial(link="cloglog")) 
MRe = glmer(formula = 
AM1~STEMPM+ATEMPM+BAROM+WINDSM+SURVEYM+(1|OBSERM), 
data=LAM, family = binomial(link="cloglog")) 
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MRf = glmer(formula = 
AM1~STEMPM+RHUMM+BAROM+WINDSM+SURVEYM+(1|OBSERM), 
data=LAM, family = binomial(link="cloglog")) 
MRg = glmer(formula = 
AM1~ATEMPM+RHUMM+BAROM+WINDSM+SURVEYM+(1|OBSERM), 
data=LAM, family = binomial(link="cloglog")) 
 
MRh = glmer(formula = AM1~STEMPM+(1|OBSERM), data=LAM, family = 
binomial(link="cloglog")) 
MRi = glmer(formula = AM1~ATEMPM+(1|OBSERM), data=LAM, family = 
binomial(link="cloglog")) 
MRj = glmer(formula = AM1~RHUMM+(1|OBSERM), data=LAM, family = 
binomial(link="cloglog")) 
MRk = glmer(formula = AM1~BAROM+(1|OBSERM), data=LAM, family = 
binomial(link="cloglog")) 
MRl = glmer(formula = AM1~WINDSM+(1|OBSERM), data=LAM, family = 
binomial(link="cloglog")) 
MRm = glmer(formula = AM1~SURVEYM+(1|OBSERM), data=LAM, family = 
binomial(link="cloglog")) 
 
summary(MRm) 
 
#Marm 
Cand.modAM<-list()   
Cand.modAM[[1]]=MRa 
Cand.modAM[[2]]=MRb 
Cand.modAM[[3]]=MRc 
Cand.modAM[[4]]=MRd 
Cand.modAM[[5]]=MRe 
Cand.modAM[[6]]=MRf 
Cand.modAM[[7]]=MRg 
Cand.modAM[[8]]=MRh 
Cand.modAM[[9]]=MRi 
Cand.modAM[[10]]=MRj 
Cand.modAM[[11]]=MRk 
Cand.modAM[[12]]=MRl 
Cand.modAM[[13]]=MRm 
 
ModnamesAM=c('a','b','c','d','e','f','g','h','i','j','k','l','m') 
AICAM=aictab(cand.set=Cand.modAM,modnames=ModnamesAM,second.ord=T) 
evidence(AICAM) 
AICAM  #AIC Model selection# 
 
detection_probM <- predict(MRl, newdata=LAM, type="response") #calculate dp for 
Model 10# 
detection_probM 
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summary(MRl) 
 
#Avg/observer - MAR 
MAR <- cbind(OBSERM,detection_probM) 
names(MAR) = c("observer","det_prob") 
MAR = data.frame(MAR) 
 
avgM2 = aggregate(.~observer,data=MAR, FUN = mean) #avg dp/observer Model 10# 
avgM2 
sdM2 = aggregate(.~observer,data=MAR, FUN = sd) #sd dp/observer Model 10# 
sdM2 
 
Mmean = mean(detection_probM) 
Mmean  #mean Model 10# 
sdM=sd(detection_probM) 
sdM #sd Model 10# 
 
 
#Mean no. of Surveys 
#MAR# 
dM = log(0.05) 
fM = log(1-0.282332) #mean number of surveys Model 10# 
mnM = dM/fM 
mnM 
 
#Confidence Interval 
ubM = log(1-0.08742864) #confid. interv. surveys Model 10# 
uM = dM/ubM 
uM 
 
#DSL 
#BOOT 
DSLRAW2= read.csv(file.choose()) 
DSLRAW2 
 
DDF = data.frame(DSLRAW2$S..arenicolus) 
DDF1= DDF 
DDF1[(DDF)!=0] = 1 
 
DDF1 = c() 
names(DDF1) = c("Detections", "Survey") 
 
d = data.frame(scale(DSLRAW1$julian.day)) 
s_temp = data.frame(scale(DSLRAW1$substrate_temp)) 
a_temp = data.frame(scale(DSLRAW1$air_temp)) 
hum = data.frame(scale(DSLRAW1$X._relative_humidity)) 
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barom = data.frame(scale(DSLRAW1$barometric_pressure)) 
c_c = data.frame(scale(DSLRAW1$X._cloud_cover))  
windspd = data.frame(scale(DSLRAW1$mean_wind_speed..km.h.)) 
obs = data.frame(DSLRAW1$Observer) 
detection = DDF1 
 
detection = data.frame(detection) 
 
DSL15 = c(0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0) 
b = DSL15 
b1 = function(b, i) {mean(b[i])} 
bootdump = boot(b,b1,R=10000) 
summary(bootdump) 
bootdump 
boot.ci(bootdump,conf = 0.95, type = "bca") 
 
quartz(h=6,w=6) 
hist(bootdump$t, main = "", xlab = "", breaks = 12, xlim = c(0.0,0.6)) 
abline(v = mean(bootdump$t), col = "blue", lty = 2) 
abline(v = 0.0455, col="blue", lty = 2) 
abline(v = 0.4091, col = "blue", lty = 2) 
Smean1 = bootdump$t0 
Smean1 
 
dM = log(0.05) 
fM = log(1-0.125) #mean number of surveys Model 10# 
mnM = dM/fM 
mnM 
 
#Confidence Interval 
ubM = log(1-0.3) #confid. interv. surveys Model 10# 
uM = dM/ubM 
uM 
 
 
DSL400 = c(0,0,0,0,0,0,0,0,0,1,0,1) 
b2 = DSL400 
b3 = function(b2, i) {mean(b2[i])} 
bootdumpU = boot(b2,b3,R=10000) 
summary(bootdumpU) 
bootdumpU 
boot.ci(bootdumpU,conf = 0.95, type = "bca") 
Smean2 = bootdumpU$t0 
Smean2 
 
DSL30 = c(0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0) 
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str(DSL30) 
b4 = DSL30 
b5 = function(b4, i) {mean(b4[i])} 
bootdumpA = boot(b4,b5,R=10000) 
summary(bootdumpA) 
bootdumpA 
boot.ci(bootdumpA,conf = 0.95, type = "bca") 
Smean3 = bootdumpA$t0 
Smean3 
 
#Mean no. of Surveys 
#SCELOP# 
dA = log(0.05) 
fA = log(1-0.1666667) 
mnA = dA/fA 
mnA 
 
fM2 = log(1-0.3333) #mean number of surveys Model 2# 
mnM2 = dM/fM2 
mnM2 
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