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Existence results for second-order neutral
functional differential and integrodifferential
inclusions in Banach spaces *

Haeng Joo Lee, Jeongyo Park, & Jong Yeoul Park

Abstract

In this paper, we investigate the existence of mild solutions on a com-
pact interval to second order neutral functional differential and integrod-
ifferential inclusions in Banach spaces. The results are obtained by using
the theory of continuous cosine families and a fixed point theorem for
condensing maps due to Martelli.

1 Introduction

In this paper we prove the existence of mild solutions, defined on a compact
interval, for second-order neutral functional differential and integrodifferential
inclusions in Banach spaces. In Section 3 we consider the second-order neutral
functional differential inclusion

d

E[y,(t) - g(ta yt)] € Ay(t) + F(t7yt)a teJ= [O7TL

(1.1)

Yo=¢, y'(0)=xo,

where Jy = [—7,0], F : J x C(Jo, E) — 2% is a bounded, closed, convex valued
multivalued map, g : J x C(Jy, E) — E is given function, ¢ € C(Jy, E), xo €
E, and A is the infinitesimal generator of a strongly continuous cosine family
{C(t) : t € R} in a real Banach space E with the norm |- |.

For a continuous function y defined on the interval J; = [—-r,T] and ¢ € J,
we denote by y; the element of C(Jy, E) defined by

v (0) =yt +6), 6¢€Jp.

Here y;(-) represents the history of the state from time ¢ — r, up to the present
time ¢.
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In Section 4 we investigate the existence of mild solutions for second order
neutral functional integrodifferential inclusion

d

GO gt e Ao+ [ KieoFis ter=[0.7)

Yo = (;ba yl(o) = X0,

where A, F,g,¢ are as in the problem (1.1) and K : D — R, D = {(¢,s) €
Jx J:t> s}

In many cases it is advantageous to treat the second order abstract differ-
ential equations directly rather than to convert them into first order systems.
A useful tool for the study of abstract second order equations is the theory of
strongly continuous cosine families. Here we use of the basic ideas from cosine
family theory [17, 18].

Existence results for differential inclusions on compact intervals, are given
in the papers of Avgerinos and Papageorgiou [1], Papageorgiou [15, 16], and
Benchohra [3, 4] for differential inclusions on noncompact intervals.

This paper is motivated by the recent papers of Benchohra and Ntouyas
[4, 5, 6] and Ntouyas [14]. In [4] second order functional differential inclusions
are studied. In [5,6] functional differential and integrodifferential inclusions are
studied. In [14] neutral functional integrodifferential equations was studied.
Here we compose the above results and prove the existence of mild solutions for
problems (1.1) and (1.2), relying on a fixed point theorem for condensing maps
due to Martelli [13].

(1.2)

2 Preliminaries

In this section, we introduce notation, definitions, and preliminary facts from
multivalued analysis which are used throughout this paper.
Let C(J, E) be the Banach space of continuous functions from J into E with
the norm
[Ylloe := sup{ly(?)] : t € J}.

Let B(FE) denote the Banach space of bounded linear operators from FE into
E. A measurable function y : J — E is Bochner integrable if and only if |y]| is
Lebesque integrable. (For properties of the Bochner integral see Yosida [19].)

Let L'(J, E) denotes the Banach space of continuous functions y : J — E
which are Bochner integrable, with the norm

T
lollor = [ lo@lde tfor al y € 212, ).
0

Let (X, -||) be a Banach space. A multivalued map G : X — 2% is convex
(closed) valued, if G(z) is convex (closed) for all z € X. G is bounded on
bounded sets if G(D) = |J,cp G(x) is bounded in X, for any bounded set D of
X, ie.,

:gg{sup{lly\\ 1y € G(z)}} < oo
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A map G is called upper semicontinuous on X if, for each xg € X, the
set G(xp) is a nonempty closed subset of X and if for each open set V of X
containing G(xq), there exists an open neighborhood A of zy such that G(A) C
V.

A map G is said to be completely continuous if G(D) is relatively compact
for every bounded subset D C X. If the multivalued map G is completely
continuous with nonempty compact values, then G is upper semicontinuous if
and only if G has a closed graph, i.e., for x, — z., yn — y«, with y, € Gz,
we have y, € Gx,. The map G has a fixed point if there is x € X such that
z € Gx.

In the following, BC'C(X) denotes the set of all nonempty bounded closed
and convex subsets of X. A multivalued map G : J — BCC(X) is said to be
measurable if for each z € X, the distance between x and G(t) is a measurable
function on J. For more details on multivalued maps, see the books of Deimling
[7] and Hu and Papageorgiou [11].

An upper semicontinuous map G : X — 2% is said to be condensing if, for
any bounded subset D C X, with a(D) # 0, we have

a(G(D)) < a(D),

where a denotes the Kuratowski measure of noncompactness. For properties of
the Kuratowski measure, we refer to Banas and Goebel [2].

We remark that a completely continuous multivalued map is the easiest ex-
ample of a condensing map.

We say that the family {C(¢) : t € R} of operators in B(F) is a strongly
continuous cosine family if

(i) C(0) = I, is the identity operator in F
(ii) C(t+s)+C(t—s) =2C(t)C(s) for all s,t € R
(iii) The map t — C(t)y is strongly continuous for each y € X.

The strongly continuous sine family {S(¢) : t € R}, associated to the given
strongly continuous cosine family {C(¢) : t € R}, is defined by

¢
S(t)y:/ C(s)yds, yeE, teR.
0

The infinitesimal generator A : E — E of a cosine family {C(t) : t € R} is

defined by
2

d
Ay = —— .
Yy dt20(t)y -

For more details on strongly continuous cosine and sine families, we refer the
reader to the books of Goldstein [10] and to the papers of Fattorini [8, 9] and
of Travis and Webb [17, 18].

The considerations of this paper are based on the following fixed point the-
orem.
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Lemma 2.1 ([13]) Let X be a Banach space and N : X — BCC(X) be a
condensing map. If the set Q := {y € X : Ay € Ny, for some A > 1} is
bounded, then N has a fized point.

3 Second Order Neutral Differential Inclusions

In this section we give an existence result for the problem (1.1). Let us list the
following hypotheses.

(H1) A is the infinitesimal generator of a strongly continuous cosine family
C(t), t € R, of bounded linear operators from E into itself.

(H2) C(¢), t > 0 is compact.

(H3) F:JxC(Jy,E) — BCC(E); (t,u) — F(t,u) is measurable with respect
to t for each u € C(Jy, E), upper semicontinuous with respect to u for
each t € J, and for each fixed u € C(Jy, F), the set

Spu={f€L"J,E): f(t) € F(t,u) for ae. t € J}
is nonempty.

(H4) The function g : J x C(Jy, E) — E is completely continuous and for any
bounded set K in C(J1, E), the set {t — g(t,y:) : y € K} is equicontinuous
in C(J,E).

(H5) There exist constants ¢; and ¢y such that

lg(t, )] < crllvll + 2, t€J, veEC(Jo, E)

(H6) ||F(t,u)| :=sup{|v| : v € F(t,u)} < pt)¥(||Ju||) for almost all ¢ € J and
u € C(Jo, E), where p € L'(J,Ry) and ¥ : R, — (0,00) is continuous

and increasing with
T o]
ds
m(s)ds < _
s < [ S

where ¢ = M||¢|| + MT[|xo| + c1]|®]| + 2¢2], m(t) = max{Mec;, MTp(t)}
and M = sup{|C(¢t)| : t € J}.

Remark (i) If dim E < oo, then for each v € C(Jy, E), Spu # ¢ (see Lasota
and Opial [10]).
(ii) Sp is nonempty if and only if the function Y : J — R defined by

Y (t) :=inf{|v| : v € F(t,u)}

belongs to L!(J, R) (see Papageorgiou[15]).
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In order to define the concept of mild solution for (1.1), by comparison with
abstract Cauchy problem

y'(t) = Ay(t) + h(t)
y(0) =yo, ¥'(0)=m

whose properties are well known [17, 18], we associate problem (1.1) to the
integral equation

y(t) = C(B)H(0) + S(t)[zo — 90, B)] + / Ot~ 5)g(s,yo)ds + / S(t— 5)f(s)ds,

(3.1)
t € J, where

feSp,={fe L (JE): f(t) € F(t,y) for ae. t € J}.

Definition A function y: (—r,T) — E, T > 0 is called a mild solution of the
problem (1.1) if y(t) = ¢(t), t € [-r,0], and there exists a v € L'(J, E) such
that v(t) € F(t,y:) a.e. on J, and the integral equation (3.1) is satisfied.

The following lemmas are crucial in the proof of our main theorem.

Lemma 3.1 ([12]) Let I be a compact real interval, and let X be a Banach
space. Let F' be a multivalued map satisfying (H3), and let T be a linear con-
tinuous mapping from LY(I,X) to C(I,X). Then, the operator

[oSk: C(I7X) - BCO(C(I7X))a Yy— (F © SF)(y) = F(SF,y)
is a closed graph operator in C(I,X) x C(I,X).
Now, we are able to state and prove our main theorem.

Theorem 3.2 Assume that Hypotheses (H1)-(H6) are satisfied. Then system
(1.1) has at least one mild solution on J;.

Proof. Let C := C(Ji, E) be the Banach space of continuous functions from
J1 into F endowed with the supremum norm

lylloo :=sup{|y(t)| : t € J1}, foryeC.

Now we transform the problem into a fixed point problem. Consider the mul-
tivalued map, N : C — 2¢ defined by Ny the set of functions h € C such
that

d)(t)v ift e Jy
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where
feSpy,={feL(JE): f(t) € F(t,y) for ae. t € J}.

We remark that the fixed points of N are mild solutions to (1.1).

We shall show that N is completely continuous with bounded closed convex
values and it is upper semicontinuous. The proof will be given in several steps.
Step 1. Ny is convex for each y € C. Indeed, if hy, hy belong to Ny, then
there exist f1, fo € Sp,y such that, for each ¢t € J and ¢ = 1,2, we have

ha(t) = C(£)$(0) + S (8) o — 9(0. 6)) + / Ot 5)g(s, y)ds + / S(t— 5) fi(s)ds.

Let 0 < a < 1. Then, for each t € J, we have
t
(ah1+ (1 —a)h2)(t) = C(t)$(0)+ S(t)[xo — g(0,0)] + / C(t —s)g(s,ys)ds
0

+ [ 8- 9lafits) + 1 - )fas) ds.
0

Since Sp,y is convex (because F' has convex values), then

ahy + (1 —a)he € Ny.
Step 2. N maps bounded sets into bounded sets in C. Indeed, it is enough
to show that there exists a positive constant ¢ such that, for each h € Ny,

y€ By ={y € C:||ylloc <gq}, one has ||h| < ¢ If h € Ny, then there exists
f € Sy such that for each ¢ € J we have

h(D) = CO60)+ SO —9(0.0] + [ Cle—lo.vs + [ 59 1(6)ds
By (H5) and (H6), we have that, for each t € J,
O < 10O+ 1500~ 90,011+ | [ Ot~ )ate,00)05
+f [ st— s
< MO+ Mol + el + 262+ Mes | ol
LMT sup W(y)( /0 ' p(s)ds)

y€[0,q]

Then for each h € N(B,;) we have

T
[hlleo < M||¢H+MT[|$0|+C1||¢||+262]+M61/ 1ys | ds
0

T
+MT sup \I/(y)(/ p(s)ds) = L.
y€[0,q] 0
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Step 3. N maps bounded sets into equicontinuous sets of C. Let t1,t5 € J,
0 <t <ty andlet B, ={y € C: |ly]lc < g} be a bounded set of C(Jy, E).
For each y € B, and h € Ny, there exists f € Sg, such that for ¢t € J,

h(t) = C(t)¢(0)+5(t)[xo—9(0,¢)]+/O C(t—S)g(S,ys)dsﬁL/O S(t—s)f(s)ds.
Thus,

|h(t2) = ()]
< [C(t2) = C(t)](0)] +[[S(t2) — S(t1)][z0 — 9(0, d)]]

—i—’/ Cta —s) —C(t1 — s)]g (syédS’—F‘/ C(t1 — s)g (syéds’
ta
+|/ Sty —s) — Sty —s)|f ds|+’/ (t1 —s) (s)ds|
|C(t2) — Ct)[llll + [S(t2) — St [|wol + el + 2]
12
+/|mm—@—am—wmmw+mm
0

IA

to
+ [T10t = s)ieall + calas

t1

to to
+ [T18(t =5 = St = IFlas+ [ 150 = 9l r(s) s
1

As ty — t; the right-hand side of the above inequality tend to zero. The
equicontinuities for the cases t; < to < 0 and t; < 0 < ty are obvious. As a
consequence of Step 2, Step 3, (H2) and (H4) together with the Ascoli-Arzela
theorem, we can conclude that N : C' — 2€ is a compact multivalued map, and
therefore, a condensing map.
Step 4. N has a closed graph. Let y,, — y«, hy, € Ny, and h,, — h,. We shall
prove that h. € Ny.. h, € Ny, means that there exists f, € Sp,,, such that
for t € J,

hn(t) = C()$(0)+S(t)[x0—g(0 /Ct $)9(S, Yns) ds+/ S(t—s)fn(s)ds.

We must prove that there exists f. € Sy, such that for t € J,

hi(t) = C(t)$(0)+S(t)[xo—g(0 / C(t—s)g(s, Yxs) ds+/ S(t—s)fe(s)ds.

Clearly, we have that as n — oo,

[0~ €0000) ~ $0ias — 0,61 ~ [ ¢~ )t o))

C(t—s)g(s,y*s)ds)H — 0.

oo

. (h* — C(t)¢(0) — S(t)[wo — 9(0,9)] —

0
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Consider the linear and continuous operator I' : L!(J, E) — C(J, E) defined as

fenﬁw=éswwvww

From Lemma 3.1, it follows that I' o S is a closed graph operator. Moreover,
we have that

mmfcwamfsmurmmwancmf@ma%whemﬁw»

Since ¥, — Y«, it follows from Lemma 3.1 that

ha(8) =C(t)$(0) = S(#) [0 —9(0 / C(t—5)g(s, Yus) ds—/ S(t—s)f(s

for some f, € SF,.. Therefore N is a completely continuous multivalued map,
upper semicontinuous with convex closed values. In order to prove that N has
a fixed point, we need one more step.

Step 5. The set

Q:={yeC:Aye Ny, for some \ > 1}

is bounded. Let y € Q. Then Ay € Ny for some A > 1. Thus, there exists
f € Sk such that

y(t) = /\710(?5)(15(0) +ATIS(1)[xo — 9(0,9)] + A7 /0 C(t—s)g(s, ys)ds

+A7 St—s ted.
)

This implies by (H
@) < Mol + MT[|zo| + c1f|dl 4 2¢2]

N t
+Mq/\mwh+MT/p@WN%m%
0 0

We consider the function
p(t) =sup{ly(s)|: —r < s <t}, te

Let t* € [—r,t] be such that u(t) = |y(t*)|. If t* € J, by the previous inequality
we have for t € J,

6) that for each t € J, we have

.
u(O) < M|+ MTlfao] + cr8] + 2ca] + Mer | yelds
0
-
+MT [ po) (s
0
t
< M|+ MT(fao] + x| + 2ca] + Me | pls)ds
0

LMT / ()0 (u(s))ds.

0
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If t* € Jy, then u(t) < ||¢|| and the previous inequality obviously holds. Let us
denote the right-hand side of the above inequality as v(t). Then, we have

¢ =v(0) = M||¢]| + MTT|zo| + c1[d]| + 2¢2],
u(t) <o), ted,
() = Mea(t) + MTp()(u(t)), te ]

Using the nondecreasing character of ¥, we get
V'(t) < Mcyu(t) + MTp(6)T(v(t)) < m(t)[v(t) + E(v(t)], teJ

This implies that for each ¢t € J that

/U(t) ds /T ( ) 00 ds
— < m(s)ds < / _
w0y StHY(s) ~ Jo w0y 8+ ¥(s)
This inequality implies that there exists a constant L such that v(¢t) < L, t € J,
and hence u(t) < L, t € J. Since for every t € J, |Jy|| < p(t), we have

[Ylloo := sup{ly(t)] : —r <t < T} < L,

where L depends only on T and on the function p and ¥. This shows that € is
bounded.

Set X := C. As a consequence of Lemma 2.1, we deduce that N has a fixed
point which is a mild solution of the system (1.1).

4 Second Order Neutral Integrodifferential In-
clusions

In this section we consider the solvability of the problem (1.2). We need the
following assumptions

(HT7) For each ¢t € J, K(t,s) is measurable on [0,¢] and
K(t) = ess sup{|K(t, s)],0 < s < t}
is bounded on J.
(H8) The map t — K is continuous from J to L*(J, R), here K(s) = K (¢, s).

(H9) ||F(t,u)| :=sup{|v| : v € F(t,u)} < p(t)¥(||u||) for almost all ¢ € J and
u € C(Jo, E), where p € L'(J,Ry) and ¥ : Ry — (0,00) is continuous

and increasing with
T o)
ds
m(s)ds < _
/0 (#) /c s+ ¥(s)

where ¢ = M ||¢||+ MT[|zo|+ c1]|¢]| +2¢2], m(t) = max{Mcy, MT? sup, ;
K(t)p(t)} and M = sup{|C(t)| : t € J}.



10 Existence results EJDE-2002/96

We define the mild solution for the problem (1.2) by the integral equation

y®:C®M®+S®hvw®¢H+ACW*$M&%MS
(4.1)

t s
S(t— K (s, duds, te€J,
—|—/0 ( s)/o (s,u) f(u)duds €
where f € Sp, ={f € LY(J,E) : f(t) € F(t,y:) for a.e. t € J}.

Definition A function y : (—r,T) — E, T > 0 is called a mild solution of the
problem (1.2) if y(t) = ¢(t), t € [-r,0], and there exists a v € L'(J, E) such
that v(t) € F(t,y;) a.e. on J, and the integral equation (4.1) is satisfied.

Theorem 4.1 Assume that hypotheses (H1)-(H5), (H7)-(HY9) are satisfied.
Then system (1.2) has at least one mild solution on Ji.

Proof. Let C := C(Ji, E) be the Banach space of continuous functions from
Jp into F endowed with the supremum norm

lylloo := sup{|y(¢¥)| : t € J1}, for y € C.

We transform the problem into a fixed point problem. Consider the multivalued
map, Q : C' — 2¢ defined by Qy, the set of functions h € C such that

¢(t)a ifte Jy
1) = | COB0) + S(0)izo — 0.6)] + [ Clt = s)g(s. ) ds
—|—/0 S(t—s)/o K(s,u)f(u)duds, ifteJ,

where
feSp,={feL'(JE): f(t) € F(t,y) for ae. t € J}.

We remark that the fixed points of @ are mild solutions to (1.2).

As in Theorem 3.1 we can show that @ is completely continuous with
bounded closed convex values and it is upper semicontinuous, and therefore
a condensing map. We repeat only the Step 5, i.e. we show that the set

={y € C: )y €y, for some \ > 1}
is bounded. Let y € Q. Then Ay € Qy for some A > 1. Thus, there exists
f € Sky such that

y(t) = ATIC(1)e(0) + ATIS(H)[zo — 9(0,¢)] + A7 /0 C(t —s)g(s,ys)ds

t s
X[ St —s) | K(s,u)f(u)duds, te.J.
0 0
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This implies by (H5)-(H6) that for each ¢ € J, we have
@) < Mgl + MTlzo| + 1| d]] + 2co]

B t t
Mer / Jollds + MT? sup K (1) / p(5) T (||ys]))ds.
0 c 0

We consider the function
p(t) =sup{ly(s)|: —r < s <t}, ted

Let t* € [—r,t] be such that u(t) = |y(¢t*)|. If t* € J, by the previous inequality
we have for t € J,

p(t) < Mgl + MT(|lzo| + crl|d]] + 2co]
"

!
+Mey / Jollds + MT® sup K (1) / ()T (lys])ds
0 te. 0

M||[| + MTT|zo| + c1]|]] + 2¢2]

—|—Mcl/0 p(s)ds + MT? iggK(t)A p(s)T(u(s))ds.

IN

If t* € Jo, then u(t) < ||¢| and the previous inequality obviously holds.
Let us denote the right-hand side of the above inequality as v(t). Then, we
have

¢ =v(0) = M|[¢[| + MT[|zo| + c1l|p]| + 2¢2],
pt) <wolt), tel
v'(t) = Meyu(t) + MT? ilelg)K(t)p(t)\I/(,u(t)), teld

Using the nondecreasing character of ¥, for ¢t € J,

V'(t) < Meyo(t) + MT? ileng(t)p(t)‘I’(v(t)) < m(t)[v(t) + P (v(t))] -

This implies that for each t € J,

/’U(t) dS /T ( ) [e%e} dS
— < m(s)ds < / _
w0y S+ ¥(s) 0 w0y S+ ¥(s)
This inequality implies that there exists a constant L such that v(¢t) < L, t € J,
and hence u(t) < L, t € J. Since for every t € J, ||y:|| < p(t), we have

[Ylloo := sup{ly(t)] : —r <t <T} < L,

where L depends only on T and on the function p and ¥. This shows that {2 is
bounded.

Set X := C. As a consequence of Lemma 2.1, we deduce that @) has a fixed
point and thus system (1.1) is controllable on Jj.

Acknowledgment: This work was supported by Brain Korea 21, 1999.



12

Existence results EJDE-2002/96

References

[1]

2]

E. P. Avgerinos and N. S. Papageorgiou, On quasilinear evolution inclu-
sions, Glas. Mat. Ser. III, Vol.28, No.1, pp.35-52, 1993.

J. Banas and K. Goebel, Measures of Noncompactness in Banach Spaces,
Marcel Dekker, New York, NY, 1980.

M. Benchohra, Existence of mild solutions on infinite intervals to first order
initial value problems for a class of differential inclusions in Banach spaces,
Discuss. Math. Differential Incl., Vol.19, pp.85-95, 1999.

M. Benchohra and S. K. Ntouyas, An existence result on noncompact in-
tervals for second order functional differential inclusions, J. Math. Anal.
Appl., Vol.248, pp.520-531, 2000.

M. Benchohra and S. K. Ntouyas, Existence results for functional differ-
ential and integrodifferential inclusions in Banach spaces, Indian J. Pure

Appl. Math., Vol.32, No.5, pp.665-675, 2001.

M. Benchohra and S. K. Ntouyas, Nonlocal Cauchy problem for neutral
functional differential and integrodifferential inclusions in Banach spaces,
J. Math. Anal. Appl., Vol.258, pp.573-590, 2001.

K. Deimling, Multivalued Differential Equations, Walter de Gruyter, Berlin,
Germany, 1992.

O. Fattorini, Ordinary Differential Equations in Linear Topological Spaces
I, J. Diff. Egs., Vol.5, pp.72-105, 1968.

O. Fattorini, Ordinary Differential Equations in Linear Topological Spaces
11, J. Diff. Egs., Vol.6, pp.50-70, 1969.

J. K. Goldstein, Semigroups of Linear Operators and Applications, Oxford
University Press, New York, NY, 1985.

S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis, Kluwer,
Dordrecht, Holland, 1997.

A. Lasota and Z. Opial, An Application of the Kakutani-Ky-Fan Theorem
in the Theory of Ordinary Differential Equations, Bull.Acad. Polon. Sci.
Ser. Sci. Math. Astronom. Phys., Vol 13, pp.781-786, 1965.

M. Martelli, A Rothe’s Type Theorem for Noncompact Acyclic- Valued Map,
Boll. Un. Math. Ital., Vol.4, pp.70-76, 1975.

S. K. Ntouyas, Global Existence for Neutral Functional Integrodifferential
Equations, Nonlinear Anal., Vol.30, No.4, pp.2133-2142, 1997.

N. S. Papageorgiou, Boundary value problems for evolution inclusions,
Comment. Math. Univ. Carol., Vol.29, pp.355-363, 1988.



EJDE-2002/96 H. J. Lee, J. Park, J. Y. Park 13

[16] N. S. Papageorgiou, Mild solutions of semilinear evolution inclusions, In-
dian J. Pure Appl. Math., Vol.26, No.3, pp.189-216, 1995.

[17] C. C. Travis and G. F. Webb, Second-Order Differential Equations in Ba-
nach Spaces, Proceedings of the International Symposium on Nonlinear
Equations in Abstract Spaces, Academic Press, New York, NY, pp.331-
361, 1978.

[18] C. C. Travis and G. F. Webb, Cosine Families and Abstract Nonlin-
ear Second-Order Differential Equations, Acta. Math. Hungarica, Vol.32,
pp.75-96, 1978.

[19] K. Yosida, Functional Analysis, 6th Edition, Springer Verlag, Berin, Ger-
many, 1980.

HAENG JoO LEE (e-mail: leechj@pusan.ac.kr)

JEONGYO PARK (e-mail: khpjy@hanmail.net)

JONG YEOUL PARK (e-mail: jyepark@pusan.ac.kr)
Department of Mathematics, Pusan National University
Pusan 609-735, Korea



