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inclusions in Banach spaces ∗
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Abstract

In this paper, we investigate the existence of mild solutions on a com-
pact interval to second order neutral functional differential and integrod-
ifferential inclusions in Banach spaces. The results are obtained by using
the theory of continuous cosine families and a fixed point theorem for
condensing maps due to Martelli.

1 Introduction

In this paper we prove the existence of mild solutions, defined on a compact
interval, for second-order neutral functional differential and integrodifferential
inclusions in Banach spaces. In Section 3 we consider the second-order neutral
functional differential inclusion

d

dt
[y′(t)− g(t, yt)] ∈ Ay(t) + F (t, yt), t ∈ J = [0, T ],

y0 = φ, y′(0) = x0,
(1.1)

where J0 = [−r, 0], F : J × C(J0, E)→ 2E is a bounded, closed, convex valued
multivalued map, g : J × C(J0, E) → E is given function, φ ∈ C(J0, E), x0 ∈
E, and A is the infinitesimal generator of a strongly continuous cosine family
{C(t) : t ∈ R} in a real Banach space E with the norm | · |.

For a continuous function y defined on the interval J1 = [−r, T ] and t ∈ J ,
we denote by yt the element of C(J0, E) defined by

yt(θ) = y(t+ θ), θ ∈ J0.

Here yt(·) represents the history of the state from time t− r, up to the present
time t.
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In Section 4 we investigate the existence of mild solutions for second order
neutral functional integrodifferential inclusion

d

dt
[y′(t)− g(t, yt)] ∈ Ay(t) +

∫ t

0

K(t, s)F (s, ys)ds, t ∈ J = [0, T ],

y0 = φ, y′(0) = x0,

(1.2)

where A,F, g, φ are as in the problem (1.1) and K : D → R, D = {(t, s) ∈
J × J : t ≥ s}.

In many cases it is advantageous to treat the second order abstract differ-
ential equations directly rather than to convert them into first order systems.
A useful tool for the study of abstract second order equations is the theory of
strongly continuous cosine families. Here we use of the basic ideas from cosine
family theory [17, 18].

Existence results for differential inclusions on compact intervals, are given
in the papers of Avgerinos and Papageorgiou [1], Papageorgiou [15, 16], and
Benchohra [3, 4] for differential inclusions on noncompact intervals.

This paper is motivated by the recent papers of Benchohra and Ntouyas
[4, 5, 6] and Ntouyas [14]. In [4] second order functional differential inclusions
are studied. In [5,6] functional differential and integrodifferential inclusions are
studied. In [14] neutral functional integrodifferential equations was studied.
Here we compose the above results and prove the existence of mild solutions for
problems (1.1) and (1.2), relying on a fixed point theorem for condensing maps
due to Martelli [13].

2 Preliminaries

In this section, we introduce notation, definitions, and preliminary facts from
multivalued analysis which are used throughout this paper.

Let C(J,E) be the Banach space of continuous functions from J into E with
the norm

‖y‖∞ := sup{|y(t)| : t ∈ J}.
Let B(E) denote the Banach space of bounded linear operators from E into
E. A measurable function y : J → E is Bochner integrable if and only if |y| is
Lebesque integrable. (For properties of the Bochner integral see Yosida [19].)

Let L1(J,E) denotes the Banach space of continuous functions y : J → E
which are Bochner integrable, with the norm

‖y‖L1 =
∫ T

0

|y(t)|dt for all y ∈ L1(J,E).

Let (X, ‖ · ‖) be a Banach space. A multivalued map G : X → 2X is convex
(closed) valued, if G(x) is convex (closed) for all x ∈ X. G is bounded on
bounded sets if G(D) =

⋃
x∈D G(x) is bounded in X, for any bounded set D of

X, i.e.,
sup
x∈D
{sup{‖y‖ : y ∈ G(x)}} <∞.
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A map G is called upper semicontinuous on X if, for each x0 ∈ X, the
set G(x0) is a nonempty closed subset of X and if for each open set V of X
containing G(x0), there exists an open neighborhood A of x0 such that G(A) ⊆
V .

A map G is said to be completely continuous if G(D) is relatively compact
for every bounded subset D ⊆ X. If the multivalued map G is completely
continuous with nonempty compact values, then G is upper semicontinuous if
and only if G has a closed graph, i.e., for xn → x∗, yn → y∗, with yn ∈ Gxn
we have y∗ ∈ Gx∗. The map G has a fixed point if there is x ∈ X such that
x ∈ Gx.

In the following, BCC(X) denotes the set of all nonempty bounded closed
and convex subsets of X. A multivalued map G : J → BCC(X) is said to be
measurable if for each x ∈ X, the distance between x and G(t) is a measurable
function on J . For more details on multivalued maps, see the books of Deimling
[7] and Hu and Papageorgiou [11].

An upper semicontinuous map G : X → 2X is said to be condensing if, for
any bounded subset D ⊆ X, with α(D) 6= 0, we have

α(G(D)) < α(D),

where α denotes the Kuratowski measure of noncompactness. For properties of
the Kuratowski measure, we refer to Banas and Goebel [2].

We remark that a completely continuous multivalued map is the easiest ex-
ample of a condensing map.

We say that the family {C(t) : t ∈ R} of operators in B(E) is a strongly
continuous cosine family if

(i) C(0) = I, is the identity operator in E

(ii) C(t+ s) + C(t− s) = 2C(t)C(s) for all s, t ∈ R

(iii) The map t→ C(t)y is strongly continuous for each y ∈ X.

The strongly continuous sine family {S(t) : t ∈ R}, associated to the given
strongly continuous cosine family {C(t) : t ∈ R}, is defined by

S(t)y =
∫ t

0

C(s)y ds, y ∈ E, t ∈ R.

The infinitesimal generator A : E → E of a cosine family {C(t) : t ∈ R} is
defined by

Ay =
d2

dt2
C(t)y

∣∣∣
t=0

.

For more details on strongly continuous cosine and sine families, we refer the
reader to the books of Goldstein [10] and to the papers of Fattorini [8, 9] and
of Travis and Webb [17, 18].

The considerations of this paper are based on the following fixed point the-
orem.
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Lemma 2.1 ([13]) Let X be a Banach space and N : X → BCC(X) be a
condensing map. If the set Ω := {y ∈ X : λy ∈ Ny, for some λ > 1} is
bounded, then N has a fixed point.

3 Second Order Neutral Differential Inclusions

In this section we give an existence result for the problem (1.1). Let us list the
following hypotheses.

(H1) A is the infinitesimal generator of a strongly continuous cosine family
C(t), t ∈ R, of bounded linear operators from E into itself.

(H2) C(t), t > 0 is compact.

(H3) F : J×C(J0, E)→ BCC(E); (t, u)→ F (t, u) is measurable with respect
to t for each u ∈ C(J0, E), upper semicontinuous with respect to u for
each t ∈ J , and for each fixed u ∈ C(J0, E), the set

SF,u = {f ∈ L1(J,E) : f(t) ∈ F (t, u) for a.e. t ∈ J}

is nonempty.

(H4) The function g : J ×C(J0, E)→ E is completely continuous and for any
bounded setK in C(J1, E), the set {t→ g(t, yt) : y ∈ K} is equicontinuous
in C(J,E).

(H5) There exist constants c1 and c2 such that

|g(t, v)| ≤ c1‖v‖+ c2, t ∈ J, v ∈ C(J0, E)

(H6) ‖F (t, u)‖ := sup{|v| : v ∈ F (t, u)} ≤ p(t)Ψ(‖u‖) for almost all t ∈ J and
u ∈ C(J0, E), where p ∈ L1(J,R+) and Ψ : R+ → (0,∞) is continuous
and increasing with ∫ T

0

m(s)ds <
∫ ∞
c

ds

s+ Ψ(s)
,

where c = M‖φ‖ + MT [|x0| + c1‖φ‖ + 2c2], m(t) = max{Mc1,MTp(t)}
and M = sup{|C(t)| : t ∈ J}.

Remark (i) If dimE <∞, then for each v ∈ C(J0, E), SF,u 6= φ (see Lasota
and Opial [10]).
(ii) SF,u is nonempty if and only if the function Y : J → R defined by

Y (t) := inf{|v| : v ∈ F (t, u)}

belongs to L1(J,R) (see Papageorgiou[15]).
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In order to define the concept of mild solution for (1.1), by comparison with
abstract Cauchy problem

y′′(t) = Ay(t) + h(t)
y(0) = y0, y′(0) = y1

whose properties are well known [17, 18], we associate problem (1.1) to the
integral equation

y(t) = C(t)φ(0) +S(t)[x0− g(0, φ)] +
∫ t

0

C(t− s)g(s, ys)ds+
∫ t

0

S(t− s)f(s)ds,

(3.1)
t ∈ J , where

f ∈ SF,y = {f ∈ L1(J,E) : f(t) ∈ F (t, yt) for a.e. t ∈ J}.

Definition A function y : (−r, T )→ E, T > 0 is called a mild solution of the
problem (1.1) if y(t) = φ(t), t ∈ [−r, 0], and there exists a v ∈ L1(J,E) such
that v(t) ∈ F (t, yt) a.e. on J , and the integral equation (3.1) is satisfied.

The following lemmas are crucial in the proof of our main theorem.

Lemma 3.1 ([12]) Let I be a compact real interval, and let X be a Banach
space. Let F be a multivalued map satisfying (H3), and let Γ be a linear con-
tinuous mapping from L1(I,X) to C(I,X). Then, the operator

Γ ◦ SF : C(I,X)→ BCC(C(I,X)), y → (Γ ◦ SF )(y) = Γ(SF,y)

is a closed graph operator in C(I,X)× C(I,X).

Now, we are able to state and prove our main theorem.

Theorem 3.2 Assume that Hypotheses (H1)-(H6) are satisfied. Then system
(1.1) has at least one mild solution on J1.

Proof. Let C := C(J1, E) be the Banach space of continuous functions from
J1 into E endowed with the supremum norm

‖y‖∞ := sup{|y(t)| : t ∈ J1}, for y ∈ C.

Now we transform the problem into a fixed point problem. Consider the mul-
tivalued map, N : C → 2C defined by Ny the set of functions h ∈ C such
that

h(t) =


φ(t), if t ∈ J0

C(t)φ(0) + S(t)[x0 − g(0, φ)]

+
∫ t

0

C(t− s)g(s, ys)ds+
∫ t

0

S(t− s)f(s)ds, if t ∈ J
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where
f ∈ SF,y = {f ∈ L1(J,E) : f(t) ∈ F (t, yt) for a.e. t ∈ J}.

We remark that the fixed points of N are mild solutions to (1.1).
We shall show that N is completely continuous with bounded closed convex

values and it is upper semicontinuous. The proof will be given in several steps.
Step 1. Ny is convex for each y ∈ C. Indeed, if h1, h2 belong to Ny, then
there exist f1, f2 ∈ SF,y such that, for each t ∈ J and i = 1, 2, we have

hi(t) = C(t)φ(0)+S(t)[x0−g(0, φ)]+
∫ t

0

C(t−s)g(s, ys)ds+
∫ t

0

S(t−s)fi(s)ds.

Let 0 ≤ α ≤ 1. Then, for each t ∈ J , we have

(αh1 + (1− α)h2)(t) = C(t)φ(0) + S(t)[x0 − g(0, φ)] +
∫ t

0

C(t− s)g(s, ys)ds

+
∫ t

0

S(t− s)[αf1(s) + (1− α)f2(s)] ds.

Since SF,y is convex (because F has convex values), then

αh1 + (1− α)h2 ∈ Ny.

Step 2. N maps bounded sets into bounded sets in C. Indeed, it is enough
to show that there exists a positive constant ` such that, for each h ∈ Ny,
y ∈ Bq = {y ∈ C : ‖y‖∞ ≤ q}, one has ‖h‖∞ ≤ `. If h ∈ Ny, then there exists
f ∈ SF,y such that for each t ∈ J we have

h(t) = C(t)φ(0) +S(t)[x0− g(0, φ)] +
∫ t

0

C(t− s)g(s, ys)ds+
∫ t

0

S(t− s)f(s)ds.

By (H5) and (H6), we have that, for each t ∈ J ,

|h(t)| ≤ |C(t)φ(0)|+ |S(t)[x0 − g(0, φ)]|+
∣∣ ∫ t

0

C(t− s)g(s, ys)ds
∣∣

+
∣∣ ∫ t

0

S(t− s)f(s)ds
∣∣

≤ M‖φ‖+MT [|x0|+ c1‖φ‖+ 2c2] +Mc1

∫ t

0

‖ys‖ds

+MT sup
y∈[0,q]

Ψ(y)
( ∫ t

0

p(s)ds
)

Then for each h ∈ N(Bq) we have

‖h‖∞ ≤ M‖φ‖+MT [|x0|+ c1‖φ‖+ 2c2] +Mc1

∫ T

0

‖ys‖ds

+MT sup
y∈[0,q]

Ψ(y)
( ∫ T

0

p(s)ds
)

:= `.
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Step 3. N maps bounded sets into equicontinuous sets of C. Let t1, t2 ∈ J ,
0 < t1 < t2, and let Bq = {y ∈ C : ‖y‖∞ ≤ q} be a bounded set of C(J1, E).
For each y ∈ Bq and h ∈ Ny, there exists f ∈ SF,y such that for t ∈ J ,

h(t) = C(t)φ(0)+S(t)[x0−g(0, φ)]+
∫ t

0

C(t−s)g(s, ys)ds+
∫ t

0

S(t−s)f(s) ds .

Thus,

|h(t2)− h(t1)|
≤

∣∣[C(t2)− C(t1)]φ(0)
∣∣+
∣∣[S(t2)− S(t1)][x0 − g(0, φ)]

∣∣
+
∣∣ ∫ t2

0

[C(t2 − s)− C(t1 − s)]g(s, ys)ds
∣∣+
∣∣ ∫ t2

t1

C(t1 − s)g(s, ys)ds
∣∣

+
∣∣ ∫ t2

0

[S(t2 − s)− S(t1 − s)]f(s)ds
∣∣+
∣∣ ∫ t2

t1

S(t1 − s)f(s)ds
∣∣

≤ |C(t2)− C(t1)|‖φ‖+ |S(t2)− S(t1)|[|x0|+ c1‖φ‖+ c2]

+
∫ t2

0

|C(t2 − s)− C(t1 − s)|[c1‖ys‖+ c2]ds

+
∫ t2

t1

|C(t1 − s)|[c1‖ys‖+ c2]ds

+
∫ t2

0

|S(t2 − s)− S(t1 − s)|‖f(s)‖ds+
∫ t2

t1

|S(t1 − s)|‖f(s)‖ds.

As t2 → t1 the right-hand side of the above inequality tend to zero. The
equicontinuities for the cases t1 < t2 ≤ 0 and t1 ≤ 0 ≤ t2 are obvious. As a
consequence of Step 2, Step 3, (H2) and (H4) together with the Ascoli-Arzela
theorem, we can conclude that N : C → 2C is a compact multivalued map, and
therefore, a condensing map.
Step 4. N has a closed graph. Let yn → y∗, hn ∈ Nyn, and hn → h∗. We shall
prove that h∗ ∈ Ny∗. hn ∈ Nyn means that there exists fn ∈ SF,yn , such that
for t ∈ J ,

hn(t) = C(t)φ(0)+S(t)[x0−g(0, φ)]+
∫ t

0

C(t−s)g(s, yns)ds+
∫ t

0

S(t−s)fn(s)ds .

We must prove that there exists f∗ ∈ SF,y∗ such that for t ∈ J ,

h∗(t) = C(t)φ(0)+S(t)[x0−g(0, φ)]+
∫ t

0

C(t−s)g(s, y∗s)ds+
∫ t

0

S(t−s)f∗(s)ds .

Clearly, we have that as n→∞,∥∥∥(hn − C(t)φ(0)− S(t)[x0 − g(0, φ)]−
∫ t

0

C(t− s)g(s, yns)ds
)

−
(
h∗ − C(t)φ(0)− S(t)[x0 − g(0, φ)]−

∫ t

0

C(t− s)g(s, y∗s)ds
)∥∥∥
∞
→ 0 .
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Consider the linear and continuous operator Γ : L1(J,E)→ C(J,E) defined as

f → Γ(f)(t) =
∫ t

0

S(t− s)f(s)ds.

From Lemma 3.1, it follows that Γ ◦ SF is a closed graph operator. Moreover,
we have that

hn(t)− C(t)φ(0)− S(t)[x0 − g(0, φ)]−
∫ t

0

C(t− s)g(s, yns)ds ∈ Γ(SF,yn).

Since yn → y∗, it follows from Lemma 3.1 that

h∗(t)−C(t)φ(0)−S(t)[x0−g(0, φ)]−
∫ T

0

C(t−s)g(s, y∗s)ds =
∫ t

0

S(t−s)f∗(s)ds

for some f∗ ∈ SF,y∗ . Therefore N is a completely continuous multivalued map,
upper semicontinuous with convex closed values. In order to prove that N has
a fixed point, we need one more step.
Step 5. The set

Ω := {y ∈ C : λy ∈ Ny, for some λ > 1}

is bounded. Let y ∈ Ω. Then λy ∈ Ny for some λ > 1. Thus, there exists
f ∈ SF,y such that

y(t) = λ−1C(t)φ(0) + λ−1S(t)[x0 − g(0, φ)] + λ−1

∫ t

0

C(t− s)g(s, ys)ds

+λ−1

∫ t

0

S(t− s)f(s)ds, t ∈ J.

This implies by (H5)-(H6) that for each t ∈ J , we have

|y(t)| ≤ M‖φ‖+MT [|x0|+ c1‖φ‖+ 2c2]

+Mc1

∫ t

0

‖ys‖ds+MT

∫ t

0

p(s)Ψ(‖ys‖)ds.

We consider the function

µ(t) = sup{|y(s)| : −r ≤ s ≤ t}, t ∈ J.

Let t∗ ∈ [−r, t] be such that µ(t) = |y(t∗)|. If t∗ ∈ J , by the previous inequality
we have for t ∈ J ,

µ(t) ≤ M‖φ‖+MT [|x0|+ c1‖φ‖+ 2c2] +Mc1

∫ t∗

0

‖ys‖ds

+MT

∫ t∗

0

p(s)Ψ(‖ys‖)ds

≤ M‖φ‖+MT [|x0|+ c1‖φ‖+ 2c2] +Mc1

∫ t

0

µ(s)ds

+MT

∫ t

0

p(s)Ψ(µ(s))ds.
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If t∗ ∈ J0, then µ(t) ≤ ‖φ‖ and the previous inequality obviously holds. Let us
denote the right-hand side of the above inequality as v(t). Then, we have

c = v(0) = M‖φ‖+MT [|x0|+ c1‖φ‖+ 2c2],
µ(t) ≤ v(t), t ∈ J,

v′(t) = Mc1µ(t) +MTp(t)Ψ(µ(t)), t ∈ J.

Using the nondecreasing character of Ψ, we get

v′(t) ≤Mc1v(t) +MTp(t)Ψ(v(t)) ≤ m(t)[v(t) + Ψ(v(t))], t ∈ J.

This implies that for each t ∈ J that∫ v(t)

v(0)

ds

s+ Ψ(s)
≤
∫ T

0

m(s)ds <
∫ ∞
v(0)

ds

s+ Ψ(s)
.

This inequality implies that there exists a constant L such that v(t) ≤ L, t ∈ J ,
and hence µ(t) ≤ L, t ∈ J . Since for every t ∈ J , ‖yt‖ ≤ µ(t), we have

‖y‖∞ := sup{|y(t)| : −r ≤ t ≤ T} ≤ L,

where L depends only on T and on the function p and Ψ. This shows that Ω is
bounded.

Set X := C. As a consequence of Lemma 2.1, we deduce that N has a fixed
point which is a mild solution of the system (1.1).

4 Second Order Neutral Integrodifferential In-
clusions

In this section we consider the solvability of the problem (1.2). We need the
following assumptions

(H7) For each t ∈ J , K(t, s) is measurable on [0, t] and

K(t) = ess sup{|K(t, s)|, 0 ≤ s ≤ t}

is bounded on J .

(H8) The map t→ Kt is continuous from J to L∞(J,R), here Kt(s) = K(t, s).

(H9) ‖F (t, u)‖ := sup{|v| : v ∈ F (t, u)} ≤ p(t)Ψ(‖u‖) for almost all t ∈ J and
u ∈ C(J0, E), where p ∈ L1(J,R+) and Ψ : R+ → (0,∞) is continuous
and increasing with ∫ T

0

m(s)ds <
∫ ∞
c

ds

s+ Ψ(s)
,

where c = M‖φ‖+MT [|x0|+c1‖φ‖+2c2], m(t) = max{Mc1,MT 2 supt∈J
K(t)p(t)} and M = sup{|C(t)| : t ∈ J}.
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We define the mild solution for the problem (1.2) by the integral equation

y(t) =C(t)φ(0) + S(t)[x0 − g(0, φ)] +
∫ t

0

C(t− s)g(s, ys)ds

+
∫ t

0

S(t− s)
∫ s

0

K(s, u)f(u)duds, t ∈ J,
(4.1)

where f ∈ SF,y = {f ∈ L1(J,E) : f(t) ∈ F (t, yt) for a.e. t ∈ J}.

Definition A function y : (−r, T )→ E, T > 0 is called a mild solution of the
problem (1.2) if y(t) = φ(t), t ∈ [−r, 0], and there exists a v ∈ L1(J,E) such
that v(t) ∈ F (t, yt) a.e. on J , and the integral equation (4.1) is satisfied.

Theorem 4.1 Assume that hypotheses (H1)–(H5), (H7)–(H9) are satisfied.
Then system (1.2) has at least one mild solution on J1.

Proof. Let C := C(J1, E) be the Banach space of continuous functions from
J1 into E endowed with the supremum norm

‖y‖∞ := sup{|y(t)| : t ∈ J1}, for y ∈ C.

We transform the problem into a fixed point problem. Consider the multivalued
map, Q : C → 2C defined by Qy, the set of functions h ∈ C such that

h(t) =



φ(t), if t ∈ J0

C(t)φ(0) + S(t)[x0 − g(0, φ)] +
∫ t

0

C(t− s)g(s, ys) ds

+
∫ t

0

S(t− s)
∫ s

0

K(s, u)f(u) du ds, if t ∈ J,

where
f ∈ SF,y = {f ∈ L1(J,E) : f(t) ∈ F (t, yt) for a.e. t ∈ J}.

We remark that the fixed points of Q are mild solutions to (1.2).
As in Theorem 3.1 we can show that Q is completely continuous with

bounded closed convex values and it is upper semicontinuous, and therefore
a condensing map. We repeat only the Step 5, i.e. we show that the set

Ω := {y ∈ C : λy ∈ Qy, for some λ > 1}

is bounded. Let y ∈ Ω. Then λy ∈ Qy for some λ > 1. Thus, there exists
f ∈ SF,y such that

y(t) = λ−1C(t)φ(0) + λ−1S(t)[x0 − g(0, φ)] + λ−1

∫ t

0

C(t− s)g(s, ys)ds

+λ−1

∫ t

0

S(t− s)
∫ s

0

K(s, u)f(u) du ds, t ∈ J.
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This implies by (H5)-(H6) that for each t ∈ J , we have

|y(t)| ≤ M‖φ‖+MT [|x0|+ c1‖φ‖+ 2c2]

+Mc1

∫ t

0

‖ys‖ds+MT 2 sup
t∈J

K(t)
∫ t

0

p(s)Ψ(‖ys‖)ds.

We consider the function

µ(t) = sup{|y(s)| : −r ≤ s ≤ t}, t ∈ J.

Let t∗ ∈ [−r, t] be such that µ(t) = |y(t∗)|. If t∗ ∈ J , by the previous inequality
we have for t ∈ J ,

µ(t) ≤ M‖φ‖+MT [|x0|+ c1‖φ‖+ 2c2]

+Mc1

∫ t∗

0

‖ys‖ds+MT 2 sup
t∈J

K(t)
∫ t∗

0

p(s)Ψ(‖ys‖)ds

≤ M‖φ‖+MT [|x0|+ c1‖φ‖+ 2c2]

+Mc1

∫ t

0

µ(s)ds+MT 2 sup
t∈J

K(t)
∫ t

0

p(s)Ψ(µ(s))ds.

If t∗ ∈ J0, then µ(t) ≤ ‖φ‖ and the previous inequality obviously holds.
Let us denote the right-hand side of the above inequality as v(t). Then, we

have

c = v(0) = M‖φ‖+MT [|x0|+ c1‖φ‖+ 2c2],
µ(t) ≤ v(t), t ∈ J,

v′(t) = Mc1µ(t) +MT 2 sup
t∈J

K(t)p(t)Ψ(µ(t)), t ∈ J.

Using the nondecreasing character of Ψ, for t ∈ J ,

v′(t) ≤Mc1v(t) +MT 2 sup
t∈J

K(t)p(t)Ψ(v(t)) ≤ m(t)[v(t) + Ψ(v(t))] .

This implies that for each t ∈ J ,∫ v(t)

v(0)

ds

s+ Ψ(s)
≤
∫ T

0

m(s)ds <
∫ ∞
v(0)

ds

s+ Ψ(s)
.

This inequality implies that there exists a constant L such that v(t) ≤ L, t ∈ J ,
and hence µ(t) ≤ L, t ∈ J . Since for every t ∈ J , ‖yt‖ ≤ µ(t), we have

‖y‖∞ := sup{|y(t)| : −r ≤ t ≤ T} ≤ L,

where L depends only on T and on the function p and Ψ. This shows that Ω is
bounded.

Set X := C. As a consequence of Lemma 2.1, we deduce that Q has a fixed
point and thus system (1.1) is controllable on J1.
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