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Solutions to elliptic systems of Hamiltonian type

in RN ∗

K. Tintarev

Abstract

The paper proves existence of a solution for elliptic systems of Hamil-
tonian type on RN by a variational method. We use the Benci-Rabinowitz
technique, which cannot be applied here directly for lack of compactness.
However, a concentration compactness technique allows us to construct
a finite-dimensional pseudogradient that restores the Benci-Rabinowitz
method to power also for problems on unbounded domains.

1 Introduction

The present paper deals with a variational elliptic problem of Hamiltonian type,
i.e., with a functional that has a saddle-point geometry where both positive and
negative subspaces of the quadratic form are infinte-dimensional. The Benci-
Rabinowitz approach to such functionals requires the functional to be a sum
of a quadratic form and a weakly continuous term (we refer the reader to the
elaborate exposition in [1]). To assure linking of infinite-dimensional spheres,
and thus existence of a critical sequence, they restrict the class of deformations
to flows of vector fields which are sums of a field, roughly speaking, with ra-
dial direction, and a field that over every bounded set has a finite-dimensional
span. We remark that inifinte-dimensional spheres do not link even when the
deformations are restricted to rotations and parallel translations ([7]).
We construct Benci-Rabinowitz deformations without requiring compactness

for the perturbation of the quadratic form, using instead the concentrated com-
pactness on RN . The construction is isolated into a separate lemma (Lemma
2.2). Section 2 of the paper deals with the application to elliptic system of a
Hamiltonian type (cf. [2] and references therein for the case of bounded do-
mains), while leaving the proof of Lemma 2.2 to Section 3. The application
serves merely as an example (and follows several steps from [1, 2] and similar
work) to justify the construction of Section 3, which can be used in further
variational problems where lack of compactness complicates construction of de-
formations that preserve linking.
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2 A semilinear elliptic system

We shall study existence of a nonzero solution to the problem

−∆u+ au = γv + Fu(u, v)

−∆v + bv = −γu− Fv(u, v) (2.1)

u, v ∈W 1,2(RN ) \ {0}, N ≥ 3 . (2.2)

We will use the notation 2∗ = 2N/(N − 2) for the critical exponent. We make
the following assumptions:

a, b > 0, γ 6= 0, F ∈ C1(R2); (2.3)

F (u, 0) ≤ C|u|q, q > 2, (2.4)

Fv(u, v) ≤ C(|v| + |v|r)(1 + u2), C > 0, 2 < r < 2∗;

|Fu(u, v)|+ |Fv(u, v)| ≤ C(|u|+ |v|+ |u|
p−1 + |v|p−1), (2.5)

where C > 0 and p ∈ (2, 2∗);

Fu(u, v)u+ Fv(u, v)v ≥ σF (u, v) ≥ 0, σ > 2; (2.6)

Fu(u, v)u− Fv(u, v)v ≤ CF (u, v), C > 0 . (2.7)

An example of a function satisfying all these conditions for N = 3 is F (u, v) =
u4 + 2v4 − u2v2.
We denote now as H the space W 1,2(RN → R2) of 2-component Sobolev

functions with the norm

‖(u, v)‖2 = ‖u‖2a + ‖v‖
2
b =

∫
(|∇u|2 + au2)dx+

∫
(|∇v|2 + bv2) dx,

Scalar products will be denoted as 〈x, y〉 for points in H , and 〈u, ϕ〉a or 〈v, ϕ〉b
for the u- (resp. the v-) components of vectors in H . An open ball on H of
radius R centered at w will be denoted as B(w,R).
Solutions of (2.1) are critical points for the following C1- functional on H :

G(u, v) =

∫
RN

(
1

2
|∇u|2 −

1

2
|∇v|2 +

1

2
au2 −

1

2
bv2 − γuv − F (u, v)) dx .

It should be noted that under Assumption (2.5), the derivative G′ is not only
continuous, but also weak-to weak continuous on H , that is

xk
w
→ x⇒ G′(xk)

w
→ G′(x).

The main result of this section is

Theorem 2.1 Under assumptions (2.3)-(2.7), the system (2.1) has a nonzero
solution.
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The crucial technical statement needed for the proof of this theorem is the
following lemma.

Lemma 2.2 Assume (2.3) and (2.5). Let κ > 0. If the set

Ω(η, κ) =
{
(u, v) ∈ H : |〈G′(u, v), (u, 0)〉| ≤ η‖u‖2a and (2.8)

(|〈G′(u, v), (0, v)〉| ≤ η‖v‖2b or ‖v‖b ≤ η, |G(u, v)− κ| ≤ η)
}

is bounded for some η > 0, and G′(u, v) 6= 0 whenever |G(u, v) − κ| ≤ η, then
there exists a finite-dimensional subspace W of H, bounded Lipschitz functions
ϕ,ψ : H → R and a Lipschitz map z : H →W support in Ω(η, κ), such that the
map

Z(u, v) := (ϕ(u, v)u, ψ(u, v)v) + z(u, v)

satisfies the following relations

|G(u, v)− κ| ≥ η ⇒ Z(u, v) = 0

(u, v) ∈ H ⇒ 〈G′(u, v), Z(u, v)〉 ≥ 0,

|G(u, v)− κ| ≤ η/2⇒ 〈G′(u, v), Z(u, v)〉 ≥ 1 .

The proof of this lemma is left for Section 3 and it does not refer to any of
the statements in this section.

Lemma 2.3 Assume (2.4)-(2.7). Then there exists an η > 0 such that the set
Ω(η, κ) is bounded.

Proof. Let us rewrite (2.8). If (u, v) ∈ Ω(η, κ), then

−η‖u‖2a ≤ ‖u‖
2
a −
∫
γuv −

∫
Fu(u, v)u ≤ η‖u‖2a, (2.9)

−η‖v‖2b ≤ ‖v‖
2
b +
∫
γuv +

∫
Fv(u, v)v ≤ η‖v‖2b , or (2.10)

‖v‖b ≤ η, (2.11)

κ− η ≤ 1
2‖u‖

2
a −

1
2‖v‖

2
b −
∫
γuv −

∫
F (u, v) ≤ κ+ η. (2.12)

First, assume (2.10). Let us multiply (2.12) by σ from (2.6), subtract (2.9)
and add (2.10). We will have

(σ/2 − 1)(‖u‖2a − ‖v‖
2
b − 2

∫
γuv)− σ

∫
F (u, v) +

∫
(Fu(u, v)u+ Fv(u, v)v)

≤ η(‖u‖2a + ‖v‖
2
b) + σ(κ+ η).

which yields, due to (2.6),

(σ/2− 1)(‖u‖2a − ‖v‖
2
b − 2

∫
γuv) ≤ η(‖u‖2a + ‖v‖

2
b) + σ(κ+ η).) (2.13)

By (2.12), ∫
F (u, v) ≤

1

2
‖u‖2a −

1

2
‖v‖2b −

∫
γuv − κ+ η. (2.14)
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If we add now (2.9) and (2.10), (2.11) then, using (2.7) we obtain

‖u‖2a + ‖v‖
2
b ≤

∫
(Fu(u, v)u − Fv(u, v)v) + η(‖u‖

2
a + ‖v‖

2
b)

≤ C

∫
F (u, v) + η(‖u‖2a + ‖v‖

2
b).

We now combine this inequality with (2.14) and (2.13) to obtain

‖u‖2a + ‖v‖
2
b ≤ C(

1

2
‖u‖2a −

1

2
‖v‖2b −

∫
γuv − κ+ η) + η(‖u‖2a + ‖v‖

2
b)

Cη

σ/2− 1
(‖u‖2a + ‖v‖

2
b) +

Cσ

σ/2− 1
(κ+ η)

+C(η − κ) + η(‖u‖2a + ‖v‖
2
b).

This implies

(1−
Cη

σ/2− 1
− η)‖(u, v)‖2 ≤ C′.

Therefore, if η is sufficiently small and (2.10) is assumed, the norm of (u, v) on
Ω(η, κ) is bounded.
Now assume (2.11). From (2.12) follows

1

2
‖u‖2a −

∫
F (u, v) ≤ κ+ η + Cγη‖u‖+

1

2
η2,

and therefore

σ

2
‖u‖2a − σ

∫
F (u, v) ≤ σκ+ Cη + Cη‖u‖2. (2.15)

¿From (2.9) we derive

−Cη‖u‖2a − Cη ≤ ‖u‖
2
a −

∫
Fu(u, v)u. (2.16)

Subtracting (2.16) from (2.15) we get

(
σ

2
− 1)‖u‖2a +

∫
(Fu(u, v)u − σF (u, v)) ≤ Cκ+ 2Cη + 2C‖u‖

2
a,

so that applying (2.6) and (2.4) we get

(
σ

2
− 1− 2Cη)‖u‖2a ≤ C +

∫
(σF (u, v) − Fu(u, v)u)

= C +

∫
(σF (u, v) − Fu(u, v)u − Fv(u, v)v) +

∫
Fv(u, v)v

≤ C +

∫
Fv(u, v)v ≤ C + Cη‖u‖

2
a,

which in turn implies that ‖(u, v)‖ is bounded. �
We will check now the geometric conditions for the critical point argument.
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Lemma 2.4 There exist ρ > 0, R > 0 and u0 ∈W 1,2(RN ) such that

inf G(A) > 0 and supG(B) = 0,

where A = {(u, 0) ∈ H : ‖u‖a = ρ)} and

B = [0, R]u0×{v : (0, v) ∈ H : ‖v‖b = R}
⋃
{0, Ru0}×{(0, v) ∈ H : ‖v‖b ≤ R}.

Proof. To estimate the functional G on A, we use (2.4),

G(u, 0) ≥
1

2
‖u‖2a − C

∫
|u|q ≥

1

2
‖u‖2a − C‖u‖

q
a = 1/2ρ

2 − Cρq,

which is a positive quantity for a certain ρ, which form now on will be fixed.
To estimate G on B, we will consider it as a union of three subsets:

B1 = {(tu0, v) : 0 ≤ t ≤ R, ‖v‖b = R},

B2 = {(0, v) : ‖v‖b ≤ R}, and

B3 = {(Ru0, v) : ‖v‖b ≤ R}.

The functional G is non-positive on B2 due to (2.6). On B1, one can use (2.6)
to get the estimate

G(tu0, v) ≤ −
1

2
R2 +

1

2
R2‖u0‖

2
a − tγ

∫
u0v dx

≤ −
1

2
R2(1− ‖u0‖

2
a − Cγ‖u0‖a) ≤ 0

when ε := ‖u0‖a is sufficiently small. Finally, on B3, using the first inequality
of (2.6), we have

G(Ru0, v) ≤
1

2
R2ε2 −Rγ

∫
u0vdx − CR

σ

∫
|u0|

σ

≤
1

2
R2ε2 + CR2ε− CRσεσ

≤ 0

for R sufficiently large. �
Let HU , HV be the subspaces of H consisting of vectors of the form (u, 0)

and (0, v) respectively.

Definition 2.5 We shall say that a map S ∈ C([0, 1]×H ;H) is almost radial
if there is a neighborhood of the origin where S(t, ·) is the identity function for
all t, the subspaces HU and HV admit an orthogonal decomposition into spaces
YU ,WU and YV ,WV respectively, dimWU + dimWV <∞ and there are locally
Lipschitz and uniformly bounded maps α, β : [0, 1]×H → R \ {0} such that

S(t, u, v)− (α(t, u, v)u, β(t, u, v)v) ∈W :=WU ⊕WV .
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Lemma 2.6 If A is as in Lemma 2.4,

B0 = {(u, v) ∈ H : u ∈ [0, R]u0, ‖v‖b ≤ R}

and S is an almost radial map such that S(t, u, v) = (u, v) for all (u, v) ∈ B :=
∂B0, then for any t ∈ [0, 1],

S(t, B0)
⋂
A 6= ∅. (2.17)

Proof. For every t ∈ [0, 1] consider a map

Φt : B0 → H × R,Φt(x) = (PV S(t, x), ‖S(t, x)‖),

where PV is the orthogonal projection PV (u, v) = (0, v). Then a point x ∈ B
contributes to the intersection set (2.17) if and only if

Φt(x) = (0, ρ). (2.18)

Without loss of generality we assume that u0 ∈ W . Since the map S is almost
radial, S(t, θu0, v) = (0, β(t, θu0, v)v) modulo W . Therefore (2.18) will be sat-
isfied if one sets the components of v in the complement of W to zero, namely,
PV	W (0, v) = 0, and satisfies (2.18) restricted to W and to the relative interior
of B, namely,

(PW∩V S(t, θu0, v), ‖S(t, x)‖) = (0V ∩W , ρ),

with θ ∈ (0, R), andv ∈ V ∩W, ‖v‖b < R. In other words, the intersection set
(2.17) will be nonempty if the set Ψ−1t (0, ρ) is nonempty, where, identifying
points (0, v) as v,

Ψt(v, θ) = (PV PWS(t, θu0, v), ‖S(t, x)‖),

where Ψ : (B(0, R) ∩WV ) × (0, R) → WV ×mathbbR. For the sake of conve-
nience we will identify now points (0, v) of WV as v. For t = 0, the map has

the form Ψ0(v, θ) = (v, (θ
2‖u0‖2a + ‖v‖

2
b)
1
2 ) and the pre-image of (0WV , ρ) con-

sists of one point (0WV , ρ
− 12 ‖u0‖−1a ) at which Ψ0 has a surjective derivative, so

that the Brower degree of Ψ0 at the intersection value, d(Ψ0, (B(0, R) ∩WV )×
(0, R), (0, ρ)) equals 1 up to a sign. Note that S(t, ·) is identity on the boundary
B of B0. This immediately implies that Ψt 6= (0, ρ) on the boundary of its
domain. Consequently, the Brouwer degree is preserved and the intersection is
nonempty for all t. �
Completion of the proof of Theorem 2.1 is now standard. We assume that

G′(u, v) 6= 0, unless u = v = 0. Let

M =
{
S ∈ C([0, 1]×H → H) : S(t, ·) is almost radial and

equal to the identity near B for all t ∈ [0, 1]
}
,

and let
κ := inf

Φ∈M
sup

(u,v)∈B0

G(Φ(1, u, v)).
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Note that, by Lemma 2.6, for any Φ ∈M and every t,

sup
(u,v)∈B0

G(Φ(1, u, v)) ≥ inf G(A) > 0

and therefore κ > 0. The conditions of Lemma 2.2 are now satisfied, due to
Lemma 2.3.
Let Z be as in Lemma 2.2. Then the equation

dx(t)

dt
= −Z(x(t)), x(0) = (u, v)

has a unique solution for all initial data and values of t ∈ mathbbR, and the
map S : (t, u, v) → x(t) is almost radial. By Lemma 2.4, with η sufficiently
small, Z = 0 on the set B.
Let Φη be such that G(Φη(u, v)) ≤ κ+ η/2 for all (u, v) ∈ B0. Then due to

Lemma 2.2, using the standard deformation argument (eg [6]) one has

G(S(t,Φη(u, v))) ≤ κ− η/2, (u, v) ∈ B0.

for t sufficiently large. However, by Lemma 2.6, since composition of almost
radial maps is an almost radial map, κ ≤ κ− η/2, a contradiction.

3 The almost radial pseudogradient

In this section we prove Lemma 2.2. We will use the terminology of [5], saying
that a sequence uk ∈W 1,2(RN ) converges weakly with concentration to a point

u, uk
cw
→ u if for any sequence of shifts αk ∈ RN , (uk − u)(· + αk)

w
→ 0. As an

immediate corollary of Lemma 6 from [3] (see also Lemma I1 from [4]), uk
cw
→ u

implies for N ≥ 3 that uk
Lp

→ u with p ∈ (2, 2∗). Indeed, even if all components
of uk are subject to same shifts, we reduce the problem to the scalar case by
using test functions (ϕ, 0, . . . , 0), (0, ϕ, . . . , 0), . . . , (0, . . . , 0, ϕ)

Definition 3.1 The following set will be called an extended weak limit set of a
sequence {uk} ⊂W 1,2(RN )

wLim(uk) = {u ∈ W
1,2(RN ) : ∃αj ∈ R

N , kj ∈ N, ukj(·+ αj)
w
→ u}.

Proposition 3.2 The extended weak limit set of every bounded sequence {uk} ⊂
W 1,2(RN ) contains 0.

Proof. Let αj ∈ RN , |αj | → ∞. Let vn, n ∈ N, be a basis on W 1,2(RN ).
Then, obviously, there exists a sequence j1k ∈ N such that

|(uk(·+ αj), v1)| ≤ 2
−k for all j ≥ j1k.

Similarly, there is a sequence j2k ≥ j
1
k such that

|(uk(·+ αj), v2)| ≤ 2
−k for all j ≥ j2k.
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Selecting further subsequences in a similar way, we get on the nth step

|(uk(·+ αj), vm)| ≤ 2
−k for all m ≤ n, j ≥ jnk .

Then

|(uk(·+ αjkk ), vm)| ≤ 2
−k for all m ≤ k.

Therefore, uk(·+ αjkk )
w
→ 0. �

Naturally, the statements and the definitions above extend immediately to
the space H =W 1,2(RN → R2).

Proof of Lemma 2.2. For the sake of convenience we will abbreviate the set
Ω(η, κ) defined in (2.8) as Ω.

1.) We start with an observation that if (uk, vk) ∈ Ω, then

wLim{(uk, vk)} \ {0} 6= ∅.

If it were otherwise, then (uk, vk) → 0 in Lp, 2 < p < 2∗. Thus by (2.8),
|〈G′(uk, vk), (uk, 0)〉| ≤ η‖uk‖2a implies uk → 0. Then lim supG(uk, vk) ≤
lim sup(− 12‖vk‖

2
b −
∫
F (uk, vk)) ≤ 0, which contradicts the condition

G(u, v) ≥ κ− η

in (2.8), when η is small. This observation allows us to introduce a map r
from sequences on Ω to H , assigning to every sequence (uk, vk) ∈ Ω a point
r({(uk, vk)}) ∈ wLim{(uk, vk)} \ {0}. Of course, the map is not expected to be
continuous in any sense. We will use this map to introduce a pseudoclosure of
Ω:

Ω+ = Ω
⋃
{r({(uk, vk)}), (uk, vk) ∈ Ω}.

Obviously, 0 /∈ Ω+, so that G′ does not vanish on Ω+. Therefore the set Ω+ can
be covered by open sets

O1w := {(u, v) ∈ H : 〈G
′(u, v), w〉 > δw}, w ∈ C

∞
0 (R

N ,R2) (3.1)

with appropriate δw > 0. We will use instead a covering by larger sets that
contain correspondent O1w:

Ow := {(u, v) ∈ H : sup
α∈RN×RN

〈G′(u, v), w(· + α)〉 > δw}

with the same δw > 0 as above.

2.) We claim that Ω can be covered by finitely many sets Ow. Since H is
separable, we assume without loss of generality that the covering by Ow is
countable. Let now

Ωm := Ω \ ∪
m
k=1Owk .
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If Ωm 6= ∅ for every m, then one can select a sequence (um, vm) ∈ Ωm. Since
the point r({(um, vm)}) ∈ Ω+, it belongs to one of the sets O, say, Owµ and
there is an αµ ∈ RN such that

〈G′(r({(um, vm)})), wµ(·+ αµ)〉 > δwµ

Since G′ is weak-to-weak continuous, there is a sequence of translations αm ∈
R
N such that for a renamed subsequence ofm, (um, vm)(·+αm)

w
→ r({(um, vm)}

and
〈G′(um, vm), wµ(·+ αm)〉 > δwµ ,

i.e. (um, vm) ∈ Owµ . At the same time, we chose of (um, vm) so that for all
m ≥ µ, (um, vm) /∈ Owµ . The contradiction proves that there is a n such that
the set Ωn is empty, which by (4.3) implies that {Owm ,m = 1, . . . , n} is a
covering of Ω.
3.) This implies that the sets {O0(m,α, δ),m = 1, . . . , n, α ∈ RN}, defined as

O0(m,α, δ) := {(u, v) ∈ H : 〈G′(u, v), wm(·+ α)〉 > δ},

with δ = min{δwm ,m = 1, .., n} also cover Ω. Let R > 0 be such that Ω ⊂
B̄(0, R− 2) and let εR > 0 be such that whenever |α− β| < εR,m = 1, . . . n,

O0(m,α, δ) ∩ B̄(0, R) ⊂ O0(m,β, δ/2).

Let us show that εR > 0 exists. Indeed, the magnitude of α− β may be defined
by the requirement

‖G′(u, v)‖‖wm(· − α)− wm(· − β)‖ ≤ δ/2,

(u, v) ∈ ∪O0(m,α, δ/2) ∩ B̄(0, R), m = 1, . . . , n,

which can be satisfied by a uniform bound on α − β, since G′ is bounded on
bounded sets and wm ∈ C∞0 by assumption in (3.1). Then Ω is covered by
O0(m,βj , δ/2), m = 1, . . . , n, where βj are, say, points of a cubic lattice in RN .
4.) We shall show now that multiplicity of the covering O0(m,βj , δ/2) does not
exceed a finite number M for any point in B̄(0, R). If it were not true, there
would exist a sequence (ui, vi) ∈ B̄(0, R) such that with some lattice translations
βi,j ,

〈G′(ui, vi), w1(· − βi,j)〉 > δ/2, j = 1, 2, . . . j(i), j(i)→∞. (3.2)

(The index 1 in w1 is of course no offense to generality.) It is easy to see
that (3.2) implies that ‖G′(ui, vi)‖ → ∞, which contradicts the assumption
(ui, vi) ∈ B̄(0, R).
We remark, that Ω remains covered by similar sets with some new lattice

points βj and with δ/2 replaced by δ/4, since the finite multiplicity argument
was carried out for an arbitrary δ and any lattice {βj} with a sufficiently small
step, and the covering remains finite on the whole B̄(0, R).
5.) Let now yr be an orthonormal basis in H . let

‖x‖w :=
∑
r

2−r〈x, yr〉
2
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and dw(x,A) := infy∈A ‖x− y‖w. We define now

χij(x) =
dw(x,H \ O0(i, βj , δ/4))

dw(x,O0(i, βj, δ/2)) + dw(x,H \ O0(i, βj, δ/4))

and set
z0(x) =

∑
χij(x)wi(· − βj). (3.3)

Note that the sum in (3.3) is uniformly finite for all x ∈ B̄(0, R), since wi
have compact support by (3.1), they are finitely many and βj is a lattice. Note
also that the map (3.3), restricted to B̄(0, R), is bounded, Lipschitz, weakly
continuous and

〈G′(u, v), z0(u, v)〉 ≥ δ/2 for (u, v) ∈ Ω.

Then there is a finite-dimensional orthogonal projector P : H → H , such that

〈G′(u, v), P z0(u, v)〉 ≥ δ/3 for u(u, v) ∈ Ω,

Let Σ ≡ Σ(η) := {(u, v) ∈ H : |G(u, v) − κ| ≤ η}. We shall define now subsets
of Σ where (u, 0) or (v, 0) is a pseudogradient. More precisely, we set

Σ+u = {(u, v) ∈ Σ : 〈G′(u, v), (u, 0)〉 > η‖u‖2},

Σ−u = {(u, v) ∈ Σ : 〈G′(u, v), (u, 0)〉 < −η‖u‖2},

Σ+v = {(u, v) ∈ Σ : 〈G′(u, v), (0, v)〉 > η4}, and

Σ−v = {(u, v) ∈ Σ : 〈G′(u, v), (0, v)〉 < −η4},

Clearly, these sets form a covering of Σ \Ω. Moreover, from (2.6) one can easily
conclude that if (u, v) ∈ Σ , then ‖u‖ is also bounded away from zero, so we can
replace the right hand sides of the inequalities in (3.20i,ii) by constants. This
implies that that the set Σ(η/2) \ Ω is covered by the union of

Σ1+u = {(u, v) ∈ intΣ(2η/3) : 〈G′(u, v), (u, 0)〉 > δ}, (3.4)

Σ1−u − = {(u, v) ∈ intΣ(2η/3) : 〈G′(u, v), (u, 0)〉 < −δ}, (3.5)

Σ1+v = {(u, v) ∈ intΣ(2η/3) : 〈G′(u, v), (0, v)〉 > δ}, and (3.6)

Σ1−v = {(u, v) ∈ intΣ(2η/3) : 〈G′(u, v), (0, v)〉 < −δ}, (3.7)

with some δ > 0. By selecting a partition of unity χ±u , χ
±
v , χΩ, subordinated

to the sets (3.4)-(3.7) together with the interior of Ω(η, κ), we construct the a
pseudogradient on the set Σ(η/2) in the following form:

Z0(u, v) := (ϕ(u, v)u, ψ(u, v)v) + χΩPz0(u, v),

where ϕ = λ(χ+u − χ
−
u ), ψ = λ(χ+v − χ

−
v ) and λ > 0 is sufficiently large. Let

ν ∈ C∞(R → [0, 1]), ν(t) = 1 for t ∈ [−1, 1], ν(t) = 0 for t /∈ [−2, 2]. We leave
to the reader to verify that the functional

Z(u, v) := ν(6η−1(G(u, v)− κ))Z0(u, v)

satisfies the assertions of Lemma 2.2 with η reduced to η/3.
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