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POSITIVE SOLUTIONS FOR A CLASS OF SINGULAR
BOUNDARY-VALUE PROBLEMS

LI XIA, ZHENGAN YAO

Abstract. Using regularization and the sub-super solutions method, this note
shows the existence of positive solutions for singular differential equation sub-

ject to four-point boundary conditions.

1. Introduction

This note concerns the existence of positive solutions to the boundary-value
problem (BVP)

y′′ = −β

t
y′ +

γ

y
|y′|2 − f(t, y), 0 < t < 1, (1.1)

y(0) = y(1) = 0, (1.2)

y′(0) = y′(1) = 0, (1.3)

where β > 0, γ > β + 1 are constants, and f satisfies
(H1) f(t, y) ∈ C1([0, 1] × [0,∞), [c0,∞)) for sufficiently small c0 > 0, and f is

non-increasing with respect to y.
Equation (1.1) with the nonlinear right-hand side independent of y′ has been dis-
cussed extensively in the literature; see for example [1, 7] and the references therein.
Because of its background in applied mathematics and physics, problem (1.1) with
right-hand side depending on y′ has attracted the attention of many authors; see
for instance [6, 8] and their references.

Guo et al. [6] studied the existence of positive solutions for the singular boundary-
value problem with nonlinear boundary conditions

y′′ + q(t)f(t, y, y′) = 0, 0 < t < 1,

y(0) = 0, θ(y′(1)) + y(1) = 0 ,

where f(t, y, y′) ≥ 0 is singular at y = 0. They use a nonlinear alternative of
Leray-Schauder type and Urysohn’s lemma.
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This work is motivated by [4] where the authors studied the problem

y′′ +
N − 1

t
y′ − γ

y
|y′|2 + 1 = 0, 0 < t < 1,

y(1) = 0, y′(0) = 0.

There N is a positive integer, and the problem corresponds to β = N − 1, f ≡
1 in (1.1). Applying ordinary differential equation techniques, they obtained a
decreasing positive solution which, subsequently, was used in [5] to study some
properties of solutions for a class of degenerate parabolic equations (see [3] for
further information).

In this note, we study problem (1.1) under boundary conditions that are mote
complicated than those in [4]. By using a regularization method and constructing
sub- and supersolutions, we obtain an existence result.

A function y ∈ C2(0, 1) ∩ C[0, 1] is called a solution for (1.1) if it is positive in
(0, 1) and satisfies (1.1) pointwise.

The main result of this note is as follows.

Theorem 1.1. Under assumption (H1), the boundary-value problem (1.1)–(1.3)
admits at least one solution.

Since we need to calculate the derivatives of f , we assume that f ∈ C1([0, 1] ×
[0,∞), [c0,∞)). However, if f ∈ C([0, 1] × [0,∞), [c0,∞)), Theorem 1.1 remains
valid.

2. Proof of Theorem 1.1

Since problem (1.1) is singular at point t = 0, or y(t) = 0, we need to regularize
it. Precisely, we discuss positive solutions of the regularized problem

−y′′ − β

t + ε
y′ +

γ

|y|+ ε2
|y′|2 − f(t, y) = 0, 0 < t < 1, (2.1)

subject to the boundary conditions (1.2), where ε ∈ (0, 1].
Denote Ay = −y′′ and

bε(t, ξ, η) =
β

t + ε
η − γ

|ξ|+ ε2
|η|2 + f(t, ξ).

Note that bε(·, ξ, η) ∈ Cµ[0, 1] uniformly for (ξ, η) in bounded subsets of R× R for
some µ ∈ (0, 1], ∂bε/∂ξ, ∂bε/∂η exist and are continuous on [0, 1]× R2. Moreover,
there exists some positive constant C dependent of ε−1, σ such that

|bε(t, ξ, η)| ≤ C(1 + |η|2)
for every σ ≥ 0 and (t, ξ, η) ∈ [0, 1]× [−σ, σ]× R.

A function y is called a subsolution for BVP (2.1) (1.2) if y ∈ C2+µ[0, 1] and

Ay ≤ bε(·, y, y′) in [0, 1],

y(0) ≤ 0, y(1) ≤ 0.

Supersolutions are defined by reversing the above inequality signs. We call y a
solution for (2.1) (1.2), if y is a subsolution and a supersolution of (2.1) (1.2).

Let v(t) = 1
2 t− 1

2 t2, it is easy to see that v is a nonnegative solution for problem

−v′′ = 1, 0 < t < 1,

v(0) = v(1) = 0.
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Lemma 2.1. Let y = C1v
2, y1ε = C2(t + ε)2, y2ε = C2(1 + ε − t)2, yε =

min{y1ε, y2ε}, then (2.1) (1.2) admits at least one solution yε ∈ [y, yε]. Here C1

and C2 ≥ 1 are some positive constants.

Proof. By [2, Theorem 1.1], it suffices to prove y(y) is a subsolution (supersolution)
for (2.1) (1.2). Hence we need to prove Ay ≤ bε(t, y, y′), Ayiε ≥ bε(t, yiε, y

′
iε)

(i = 1, 2).
From 0 ≤ v(t) ≤ t and y′ = 2C1vv′, y′′ = 2C1|v′|2 − 2C1v, we have

Ay − bε(t, y, y′) = 2C1[v −
β

t + ε
vv′ + |v′|2(2γ

C1v
2

C1v2 + ε2
− 1)]− f(t, y)

≤ 2C1[v + β|v′|+ (2γ + 1)|v′|2]− f(t, y).

Since f(t, ξ) ≥ c0 > 0, we can choose

C1 ≤ min
{ c0

2 max[0,1][v + β|v′|+ (2γ + 1)|v′|2]
, 1/2

}
,

hence
Ay ≤ bε(t, y, y′), 0 < t < 1.

Since C2(t + ε)2 ≥ ε2, it is easy to calculate that

Ay1ε − bε(t, y1ε, y
′
1ε) = 2C2[γ

2C2(t + ε)2

C2(t + ε)2 + ε2
− β − 1]− f(t, y1ε),

≥ 2C2(γ − β − 1)− f(t, y1ε).

Choosing

C2 ≥ max{ 1
2(γ − β − 1)

max
[0,1]

f(t, y(t)), 1},

we see that y1ε ≥ y in [0, 1]. It follows from (H1) that

Ay1ε ≥ bε(t, y1ε, y
′
1ε), 0 < t < 1,

as asserted. The other inequality can be proved similarly. The proof is complete.
�

Lemma 2.2. For any τ ∈ (0, 1), there exists a positive constant Cτ independent
of ε such that

|y′ε| ≤ Cτ , |y′′ε | ≤ Cτ , τ ≤ t ≤ 1− τ. (2.2)

Proof. From Lemma 2.1, BVP (2.1) (1.2) admits a solution yε ∈ C2+µ[0, 1] which
satisfies (2.1) (1.2) pointwise, hence it is also a solution of

[(t + ε)βy′ε]
′ =

γ(t + ε)β

yε + ε2
|y′ε|2 − (t + ε)βf(t, yε).

Since γ > 0, from (H1) and Lemma 2.1 we obtain

[(t + ε)βy′ε]
′ ≥ −(t + ε)βf(t, yε) ≥ −2β max

[0,1]
f(t, y(t)) := −M.

Therefore,
[(t + ε)βy′ε + Mt]′ ≥ 0, 0 < t < 1,

which implies that the function ϕ(t) := (t + ε)βy′ε + Mt is non-decreasing on [0, 1].
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Since yε ≥ 0 for all t ∈ [0, 1] and yε(0) = yε(1) = 0, we have

y′ε(0) = lim
t→0+

yε(t)
t

≥ 0,

y′ε(1) = lim
t→1−

yε(t)
t− 1

≤ 0.

From which, it follows that

0 ≤ ϕ(0) ≤ ϕ(t) ≤ ϕ(1) ≤ M, t ∈ [0, 1],

which implies
|(t + ε)βy′ε(t)| ≤ M. (2.3)

Hence for any τ ∈ (0, 1) there exists a positive constant Cτ independent of ε such
that

|y′ε| ≤ Cτ , τ ≤ t ≤ 1.

Multiplying (2.1) by (t + ε)2β+1, from (2.3) (H1) and Lemma 2.1 it follows

|(t + ε)2β+1y′′ε |

=
∣∣γ (t + ε)

yε + ε2
[(t + ε)βy′ε]

2 − (t + ε)2β+1f(t, yε)− (2β + 1)(t + ε)β((t + ε)βy′ε)
∣∣

≤C
(
1 +

t + ε

y + ε2
+ f(t, y)

)
,

where C is independent of ε. The second conclusion follows easily from the above
inequality. �

Now we complete the proof of Theorem 1.1. Differentiating formally (2.1) with
respect to t, from (H1) and Lemma 2.1 we obtain

|y′′′ε | =
∣∣ β

t + ε
(

y′ε
t + ε

− y′′ε ) + γ
2(yε + ε2)y′εy

′′
ε − y′ε|y′ε|2

(yε + ε2)2
− f ′t(t, yε)− f ′y(t, yε)y′ε(t)

∣∣
≤ β

t + ε
(
|y′ε|
t + ε

+ |y′′ε |) + γ[
2|y′ε||y′′ε |
y + ε2

+
|y′ε|3

(y + ε2)2
]

+ max
t∈[0,1],y∈[a,b]

|f ′t(t, y)|+ |y′ε| · max
t∈[0,1],y∈[a,b]

|f ′y(t, y)|,

where a = mint∈[0,1] y(t), b = maxt∈[0,1] yε(t)|ε=1. From (2.2) one infers that for
any τ ∈ (0, 1) there exists a positive constant Cτ independent of ε such that

|y′′′ε | ≤ Cτ , τ ≤ t ≤ 1− τ.

This implies that
‖yε‖C2,1[τ,1−τ ] ≤ Cτ .

Using Arzelá-Ascoli theorem and diagonal sequential process, we obtain that there
exists a subsequence {yεn

} of {yε} and a function y ∈ C2(0, 1) such that

yεn
→ y, uniformly in C2[τ, 1− τ ],

as εn → 0. By Lemma 2.1, we obtain

C1t
2(1− t)2 ≤ y(t) ≤ C2t

2, t ∈ [0, 1],

C1t
2(1− t)2 ≤ y(t) ≤ C2(1− t)2, t ∈ [0, 1].

From this, it is not difficult to show that y′(0) = y′(1) = 0 and y ∈ C[0, 1]. Clearly,
y solves BVP (1.1)-(1.3), hence Theorem 1.1 is proved.
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Example. Consider boundary-value problem

y′′ +
N − 1

t
y′ − N + 1

y
|y′|2 + t2 + e−y + 1 = 0, 0 < t < 1,

y(0) = y(1) = y′(0) = y′(1) = 0.

(2.4)

Let N ≥ 1, β = N − 1, γ = N + 1, f(t, y) = t2 + e−y + 1, c0 = 1. Clearly, all
assumptions of Theorem 1.1 are satisfied. Hence the problem (2.4) has at least one
positive solution y ∈ C2(0, 1)∩C[0, 1]. But the theorems in [6, 8] are not applicable
to this example.

Acknowledgement. The authors are highly grateful for the referee’s careful read-
ing and comments on this note.
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