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PERIODIC SOLUTIONS OF A ONE DIMENSIONAL
WILSON-COWAN TYPE MODEL

EDWARD P. KRISNER

Abstract. We analyze a time independent integral equation defined on a

spatially extended domain which arises in the modeling of neuronal networks.
In our survey, the coupling function is oscillatory and the firing rate is a smooth

“heaviside-like” function. We will derive an associated fourth order ODE and
establish that any bounded solution of the ODE is also a solution of the integral

equation. We will then apply shooting arguments to prove that the ODE has

two “1-bump” periodic solutions.

1. Introduction

In this paper we develop methods to analyze stationary solutions of the integral
equation

ut = −u +
∫ ∞

−∞
w(x− y)f(u(y, t))dy. (1.1)

This equation is a Wilson-Cowan type model derived in 1972 to describe the be-
havior of a single layer of neurons [12]. Here, u(x, t) and f(u(x, t)) represent the
level of excitation (e.g. voltage) and the firing rate, respectively, of a neuron at
position x and time t. The parameter th ≥ 0 denotes the threshold of excitation.
The term w(x− y) determines the coupling between neurons at positions x and y.

In 1977, Amari [1] studied pattern formation in (1.1) for lateral inhibition type
couplings. That is, w is assumed to be continuous, integrable and even, with
w(0) > 0, and exactly one positive zero. Under the simplifying assumption that
the firing rate f is a Heaviside step function, he analyzed the existence, multiplicity
and stability of stationary one-bump solutions of the time independent equation

u =
∫ ∞

−∞
w(x− y)f(u(y))dy. (1.2)

Equations (1.1) and (1.2) have been studied with respect to various combinations
of firing rate functions and coupling functions. For example, Kishimoto and Amari
[7] assume that f has a sigmoidal shape and use the Schauder Fixed Point Theorem
[4] to prove the existence of a single bump stationary solution of (1.2). Ermentrout
and McLeod [6] investigate the existence of traveling waves when w is strictly
positive and Gaussian shaped, and f is a sigmoidal function. They use a homotopy
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argument based on the contraction mapping theorem to prove the existence of
monotonic wave fronts. Subsequently, Pinto and Ermentrout [10] make use of the
result in [6] and use singular perturbation methods to study wave front solutions
in a related system of equations. In 1998, Ermentrout [5] gave an extensive review
of theoretical methods and results.

In order to analyze more complicated solutions (e.g. multi-bump solutions),
Laing et al. [9] and Coombes et al. [3] derive associated ODEs by applying Fourier
Transform methods. In both cases conditions are given which show that when
the integral equation (1.2) has a homoclinic orbit satisfying u(±∞) = 0 then that
solution also satisfies an associated ODE of the form

u′′′′ + q1u
′′ + h(u) = 0, (1.3)

where q1 is a real constant and h is a real-valued function.
Conversely, Laing et al. show that if a nonconstant solution u of (1.3) satisfies

(u, u′, u′′, u′′′) → (0, 0, 0, 0) as x → ±∞ exponentially fast, then u is also a so-
lution of (1.2). They also give a complete numerical investigation of multi-bump
homoclinic orbits, all of which are also solutions of the integral equation.

For technical reasons, the Fourier Transform argument does not necessarily apply
to other classes of solutions such as

(a) periodic and aperiodic solutions, and
(b) chaotic solutions.

A fundamentally important problem is to determine whether these types of solutions
are also solutions of the integral equation. Krisner [8], shows that solutions of (1.3)
of the variety described above in (a)− (b) are also solutions of the integral equation
(1.2).

The primary goal in this paper is to develop techniques which allow us to prove
the existence of periodic solutions of (1.2). In our survey the coupling function w
is oscillatory shaped and the firing rate function f is a smooth step-like function.
The techniques which are developed should apply to a broad range of problems.
For example, applying the Fourier Transform to an integral equation studied by
Bressloff [2] with non-homogeneous coupling gives rise, at least formally, to a non-
autonomous partial differential equation.

The outline of the paper is as follows. In Section 2, we define our coupling and
firing rate functions. These functions were originally introduced in Laing et al. [9].
We then state a previously established result which links (1.2) to a fourth order
ODE. In Section 3, we define a parameter regime which gives rise to a tractable
setting for our construction of periodic solutions. It is hoped that in future research
we can extend our results to include a more general set of parameters. In Section 4,
we state an initial value problem and prove that its solutions are even. In Section
5 we begin a rigorous analysis of the behavior of solutions of the initial value
problem. We will show that the solutions are oscillatory, i.e, there exists infinitely
many critical numbers. We will also show that these critical numbers are continuous
with respect to the initial conditions. This analysis will lay the framework for the
construction of two 1-bump periodic solutions which is contained in Section 6.
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2. The Associated ODE

The primary goal in this paper is to construct periodic solutions of the time
independent integral equation

u(x) =
∫ ∞

−∞
w(x− y)f(u(y))dy, (2.1)

where

w(x) = e−b|x|(b sin(|x|) + cos(x)), b > 0, (2.2)

f(u) = 2e−r/(u−th)2H(u− th), r > 0, th > 0. (2.3)

Figure 1 depicts the essential characteristics of the functions w and f .

w

x−π π

−0.5

f(u)

th=1.5
u

2.0

Figure 1. Left panel, example of (2.2) with b = 0.3. Right panel,
example of (2.3) with r = 0.05, th = 1.5.

First, we state an important theorem which establishes a crucial connection
between the ODE

u′′′′ − 2(b2 − 1)u′′ + (b2 + 1)2u = 4b(b2 + 1)f(u) (2.4)

and the integral equation (2.1) with w defined by (2.2) and f defined by (2.3).
Krisner [8] proves the following result.

Theorem 2.1. Suppose that u is a solution of (2.4), and that u(t) = o(eb|t|) as
t → ±∞. Then u is a solution of (2.1).

We now state an important consequence of the preceding theorem.

Corollary 2.2. If u is a bounded solution of (2.4), then u is also a solution of
(2.1).

This corollary guarantees that periodic solutions of (2.4) are also solutions of
(2.1). This gives us the opportunity to employ the technique of topological shooting
to prove the existence of periodic solutions.

3. Range of Parameters

The aim of this subsection is to define a range for the parameters r, b, and th that
gives rise to a tractable setting for the construction of periodic solutions. Recall
that b appears in the coupling function (2.2), and that r and th appear in the firing
rate function (2.3). There are combinations of r, b, and th for which (2.4) does not
have periodic solutions. The parameter regime that we will soon derive guarantees
the existence of periodic solutions.
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We begin by multiplying through (2.4) by u′. In doing so, we obtain

u′u′′′′ − 2(b2 − 1)u′u′′ + (b2 + 1)2u′u = 4b(b2 + 1)f(u)u′,

which leads to

(u′′′u′ − (u′′)2

2
)′ − 2(b2 − 1)

((u′)2)′

2
+ (b2 + 1)2Q′(u) = 0, (3.1)

where Q is defined by

Q(u) ≡
∫ u

0

(
s−

( 4b

b2 + 1
)
f(s)

)
ds. (3.2)

The function Q will play a pivotal rule in defining our parameter regime.
An integration of equation (3.1) yields

u′′′u′ − (u′′)2

2
− 2(b2 − 1)

(u′)2

2
+ (b2 + 1)2Q(u) = E (3.3)

where E is referred to as the energy constant. We refer to (3.3) as the first integral
of equation (2.4). In later sections, it will be evident that setting E = 0 in (3.3)
will provide several technical conveniences. Thus, we will analyze the subclass of
solutions of (2.4) for which

u′′′u′ − (u′′)2

2
− (b2 − 1)(u′)2 + (b2 + 1)2Q(u) = 0. (3.4)

As previously mentioned the function Q will play a pivotal role in defining our
range of parameters. Before we precisely define our parameter regime we will first
acquire some intuition as to how the function Q behaves. We note from (3.2)
that Q(u) = u2/2 for u ≤ th. Figure 2 depicts three distinct scenarios of how
the function Q can behave for u > th. The left panel depicts an example of a
parameter choice (r, b, th) for which Q(u) > 0 for all u > 0. The middle panel
shows that Q(u) < 0 on some interval (a, b) such that 0 < a < b < ∞. We shall
not consider combinations of (r, b, th) for which either of these two scenarios occur.
The right panel of Figure 2 shows that Q(us) = 0 for some unique us > 0. We will
choose our parameter regime so that Q possess this characteristic.

Q(u)

u
1.78 3.35−2.0

1.5

u

Q(u)

1.75

3.97

−1.7

1.5

Q(u)

u
3.711.76

1.5

−1.5

Figure 2. In all three graphs, we set r = 0.05 and th =
1.5. From left to right, we set b = 1.8, b = 1.0, and b =
1.44019. Hence, (0.05, 1.8.1.5)not in Λ, (0.05, 1.0, 1.5) not in Λ,
and (0.05, 1.44019, 1.5) in Λ.

We now formally define our parameter regime. First, recall that each of the three
variables are positive. Thus, for X = {(x1, x2, x3) ∈ R3 : x1 > 0, x2 > 0, and x3 >
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0} we define

Λ = {(r, b, th) ∈ X : Q(u) = 0 has a unique positive solution}. (3.5)

We now pursue deeper insight into the parameter regime described by (3.5).
First, we will show that (r, b, th) ∈ Λ implies that th < 2. Then, we will show
that for each fixed th ∈ (0, 2), there exists a continuum in (r, b) space for which
(r, b, th) ∈ Λ. Doing so will result in valuable information about (r, b, th) and the
unique us > 0 for which Q(us) = 0. This information will be used to prove that the
corresponding solution of (2.4) has infinitely many critical numbers. Furthermore,
our proofs will rely on sufficiently small r > 0. The information that we garner
throughout the remainder of this section will be used to attain the “best” upper-
bound on r that is possible.

Lemma 3.1. Let r > 0, b > 0, and th ≥ 2. Then Q(u) > 0 for all u > 0.

Proof. First, recall that

Q(u) =
u2

2
− 8b

b2 + 1

∫ u

th

e
− r

(s−th)2 H(s− th)ds (3.6)

and hence, Q(u) = u2/2 > 0 for 0 < u ≤ th. Thus, we will restrict our attention to
u > th for the remainder of the proof. It follows from (3.6) that

2Q(u) > u2 − 16b

b2 + 1
(u− th)

=
(
u− 8b

b2 + 1
)2 +

16b

b2 + 1
(
th− 4b

b2 + 1
)

≥ 16b

b2 + 1
(
th− 4b

b2 + 1
)

≥ 16b

b2 + 1
(th− 2).

(3.7)

Since th ≥ 2, then Q(u) > 0 for all u > th follows from (3.7). This concludes the
proof of the lemma. �

The object of the following four lemmas is to show that for any fixed th ∈ (0, 2),
Λ contains a continuum (r, b, th). Along this continuum b > 0 is a two valued
function of r, hence we write b = br. Proving the existence of this continuum
entails finding a solution, (u, r, b), of the algebraic system

Q(u) =
u2

2
− 8b

b2 + 1

∫ u

th

e−r/(s−th)2ds = 0

Q′(u) = u− 8b

b2 + 1
e−r/(u−th)2 = 0,

(3.8)

where u > th, r > 0 and b > 0. This system consists of two equations and three
unknowns u, r, b > 0. To begin, we obtain uer/(u−th)2 = 8b

b2+1 , directly from the
second equation, and rewrite the first equation of (3.8) as

u2

2
− uer/(u−th)2

∫ u

th

e−r/(s−th)2ds = 0. (3.9)

To show that (3.8) has a solution we define and analyze the function

Q̃(u, r) =
u2

2
− uer/(u−th)2

∫ u

th

e−r/(s−th)2ds (3.10)
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for u > th. The substitution r1/2t = s − th transforms (3.10) into the more
convenient form

Q̃(u, r) =
u2

2
− uer/(u−th)2r1/2

∫ r−1/2(u−th)

0

e−1/t2dt. (3.11)

In the next lemma we determine the limiting behavior of Q̃ as u tends to infinity.

Lemma 3.2. Suppose that 0 < th < 2 and r > 0 are fixed. Then

lim
u→∞

Q̃(u, r) = −∞. (3.12)

Proof. From (3.11) a calculation gives

∂Q̃(u, r)
∂u

= r1/2er/(u−th)2
( 2ru

(u− th)3
− 1

) ∫ r−1/2(u−th)

0

e−1/t2dt. (3.13)

An immediate consequence of (3.13) is that

∂Q̃(u, r)
∂u

→ −∞ as u →∞. (3.14)

This proves (3.12) and concludes the proof of the lemma. �

Since Q̃(th+, r) = th2/2 > 0, (where th+ denotes u → th+), then continuity
of Q̃ in u and Lemma 3.2 ensure that there exists a finite us(r) > th such that
Q̃(us(r), r) = 0. Specifically, we define

us(r) = sup{û > th : Q̃(u, r) > 0 for u ∈ (th, û)}. (3.15)

Our goal is to show that us(r) satisfies both equations in (3.8) for sufficiently small
r > 0. For this we will need precise estimates on the location of us(r). The first
estimate is the lower bound

us(r) > 2th. (3.16)

This bound follows immediately from the next lemma and (3.15).

Lemma 3.3. Suppose that 0 < th < 2 is fixed. If th < u ≤ 2th, then

Q̃(u, r) > 0 for all r > 0.

Proof. This result follows immediately upon an application of the estimate∫ r−1/2(u−th)

0

e−1/t2dt < e−r/(u−th)2(r−1/2(u− th)).

�

Next, we determine the limiting behavior of us(r) as r → 0+.

Lemma 3.4. Suppose that 0 < th < 2 is fixed. Then

us(r) → 2th+ as r → 0+. (3.17)

Proof. By (3.16) it is sufficient to show that for each ε > 0 there exists rε > 0
such that us(r) < 2th + ε for 0 < r < rε. This is accomplished once we prove that
Q̃(2th + ε, r) < 0 for 0 < r < rε. Then, since Q̃(th+, r) = th2/2 > 0, continuity of
Q̃ in u and definition (3.15) ensure that us(r) < 2th + ε as desired.
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An application of L’Hospitals reveals that

lim
r→0+

∫ r−1/2(u−th)

0
e−1/t2dt

r−1/2
= lim

r→0+

(r−1/2)′(u− th)e−r/(u−th)2

(r−1/2)′
= u− th.

Hence, for fixed u > th it follows that

lim
r→0+

Q̃(u, r) =
u2

2
− u(u− th) = −u

2
(u− 2th).

In particular, for u = 2th + ε we have

lim
r→0+

Q̃(2th + ε, r) = −2th + ε

2
ε < 0.

This means that there exists a value rε > 0 such that Q̃(2th+ε, r) < 0 for 0 < r < rε.
Hence, us(r) < 2th + ε as desired. �

An important consequence of Lemma 3.4 is that

us(r)er/(us(r)−th)2 → 2th as r → 0+. (3.18)

Thus, provided that 0 < th < 2, there exists R > 0 such that

us(r)er/(us(r)−th)2 < 4 for 0 < r < R. (3.19)

Furthermore, the function T (b) = 8b
b2+1 is strictly increasing on (0, 1) and strictly

decreasing on (1,∞) with T (1) = 4 and T (0) = T (∞) = 0. This and (3.19) imply
that there exists a unique value br− ∈ (0, 1) and a unique br+ ∈ (1,∞) such that

8br±

b2
r± + 1

= us(r)er/(us(r)−th)2 for 0 < r < R (3.20)

where R is defined in (3.19).
Now, note that (3.15) and (3.20) imply

0 = Q̃(us(r), r) =
us(r)2

2
−

8br±

b2
r± + 1

∫ us(r)

th

e−r/(s−th)2ds.

This fact together with (3.20) shows that (us(r), r, br) solves system (3.8) for 0 <
r < R. We summarize our results in the following theorem.

Theorem 3.5. Suppose that 0 < th < 2 is fixed. Then, (us(r), r, br±) is a solution
of system (3.8) for 0 < r < R where R is described in (3.19), us(r) is defined by
(3.15), 0 < br− < 1, and br+ > 1 satisfies (3.20).

In closing this subsection we note that the right panel of Figure 2 epitomizes the
entire subfamily of functions Q for which (r, b, th) ∈ Λ. First, as illustrated in this
figure, Q(u) ≥ 0 on (0,∞) with equality at exactly one value which we denote by
us. It is also of interest to note that Q′ has exactly two positive zeros, one being
us, and the other within the interval (th, 2th).

4. Initial Conditions

In this section we define an initial value problem that gives rise to even solutions
of (2.4). Thus, the periodic solutions that we construct will have the property that
u(x) = u(−x). This will reduce our analysis to the study of solutions on [0,∞).
Furthermore, we will derive a set of initial data that continuously depend on one
parameter. This will simplify our shooting method in later sections.
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Even Solutions of the Associated ODE. The aim of this subsection is to
provide initial conditions that give rise to symmetric solutions of Equation (2.4).
Later we will confine our search for periodic solutions to a subclass of symmetric
solutions.

Consider the initial-value problem (IVP):

u′′′′ − 2(b2 − 1)u′′ + (b2 + 1)2u = 4b(b2 + 1)f(u),

u(ζ) = α, u′(ζ) = 0, u′′(ζ) = β, u′′′(ζ) = 0.
(4.1)

Lemma 4.1. The solution u of (4.1) satisfies u(ζ − x) = u(ζ + x) for all x in the
domain of existence.

Proof. Define v1(x) = u(ζ+x) and v2(x) = u(ζ−x). Observe that v′′2 (x) = u′′(ζ−x)
and v′′′′2 (x) = u′′′′(ζ − x), and therefore v1 and v2 are solutions of (4.1) with ζ = 0.
Hence, v1 ≡ v2 follows by uniqueness of solutions. �

Reduction to One Free Parameter. According to a standard result in ODE
theory the values α, β seen in (4.1) uniquely determine the solution. We now
establish a continuous relationship between α and β to show that the solution is
uniquely determined by the value α.

Substituting x = 0 in (3.4), we solve for β to obtain β = ±(b2 + 1)
√

2Q(α).
Throughout this survey, we will restrict our focus to α < 0 and β > 0. Note that
α < 0 implies that Q(α) = α2/2. Hence, unless stated otherwise, we will assume
that u is the solution of

u′′′′ − 2(b2 − 1)u′′ + (b2 + 1)2u = 4b(b2 + 1)f(u),

u(0) = α, u′(0) = 0, u′′(0) = β, u′′′(0) = 0,
(4.2)

where β = −(b2 + 1)α and α < 0.
The advantage of choosing α < 0 is that u(x) ≤ th on some interval [0,M ]. The

definition of our firing rate function, (2.3), yields that (4.2) has the simple solution

u(x) = α(cosh(bx) cos(x)− b sinh(bx) sin(x))

so long as u(x) ≤ th.
Our intentions can now be more clearly stated. First, note that Lemma 4.1

implies that all solutions of (4.2) are even. The primary strategy is to show that
there exists x̄ > 0 such that u′(x̄) = u′′′(x̄) = 0. Once again, we use Lemma 4.1
to show that the solution u is symmetric about the line x = x̄. This is the desired
periodic solution.

The fact that β continuously depends on α means that solutions of (4.2) are
uniquely determined by the value of α. For this reason we will denote solutions of
(4.2) by u(·, α) whenever its necessary to emphasize the initial value. Otherwise,
we will simply use u to denote solutions.

Finally, we note that β = −(b2 + 1)α implies that E = 0 in (3.3). That is, if u
is a solution of (4.2), then u satisfies (3.4).

5. Critical Points

In this section we prove the existence of infinitely many critical points. We
will show that u′ changes sign infinitely many times regardless whether or not the
maximal interval of existence is finite or infinite. We proceed by showing that the
first of these critical points is continuous with respect to u(0) = α.
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Oscillatory Behavior of Solutions. Our construction of periodic solutions will
begin following an analysis of the oscillatory behavior of solutions of (4.2). Lemma
4.1 ensures that u satisfies u(x) = u(−x) for all x ∈ [0, ω) where ω = ω(α) is defined
by

ω(α) = sup{x̂ > 0 : u(x, α) exists on [0, x̂)}. (5.1)

Our goal in this subsection is to prove the following theorem.

Theorem 5.1. Suppose that (r, b, th) ∈ Λ with r ≤ th4

16 . Also, let u be a nontrivial
solution of (4.2) with interval of existence [0, ω). Then u′ changes sign on (X, ω),
for any X ∈ (0, ω).

The condition r ≤ th4

16 is only necessary in the special case when ω = ∞. Oth-
erwise, it is not necessary to impose any restriction on the variable r.

We will prove this theorem by considering two separate cases. First, we will
assume that ω = ∞.

Infinite Intervals of Existence.

Theorem 5.2. Suppose that (r, b, th) ∈ Λ with r ≤ th4

16 . Let u be a nonconstant
solution of (4.2) which exists on an interval [0,∞). Then for any X > 0, u′ changes
sign on the interval (X,∞).

The proof of Theorem 5.2 will follow several necessary lemmas. The first lemma
reveals the behavior of homoclinic orbit solutions as u → 0.

Lemma 5.3. Suppose that u is a nontrivial solution of (4.2) which exists on an
interval [0,∞) and that u → 0 as x →∞. Then u changes sign on (X,∞) for any
X > 0.

Proof. To start, suppose that u < th on the interval (X1,∞). Hence, the equation
in (4.2) is linear and homogenous, and the closed form solution is given by

u(x) = k1e
bx cos(x) + k2e

bx sin(x) + k3e
−bx cos(x) + k4e

−bx sin(x) (5.2)

for some constants k1 − k4. The assumption that u → 0 as x → ∞ implies that
k1 = k2 = 0. Thus, we rewrite (5.2) as

u(x) = e−bx(k3 cos(x) + k4 sin(x)). (5.3)

Since u is a nontrivial solution, it follows that at least one of k3 or k4 is nonzero.
Hence, it can be seen that k3 cos(x)+k4 sin(x) changes sign by considering sequences
such as xn = nπ and xn = 2n+1

2 π for sufficiently large n ∈ Z. This completes the
proof. �

Lemma 5.4. Assume that u is a monotonic solution of (4.2) on some interval
(X,∞), and that there is a real number s such that u → s as x → ∞. Then
(u′, u′′, u′′′, u′′′′) → (0, 0, 0, 0) as x →∞.

Proof. We begin by showing that Q′(u(x)) 6= 0 on some interval of the form (X̄,∞).
Since the equation in (4.2) is autonomous, then u → s as x → ∞ implies that
u ≡ s is a constant solution. That is, 4b(b2 + 1)f(s) = (b2 + 1)2s, or equivalently
Q′(s) = 0. Since Q′ has 3 roots, then monotonicity of u on (X,∞) ensures that
Q′(u) 6= 0 on (X̄,∞) for some value X̄ ≥ X. Therefore, we infer from u′′′′− 2(b2−
1)u′′ = −(b2 + 1)2Q′(u) that u′′′ − 2(b2 − 1)u′ is monotonic on (X̄,∞), and hence
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u′′′ − 2(b2 − 1)u′ → L as x → ∞ where L is either real or infinite. We assert that
L = 0.

If L > 0, (or if L = ∞), then u′′ − 2(b2 − 1)u → ∞ as x → ∞. But this leads
to u → ∞ as x → ∞ which contradicts our assumption that u → s as x → ∞
where s ∈ R. A similar argument can be used to show that L < 0 (and L = −∞)
is impossible. Hence, we have proved

u′′′ − 2(b2 − 1)u′ → 0 as x →∞. (5.4)

Since u′′′−2(b2−1)u′ is monotonic on (X̄,∞), then (5.4) implies that u′′−2(b2−
1)u is monotonic on (X̄,∞). Thus, u′′ − 2(b2 − 1)u converges as x →∞. This fact
together with our assumption that u → s, where s ∈ R implies that u′′ → 0 as
x →∞.

Since u and u′′′− 2(b2− 1)u′ are monotonic on (X̄,∞), then there exists a value
X2 ≥ X̄ such that u(u′′′ − 2(b2 − 1)u′) 6= 0 on the interval (X2,∞). But

u(u′′′ − 2(b2 − 1)u′) = (u′′u)′ − ((u′)2)′

2
− (b2 − 1)(u2)′,

and hence u′′u− (u′)2

2 − (b2 − 1)u2 is monotonic on (X2,∞). Thus, there is an L3

(possibly L3 = ±∞) such that

u′′u− (u′)2

2
− (b2 − 1)u2 → L3 as x →∞. (5.5)

Since u′′ → 0 and u → s as x → ∞, then (u′)2 → −2(L3 + (b2 − 1)s2) as x → ∞.
This shows that u′ converges as x → ∞, and therefore, since s is finite, u′ → 0 as
x → ∞. From this and (5.4) it follows that u′′′ → 0 as x → ∞. Also, u′′ → 0 as
x → ∞, and Q′(s) = 0 implies that u′′′′ = 2(b2 − 1)u′′ − (b2 + 1)2Q′(u) → 0 as
x →∞. This completes the proof. �

The following lemma will be used to prove Theorem 5.2.

Lemma 5.5. Suppose that (r, b, th) ∈ Λ with r ≤ th4/16. Then

2usr(b2 + 1)2

(us − th)3
− 4b2 < 0

where (us, r, b) is the solution to system (3.8).

Proof. First recall the estimate (3.16), that is us > 2th. This together with our
premise implies that

r ≤ th4

16
<

us(us − th)3

32
<

us(us − th)3e2r/(us−th)2

32
. (5.6)

By (3.20) we obtain

b2

(b2 + 1)2
=

u2
se

2r/(us−th)2

64
.

Combining this result with (5.6) leads to

usr

(us − th)3
<

u2
se

2r/(us−th)2

32
=

2b2

(b2 + 1)2
.

The desired result now follows. This concludes the proof. �
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Proof of Theorem 5.2. We proceed by contradiction and assume that u′ ≥ 0 on the
entire interval (X,∞) for some X > 0. Hence, u → s as x → ∞. This yields two
separate cases.

Case 1: s is finite. Because of Lemma 5.4, the first integral equation (3.4) at
x = ∞ reduces to (b2 + 1)2Q(s) = 0. Note that (r, b, th) ∈ Λ implies that Q(s) =
Q′(s) = 0. Furthermore, Lemma 5.3 guarantees that s 6= 0. The only other
possibility is that s > 0.

We begin by defining ρ = u′

u−s on (X,∞). Then, from (3.4) we derive the
equation

ρ′′ρ + 2ρ2ρ′ − 1
2
(ρ′)2 +

1
2
ρ4 − (b2 − 1)ρ2 +

(b2 + 1)2Q(u)
(u− s)2

= 0. (5.7)

To obtain a contradiction, we analyze the limiting behavior of the solution of equa-
tion (5.7) as x →∞.

Our first claim is that we can choose X∗ ≥ X sufficiently large so that

1
2
ρ4 − (b2 − 1)ρ2 + (b2 + 1)2

Q(u)
(u− s)2

> 0 on (X∗,∞). (5.8)

To prove this note that Q′(s) = 0 is equivalent to (b2 + 1)s = 4bf(s), thus

f ′(u) =
2r

(u− th)3
f(u) leads to f ′(s) =

sr(b2 + 1)
2b(s− th)3

.

Now, this identity together with two applications of L’Hospitals rule yields

lim
u→s

Q(u)
(u− s)2

=
1
2
− 2b

b2 + 1
f ′(s) =

1
2
− sr

(s− th)3
.

Because (r, b, th) ∈ Λ and r ≤ th4

16 , Lemma 5.5 implies that

−4b2 + 2(b2 + 1)2
sr

(s− th)3
< 0. (5.9)

Hence,
1
2
ρ4 − (b2 − 1)ρ2 + (b2 + 1)2

(
1
2
− sr

(s− th)3

)
> 0, (5.10)

can be seen by noting that the left-hand side of (5.10) is quadratic in ρ2 and the
associated discriminate is the left side of (5.9). Therefore, (5.8) holds for some
X∗ > 0.

We now show that ρ is bounded on (X,∞). Since Q(s) = Q′(s) = 0 for some
s > 0, then the right panel of Figure 2 reveals that Q′(u) < 0 on a left neighborhood
of (s − δ, s). Thus, there exists a value X̂ ≥ X such that Q′(u) < 0 whenever
x > X̂. But since u′′′′ − 2(b2 − 1)u′′ = −(b2 + 1)2Q′(u), then u′′′ − 2(b2 − 1)u′ is
increasing on the interval (X̂,∞). This fact combined with Lemma 5.4 implies that
u′′′−2(b2−1)u′ < 0 on (X̂,∞). Hence, u′′−2(b2−1)u → −2(b2−1)s+ as x →∞,
and consequently it follows that u′′− 2(b2− 1)(u− s) ≥ 0 on (X̂,∞). From this we
obtain

u′(u′′ − 2(b2 − 1)(u− s)) =
(

(u′)2

2

)′
− (b2 − 1)

(
(u− s)2

)′ ≥ 0.
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provided that x > X̂, and therefore

(u′)2

2
− (b2 − 1)(u− s)2 → 0− as x →∞. (5.11)

But (5.11) yields

(u′)2

2
− (b2 − 1)(u− s)2 < 0 on X̂,∞),

or equivalently ρ2 < 2(b2− 1) on (X̂,∞), the desired bound on ρ. Note, that b > 1
is an immediate consequence which we will assume that for the remainder of the
proof of Case 1.

Our next assertion is that ρ′ is eventually of one sign. First, recall the implication
of x > X∗ as noted by (5.8). Now, if ρ′(x0) = 0 for some x0 ≥ X∗, then equation
(5.7) reduces to

ρ′′ρ +
1
2
ρ4 − (b2 − 1)ρ2 +

(b2 + 1)2Q(u)
(u− s)2

= 0 at x = x0. (5.12)

Combining (5.12) with (5.8), gives ρ′′ρ < 0 at x = x0. Now the fact that ρ ≤ 0
implies that ρ′′(x0) > 0 showing that if ρ′(x0) = 0 for some x0 ≥ X∗, then ρ′ > 0
on (x0,∞).

Since ρ′ is of one sign on the interval (X∗,∞), then boundedness of ρ implies
that ρ converges to a finite value, which we will call s∗. This means that either

lim
x→∞

ρ′ = 0, or lim
x→∞

ρ′ does not exist.

First suppose that ρ′ → 0 as x → ∞. By elementary analysis we know that a
sequence {xn} exists for which ρ′′ → 0 as xn →∞. Letting xn →∞ in equation
(5.7) yields,

1
2

(s∗)4 − (b2 − 1) (s∗)2 + (b2 + 1)2
(

1
2
− sr

(s− th)3

)
= 0 (5.13)

and this contradicts (5.10).
Now suppose that limx→∞ ρ′ does not exist. Then we can choose a sequence

{xn} so that each xn satisfies ρ′′(xn) = 0 and that ρ′(xn) → 0 as x → ∞. By
applying such a sequence to the left hand side of (5.7), we once again obtain (5.13)
giving the desired contradiction.

Case 2: s = ∞. The proof of the case, u → ∞ as x → ∞, is very similar to the
proof of the first case. In outline, set ρ = u′

u and use (3.4) to obtain

ρ′′ρ + 2ρ2ρ′ − 1
2
(ρ′)2 +

1
2
ρ4 − (b2 − 1)ρ2 +

(b2 + 1)2Q(u)
u2

= 0.

Then show that

lim
u→∞

Q(u)
u2

=
1
2

and
1
2
ρ4 − (b2 − 1)ρ2 +

(b2 + 1)2

2
> 0 (5.14)

which yields

1
2
ρ4 − (b2 − 1)ρ2 +

(b2 + 1)2Q(u)
u2

> 0 on some interval (X∗,∞).

To prove that ρ is bounded, use the fact that Q′(u) → ∞ as x → ∞, to conclude
that

u′′ − 2(b2 − 1)u → −∞ as x →∞. (5.15)
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This implies that b > 1. Another consequence of (5.15) is that

u′(u′′ − 2(b2 − 1)u) =
((u′)2)′

2
− (b2 − 1)(u2)′ ≤ 0 for large x, (5.16)

and hence (u′)2

2 − (b2 − 1)u2 → L+ for some L < ∞. Now to conclude that ρ is

bounded, show that L < 0 with the possibility that L = −∞ so that (u′)2

2 − (b2 −
1)u2 < 0 on some interval (X̂,∞). Note that L ≥ 0 implies that u′ →∞ as x →∞.
This and (5.15) and (5.16) imply that ((u′)2)′

2 − (b2 − 1)(u2)′ → −∞ as x → ∞.
Thus, we have shown that ρ2 ≤ 2(b2 − 1) on some interval (X̂,∞).

Proving that ρ′ is eventually of one sign is practically identical to showing this
property in the first case. Therefore, ρ → s∗ for some s∗ > 0. Now define sequences
similar to the ones defined in the first case to arrive at limiting equations that
contradict (5.14).

A similar argument can be applied to obtain a contradiction of u′ ≤ 0 on (X,∞).
We now turn to initial values that lead to finite intervals of existence. That is,
ω < ∞ where ω = ω(α) is defined by (5.1). �

Finite Intervals of Existence. In the next four technical results we show that if
a solution u of (4.2) ceases to exist at ω < ∞, then it cannot do so monotonically.
That is, u′ changes sign infinitely many times on [0, ω).

Lemma 5.6. Suppose h is differentiable function defined on an interval (X1, X2)
with −∞ < X1 < X2 < ∞. If h > 0 and h′

h is bounded on (X1, X2), then h is
bounded on (X1, X2).

Proof. Since (ln(h))′ = h′

h , then our assumption implies |(ln(h))′| ≤ M for some
M > 0. From this it can be shown that |h| ≤ K where K = eM(X2−X1)h(X1). This
concludes the proof of the lemma. �

In the next lemma, we show that if u →∞, then it cannot do so monotonically.

Lemma 5.7. Suppose u is a solution of (4.2) that exists on an interval [0, ω) where
0 < ω < ∞. Also, assume that u′ ≥ 0 on (ω − δ, ω) for some small δ > 0. Then
u → L < ∞ as x → ω−.

Proof. Suppose for a contradiction that u →∞ as x → ω−. We assume that u > 1
and that u′ ≥ 0 on (ω−δ, ω) by redefining δ if necessary. Hence, by defining ρ = u′

u
on (ω − δ, ω) we are sure that ρ ≥ 0 and that ρ is well-defined. We will show that
ρ′

ρ is bounded on the interval (ω− δ, ω). Then a repeated application of Lemma 5.6
will show that u is bounded on (ω − δ, ω). From (3.4) we obtain the equation

ρ′′ρ + 2ρ2ρ′ − 1
2
(ρ′)2 +

1
2
ρ4 − (b2 − 1)ρ2 +

(b2 + 1)2Q(u)
u2

= 0.

As in the proof of Theorem 5.2, it can be shown that

1
2
ρ4 − (b2 − 1)ρ2 +

(b2 + 1)2Q(u)
u2

> 0

for u > 0 sufficiently large. Therefore, on the interval (ω − δ, ω) we have

ρ′′ρ− (ρ′)2 +
1
2
(ρ′)2 + 2ρ2ρ′ = ρ′′ρ + 2ρ2ρ′ − 1

2
(ρ′)2 < 0. (5.17)
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Dividing by ρ2 yields (ρ′

ρ

)′ + 1
2
(ρ′

ρ

)2
< −2ρ′. (5.18)

The fact that ρ ≥ 0 on (ω− δ, ω) together with (5.17) implies that ρ′ is of one sign
on an interval of the form (ω − ε, ω) for some ε ≤ δ. If ρ′ ≤ 0 on (ω − ε, ω), then
ρ ≥ 0 implies that ρ is bounded on (ω − ε, ω). Then u is bounded follows from
Lemma 5.6. If ρ′ > 0 on (ω − ε, ω), then it follows from (5.18) that h′ < − 1

2h2 < 0
on (ω − ε, ω) where h = ρ′

ρ . Now h > 0 and h′ < 0 on (ω − ε, ω) means that h is
bounded. Invoking Lemma 5.6 shows that ρ is bounded, and hence u is bounded.
This completes the proof. �

Lemma 5.8. Let u be a solution of (4.2) on an interval [0, ω). Suppose that u′ ≤ 0
on (ω − δ, ω) for some small δ > 0. Then u → L > −∞ as x → ω−.

Remark: An argument similar to the one given in Lemma 5.7 can be applied to
obtain this result. A simpler approach is to note u ≤ th results in the a linear,
homogeneous equation with constant coefficients. The corresponding closed form
solution is given by

u = k1e
bx sin(x) + k2e

bx cos(x) + k3e
−bx sin(x) + k4e

−bx cos(x)

for some constants k1 − k4. The result now follows very easily.

Lemma 5.9. Let u = u(·, α) be a solution of (4.2) on an interval [0, ω). If u →
L 6= ±∞ as x → ω−, then limx→ω− u(i)(x) exists and is finite, for i = 1, 2, 3.

Remark: The consequence of this lemma is that if limx→ω− u exists and is finite,
then the solution can be continued at x = ω. But this contradicts our definition of
ω, see (5.1), that [0, ω) is the maximal positive interval of existence of the solution
u. Hence, Lemmas 5.7 and 5.8, imply that the sign of u′ must change on any
interval of the form (ω − δ, ω).

Proof of Lemma 5.9. The fact that u → L 6= ±∞ implies that u is bounded on
[0, ω). We will make repeated use of the fact that

lim
x→ω−

g(i)(x) =
∫ ω

0

g(i+1)(s)ds + g(i)(0) (5.19)

where g ∈ Ci+1([0, ω)) has the property that limx→ω− g(i+1)(x) exists and is finite.
Thus, it will be sufficient to prove that limx→ω− u(iv)(x) exists and is finite. It
follows from (4.2) that

lim
x→ω−

(u′′′′(x)− 2(b2 − 1)u′′(x)) = 4b(b2 + 1)f(L)− (b2 + 1)2L. (5.20)

Two applications of (5.19) reveals that limx→ω−(u′′(x) − 2(b2 − 1)u(x)) = L̂ for
some L̂ ∈ R. Therefore, limx→ω− u′′(x) = L̂ + 2(b2 − 1)L ∈ R follows directly from
our assumption that u → L as x → ω−. This fact together with (5.20) results in
limx→ω− u(iv)(x) exists and is finite. This concludes the proof of the lemma. �

Theorem 5.1 now follows from Lemmas 5.7-5.9 and Theorem 5.2.
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Continuity of Critical Values. In this subsection we will lay the foundation
of the shooting method that we use to prove the existence of periodic orbits. To
accomplish this we must first assume that the conditions of Theorem 5.1 hold.
Hence, solutions of (4.2) have infinitely many critical points. Furthermore, α < 0
and β > 0 implies that the first critical point of u(·, α) is a local maximum. We
formally denote the first critical value of u(·, α) by

ξ(α) = sup{x > 0 : u′(·, α) > 0 on (0, x)}. (5.21)

The primary goal of this subsection is to prove that ξ continuously depends on α.
The following general lemma will assist us in accomplishing this task.

Lemma 5.10. Suppose that u(x, α∗) is a nonconstant solution of (4.2) such that
u′(x∗, α∗) = u′′(x∗, α∗) = 0 6= u′′′(x∗, α∗) for some x∗ > 0 and some α∗ ∈ R. Then
for any ε > 0 such that

u′′′(x, α∗) 6= 0 on [x∗ − ε, x∗ + ε] (5.22)

it follows that
(i) u′′(x∗ − x, α∗)u′′(x∗ + x, α∗) < 0 on [−ε, ε].

In addition, assume that {αn} is a sequence such that

αn → α∗ as n →∞, (5.23)

and that u(x, αn) is a nonconstant solution of (4.2) for each n ≥ 1. Then there
exists N > 0 such that

(ii) u′′′(x, αn)u′′′(x, α∗) > 0 on [x∗ − ε, x∗ + ε],
(iii) u′′(x∗ − ε, αn)u′′(x∗ + ε, αn) < 0, and
(iv) there exists a unique τn ∈ (x∗ − ε, x∗ + ε) such that u′′(τn, αn) = 0

for all n ≥ N . Furthermore, it also follows that
(v) τn → x∗ as n →∞.

Proof. (i) Note that (5.22) implies that u′′(x, α∗) is monotonic on [x∗ − ε, x∗ + ε].
Hence, (i) follows from the premise u′′(x∗, α∗) = 0.

(ii) By (5.22), (5.23), and the fact that solutions are continuous with respect to
the initial data over compact sets, we can choose N > 0 sufficiently large so that

u′′′(x, αn)u′′′(x, α∗) > 0 on [x∗ − ε, x∗ + ε] (5.24)

whenever n ≥ N . This concludes (ii).
(iii) From part (i) it follows that u′′(x∗±ε, α∗) 6= 0. Because [0, x∗+ε] is compact,

it immediately follows from (5.23), and continuity of solutions with respect to initial
conditions, that N > 0 can be chosen to satisfy

u′′(x∗ − ε, αn)u′′(x∗ − ε, α∗) > 0 and u′′(x∗ + ε, αn)u′′(x∗ + ε, α∗) > 0

for n ≥ N . Thus, as a consequence of part (i) we have that

u′′(x∗ − ε, αn)u′′(x∗ + ε, αn) < 0 (5.25)

for all n ≥ N as desired.
(iv) Choose N > 0 so that (5.24) and (5.25) hold. Because of (5.25) there exists

an intermediate value x∗ − ε < τn < x∗ + ε such that u′′(τn, αn) = 0 for all n ≥ N .
Because of (5.24), each u′′(x, αn) is strictly monotonic on the interval [x∗−ε, x∗+ε].
Hence, τn is the unique zero of u′′(x, αn) on (x∗ − ε, x∗ + ε). This concludes part
(iv).
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(v) This follows from (iv) and the fact that ε is any arbitrary small positive
number that satisfies (5.22). �

In the next theorem we show that ξ is a continuous function of α. Since our
construction of periodic solutions are based on α < 0 and β > 0 we will prove
continuity of ξ for α < 0.

Theorem 5.11. The function ξ as defined in (5.21) is a continuous function of
α < 0.

Remark: We will assume that u is a nonconstant solution of (4.2) to ensure the
existence of ξ.

Proof of Theorem 5.11. First, note that if u′′(ξ(α∗), α∗) 6= 0, then continuity of ξ
at α = α∗ follows directly from the Implicit Function Theorem. Thus, we will
assume that u′′(ξ(α∗), α∗) = 0 throughout the remainder of the proof.

Suppose that α∗ < 0, and that β∗ = −(b2 + 1)α∗. Let {αn}∞n=1 be a sequence
such that αn → α∗ as n → ∞. Without loss of generality, assume that αn < 0
for all n. This ensures that βn = −(b2 + 1)αn > 0 and u(x, αn) is a nonconstant
solution of (4.2).

Let ε > 0. We begin by showing that there exists N > 0 such that ξ(αn) >
ξ(α∗) − ε whenever n ≥ N . Specifically, we will show that u′(x, αn) > 0 on
(0, ξ(α∗)− ε] whenever n ≥ N . Following this, we will show that ξ(αn) < ξ(α∗) + ε
for all n ≥ N .

To begin, note that u′′(0, α∗) = β∗ > 0, so that we can choose δ > 0 sufficiently
small to guarantee that u′′(x, α∗) > 0 on the interval [0, δ]. For technical purposes
let ε > 0 be small enough to guarantee that ξ(α∗) − ε > δ. We now define I1 =
[δ, ξ(α∗) − ε], I2 = [0, δ], and mj = minx∈Ij u(j)(x, α∗) for j = 1, 2. The fact
that ξ(α∗) is the first positive zero of u′(x, α∗), ensures that m1 > 0. Because of
continuity of solutions with respect to the initial conditions we can choose N > 0
so that

|u(j)(x, αn)− u(j)(x, α∗)| ≤
mj

2
on Ij ,

for all n ≥ N . It now follows from our choice of mj that u(j)(x, αn) ≥ mj

2 > 0 on Ij .
Hence, u′(x, αn) > 0 on (0, ξ(α∗)− ε] now follows from the fact that u′(0, αn) = 0
for all n. This proves that ξ(αn) > ξ(α∗)− ε whenever n ≥ N .

We now prove that there exists N > 0 such that ξ(αn) < ξ(α∗) + ε whenever
n ≥ N . For a contradiction, assume that there exists ε > 0 and a sequence {αn}∞n=1,
such that αn → α∗ as n →∞, and ξ(αn) ≥ ξ(α∗)+ ε. For ease of notation we
write u

(i)
∗ = u(i)(ξ(α∗), α∗) for i = 0, 1, 2, 3.

Our first claim is that Q′(u∗) = 0 and u′′′∗ > 0. Substituting u′′∗ = u′∗ = 0 into
the first integral equation (3.4) reveals that Q(u∗) = 0. Recall that (r, b, th) ∈ Λ,
means that Q(u) ≥ 0 for all u ∈ R, and therefore

Q′(u∗) = u∗ −
4b

b2 + 1
f(u∗) = 0.

It remains to show that u′′′∗ > 0. Since u is not a constant solution of (4.2) and
Q′(u∗) = u′∗ = u′′∗ = 0, then uniqueness of solutions implies that u′′′∗ 6= 0. Note that
u′′′∗ < 0, leads to u′(x, α∗) < 0 in a left neighborhood of ξ(α∗). This contradicts
the fact that u′(x, α∗) > 0 on (0, ξ(α∗)). Hence, u′′′∗ > 0 as desired.
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We now have all the conditions of Lemma 5.10. By property (iv) of Lemma 5.10,
there exists N > 0 such that for every n ≥ N , there is a unique
τn ∈ (ξ(α∗) − ε, ξ(α∗) + ε) so that u′′(τn, αn) = 0. Once again we simplify our
notation and write u

(i)
n = u(i)(τn, αn).

Our next claim is that N > 0 can be chosen so that u′n(u′′′n − (b2− 1)u′n) > 0 for
each n ≥ N . By property (v) of Lemma 5.10, we know that τn → ξ(α∗) as n →∞,
and hence |u(i)(τn, α∗) − u

(i)
∗ | → 0 as τn → ξ(α∗). This combined with the fact

that solutions are continuous with respect to their initial conditions implies that
|u(i)

n − u
(i)
∗ | → 0 as τn → ξ(α∗). Hence, u′′′n − (b2 − 1)u′n → u′′′∗ > 0 as n → ∞.

follows immediately from the fact that u′n → u′∗ = 0. Therefore, if necessary, we
can redefine N > 0 so that u′′′n − (b2 − 1)u′n > 0 for all n ≥ N . Now, u′n > 0 is a
result of the fact that ξ(αn) ≥ ξ(α∗) + ε > τn. Therefore, u′n(u′′′n − (b2 − 1)u′n) > 0
whenever n ≥ N as desired.

The desired contradiction now follows immediately upon substitution of u
(i)
n into

(3.4) giving
u′n(u′′′n − (b2 − 1)u′n) + (b2 + 1)2Q(un) = 0 (5.26)

since u′′n = 0. The fact that Q(un) ≥ 0 and u′n(u′′′n − (b2 − 1)u′n) > 0 for n ≥ N
makes (5.26) impossible. This concludes the proof of the theorem. �

6. Periodic Solutions

We now highlight our scheme to find periodic solutions (4.2). We begin by
recalling Lemma 4.1 of Section 2. This lemma implies that the corresponding
solution u satisfies

u(x, α) = u(−x, α) for all x ∈ [0, ω) (6.1)

where ω = ω(α) is defined by (5.1). Our approach is to use the method of topolog-
ical shooting to show that there exists a value α < 0, such that

u′′′(ξ(α), α) = u′(ξ(α), α) = 0

where ξ(α) is defined in (5.21). Then we invoke Lemma 4.1 once again to obtain

u(x− ξ(α), α) = u(x + ξ(α), α) for all x ∈ R. (6.2)

Because of (6.1) and (6.2) we see that u is symmetric about x = 0 and x = ξ(α).
The resulting solution u(·, α) is referred to as a “1-bump” periodic solution of (4.2).

As mentioned in previous sections we will assume that α and β are related by

α < 0, β = (b2 + 1)
√

2Q(α) = −(b2 + 1)α > 0. (6.3)

Theorem 6.1. Suppose that (r, b, th) ∈ Λ with r ≤ th4

16 , and that α, β satisfy (6.3).
Then, there exists α∗ < α∗ < 0 with β∗ = −

√
2(b2 + 1)α∗ and β∗ = −

√
2(b2 + 1)α∗

such that u(·, α∗) and u(·, α∗) are 1-bump periodic solutions of (4.2). Moreover,
we can choose α∗ and α∗ so that

th < ||u(·, α∗)||∞ < us < ||u(·, α∗)||∞ (6.4)

where Q(us) = 0.

Remark: To prove Theorem 6.1 we will use the notation ξ as defined by (5.21).
Note that the conditions of Theorem 5.1 are restated for the sake of ensuring that
ξ(α) exists. We will also make use of Theorem 5.11 where it was shown that ξ
is a continuous function of α. These important results lay the framework for the
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topological shooting argument that will be used to prove Theorem 6.1. First, we
will obtain a precise qualitative description of the solution u(·, α) of (4.2) for small
|α|. Afterwards, we will analyze u(·, α) for large |α|.

Small negative α. We begin by analyzing the behavior of u(x, α) for α ∈ [αth, 0),
where

αth ≡ −th sech(bπ). (6.5)

The fact that α < 0 implies that the solution u(x, α) of (4.2) has the closed form

u(x, α) = c1e
−bx cos(x) + c2e

−bx sin(x) + c3e
bx cos(x) + c4e

bx sin(x) (6.6)

where c1−c4 are real constants. In particular, this formula holds as long as u < th.
With β = −(b2+1)α, we use Mathematica to determine the precise values of c1−c4.
In doing so we find that (6.6) can be written as

u(x, α) = α cosh(bx) cos(x)− bα sinh(bx) sin(x). (6.7)

Repeated differentiation of (6.7) leads to

u′(x, α) = −(b2 + 1)α cosh(bx) sin(x), (6.8)

u′′(x, α) = −(b2 + 1)α(b sinh(bx) sin(x) + cosh(bx) cos(x)), (6.9)

u′′′(x, α) = −(b2 + 1)α((b2 − 1) cosh(bx) sin(x) + 2b sinh(bx) cos(x)). (6.10)

We will use equations (6.7)–(6.10) to prove the following result.

Theorem 6.2. Suppose that αth ≤ α < 0. Then u(x, α) has the following proper-
ties:

(i) u(x, α) < th and u′(x, α) > 0 on (0, π),
(ii) ξ(α) = π,
(iii) 0 < u(ξ(α), α) < th if αth < α < 0
(iv) u(ξ(αth), αth) = th,
(v) u′′(ξ(α), α) < 0, and u′′′(ξ(α), α) < 0.

Proof. (i) To prove that u(x, α) < th on (0, π) we will use (6.7). That is we will
show that α(cosh(bx) cos(x) − b sinh(bx) sin(x)) < th on the interval (0, π). First
note that

α(cosh(bx) cos(x)− b sinh(bx) sin(x))′ = −(b2 + 1)α cosh(bx) sin(x) > 0 (6.11)

on the interval (0, π). Hence,

α(cosh(bx) cos(x)− b sinh(bx) sin(x)) < −α cosh(bπ) ≤ −αth cosh(bπ) (6.12)

on the interval (0, π). By (6.5) it follows that −αth cosh(bπ) = th. Hence, by (6.12)
we have that

α(cosh(bx) cos(x)− b sinh(bx) sin(x)) < th (6.13)

on the interval (0, π). Because of (6.11) and (6.13) we conclude from (6.7) and (6.8)
that u(x, α) < th and u′(x, α) > 0 on (0, π). This completes the proof of part (i).

Note that Property (i) implies that the closed form solutions, (6.7)–(6.10), can be
applied on the interval [0, π). Properties (ii)–(v) can easily be verified by applying
the closed form solutions. �
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Large negative α. For large negative values it is equally important that we es-
tablish properties of u(·, α) as α → −∞. We begin with the transformation

−αUα(x) = u(x, α) (6.14)

and study Uα as α → −∞. Since u(·, α) is a solution of (4.2), and β = −(b2 + 1)α,
then Uα satisfies

v′′′′ − 2(b2 − 1)v′′ + (b2 + 1)2v =
4b(b2 + 1)f(−αv)

−α

v(0) = −1, v′(0) = 0, v′′(0) = b2 + 1, v′′′(0) = 0.

(6.15)

Because f is a bounded function, (6.15) becomes

V ′′′′ − 2(b2 − 1)V ′′ + (b2 + 1)2V = 0

V (0) = −1, V ′(0) = 0, V ′′(0) = b2 + 1, V ′′′(0) = 0
(6.16)

as α → −∞. Note that the ODE in (6.16) is linear, homogeneous, and has constant
coefficients. Also notice that the solution Û of (6.16), is identical to the solution
u(·,−1) of (4.2) so long as u(x,−1) < th. Hence, the closed form of Û is given
by (6.7)–(6.10) with −1 in place of α. For easy reference, we now state several
important characteristics of Û in the following lemma.

Lemma 6.3. The solution Û of (6.16) satisfies

(i) Û(x) < Û(π) = cosh(bπ) and Û ′(x) > Û ′(π) = 0 for x ∈ (0, π),
(ii) Û ′′(π) = −(b2 + 1) cosh(bπ) < 0 and Û ′′′(π) = −2b(b2 + 1) sinh(bπ) < 0.

Proof. This result follows immediately from the fact that Û and its derivatives are
given by the closed form formulas (6.7)− (6.10) with α = −1. �

We now determine the limiting value of ξ(α) as α → −∞.

Lemma 6.4. Suppose that (r, b, th) ∈ Λ and that α, β satisfy (6.3). Then

ξ(α) → π as α → −∞, (6.17)

Proof. Fix ε > 0. We will show that there exists a value α̃ < 0 so that
(i) U ′

α(x) > 0 on (0, π − ε], and
(ii) U ′

α(xα) = 0 for some xα ∈ (π − ε, π + ε) whenever α < α̃.

By Lemma 6.3 we see that x = π is the first positive critical value of Û and that
Û ′′(π) < 0. For technical purposes we will assume that ε > 0 is small enough to
guarantee that Û ′′(x) < 0 on [π − ε, π + ε]. Thus, if X± = π ± ε, then

Û ′(X−) > 0 and Û ′(X+) < 0. (6.18)

Next, we observe that problem (6.15) is a regular perturbation of problem (6.16) for
large negative values of α. Thus, (Uα, U ′

α, U ′′
α , U ′′′

α ) → (Û , Û ′, Û ′′, Û ′′′) uniformly
on compact sets as α → −∞. Specifically, U ′

α(X±) → Û ′(X±) as α → −∞. This
and (6.18) imply that there exists α̃ < 0 such that

U ′
α(X−) > 0 and U ′

α(X+) < 0 (6.19)

whenever α < α̃. Finally, (6.19) implies that U ′
α(xα) = 0 for some xα ∈ (π−ε, π+ε).

Thus, (6.14) implies that u′(xα, α) = 0. This proves (ii).
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To show that xα = ξ(α), we need to prove that U ′
α(x) > 0 on (0, π− ε] whenever

α < α̃. Since U ′′
α(0) = Û ′′(0) > 0, then we can choose 0 < δ < π − ε and α̃ < 0 so

that Û ′′(x) > 0 on [0, δ], and

|U (j)
α (x)− Û (j)(x)| ≤ min

Ij

Û (j)(x)
2

on Ij whenever α < α̃ (6.20)

where I1 = [δ, π−ε], and I2 = [0, δ]. We note that (6.20) guarantees that U ′′
α(x) > 0

on [0, δ] and U ′
α(x) > 0 on [δ, π − ε] for all α < α̃. Hence, U ′

α(x) > 0 on (0, π − ε]
whenever α < α̃ as desired. This concludes (i) as well as the proof of the lemma. �

The closed form solution Û of the limiting initial value problem (6.16) provided
vital information in our proof of Lemma 6.4. We will continue to use Û to prove
the next lemma. The objective of the following lemma is to determine the limiting
values of u(ξ(α), α), and u′′′(ξ(α), α).

Lemma 6.5. Suppose that u(·, α) is a solution of (4.2) where α, β are related by
(6.3). Also, let (r, b, th) ∈ Λ. Then

(a) u(ξ(α), α) →∞ as α → −∞, and
(b) u′′′(ξ(α), α) → −∞ as α → −∞.

Proof. (a) It follows from classical ODE theory that |Uα(x)− Û(x)| → 0 uniformly
as α → −∞ for all x ∈ [0, π+1]. Lemma 6.4 ensures that there exists a value α̂ < 0
such that ξ(α) ∈ [0, π + 1] whenever α < α̂. Thus,

|Uα(ξ(α))− Û(ξ(α))| → 0 as α → −∞. (6.21)

Another consequence of Lemma 6.4 is that |Û(ξ(α)) − Û(π)| → 0 as α → −∞.
Combining this fact with (6.21) yields

|Uα(ξ(α))− Û(π)| → 0 as α → −∞. (6.22)

By part (i) of Lemma 6.3, we know that Û(π) = cosh(bπ) > 0. This fact together
with (6.22) leads to u(ξ(α), α) = −αUα(ξ(α)) → ∞ as → −∞ as desired. This
proves (a). The proof of (b) is done in similar fashion. �

Proof of Theorem 6.1. We will show that u′′′(ξ(α∗), α∗) = u′′′(ξ(α∗), α∗) = 0, and
u(ξ(α∗), α∗) < us < u(ξ(α∗), α∗) for some α∗ < α∗ < 0. Throughout this proof, we
will rely on the results of Theorem 6.2 which asserted that

u(ξ(α), α) ≤ th, and u′′′(ξ(α), α) < 0 for all 0 > α ≥ αth. (6.23)

We will use the set S = {α < 0 : u(ξ(α), α) = us} to help us obtain the estimate
(6.4). We will show that S is a non-empty, closed, and bounded set. To see that
S is bounded we note that αth is an upper-bound as a consequence of (6.23) and
the fact that th < us. We deduce from part (a) of Lemma 6.5 that S is bounded
below. Hence S is a bounded set.

To show that S 6= ∅ we define φ(α) = u(ξ(α), α). By standard ODE theory u
is a jointly continuous function of (x, α). Hence, the fact that ξ is a continuous
function of α implies that φ is a continuous function of α. By (6.23), we know
that φ(αth) ≤ th < us. It follows from Lemma 6.5 that there exists ᾱ < αth such
that φ(ᾱ) > us. Continuity of φ guarantees the existence of an intermediate value,
α0 ∈ (ᾱ, αth), such that φ(α0) = us. Thus, S 6= ∅ follows.

To see that S is a closed set we consider a sequence {αn} where each αn ∈ S
and αn → α′ as n →∞. We must show that α′ ∈ S. Since u is jointly continuous
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in (x, α) and ξ is continuous in α, then u(ξ(αn), αn) → u(ξ(α′), α′) as αn → α′.
But u(ξ(αn), αn) = us for each n, hence u(ξ(α′), α′) = us. Thus, it follows that S
is closed.

Now, define αa = supS. Because S is a closed set we conclude that αa ∈
S, i.e, u(ξ(αa), αa) = us. Substituting u(i)(ξ(αa), αa) into (3.4) we find that
u′′(ξ(αa), αa) = 0. Since u ≡ us is a constant solution of (4.2) and u(ξ(αa), αa) =
us, u

′(ξ(αa), αa) = 0, it follows that u′′′(ξ(αa), αa) 6= 0. As demonstrated in the
proof of Theorem 5.11, u′′′(ξ(αa), αa) > 0. This fact together with (6.23) implies
that there exists α∗ ∈ (αa, αth) such that u′′′(ξ(α∗), α∗) = 0. Since α∗ > αa, then
the definition αa implies that u(ξ(α∗), α∗) < us. This establishes the first half of
(6.4).

In a similar fashion, we define αb = inf S and conclude that there exists α∗ ∈
(−∞, αb) such that u(ξ(α∗), α∗) > us and u′′′(ξ(α∗), α∗) = 0. This completes the
proof of Theorem 6.1. �

Theorem 6.1 can easily be applied to prove the existence of two periodic solutions
with α > 0 and β < 0. This is because solutions of (2.4) are translation invariant.
For example, we can define ᾱ = u(ξ(α∗), α∗) and β̄ = −(b2 + 1)

√
2Q(ᾱ) to obtain

a 1-bump periodic solution satisfying us < ||u(·, ᾱ)||∞.
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Figure 3. Periodic solutions of (4.2). Parameters are r = 0.05,
b = 1.4402, and th = 1.5.

We used the software package Mathematica to obtain the two 1-bump periodic
solutions seen in Figure 3. Numerical experimentation suggests that these periodic
solutions are highly sensitive to the value of α, and probably do not represent stable
stationary states of the integral equation.

Conclusion. In this paper we have analyzed a subclass of stationary solutions of
(1.1). In previous studies, (see [3, 9]), the Fourier transform was applied to both
sides of (1.2) to obtain a fourth order ODE. Then ODE methods were implemented
to obtain a thorough numerical investigation of homoclinic orbit solutions. For tech-
nical reasons, the Fourier transform does not give rise to other types of interesting
solutions such as periodic, heteroclinic, or chaotic solutions. The fundamental aim
of this paper was to use the results of Krisner [8] to prove that (1.1) does have
periodic solutions. In fact, under the parameter regime derived in Section 5, it was
shown in Section 6 that (1.1) has two stationary 1-bump periodic solutions.

A natural extension of this result would be to find other classes of periodic
solutions. As previously defined, a 1-bump periodic solution has the property that
u′(ξ(α), α) = u′′′(ξ(α), α) = 0 where ξ(α) is defined to be the first positive critical
number of the solution u. Suppose we denote η(α) to be the second positive critical
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number of u. It would be interesting to see if (1.1) has a stationary “2-bump”
periodic solution, i.e., a solution that satisfies u′′′(η(α), α) = 0 but u′′′(ξ(α), α) 6= 0.

Lastly, inspired by the work of Amari [1], an analytical proof of the existence of
N -bump homoclinic orbit solutions would be very desirable. That is, given a fixed
positive threshold value, th say, there exists N disjoint intervals, I1 . . . In, for which
u(x) > th if and only if x ∈ Ij .

Acknowledgement. The author thanks the referee for several very helpful sug-
gestions which helped improve the presentation of this paper.
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