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FOURIER TRUNCATION METHOD FOR AN INVERSE SOURCE
PROBLEM FOR SPACE-TIME FRACTIONAL DIFFUSION
EQUATION

NGUYEN HUY TUAN, LE DINH LONG

Communicated by Mokhtar Kirane

ABSTRACT. In this article, we study an inverse problem to determine an un-
known source term in a space time fractional diffusion equation, whereby the
data are obtained at a certain time. In general, this problem is ill-posed in
the sense of Hadamard, so the Fourier truncation method is proposed to solve
the problem. In the theoretical results, we propose a priori and a posteriori
parameter choice rules and analyze them.

1. INTRODUCTION

In this work, we consider the inverse problem of finding the source function f in
the problem

(z,t) = —rP(=A) Su(z, t) + h(t) f(x), (z,t) € Qp,
u(=1,t) =u(l,t) =0, 0<t<T, (1.1)
u(z,0) =0, xz€Q,
u(z, T) =g(x), z€Q,

oth"

where Qp = (—=1,1) x (0,T), r > 0 is a parameter, h € C[0,T] is a given function,
B8 € (0,1), @ € (1,2) are fractional order of the time and the space derivatives,
respectively, and T' > 0 is a final time. The function u = u(z,t) denotes a concen-
tration of contaminant at a position x and time ¢. The symbol ‘g%‘ is the Caputo
fractional derivative of order (3 for differentiable function u; it writes

ol B 1 b (s)
) = r(1—a)/0 =s)p

and I'(.) denotes the standard Gamma function. Note that if the fractional order (3
tends to unity, the fractional derivative (%;u converges to the first-order derivative

% [6], and thus the problem reproduces the diffusion model. See, e.g., [0, 12] for
the definition and properties of Caputo’s derivative.
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It is known that the inverse source problem mentioned above is ill-posed in
general, i.e., a solution does not always exist, and in the case of existence of a
solution, it does not depend continuously on the given data. In fact, from a small
noise of a physical measurement, for example (h, g) is noised by observation data
(h¢, ¢%) with order of € > 0

[h* = hllcqom) + 197 = gllLz-11) < e (1.2)

where we denote |0]|c(jo, 1)) = suPg<;<7|0(t)| for any 6 € C([0,T]. It is well-known
that if ¢ is small, the sought solution f may have a large error. An example for
illustrating this is given in Theorem Hence some regularization method are
required for stable computation of a sought solution.

The inverse source problem attracted many authors and its physical background
can be found in [I8]. Wei et al [20} 19}, 2I] studied an inverse source problem in a
spatial fractional diffusion equation by quasi-boundary value and truncation meth-
ods. Recently, Kirane et al [7, 6] studied conditional well-posedness to determine
a space dependent source in one-dimensional and two-dimensional time-fractional
diffusion equations. Rundell et al [4, [I3] considered an inverse problem for a one-
dimensional time-fractional diffusion problem. However, the inverse source problem
for both time and space fractional is limited. Recently, Tatar et al [I7] considered
Problem with a general source h(t, z)f(z). They show that the inverse source
problem is well-posed in the sense of Hadamard except for a finite set of r > 0.
However the source function is also unstable in L? norm (See Theorem below).
The topic in this paper is to finding approximate solution. Hence, our purpose is
different and not contradict with the results in [I7]. Motivated by above reasons,
in this study, we apply the Fourier regularization method to establish a regularized
solution. We estimate a convergence rate under an a priori bound assumption of
the sought solution and a priori parameter choice rule. Because the a priori bound
is difficult to obtain in practical application, so we also estimate a convergence rate
under the a posteriori parameter choice rule which is independent on the a priori
bound.

This article is organized as follows. In Section 2, we give a formula of the source
function f and establish some lemmas and theorems which are useful to the next
results. Moreover, the ill-posedness of the inverse source problem is also given in
this section. In Section 2, we propose Fourier regularization method and give two
convergence estimates under an a priori assumption for the exact solution and two
regularization parameter choice rules.

2. INVERSE SOURCE PROBLEM

2.1. Formula of the source function. First, we introduce a few properties of
the eigenvalues of the operator (—A)*/2, see [5, 12].

Theorem 2.1 (Eigenvalues of the fractional Laplacian operator). I. Each eigen-
values of (—A)*/? is real. The family of eigenvalues {AR15e, satisfy 0 < Ay < Ag <
A3 < ..., and Ay — 00 as k — oo.

2. We take {\p, ¢r} the eigenvalues and corresponding eigenvectors of the frac-
tional Laplacian operator in Q with Dirichlet boundary conditions on 0S2:

—A¢y(z) = Apor(z), z€Q,

ox(x) =0, on 09, @1)
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fork=1,2....
Then we define the operator (—A)% by

(~A)u:= Y cpin(a) = = 3 aky du(a),
k=0 k=0

which maps H§ () into L*(Q). Let 0 # v < co. By H7(Q) we denote the space of
all functions g € L?(2) with the property

[o¢]

S+ R0 gil? < o, (2.2)
k=1

where gi = [, 9(z)¢r(x)dz. Then we also define

lollz(@) = /S5 (1 + X0 [gel?. 16 7 = 0 then HY(Q) is L*(Q).

Now we use the separation of variables to yield the solution of (1.1]). Suppose that
the solution of (1.1)) is defined by Fourier series

u(a,t) = ur(t)gr(z), with ug(t) = (u(.,t), x(x)). (2.3)
k=1

Then the eigenfunction expansions can be defined by the Fourier method. That is,
we multiply both sides of by ¢r(x) and integrate the equation with respect
to x. Using the Green formular and ¢r|sq = 0, we obtain an uncouple system
of initial value problem for the fractional differential equations for the unknown
Fourier coefficient wuy(t)

&
Sgu(t) =~ (-A)Fu(t) + hOS(2), (1) € 2x (0,T),

ug(0) = (u(z,0), px(2)).
From the result in [I7], the formula of solution corresponding to the initial value
problem for (2.4) is obtained as follows, from u(z,0) = 0.

e,y =3 ([ 77 Bas(— G rror )@t = 7). onain) o). @5

(2.4)

k=1
By a change variable in the integral, we can rewrite
= K _ kT,
u(et) =3 ( / (t =) B = ()0 (= 1) ) h(r)dr ) (F (), 6x())n ().
k=1
(2.6)
Letting t = T in the latter equality, we obtain
fa) =S — — (9(z), ¢k(:;r)>¢k;$) . . @7)
o Jo (T —7)P 1 Eg g (= (5F)r?(T — 7)P) h(r)dr
to abbreviate notation, we set
(I)ﬂo‘%? T, T) = (T - T)ﬂ_lEﬁﬁ< B (kg)arﬁ(T - T)B)’
then the source function f is rewritten as

= )
1 fo Pg(AY, T, 7)h(T)dT
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Remark 2.2. Applying [I7, Theorem 2.1], we obtain the existence and uniqueness
of problem (1.1)) such that u € L2(0,T; H*(f2)). The regularity estimate for u as
in (2.6)) is mentioned in [I7] and so, we omit it here.

2.2. Preliminary results. Now, we consider the following definition and lemmas
which are useful for our main results.

Definition 2.3 ([I2]). The Mittag-Leffler function is

00
Zk

Ea7ﬁ(2):kzzom, zeC

where a@ > 0 and (8 € R are arbitrary constants.

Lemma 2.4 ([14]). For A >0 and 0 < 8 < 1, we have

d
%E@l(—)\tﬂ) = - MITIEs s(—AtP), t>0. (2.9)
Lemma 2.5 ([I12]). For > 0 and 8 € R, we have
1
Eaﬂ(z) = ZEO[@_;'_[}(Z) + m, z e C.
Lemma 2.6 ([14]). The following equality holds for A >0, « >0 and m € N
dm
WE“vl(_Ata) = _/\ta_mEa,a—m-i-l(_/\ta)a t>0. (2.10)

Lemma 2.7 ([I7)). If o <2, 8 is arbitrary real number, p is such that 7* < p <
min{ra, 7}, p < |arg(z)| < m then there exists two constants Ao > 0 and Ay > 0

such that
Ap

< |E, < 2.11
Lemma 2.8 ([I4]). Let Eg 3(—n) >0, 0 < 8 < 1, we have
M 7 M 7
/O ‘tﬁ_lEﬁﬁ(—/\ktﬁ)’dt =/O 7 Ep 5 (= At?)dt
1 Mad —
=—— | ZEgi(—NtP)dt (2.12)
" /0 g Eoa(=Akt")
1 _
- )\:k<1 ~ Bga(-WeM?)).

Lemma 2.9 ([I7]). For any A\ = (55)* satisfying Ay > A there exists positive

constant C' depending on {3, T, 5} such that
1

)\ BB
(=A\grPT )érﬁTﬁx\g'

C
——— < F 2.13
TﬁTﬂ)\? = 5B,p+1 ( )
Lemma 2.10. Let h : [0,T] — RT be a continuous function such that |Z(h)| =

infiejo, 7y [R(2)] > 0. Set [[hlcpo,r) = supiepo, 1) [R(#)|. Then we have

T = By (X072 _ [T It
)\grﬂ < o q)ﬁ( vavr)h(T)dTSW- (214)

A proof of the above lemma can be found in [I7].
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Theorem 2.11. Let g € H*(2). Then the inverse source problem has the solution
feL?Q).

Proof. The solution f exists if and only if the series in the right hand side of .
converges. Hence, we show this point. Indeed, using Lemma [2.10| and noting that
g € H*()), we obtain

i (9(z), ¢r(x)) ‘2 S i Ar?0{g(@), dk(x))?

b1 IOT (I)ﬁ()\gﬂ'; T)h(T)dT B k=1 .y ”h”%[OT] (215)
r
= m”gnfqa(mv
and
=0 (ge) ) Npr2g(z), 6 ()’
;’fo (A, 7,7)h(T)dT ’ Z ZR)PQL = Bpa(-AroT7)? (2.16)

— TQB

2
B |Z(h)|2(1 — Eg, 1(_/\arﬁTﬁ))2 ||g||Ha(Q)-

(9(z), ¢ (@) bk () -
From two latter inequality, we conclude that the series Zk L T8 0,00 r)h(n)dr is

convergent. The proof is complete. ([l

Theorem 2.12. Let R : [0,7] — R be as in Lemma then the solution
(u(z,t), f(x)) of Problem (1) is unique.

Proof. Let f; and fy be the source functions corresponding to the final values g;
and gy respectively. Suppose that g1 = g then we prove that f; = f5. In fact, it is
well-known that Eg g(— (5 )%rA(t—7)P) > 0 for 7 < t. Since Ikhllcro,m = |Z(h)| >0
for t € [0,T], we have

T
/ (N2, 7, 1) h(r)dr
0

> |Z(h)| /0 (T — 7)5—1Em( - (%”)arﬁ(T - T)B)dT (2.17)

km

= [Z(0)T° Eg o (- (5

. )a(rT)ﬁ) > 0.

‘We have the estimate

I - (91(2) — g2(2), O () P ()

= %(Ak,r r)h(7)dr

The proof is complete. O

= 0. (2.18)

Theorem 2.13. The inverse source problem of finding the function f is ill-posed
in the Hadamard sense in the L? norm.

Proof. Let us Define a linear operator P : L(Q)) — L?(2) as follows

PA@) = [ plaw) f(w)do
2 (2.19)
-3 / Ds(AF, 7, )TN | (£ (), dn () br ()

k=1
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where
o0

T

pa,w) =Y [/ Do(N, 7, T)R(7)dr] ()0 (w):

k=1 0

Because p(z,w) = p(w, x) we know that K is self-adjoint operator. Next, we prove

its compactness. Defining the finite rank operators I as follows

N T
Pufe) =3 [ [ 0% mnh(ir](fe). @onto). (220)
0

k=1

Then, from (2.19) and ([2.20] -, we have
2
R P S R R

k=N+1
= Al
< Y e @), se@)P (2.21)
k=N+1 k
B & :
N k=N41
This implies
1201 10,7y

Ikl
WHCOT) ) Fll ey (2.22)

) 1/2
I1Pxf =Pl < (Fyge I ) =

Therefore, |[Py — P|| — 0 in the sense of operator norm in L(L*(Q); L?(f2)) as
N — oo. Also, P is a compact operator. Next, the singular values for the linear
self-adjoint compact operator P are

r kmw
= — T B-1 — afrﬁ — T B VdT
U /0 (T—7) Eﬂﬂ( (5) (T =7) )h( )d .

T
= / D3 (AL, 7, 7)h(T)dT,
0

and corresponding eigenvectors is ¢ which is known as an orthonormal basis in
L?(Q). From (2.19)), the inverse source problem we introduced above can be for-
mulated as an operator equation.

Pf(zx)=g(z) (2.24)
and by Kirsch [§], we conclude that it is ill-posed. To illustrate an ill-posed problem,

: _ _9m(=)
we present an example. Let us choose the input final data ¢™(z) = W
r2B o

Following (2.9), we know A5, = ("5%)*. By (2.8), the source term corresponding to
g™ is
i (g™ (x), ¢r(x)) Pk ()

=t %( r,r)h(r)dr
( x
& W 01 ()6 (2) )

= Jy s T r)h(r)dr
()

Jroa(mmye T <I>ﬁ<Aa,T,r>h<T>d%
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Let us choose another input final data g = 0. By ({2.7)), the source term correspond-
ing to g is f = 0. An error in L? norm between two input final data is

o™ = gl = 12y = e, (226)
B/ (T )™ [rf ]/ ()
where a € (1,2). Therefore
lim g™ — ¢ lim L 0 (2.27)
1 —9lL2(Q) — T3 Smee U .
m——+oo m—-—+o00 |’/‘ﬂ| /(T)

And an error in L?(—1,1) norm between two corresponding source term is

()
I
|ﬂ«ﬁywﬁfmwmwMﬂmL“” (2.28)

L [T BT h(r)dr

1f™ = fllzz) = |l

which we note that 8 € (0,1) and r is positive number. From (2.28) and using the
inequality as in Lemma we obtain

1F™ = Fllee o) = G i (2.29)

Al
This leads to

' _ ()"
1 - VA G ) S 2.30
W N = Pz > Hm e o = e -

Combining (2.27) with (2.30)), we conclude that the inverse source problem is ill-
posed. O

Theorem 2.14 (A conditional stability estimate). Assume that there exists v > 0
such that || f|| e~y < M for M > 0. Then

e v
11lz2@) < Kag(hor, T)M g - (2.31)

where
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Proof. According (2.8), by Holder’s inequality, we have

Yor(x) |2
11220 = Z\ 7 % AM r)h(T)dT‘

< 5~ Lo@). 6x@) 7] (glw) Su(x)) 51
N N e

)
[{g(@), or())]? 7T

< — (2.33)

(k_l fT (I)ﬂ<)\g’7—’7«) (T d7—| o ))

2
k=1 ’fo (I)ﬁ(AgvTvr)h(T)dT| K

Here we have used the fact that

T
(9(@). (@) = (@) 0x(a)] [ Bo0F.7(r)r

‘2
Using Lemma [2.10] we have

W
= N2 2

T
‘/ D(A, T, T)h(T)dT‘
0

— Ega(=A$rPT0) (2.34)
and this inequality leads to

= |{f (), pr(z )>\2
,; ‘fOTCI) (A2, 7,7) dT‘ZW
= 267)\2M|< f(x), or(x))]?
<
SET P AT (235)

< )\2a'y 7 2
T T2 (1 = Ega(—AerBTH)) > ; w 1(f(2), or(z))]
227 f a0

WP (1 - By (=2groT?)”
Combining ([2.33)) with (| -, we obtain

PRI o)

1£1172(0) < ||9||Z

IZ(h)|7%1 (1 — Egy(— AarﬁTﬁ)) (2.36)

< K (hyr, )M g 751,
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3. FOURIER TRUNCATION REGULARIZATION AND ERROR ESTIMATE

In this section, we eliminate all the components of large k from the solution and
define the truncation regularized solution as follows:

N
N (9°(), p(x)) P ()
foN (x :E 3.1
(=) e fOT Pa(\, T, r)he(T)dT 3.1)

where the positive integer N plays the role of regularization parameter. Next,
we consider an a a-priori and an a a-posteriori choice to find the regularization
parameter. Under each choice of the regularization parameter, the error estimates
between the exact solution f given by and the regularized approximation
solution &V given by can be obtained.

3.1. An a priori parameter choice. Afterwards, we will give an error estimation
for || f(z) — f<N (@)l 2(n) and show convergence rate under a suitable choice for the
regularization parameter.

Theorem 3.1. Let £V be the reqularized solution for problem with noisy
data ¢g¢ and f(x) be the exact solution for problem . Let us choose parameter
reqularization N = [u], where [u] denotes the largest integer less than or equal to
. Then we have the following:

€

1
o [f0 <~ <1 then choose p = %(M) “OY we have the estimate

£ (@) = N (@) || 2y < €75 M D, 5(f, b, he, 7, T). (3.2)
1
o Ifv>1, choose u = %(%) - , we obtain the error estimate
I/ (2) = FN (@)l 2(0) < €2 M3 D p(f,h 7,1, T), (3:3)
where
Do s(f, b, he, 7, T) = [1 n max{ a RLEATZ H (3.4)
IZ(M)|(1 — Ega(=A¢rPTH)) " [Z(he)|

Remark 3.2. If the function h depends on z and ¢, i.e. h = h(t,x) then we
can not represent f as the Fourier series as . Hence, we can not use some
usual regularization methods. The regularized problem is open and difficult when
h depends on x and t.

Proof of Theorem[3.1 Using and and the triangle inequality, we have

(@), dr(@)di(@)  §~ " (@), S (@))dn(a)
Ay mrh(rydr i f) PaOg, ) (r)dr
(z)

oo

(g
f(x)—fe’N(x)= T
1o @s(

9(@), 0x(@)on() = {g(@), d(x))dn
<l es(e T r)h(ndr o [T %(A%w)h(ﬂ
ERNE RO 4(2))d (@)
S s, (AT = [y @A, T ke (T)dr

(3.5)

a:
+

NE |F%8 HM

=
Il
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10
Hence
flx) = foN(x)
_ 3 ol ionta) | s fole) o), nla))on(a)
b N1 fOT(I)g(/\%,T,T)h(T)dT et fOT Pg(AY, 7, r)he(T)dT
Q4 Qo (36)
f; lo(e). du(x)ulx) g~ Jy BoOhmr)((T) — hr))dr.
= e (Azmm < >dr = Jy 20T ke (r)dr
Qs
First, we have the following estimate
= [{g(x), dr ()
1Q111720) =
e = 2 o @0 r)h(r)dr|?
_ 2
[(f (@), ¢r())] (3.7)
< S (1) AP (0, ula) P
k=N-+1
< (14 Ay) 727 M2,
Hence, we obtain
1Q1ll2) < (14 An)"*"M. (3.8)
Second, the term ||Qsal[z2(q) is bounded by
| < g(z) — g°(), m( ) > |?
Q|32
it < 3 A e
_ N < g(a) — g° (@), Gu () > 2
TiT 1Z0R)P (1 - Baa(-xgreT?)’
)\20(,],.2,8
< sup . 5
glj |Z(he)]2(1 — Eg,1 (—A$rPTP)) (3.9)
Z x), i (x))]?
)‘?VQTQ,@ € 2
< — 2
< |I(he)|2(1—Eﬁ,l(—A%rﬂTﬂ))Qng 9llz2 (0
< )\%\?r% 262.
Z(he)|2(1 = Ep 1 (=A3rPT?P))
Hence 5
AR (3.10)

Q 5 g €.
Q220 Z(h9)|[(1 = Ep1(—X3rPTP))

Finally, the term [|Q3||z2(q) can be estimated as follows

195172
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a ), ¢ (2)) o (z) |2 LA, 7,7 (he(T) — h(T))dT |2
S[Z (9(x), o1 (x))Pn(x) H[ ‘f s(AR H

1 fOT Og(AY, 7, 7)h(T)dT f Pg(AY, 7, 7)he(T)dT
| Jo @s(Ag ) (he(r) = h(7 dT} [(g(x), pr(x))]?
[; ’fo Da(AY, T, r)he (T dT‘ sz_:l ‘fOT ‘I)g(A%,T,T)h(T)dT‘Q}
Hha_hHC[OT - |{g(x), px(z )>|
< : 3.11
- |Z(he)]? kzl | [T @502, 7, 7) d7| (3.11)
(|7 — hl[Z
52Hf||%2(9)
T |Z(he)?
Hence 1Al
193l L2y < ﬁ (3.12)

Combining (3.7)), (3.9) and (3.11)), it yields
I1f(@) = fN (@) p2(0)

<(I+AN)" "M +¢

1flz2 e AP (3.13)
IZ(h) T IZ(he)| (1 = Epa(=MrfT?))

This and the fact that N < u < N + 1 give
1f (@) = fN (@) 20
(‘L
2

P @ r’ Ifllz20)
) M‘LE(?) maX{|I(hE)\(1ng,l(f)\?rﬁTﬁ))’ Z(h%))] J
r’ Ifllz2)
M IZ(he)|(1 — Ega(=AYrPTF)) " [Z(he)] H

W[l—f—max {

O

3.2. An a posteriori parameter choice. In this subsection, we consider an a
posteriori regularization parameter choice by the discrepancy principle. Define
N

Fng® = (9(x), dx(2)) dx (). (3.14)

k=1

By the discrepancy principle, we take K = K (e, g%) as the solution of

I = Bx)o ooy < me < (T = Fy-)g iy, m>1  (315)
Lemma 3.3. We have
2 (ke M s
N<Z (7) . 3.16
- rP(m —1)e (3.16)

Proof. From ||g° — gl|12(n) < € and (3.15]), we have
IFN-19 = gllzz) = [[(Fn-1 —1)g° — (I = Fn-1)(9 — 9°)|lL2(0)
> |(Fn-1 =D l2) — (I = Fn-1)(9 — 9 ) z2)  (3.17)
> (m — 1)e.
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On the other hand, for £ > N, we obtain

T T
[ @05 mnh(r| < oo [ ®a0%.rryir
0 0

(1 — E,&l(—)\grﬂTﬁ))

= ||h 3.18
Whllciom i (3.18)
< IRllero,ry

AP
This implies
I1FNn-19 — 911720
(oo}
= > Ug(x), gx(x))
k=N
oo T 9
=S| [ w0 @), on o)
k=N 70
_ Il & -
— AZQT2,6 Z | ‘
k=
”h”COT s (3.19)
< Sz 3 (LW TN LM (@), o)
k=N
||h||C[O,T] = 20y 2
S 2a,28)207 D+ ) (f (), g ()|
N N k=N
11202
S Wﬂf“mwm
M2 1
2
< ||h||C[o,T]TT,@W-
N
Hence,
M [[hl[cpo,r
|Fn-19 *QHL?(Q) < ﬁwg_l)] (3.20)
N
From (3.17) and (3.20)), we have
M [hlcpor)
N
It follows from Ay = 2” and - that
12l clo,nM N s
N< - —FF7"77—2—— . 3.22
(1"5( —1)e ) (3.22)
(Il

Next we present an error estimate for the approximate solution of problem (|1.1)).
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Theorem 3.4. Let f and f be as in Theorem|3.1, Then we have

1f(x) = N (@) p2(e)
< e M [ﬁﬁ(f, he by r,m, T) + Kag(hyr, T)(m + 1)#]

where

‘C’ﬁ(f7 hsa ha r,m, T)

13

(3.23)

IAllcpo,m) T rf
= max 2 s s
BY vt
Kap(h,r,T) = — (r) .

Proof. Using the triangle inequality,

1£ (@) = fN (@) 22y < 1f(2) = FY(@)e2) + 1 (@) = £V (@) |2

We split the proof into three steps.

Step 1: Estimate ||f(-) = fN ()|l z2()-

oo

1) = ¥ @)y < | Y- (F(@), (@) du(2)l]
k=N+1

— (2 0TI E) <o

k=N+1

By triangle inequality and (3.15]),

[Af(z) = AfY ()] L2 < 1T = Fn)gl|
< (I —=Fn)g*+ (I —Fn)(g— g9
< (= Fn)gll + I = Fn)(g = g°)ll
< (m+ 1.

Therefore, by the conditional stability (2.31)), we have

1FC) = FNOllz2) < Kays(hyr, T)((m +1)e) 7.

(3.24)

(3.25)

(3.26)

(3.27)
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Next, we obtain

FY(x) = foN (2)

1
(0 (=)ot
T,1)hE(T)dT (3.28)
o 30 5 B0 7)) — ()T o) u)nte)
TS L esOp ke mdr (T 20 Tr)h(r)dr

Using (3.12)), we obtain
. [ fllL2(0)
1Z(h?)]
We now estimate the norm of Q4. Using Lemma we have

z), di(z))
19420 = Z‘fo <1>ﬁ ,\g,T r)ha( )dT‘

<Z (). (e >>)

— [ Z(he >|z 1—Ej 1 (~A¢rAT#)
PYRrR (3.30)
/\?VD‘TQ'B N
x), ¢r(z))>?
IZ(he)2(1 = Eg1(—A$rBTH))° Zl
52/\?\?‘1"2'6

19320 < (3.29)

IN

< .
T Z(h)[2(1 = Ega(—ArATS))?

Hence
104] < (Nﬂ') € P
2 e .
MO =) Z(0)] (1= Bpa(-A$r7T9))
From above observations, we deduce that

1£7 (x) — fe’N(w)Ilem)

(3.31)

Nm i (3.32)
< ( ) |I(h5)| max{“fHLz(Q), (1 — E,a,1(—)\(fr5Tﬁ)) }

Substituting (3.22)) in , we obtain

||fN(x) — e N(x)||L2(Q) < e MLy (f, b hyr,m, T). (3.33)
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Combining (3.27)) with (3.32), we obtain the final estimate as follows:

1f(@) = fN (@)l L2

o . (3.34)
< eyt M A+t [Eg(f, he, h,r,m,T) + Ko g(h,r,T)(m + l)m}

hereby

ﬁﬁ(f? hE’ ha r,m, T)

12l co,77 T rf?
= (rﬁ(m — 1)|I(hs)|fy+1) HlaX{||f||L2(Q)7 (1 — Eﬁ,l(_ %TﬁTﬁ)) }7
)
/Caﬂ(hﬂ", T) = — ( ) — -
|Z(h)|7+1 (1 — Eml(—/\‘f‘rﬁTﬁ)) v+

This completes the proof. ([l
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