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MULTIPLE SOLUTIONS FOR INHOMOGENEOUS NONLINEAR
ELLIPTIC PROBLEMS ARISING IN ASTROPHYISCS

MARCO CALAHORRANO & HERMANN MENA

ABSTRACT. Using variational methods we prove the existence and multiplicity
of solutions for some nonlinear inhomogeneous elliptic problems on a bounded
domain in R™, with n > 2 and a smooth boundary, and when the domain is
R™.

+

1. INTRODUCTION

In this paper we study the boundary-value problem
—Au+c(z)u = Af(u) inQ
u=h(z) on I
when  is a bounded domain in R"™, with n > 2 and smooth boundary 92, and
when the domain is R := R"™! x Ry with Ry = {y € R: y > 0}. The function
f:] — 00, +00[— R is assumed to satisfy the following conditions:

(f1) There exists sp > 0 such that f(s) > 0 for all s €]0, so[.

(f2) f(s) =0for s <0 or s> sp.

(£3) f(s) < as, a is a positive constant and 1 < o < 22 if n > 2 or o > 1 if

n=2.

(f4) There exists [ > 0 such that |f(s1) — f(s2)] <|s1 — s2f, for all s1, s2 € R.
The function & is a non-negative bounded, smooth, i # 0, minh < sg and ¢ > 0,
and ¢ € L= () C(Q).

Note that problem (1.1)) is equivalent to

—Aw+c(x)w=Af(w+7) inQ

(1.1)

1.2
w=0 ondQ, (1.2)
where w = u — 7 and 7 is a solution of
—Ar+c(z)T=0 inQ
(1.3)

T="h(z) ondQ.

We will study (|1.2) instead of (1.1]). In section 2 using variational techniques
we will find an interval A C R such that for all A € A there exist at least three
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positive solutions of (L.2)), for ||7||;o+1(q) small enough. This result is better than
the one obtained by Calahorrano and Dobarro in [4].

In section 3, we will study the problem for inf ¢(x) > 0 and Q big enough,
by this we mean that there exists xg € (2 such that the Euclidean ball with center
zo and radius R is contained in €2, with R large enough. In this case, we will
eliminate the restrictions on 7, obtaining similar results.

Problem is a generalization of an astrophysical gravity-free model of solar
flares in the half plane RZ, given in [7], [8] and [9], namely:

2
—Au=Af(u) R
u(z,0) = h(z) VzreR
besides the above mentioned conditions for f and h, the authors are interested in
finding a positive range of \'s in which there is multiplicity of solutions for (1.4)),

see [, [8,[9] for a detail description.
In section 4, a related problem is reviewed

—Aw+c(r)w =Af(w+71) inRY
w(z,0)=0 VzecR"!

(1.4)

(1.5)

and we prove the existence of solutions of (|1.5) as limit of a special family of

solutions of

—Aw+c(z)w =Af(w+7) in Dpg L6
w=0 ondDpg (1.6)

where
n
Dr={(21,...,an) € R} : Y a7 < R’}
i=1
and R is large enough. Besides these solutions are absolute minima of the natural
associated functional for small X's and local but not global minima for large \'s.

2. VARIATIONAL METHOD

Similarly to section 1, let 7 be the solution of
—AT+c(z)T=0 inQ
7 =h(z) ondQ.
Problem is equivalent to
—Aw+c()w=Af(w+7) inQ
w=0 on N
where w = u — 7. Therefore, we are studying instead of .
Since f > 0, then any solution of is positive by the maximum principle,

furthermore w = 0 is solution of (2.2)) if and only if A = 0. On the other hand
7 achieves its maximum and minimum on the boundary, i.e. infgpo7 < 7(z) <

Supgn 7T-
Let H{(€2) be the usual Sobolev space, with [Ju|? = [, |Vu[*dz. We define for

all A > 0 and for all non-negative function 7 such that ||7]| s+1 () = ' < oo the C*
functional, [2], ® , : Hj () — R,

Oy -(u) = %/Q[c(ac)uQ—i—|Vu|2]d:1c—)\/QF(u+T)dx

(2.1)

(2.2)
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where, F(s) = [ f(t)dt.

If u e Hj(Q), ¥ (u) = 0 (9’ is the gradient of ®) then u is a weak and, by
regularity strong solution of .

Since f is bounded, it is easy to prove that ®, , is coercive and verifies the
Palais-Smale condition for all A non negative (using methods like in the case c=0,
[11]). Then @, , attains its global infimum on a function uy , € Hg(£2) for all A
non negative.

Theorem 2.1. Let us assume (f1)—~(f4). For all I' > 0 small enough there exists
an interval ]\, A(I')[ with A > 0 such that for all X €]\, \(T')[ the problem (2.2) has
at least three positive solutions. Moreover A(T') — +oco as T’ — 0.

To prove Theorem we will use arguments as those in [4], for which the
following lemmas are necessary.

Lemma 2.2. There exists wg > 0, wg # 0 and A > 0 such that for all A > \ and
for all T >0, &y +(wo) <0

Proof. . Let B,(zg) denote an euclidean ball with center at xg and radius r. Let
xo € Qand R > 0such that Bg(zo) C 2. Thenforall0 < § < R, B,(x¢) C Bgr(zo),
where p = R — 0. Now, we define

S0 if |z — x| < p
wsr(®) = ¢ 2(R— |z —mxo|) ifp<|z—mz| <R
0 if |# —xo] > R

So, using the Holder and Poincaré inequalities

1

1
B (o) = glwnnl + 5 [ c@)snfde—A [ P+ r)ds

1 cll e
< lws.rl? + m / (ws.r)?dx — )\/ F(so+ 7)dx
2 2 JBa(ao) B, (wo)

1
< = 2
< 2||W6,R|| +

llell e (|BR(mo)|>%

o (P sl AF(G) [ da

By (z0)
— so(1 + llell 2~ R?) / dx—)\F(So)/ dx
202 Br(z0)—B,(z0) B, (20)
so(1 4 llcllz=R*)(R™ — (R —6)")wn,

_ - —AF(s50)(R — 6)"wy,

where w,, denotes the volume of the unit ball in R™. Let
() = s5(1 + [lef|p= R?*)(R™ — (R — 8)")
= 2F(s9)02(R — &)™
If 6§ =tR, 0 <t <1, results in
S2(1+|lellp=R2?) /1 — (1 —=t)™
@) = Bt R) (1 — 1= 1y
2F(80)R

t2(1 —t)"
then @) -(ws,r) < 0 for all A > A(§) > 0, and for all 7 > 0. Let
1-(1-)"

21—t
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and let ¢; €]0,1[ such that t(t1) = miny [¥(t). If & = t1 R, w, = ws, r and
A = A(01), then there results

Dy (wo) <0 VA>A>0 and VY7 >0

Moreover,

1/2 s /1 — (1 —1¢)"\1/2
R O R e e
1
O

Lemma 2.3. There ezists a constant K=K(a,0,) such that for all A < AT) and
lu| =T, @5 -(u) >0 where A = KI''=7.

Proof. From ({3),

/QF(u+T)d3::/Q/Ou+Tf(t)dtdx§/QWdac

then, using the Sobolev immersion and Poincaré inequalities

1 1
Dy, (u) = §||u||2 + = /Q c(x)u?dr — X | F(u+7)dx

2 Q
1 o+1
> = lul? _)\/ Mdm
> Ll = A(=22) (ullzoss@) + 7l )7
=2 o+1 @) @)
1 a
> Slull2 — ( ) 0 e+t
> Sl = (=5 ) C@ul + )7,
where C(2) is a constant depending on Q. Setting
oc+1
K =
2a(C(2) + 1)o+t
it follows that for all A < A(I') = K177, &, . (u) > 0. O

Remark 2.4. (i) Since A\(I') = KT177 it follows A — +o0 as I' — 0.
(ii) @x,-(0) and @} _(0)(v) are negative for all A > 0 and v > 0, v # 0.

Lemma 2.5. For all 0 < A\ < \(T) there exists u € H}(Q) with |[u|| < T such that
P+ (u) <0 and @) (1) =0.

Proof. Using Lemma we prove that @y . (u) > 0, for 0 < A < A(I') and u such
that [[ull = T'. Moreover @y -(0) < 0y ®) (0)(v) # 0. Keeping in mind that the
solution of y
el
% = W(a()
a(0)=0
where W = —V, V pseudo-gradient vector field for @, , in the set of regular points
of @y ,, with 0 < A < .
Since @, , verifies the Palais-Smale condition and is bounded from below, using

[10, Theorem 5.4] we have that

(1) a:[0,4o00[— HE(Q) is continuous.

(2) @y, ((t)) is strictly decreasing.
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(3) a(t) »wast — +oo, ¥} (7) =0.

then, w satisfies the required conditions. (I

Proof of Theorem[2.1 Let wy and A be defined in Lemmal[2.2] Using Lemma[2.3|for
I' < ||wol|, there exists A(I') > 0 such that ® ,(u) > 0 for all A < X and |Jul| =T.
But since A is independent of T', using Remark A < A(T) for T small enough.

Now we claim that for T' small enough there exists u € H}(Q2), ||a]| > T such
that for all A < A < A(T) @, .(4) < 0 and @) (u) = 0. Indeed, we remember
that for all A < A < A(T") lemmas 3 and 2 are verified. Keeping in mind that the
solution of

dp
AU CIO)
B(0) = wo

Using similar arguments as those in Lemma we find the critical point u with
lz]] > T. Let

c= inf sup® U
€O uel(:; >\7T( )

where O is the set paths
0 = {v € C([0,1], H5(2)) : 7(0) =7, 7(1) = wo}

we are able to apply the Mountain Pass Theorem of Ambrosetti-Rabinowitz [3].
Then c is achieved in H{(f2) at a function u. Finally using Lemma we prove
Theorem 211 O

Remark 2.6. (i) If we define p € R_,

. 1,5 a
= min —t° —
0<t<T 2 o+1

(C(Qt+T)7tt

it is easy to prove
<I>,\,T(ﬂ) <p< (I))\,T(ﬂ) <0< ‘b,\ﬂ—(a)
(ii) Unlike [7], [8], [9] and [4], where the size of ||T|| () is relevant, in our approach

the condition I' = ||7|| o+1(q) small is of primary importance. Note, that I small
does not say anything about ||7||zec(q)-

3. ) BIG ENOUGH

Now we study problem for inf ¢(z) > 0 and 2 C R™ (n > 3) big enough.
By big enough we mean that there exists xg € 2 such that the euclidean ball with
center xg and radius R is contained in 2, with R large enough.

Let W, () be the usual Sobolev space, with ||u|\§V01,2(Q) = [olu? + |Vul*]dx

and I' = [|7||2(q). If inf c(x) > 0, then

1

where m = min{inf ¢(z), 1}.

As was seen in section 2 we find an interval A’ C R such that for all A € A’ there
exists at least three positive solutions of and we eliminate the restrictions on
7 . Consequently we obtain:
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Theorem 3.1. Let us assume (f1)-(f4). For allT > 0 and R large enough there
exists an interval |A(R), N[ with A(R) > 0 such that for all X €]\, \[ the problem
has at least three positive solutions.

To prove this theorem, we need to redefine A and A. Therefore, let

s :
51% if |x — x| < p
wr(@) =4 = (R—lw—wol) ifp<la—wl| <R
0 if |x — 29| > R

If we define w, = w5, g where §; = t; R and t; €]0, 1] such that 9 (¢1) = minjg 19 (t),

P(t) = %; then with a similar development to Lemma we obtain
t2(1-t)n

Dy (wo) <0 VA>A>0 and VY7 >0

where , ,
1 ~R 1—(1—¢t)"
) = B lele B 10y
2F(1(wo))R2 N t2(1 —ty)n
On the other hand, using the modification, to n > 3
/2 95 /1 — (1 —1¢t1)"\1/2
[Vwoll L2 (@) = so (wn) R™7 (7( g ) ) — 00 (3.2)
i
as R — oo. Since
2F
0 < lim #S lim @:0
s—0t S s—0Tt S
for (f3) and since F' is bounded, we define
b F(s)
3= ?i% 2 < + (3.3)

Lemma 3.2. For all A\ < X\ and Hu||W01,z(Q) =T, &) ,(u) >0.

Proof. Using (3.1) and (3.3)

1
Dy, (u) = 3 / [e(x)u? + |Vu|*]dz — )\/ F(u+ 7)dx
Q Q
m Ab
> lyll? _ 24
=9 ||u||W01’2(Q) B Q(u+7’) T

m Ab
= 5”“”3‘/0112(9) = 5 (lullzze) + Il L2(2))*
m Ab
> Pl iy — el y + I7llze)?
So, when we define A = m/4b, then for all A < X, ®, - (u) > 0. O
Proof of Theorem [3.1] Let wy and A(R) be ‘as above, using Lemma there exists
A > 0 such that @y .(u) > 0 for all A < X and ||u||W01,2(Q) =T. From the A\, A
definition and (3.2) to R large enough A < X and ||w0||W01,z(Q) > I'. Finally using a
similar development to Theorem [2.I] Theorem [3.1]is proven. O

Remark 3.3. For n = 2 Theorem [B.1]is false.
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4. THE PROBLEM IN Rﬁﬁ

Let W01’2(R7}r) and V;@Q(Rﬁ) be the completion of C§°(R%) in (||.|3+(|V(.)[3)'/2
and (||e.||l2 + [IV()]|3)"/? respectively, where |.|» is the usual L? norm for the
respective domain. If inf ¢(x) > 0, then by (3.1)),

Wy (RY) ~ Vg (RY)

We define for all A > 0 and for all non-negative function 7 such that ||7|| Lori(ry) <
00, the functional ®) ; o : Wy 2(R?) — R

1
(I))\,T,oo(u) - 5/]1{

where F(s) = fot f(t)dt.
The function ®y ; o is well-defined; even more if u € W&’Q(R’_,’_), using (f3) and
Sobolev immersion we obtain

0< Flu+71) < a / (u+7)°+t
R™ U+ 1 RrR™
+ +
a o+1
S o+ l(Hu”La+l(Ri) + ||THLU+1(]R1)>
a
oc+1

where C; is the usual Sobolev immersion constant. Then using (3.1))

[e(x)u? + |Vul]dr — )\/ F(u+7)dx
¥ RY

IN

(Callullyz gy + 17l qany)”

m 9 a o+1
B ) 2 Tl — Aoy ol ey + Il )7 (4
It is easy to verify that @) ; . is a C'! functional, so if u € W&’Q(Rﬁ) is a critical

point of @, ; - then u is a weak solution and by regularity, so classical solution of

(L3).

Proposition 4.1. (i) Let m be as above then for all A < 55 P rco 08 coercive and
bounded from below.

(i) For all A < w, 1.5) has at most one solution in W&’Q(Ri).
Proof. (i) Using (3.1]) and (3.3])

me oo b ,
oo () 2 Zul2yr 205y — 5 / wt)
+

m Ab
EHUH?’V&’Q(RZ) - ?(HUHW(}*?(R@ + ||7'||L2(1R1))2

V

m— b Ab
(B Il 2 gy = Ablwllgpze I loeg) = ST e

so, (i) is proven.

(ii) The uniqueness is proved as in [I]. Indeed: if u; and uy are two solutions of

then,
inf c(2) / (11 —1up)2da < / le(a) (w1 —un) |V (w1 —un) [P]da < N [ (w1 —us)2da
R? R R

O
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Now we consider problem (1.6) and we define ®) . g : Wol’Z(DR) — R in the
same way that @y ; o. It can be verified that, if R’ > R, then

Wy *(Dr) € Wy (Drr) © Wy (RY)
in addition for all u € W01’2(DR)7 Dy oo(u) < Oy - p(u) < @y, p(u), more pre-
cisely

‘13,\7.,-73/(11,) = <I>A7T7R(u) - )\/ F(T)dl‘ (42)
DleDR

Remark 4.2. There exists a positive constant C' = C(a, o, Cs,m) such that for

all A < X(||T||Lv+1(Ri)) and for all u: ||u||W01,z(Ri) = [[7llpr+r1(rn)s Paro0(u) >0,
where X(HTHLaJrl(Ri)) = CH7'||1L;$1(R1). In fact, applying (4.1) and taking
1
o=t o
2a

the result is obvious. Furthermore for (4.2))
1,2
Prrr(u) >0 Yue Wy (Dr) lullyrzpyy = ITlzo+ @y

then as in Lemma for A < X there exists Tip € Wy ?(Dg) with ||ﬂR||W01,2(DR) <
”THLU‘H(Ri) such that ¢)\,’T,R(ER> < 0 and (I)IA,T,R(ER) =0.

Now we will prove a sufficient condition to approximate solutions of (1.5 with
solutions of (|1.6)) with R large enough.

Lemma 4.3. Let f and T be as above and N\ € Ry. Suppose (Ry), is a se-
quence Ry such that R, — +oo and (un)n is a sequence of positive solutions of
with R, instead of R, such that for all n, u, € Wol’Z(DRn) and (Up)n 18
bounded in W01’2(]R’}r), i.e. there exists I' > 0 such that for all n, ||un|lL2(py, ) +
Vun|l2(pg,y < T'. Then, there exists a subsequence (called again (un)n)) and a
function u € Wy~ (R%) such that u, — u weakly in W&’Q(R’_f_) and u is a classical

solution of (|L.5)).

Proof. Using the Calderén-Zygmund inequality for all n [6l theorems 9.9 and 9.11],
u, € Wy*(Dg, ) (VH*?(Dg, ). (H*?(Dg,) denotes the usual Sobolev space
W2P(Dpg,)). Fixed R’ > 0, for any ' CC Dgr,
[un 2@y < ClllunllLe Dy + A (Un +7)l|Le(y))
for all n such that R,, > R’. The constant C depends on Dg/, n, p and €. Since
(un) is bounded in W, ’Q(Ri), using Sobolev immersion and Poincaré inequality
ltnll 20 < C(CHT" + Asup f| D7)
for p such that
2
l<p< " ifn>3
n—2
l<p ifn=2
and for all n such that R, > R’. From this and the Sobolev embedding theorem

for (', there exists a subsequence (uy, ), such that if n=2,3 u,, — u in C»*(Q/) and

ifn>4and1<p< min(%, %) is fixed, u,, — win LI(Q), 1 < g < n:”;p. Since

Y is an arbitrary and relatively compact such that Q' CC Dg, and R, — +o00,
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we obtain that the above convergence are in Cp;” (R7%) and L

loc (Ri ), respectively.
In particular

U, —u in Li (R) (4.3)
On the other hand, since (uy,), is bounded in W, ’Z(R’_f_), and reflexivity
U, —u  weakly in W2 (R%) (4.4)
then using Sobolev immersion
up — u  weakly in  LP(RY) (4.5)
where

2
2<p< - ifn>3
n—2
2<p ifn=2
By (4.4), if we prove that for all v € C§°(R"})
f(up + 7)vdr — flu+ 7)vdz
R% R%

our lemma will follow. Based on this and for fixed v € C§°(R"}), we consider the
function

_fsm)
outT
It is easy to see that w € LP' (R™), where p' is such that % + i = 1. Now

f(un + 7)vdz

Ry
flu+7)
|:f(un + T) - (un + T) “ :|Udl' + /R (Un + T)U] dm

/n T n
R% + +

By (4.5)), the last term of the right hand side of (4.6) tends to fRi f(u+7)v. On
the other hand, by (f4)

(4.6)

\/ [#un+7) - (unJrT)M}vdx‘ < 21/ u— un|jolde  (4.7)
" u+T supp(v)
so by (4.3)), the first term of the second member in (4.6 tends to 0. O

Theorem 4.4. Let I, f, 7 and X be as above. Then, for all A, 0 < A < X the

local minima ugr of ®x g obtained in Remark approzimate the local minima

of ®x 7,00 0n the ball Br of center 0 and radius I' in W01’2(R1). As consequence

Voo = Infp. Py 700, 15 @ minimum and by Propositz'on it is the unique, if X is
: inf

small enough (i.e. 0 < X < —2% ?(m)).

Proof. Using the Lemma we only need to prove that @y, r(Ur) — Ve as

R — oco. Because of this we consider (ug)r in Cg°(R") such that ur € Wy (Dg)
and @y ; oo(UR) — Voo as R — o0o. Then

Voo < rn(R) £ Oa (i) = B relun) = A [ Plr)ds
R?—Dg

by 7>\fR¢7DRF(T)dx—>OasR—>oo. 0
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