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EXACT MULTIPLICITY RESULTS FOR A p-LAPLACIAN
POSITONE PROBLEM WITH CONCAVE-CONVEX-CONCAVE

NONLINEARITIES

IDRIS ADDOU & SHIN-HWA WANG

Abstract. We study the exact number of positive solutions of a two-point

Dirichlet boundary-value problem involving the p-Laplacian operator. We con-

sider the case p = 2 and the case p > 1, when the nonlinearity f satisfies
f(0) > 0 (positone) and has three distinct simple positive zeros and such that

f ′′ changes sign exactly twice on (0,∞). Note that we may allow f ′′ to change

sign more than twice on (0,∞). We also present some interesting examples.

1. Introduction

In this paper we present exact multiplicity results of positive solutions for the
nonlinear two-point Dirichlet boundary-value problem

−(ϕp(u′(x)))′ = λf(u(x)), −1 < x < 1,

u(−1) = u(1) = 0,
(1.1)

where p > 1, ϕp(y) = |y|p−2y and (ϕp(u′))′ is the one-dimensional p-Laplacian, λ >
0 and f is a concave-convex-concave nonlinearity. Precise conditions are listed
below.

This paper is intended as a second part of a previous paper by the present authors
[3]. In fact, whereas the previous paper was a study of (1.1) with f ∈ C2[0,∞)
satisfying f(0) = 0 and has two distinct simple positive zeros b < c and such that
f ′′ changes sign exactly twice on (0,∞), here we wish to complete the picture by
studying the same sort of (1.1) but with the nonlinearity f ∈ C2[0,∞) satisfying
instead, f(0) > 0 (positone) and has three distinct simple positive zeros a < b < c
and such that f ′′ changes sign exactly twice on (0,∞).

Note that besides being complementary to our previous paper [3], the present ar-
ticle contains an important originality which deserves to be mentioned in this intro-
duction. A familiar feature related to positive solutions, say u, of a one-dimensional
Dirichlet boundary-value problem with the p-Laplacian differential operator, is that
we think that the interior zero set of the derivative u′ is a connected set. (That is,
if u ∈ C1[−1, 1] is a positive solution and Z(u) = {x ∈ [−1, 1] : u′(x) = 0} then
Z(u) ∩ (−1, 1) is either a single point or a closed interval.) For the particular case
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p = 2, it is easy to prove that Z(u) ∩ (−1, 1) is indeed a connected set, but what
about the more general case p > 1? None known results in the literature prove
or disprove this feature. This paper provide an example which disproves this fact.
Indeed, for some p > 1, p 6= 2, we have obtained some positive solutions of (1.1)
such that the interior zero set of their derivative is not a connected set. Note that
this situation is not known even for (1.1) when f(0) = 0 in our previous paper
Addou and Wang [3].

For p = 2, (ϕp(u′))′ = u′′, and (1.1) reduces to

−u′′(x) = λf(u(x)), − 1 < x < 1,

u(−1) = u(1) = 0,
(1.2)

and several exact multiplicity results are known when f vanishes three times on
(0,∞), see [6, 8, 9, 10, 11]. However, in all of them, f ′′ changes sign exactly once
on (0,∞). In fact, first studies go back to Smoller and Wasserman [9] in which they
studied exact multiplicity results of (classical) positive solutions of (1.2) for cubic-
polynomial nonlinearities f(u) = −(u − a)(u − b)(u − c) satisfying 0 < a < b < c,
c > 2b−a (⇔

∫ c

a
f(u)du > 0), and a certain condition; see also Wang [10]. One can

note that, here, f ′′(u) changes sign exactly once on (0,∞). Subsequently, Wang and
Kazarinoff [12] and Wang [11] studied (1.2) when f is a cubic-like nonlinearity. In
particular, Wang and Kazarinoff proved the next theorem. Define F (u) =

∫ u

0
f(t)dt.

Theorem 1.1 ([12, Theorem 1 and Remark 2]). Suppose f ∈ C2[0,∞) and there
exist 0 < a < b < c such that the following conditions are satisfied:

f(a) = f(b) = f(c) = 0; (1.3)

f(u) > 0 for u ∈ (0, a),

f(u) > 0 for u ∈ (b, c),

f(u) < 0 for u ∈ (a, b) ∪ (c,∞);
(1.4)

∫ c

a

f(u)du > 0; (1.5)

there exists a unique β ∈ (b, c) defined by
∫ β

a
f(u)du = 0 and such that 2F (a) −

βf(β) < 0;
there exists r ∈ (0, c) such that f ′′(u) > 0 for 0 < u < r and f ′′(u) < 0 for
r < u < c.
Then, there exists λ0 > 0 such that

(i) for 0 < λ < λ0, problem (1.2) has exactly one positive solution u0 satisfying
0 < ‖u0‖ < a,

(ii) for λ = λ0, problem (1.2) has exactly two positive solutions u0 < u1 satis-
fying 0 < ‖u0‖ < a < β < ‖u1‖ < c,

(iii) for λ > λ0, problem (1.2) has exactly three positive solutions u0 < u1 < u2

satisfying 0 < ‖u0‖ < a < β < ‖u1‖ < ‖u2‖ < c.

Remark 1.2. If f ∈ C[0,∞) satisfies (1.3)-(1.5), then it can be shown that

(i) By the maximum principle, every classical positive solution u of (1.2) sat-
isfies either 0 < ‖u‖∞ < a, or β < ‖u‖∞ < c.
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(ii) Any two distinct positive solutions of (1.2) are strictly ordered. That is,
let u and û be any two distinct positive solutions of (1.2) with 0 < ‖u‖∞ <
‖û‖∞, then u < û, see e.g. [12, Lemma 1].

Note that a similar result to Theorem 1.1 was obtained by Korman et al. [6,
Theorem 2.7]. For f a cubic-like nonlinearity and for (1.2) (p = 2), similar results
when f(0) = 0 (resp. f(0) > 0) and f ′′ changes sign exactly once on (0,∞) were
proved by Korman and Shi [8] (resp. Korman et al. [7].)

But for (1.1) with p 6= 2, little is known. In fact for the case where 0 = a < b < c
we refer to Addou [2]. Problem (1.1) with p > 1, has been recently studied in
Addou and Wang [3] for the case where f(0) = 0 and f ′′ changes sign exactly twice
on (0,∞). We note that the case where f(0) > 0 and f ′′ changes sign exactly twice
has not been studied yet.

The paper is organized as follows. Section 2 is devoted to the definitions of
the sets which contain the solutions of (1.1) and stating the main tool used sub-
sequently, namely, the quadrature method. Next, in Section 3, we state our main
results. In Section 4, a weakened condition and two examples are given. Finally, in
Section 5, we prove the main results.

2. Quadrature method

To state the main results, we first define the subsets of C1[−1, 1] which contain
the solutions of (1.1). By a positive solution to (1.1) we mean a positive function
u ∈ C1[−1, 1] with ϕp(u′) ∈ C1[−1, 1] satisfying (1.1). Recall that Z(u) = {x ∈
[−1, 1] : u′(x) = 0}. We note that it is easy to show that, if f ∈ C and u is a
positive solution of (1.1), then u ∈ C2[−1, 1] if 1 < p ≤ 2 and u ∈ C2([−1, 1]− Z)
if p > 2. For the proof we refer to Addou [1, Lemma 6].

Let A+ (resp. B+) be the subset of C1[−1, 1] consisting of the functions u
satisfying

(i) u(x) > 0 for all x ∈ (−1, 1), u(−1) = u(1) = 0 and u′(−1) > 0 (resp.
u′(−1) = 0),

(ii) u is symmetrical with respect to 0 (i.e., u is even).

Note that the derivative of any function u ∈ A+ (resp. B+) satisfies u′(0) = 0.
Therefore Z+(u) contains at least 0. Also, Z+(u) may be connected or is an union
of many connected components. Furthermore, each connected component is either
a single point or an interval [ã, b̃], ã < b̃. (Note that u′ is continuous). So, for
each integer k = 1, 2, . . . ., one can consider the subsets of A+ (resp. B+) which are
composed by functions u such that Z+(u) is an union of k connected components
exactly. These sets can be designed by A+

a1a2...ak
(resp. B+

b1b2...bk
) where for all

j ∈ {1, 2, . . . , k}, aj = 0 (resp. bj = 0) if the jth connected component is a single
point and aj = 1 (resp. bj = 1) if it is an interval (not reduced to a single point). For
example, A+

0 (resp. B+
0 ) is the subset of A+ (resp. B+) consisting of the functions

u such that their derivative u′ vanishes once and only once (at 0 necessarily). An
example of a function in A+

0 (resp. B+
0 ) is given by Fig. 1(a) (resp. Fig. 2(a)).

Also, A+
1 (resp. B+

1 ) is the subset of A+ (resp. B+) such that u ∈ A+
1 (resp.

u ∈ B+
1 ) if and only if u ∈ A+ (resp. u ∈ B+) and there exists x0 ∈ (0, 1) such that

for all x ∈ [0, 1], u′(x) = 0 if and only if 0 ≤ x ≤ x0 (resp. 0 ≤ x ≤ x0 or x = 1).
An example of a function in A+

1 (resp. B+
1 ) is given by Fig. 1(b) (resp. Fig. 2(b)).
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Figure 1. Typical graph: (a) of u ∈ A+
0 ; (b) of u ∈ A+

1 ; (c) of
u ∈ A+

00; (d) of u ∈ A+
01; (e) of u ∈ A+

10; (f) of u ∈ A+
11.

An example of a function in A+
00 (resp. B+

00) is given by Fig. 1(c) (resp. Fig. 2(c)).
That is, there exists x0 ∈ (0, 1) such that, for all 0 ≤ x ≤ 1,

u′(x) = 0 if and only if x ∈ {0, x0}(resp. x ∈ {0, x0, 1}).

An example of a function in A+
01 (resp. B+

01) is given by Fig. 1(d) (resp. Fig. 2(d)).
That is, there exist 0 < x1 < x2 < 1 such that, for all 0 ≤ x ≤ 1,

u′(x) = 0 if and only if x ∈ {0} ∪ [x1, x2] (resp. x ∈ {0} ∪ [x1, x2] ∪ {1}).

An example of a function in A+
10 (resp. B+

10) is given by Fig. 1(e) (resp. Fig. 2(e)).
That is, there exist 0 < x0 < x1 < 1 such that for all 0 ≤ x ≤ 1,

u′(x) = 0 if and only if x ∈ [0, x0] ∪ {x1} (resp. x ∈ [0, x0] ∪ {x1, 1}).

An example of a function in A+
11 (resp. B+

11) is given by Fig. 1(f) (resp. Fig. 2(f)).
That is, there exist 0 < x0 < x1 < x2 < 1 such that, for all 0 ≤ x ≤ 1,

u′(x) = 0 if and only if x ∈ [0, x0] ∪ [x1, x2] (resp. x ∈ [0, x0] ∪ [x1, x2] ∪ {1} ).
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Figure 2. Typical graph: (a) of u ∈ B+
0 ; (b) of u ∈ B+

1 ; (c) of
u ∈ B+

00; (d) of u ∈ B+
01; (e) of u ∈ B+

10; (f) of u ∈ B+
11.

Note that if a solution u ∈ A+
1 ∪ B+

1 , then it is usually called a dead core
solution of (1.1). In this paper we extend this terminology to the case where a
solution u ∈ A+

a1a2
∪B+

a1a2
for some k = 2 and aj = 1 for some j ∈ {1, 2}, and call

it a dead core solution too.
First it is easy to derive an energy relation of solutions u of (1.1); see e.g. [4, p.

421] and [1, Lemma 7]. Denote by p′ = p/(p− 1) the conjugate exponent of p.

Lemma 2.1 (Energy relation). Let p > 1 and assume that u is a positive solution
of (1.1), then (|u′(x)|p + p′λF (u(x)))′ = 0 for all x ∈ [−1, 1].

Lemma 2.2. Suppose f satisfies conditions (1.3)–(1.5) and u is a positive solution
of problem (1.1). Then u ∈ A+

0 ∪A+
1 ∪A+

00 ∪A+
01.

Proof. Suppose f satisfies conditions (1.3)–(1.5), f(0) > 0 and f changes sign
exactly twice on (0,∞). Suppose u is a positive solution of (1.1), then u is sym-
metrical with respect to 0. It can be easily proved that either 0 < ‖u‖∞ ≤ a or



6 IDRIS ADDOU & SHIN-HWA WANG EJDE-2004/72

β ≤ ‖u‖∞ ≤ c by applying Lemma 2.1; cf. Remark 1.2(i). Thus

u ∈ A+
0 ∪A+

1 ∪A+
00 ∪A+

01 ∪A+
10 ∪A+

11 ∪B+
0 ∪B+

1 ∪B+
00 ∪B+

01 ∪B+
10 ∪B+

11.

The proof is easy but tedious, so we omit it. More precisely,
(i) Since f(0) > 0, if u is a positive solution u of (1.1) satisfying ‖u‖∞ = u(0) =

η ∈ (0, a] ∪ [β, c], then u′(−1) = (p′λF (η))1/p > 0 by applying Lemma 2.1. Hence
u /∈ B+

0 ∪B+
1 ∪B+

00 ∪B+
01 ∪B+

10 ∪B+
11.

(ii) We then show that u /∈ A+
10 ∪ A+

11. Suppose that u ∈ A+
10 ∪ A+

11. Then
either ‖u‖∞ = c or ‖u‖∞ = a, and there exists x1 ∈ (0, 1) such that u′(x1) = 0.
If ‖u‖∞ = c, then by applying Lemma 2.1, p′λF (c) = p′λF (x1), which contradicts
the fact that F (c) > F (x1). So ‖u‖∞ 6= c. Similarly, ‖u‖∞ 6= a. We conclude that
u /∈ A+

10 ∪A+
11.

By above (i) and (ii), we obtain that u ∈ A+
0 ∪A+

1 ∪A+
00 ∪A+

01. �

To study (1.1), we make use of the quadrature method. Suppose f ∈ C[0,∞)
satisfies conditions (1.3)–(1.5). For any E ≥ 0 and s > 0, let G(E, s) := Ep −
p′λF (s). It can be shown that, the function G(E, ·) has at most four zeros in
(0,∞). For any E ≥ 0, define

X1(E) = {s > 0 : s ∈ dom G(E, ·) and G(E, u) > 0 for all u ∈ (0, s)}

and

r1(E) =

{
0 if X1(E) = ∅,
sup(X1(E)) otherwise.

Next for any E ≥ 0, define

X2(E) = {s > r1(E) : s ∈ dom G(E, ·) and G(E, u) > 0 for all u ∈ (r1(E), s)}

and

r2(E) =

{
∞ if X2(E) = ∅,
sup(X2(E)) otherwise.

Note that X2(E) and r2(E) are well defined even if r1(E) = ∞. In fact, in this
case, X2(E) = ∅ and r2(E) = ∞. Let

D̃1 =
{
E ≥ 0 : r1(E) ∈ dom G(E, ·), G(E, r1(E)) = 0,

and
∫ r1(E)

0

(Ep − p′λF (t))−1/pdt < ∞
}
,

D̃2 =
{
E ≥ 0 : r2(E) ∈ dom G(E, ·), G(E, r2(E)) = 0,

and
∫ r2(E)

0

(Ep − p′λF (t))−1/pdt < ∞
}
.

Define the time maps

T1(E) =
∫ r1(E)

0

(Ep − p′λF (t))−1/pdt, E ∈ D̃1,

T2(E) =
∫ r2(E)

0

(Ep − p′λF (t))−1/pdt, E ∈ D̃2,

whenever D̃1 6= ∅ (resp. D̃2 6= ∅).
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By Lemma 2.1 and arguments in [4], we have the following theorem. Note
that in this paper, by Lemma 2.2, we restrict ourself on positive solutions u ∈
A+

0 ∪A+
1 ∪A+

00 ∪A+
01.

Theorem 2.3 (Quadrature method). Consider (1.1). Suppose f ∈ C[0,∞) satis-
fies conditions (1.3)–(1.5). Let E ≥ 0. Then T1 (resp. T2) is a continuous function
of E ∈ D̃1. (resp. E ∈ D̃2). Moreover,

(i) Problem (1.1) has a solution u ∈ A+
0 satisfying u′(−1) = E > 0 if and only

if E ∈ D̃1−{0}, f(r1(E)) ≥ 0 and T1(E) = 1, and in this case the solution
is unique.

(ii) Problem (1.1) has a solution u ∈ A+
1 satisfying u′(−1) = E > 0 if and only

if E ∈ D̃1−{0}, f(r1(E)) = 0 and T1(E) < 1, and in this case the solution
is unique.

(iii) Problem (1.1) has a solution u ∈ A+
00 satisfying u′(−1) = E > 0 if and only

if E ∈ D̃2 − {0}, f(r1(E)) ≥ 0, f(r2(E)) ≥ 0, and T2(E) = 1, and in this
case the solution is unique.

(iv) Problem (1.1) has a solution u ∈ A+
01 satisfying u′(−1) = E > 0 if and only

if E ∈ D̃2 − {0}, f(r1(E)) = 0, f(r2(E)) ≥ 0, and T2(E) < 1, and in this
case the solution is unique.

Remark 2.4. In practice, we first study the variations of the real-valued function
G(E, ·), then compute X1(E) and deduce r1(E) (resp. compute X2(E) and deduce
r2(E)). Next, we compute D̃1 (resp. D̃2). For this, we first compute the set

D1 = {E > 0 : r1(E) ∈ dom G(E, ·), G(E, r1(E)) = 0, f(r1(E)) > 0},
(resp.

D2 = {E > 0 : r2(E) ∈ dom G(E, ·), G(E, r2(E)) = 0, f(r2(E)) > 0}),
and then we deduce D̃1 (resp. D̃2) by observing that D1 ⊂ D̃1 − {0} ⊂ D1 (resp.
D2 ⊂ D̃2−{0} ⊂ D2) ; we omit the proof. (Note that D1 is the closure of D1 (resp.
D2 is the closure of D2).) After that, we define the time map T1 on D̃1 and then
compute its limits at the boundary points of D̃1. We next study the variations of T1

on D̃1. For T2, we shall show that its definition domain D̃2 is restricted to a single
point; there is no variation to study for T2. We achieve our study by discussing the
number of solutions to

(i) Equation T1(E) = 1 and f(r1(E)) ≥ 0 for E ∈ D̃1 − {0} in case of looking
for solutions u in A+

0 .
(ii) Inequality T1(E) < 1 and f(r1(E)) = 0 for E ∈ D̃1−{0} in case of looking

for solutions u in A+
1 .

(iii) Equation T2(E) = 1 and f(r1(E)) ≥ 0, f(r2(E)) ≥ 0, for E ∈ D̃2 − {0} in
case of looking for solutions u in A+

00.
(iv) Inequality T2(E) < 1 and f(r1(E)) = 0, f(r2(E)) ≥ 0, for E ∈ D̃2−{0} in

case of looking for solutions u in A+
01.

3. Main results

We determine the exact multiplicity of positive solutions of (1.1) for λ > 0 under
hypotheses (H1)-(H5) stated below. In particular, we assume that f satisfies the
“convexity” condition (H4) which implies for the particular case p = 2, that f ′′

changes sign exactly twice on (0,∞), i.e., f is concave-convex-concave on (0,∞).
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Note that if f satisfies (H1)-(H3) then it satisfies (1.3)–(1.5). Also note that we
may allow that f ′′ changes sign more than twice, i.e., we may allow that f is
concave-convex-concave-convex; see Section 4.

For f , recalling that F (u) =
∫ u

0
f(t)dt, we let

θp(u) := pF (u)− uf(u),

Ψp(u) := uθ′p(u)− θp(u) = puf(u)− u2f ′(u)− pF (u),

νp :=
{ ∫ c

0

(F (c)− F (u))−1/pdu
}p

/p′ ∈ (0,∞],

αp :=
{ ∫ a

0

(F (a)− F (u))−1/pdu
}p

/p′ ∈ (0,∞], (3.1)

λp :=
{ ∫ β

0

(F (β)− F (u))−1/p
}p

/p′ ∈ (0,∞], (3.2)

µp := inf
β≤ξ≤c

{ ∫ ξ

0

(F (ξ)− F (u))−1/pdu
}p

/p′,

where 0 < a < β < c are defined below. We shall show that 0 < µp < ∞ for p > 1.
For all λ > 0, we denote Sλ the positive solution set of (1.1).

For fixed p > 1, suppose f ∈ C2[0,∞) and there exist 0 < a < b < c such that
the following conditions are satisfied:

(H1) f(0) > 0
(H2) f(u) > 0 for 0 < u < a, f(u) < 0 for a < u < b, f(u) > 0 for b < u < c,

f(u) < 0 for u > c
(H3)

∫ c

a
f(u)du > 0, and there exists β∗ ∈ (0, β] such that θp(β∗) = pF (β∗) −

β∗f(β∗) < 0, where β ∈ (b, c) is defined by
∫ β

a
f(u)du = 0,

(H4) There exist 0 < rp < sp < c such that

(p− 2)f ′(u)− uf ′′(u) > 0 for 0 < u < rp,

(p− 2)f ′(u)− uf ′′(u) < 0 for rp < u < sp,

(p− 2)f ′(u)− uf ′′(u) > 0 for sp < u < ∞,

(H5) There exists a unique σp ∈ (sp, c) satisfying (p − 1)f(σp) − σpf
′(σp) = 0

and such that Ψp(σp) ≥ Ψp(rp).

Remark 3.1 (Cf. Remark 1.2). If f ∈ C[0,∞) satisfies (H1)-(H3), then by apply-
ing Lemma 2.1, it can be shown that

(i) Every positive solution u of (1.1) satisfies 0 < ‖u‖∞ ≤ a or β ≤ ‖u‖∞ ≤ c.
(ii) Any two distinct positive solutions of (1.1) are strictly ordered. That is,

let u and û be any two distinct positive solutions of (1.1) with 0 < ‖u‖∞ <
‖û‖∞, then u < û.

Case 1 < p ≤ 2. The next theorem gives a complete description of the set Sλ for
1 < p ≤ 2.

Theorem 3.2 (Sλ for 1 < p ≤ 2, see Fig. 3). Assume that 1 < p ≤ 2 and
f ∈ C2[0,∞) satisfies (H1)-(H5). Then 0 < µp < ∞. Moreover:

(i) For 0 < λ < µp, there exists uλ ∈ A+
0 such that Sλ = {uλ}. Also 0 <

‖uλ‖∞ < a.
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(ii) For λ = µp, there exist uλ, vλ ∈ A+
0 such that uλ < vλ and Sλ = {uλ, vλ}.

Moreover, 0 < ‖uλ‖∞ < a < β < ‖vλ‖∞ < c.
(iii) For λ > µp, there exist uλ, vλ and wλ ∈ A+

0 such that uλ < vλ < wλ and
Sλ = {uλ, vλ, wλ}. Moreover, 0 < ‖uλ‖∞ < a < β < ‖vλ‖∞ < ‖wλ‖∞ < c.

Figure 3. Bifurcation diagram of problem (1.1) with f(0) > 0
and 1 < p ≤ 2.

Figure 4. (a) Graph of f1(u) = −(u + 1/4)(u − 1)(u −
2)(u − 3) − 0.13. a ≈ 0.9497, b ≈ 2.0565, c ≈ 2.9792,
β ≈ 2.9378, r2 ≈ 0.7425, s2 ≈ 2.1325, σ2 ≈ 2.5787.
(b) Graph of θ2(u). 1.4751 ≈ θ2(β) > θ2(σ2) ≈ −0.8789.
(c) Graph of Ψ2(u). 0.8792 ≈ Ψ2(σ2) > Ψ2(r2) ≈ 0.5127.
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Next, we give two interesting examples of quartic polynomials of Theorem 3.2
with p = 2, of which one satisfies θ2(β) > 0 and the other satisfies θ2(β) < 0.

Two examples of Theorem 3.2. (i) (See Fig. 4, θ2(β) > 0) Let p = 2. The
function f = f1(u) = −(u + 1/4)(u− 1)(u− 2)(u− 3)− 0.13 satisfies all conditions
(H1)-(H5) in Theorem 3.2 with a ≈ 0.9497, b ≈ 2.0565, c ≈ 2.9792,

∫ c

a
f1(s)ds ≈

0.004695 > 0, r2 ≈ 0.7425, s2 ≈ 2.1325, 2.5787 ≈ σ2 < β ≈ 2.9387, 1.4751 ≈
θ2(β) > θ2(σ) ≈ −0.8789. Note that, in (H4)-(H5), 0.8792 ≈ Ψ2(σ2) > Ψ2(r2) ≈
0.5127.
(ii) (θ2(β) < 0) Let p = 2. Let f = f2(u) = −(u− d)(u− a)(u− b)(u− c) with

d = −1
6

< 0 < a = 1 < b = 2 < c.

Thus f2 satisfies (H1), (H2) and (H4) with

f ′′2 (u) = −12u2 + (17 + 6c)u− 3− 17
3

c

and f ′′2 (0) = −3− 17
3 c < 0. Let r2 < s2 be two positive zeros of f ′′2 (u) on (0, c). So

r2 =
1
24

(6c + 17−
√

36c2 − 68c + 145),

s2 =
1
24

(6c + 17 +
√

36c2 − 68c + 145).

There exists c1 ≈ 2.8380, the biggest positive zero of 18c3 − 49c2 − 26c + 25, such
that

c > c1 ⇔
∫ c

a

f2(u)du =
1

360
(c− 1)2(18c3 − 49c2 − 26c + 25) > 0 on (2,∞).

So for c > c1 ≈ 2.8380, there exists a unique β = β(c) ∈ (b, c) = (2, c) satisfying∫ β

a

f2(u)du = 0.

or,
1

360
(β − 1)2[−72β3 + (90c + 111)β2 + (−160c + 114)β − 140c + 57] = 0.

Note that β(c) can be expressed explicitly by Cartan’s formulas; see e.g. [5]. We
compute that

θ2(u) =
3
5
u5 − 6c + 17

12
u4 +

17c + 9
18

u3 +
c

3
u

and
θ2(β(c)) < 0 for c > c2 ≈ 2.9056,

where c2 is the unique zero of θ2(β(c)) on (c1,∞). Thus f2 satisfies (H3) for
c > c2 ≈ 2.9056.

Finally, we check (H5) for c > c2. Let σ2 = σ2(c) be the unique zero of

θ′2(u) = 3u4 − 6c + 17
3

u3 +
17c + 9

6
u2 +

c

3
in (s2, c). Note that σ2(c) can be expressed explicitly; see e.g. [5]. We compute
that

Ψ2(u) =
1

180
u3[432u2 − (270c + 765)u + 340c + 180] ,

Ψ2(σ2) > Ψ2(s2) for c > c2 ≈ 2.9056.
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We summarize above results and conclude that f2 satisfies (H1)-(H5) for c > c2 ≈
2.9056.

3.1. The case p > 2. By Lemma 2.2, Sλ ⊂ A+
0 ∪A+

1 ∪A+
00 ∪A+

01. Hence

Sλ = (Sλ ∩A+
0 ) ∪ (Sλ ∩A+

1 ) ∪ (Sλ ∩A+
00) ∪ (Sλ ∩A+

01);

Theorem 3.4 (resp. 3.5, 3.6, 3.7) gives complete description of the set Sλ ∩ A+
0

(resp. Sλ ∩A+
1 , Sλ ∩A+

00, Sλ ∩A+
01); see Fig. 5.

Figure 5. Bifurcation diagrams for Eq. (1.1) with p > 2 and
0 < αp < µp. (a) µp < νp < λp; (b) µp < νp = λp; (c) µp < λp <
νp.

Remark 3.3. Fig. 5 describes the solution set of (1.1) when p > 2 and 0 < αp <
µp. There are two connected branches. The lower branch bifurcates at the origin
and represents solutions in A+

0 until λ = αp; for all λ > αp, the branch is horizontal
and represents solutions in A+

1 . The upper branch is formed by two parts: The
upper horizontal curve represents solutions in A+

1 with norm equal to c, and the
⊂-shaped curve represents solutions in A+

0 until λ = λp where there is a solution
in A+

00 with norm equal to β and on its right the lower horizontal curve which
represents solutions in A+

01 with norm equal to β.

We shall show that, for p > 2, 0 < µp < λp < ∞ and 0 < µp < νp < ∞; see
Lemmas 5.3-5.4. We also show that, for p > 2, 0 < αp < λp < ∞; see Lemma 5.7.
For p > 1, let

B(0, a) := {u ∈ C1[−1, 1] : ‖u‖∞ < a},
B(0, β) := {u ∈ C1[−1, 1] : ‖u‖∞ < β},
B(0, c) := {u ∈ C1[−1, 1] : ‖u‖∞ < c}.

Theorem 3.4 (Sλ∩A+
0 for p > 2, see Fig. 5). Assume that p > 2 and f ∈ C2[0,∞)

satisfies (H1)-(H5). Then 0 < µp < λp < ∞, 0 < µp < νp < ∞, and 0 < αp <

λp < ∞. Sλ ∩A+
0 ∩ (B(0, β)−B(0, a)) = ∅. Also,

(i) For 0 < λ ≤ αp, there exists uλ ∈ A+
0 ∩B(0, a) such that Sλ∩A+

0 ∩B(0, a) =
{uλ}. Moreover, 0 < ‖uλ‖∞ ≤ a, and ‖uλ‖∞ = a if and only if λ = αp.

(ii) For λ > αp, Sλ ∩A+
0 ∩B(0, a) = ∅.



12 IDRIS ADDOU & SHIN-HWA WANG EJDE-2004/72

Moreover, (a) If µp < νp < λp, then:

(iii) For 0 < λ < µp, Sλ ∩A+
0 ∩ (B(0, c)−B(0, β)) = ∅.

(iv) For λ = µp, there exists uλ ∈ A+
0 ∩ (B(0, c)−B(0, β)) such that

Sλ ∩A+
0 ∩ (B(0, c)−B(0, β)) = {uλ} and β < ‖uλ‖∞ < c.

(v) For µp < λ ≤ νp, there exist uλ, vλ ∈ A+
0 ∩ (B(0, c) − B(0, β)) such

that uλ < vλ and Sλ ∩ A+
0 ∩ (B(0, c) − B(0, β)) = {uλ, vλ}. Moreover,

β < ‖uλ‖∞ < ‖vλ‖∞ ≤ c, and ‖vλ‖∞ = c if and only if λ = νp.
(vi) For νp < λ < λp, there exists uλ ∈ A+

0 ∩ (B(0, c) − B(0, β)) such that
Sλ ∩A+

0 ∩ (B(0, c)−B(0, β)) = {uλ} and β < ‖uλ‖∞ < c.
(vii) For λ ≥ λp, Sλ ∩A+

0 ∩ (B(0, c)−B(0, β)) = ∅.
(b) If µp < νp = λp, then:

(viii) For 0 < λ < µp, Sλ ∩A+
0 ∩ (B(0, c)−B(0, β)) = ∅.

(ix) For λ = µp, there exists uλ ∈ A+
0 ∩ (B(0, c)−B(0, β)) such that

Sλ ∩A+
0 ∩ (B(0, c)−B(0, β)) = {uλ} and β < ‖uλ‖∞ < c.

(x) For µp < λ < νp = λp, there exist uλ, vλ ∈ A+
0 ∩ (B(0, c) − B(0, β)) such

that uλ < vλ and Sλ ∩ A+
0 ∩ (B(0, c) − B(0, β)) = {uλ, vλ}. Moreover,

β < ‖uλ‖∞ < ‖vλ‖∞ < c.
(xi) For λ = νp = λp, there exists uλ ∈ A+

0 ∩ (B(0, c) − B(0, β)) such that
Sλ ∩A+

0 ∩ (B(0, c)−B(0, β)) = {uλ}. Moreover, ‖uλ‖∞ = c.
(xii) For λ > λp = νp, Sλ ∩A+

0 ∩ (B(0, c)−B(0, β)) = ∅.
(c) If µp < λp < νp, then:

(xiii) For 0 < λ < µp, Sλ ∩A+
0 ∩ (B(0, c)−B(0, β)) = ∅.

(xiv) For λ = µp, there exists uλ ∈ A+
0 ∩ (B(0, c)−B(0, β)) such that

Sλ ∩A+
0 ∩ (B(0, c)−B(0, β)) = {uλ}. Moreover, β < ‖uλ‖∞ < c.

(xv) For µp < λ < λp, there exist uλ, vλ ∈ A+
0 ∩ (B(0, c) − B(0, β)) such

that uλ < vλ and Sλ ∩ A+
0 ∩ (B(0, c) − B(0, β)) = {uλ, vλ}. Moreover,

β < ‖uλ‖∞ < ‖vλ‖∞ < c.
(xvi) For λp ≤ λ ≤ νp, there exists uλ ∈ A+

0 ∩ (B(0, c) − B(0, β)) such that
Sλ ∩A+

0 ∩ (B(0, c)−B(0, β)) = {uλ} and β < ‖uλ‖∞ ≤ c, and ‖uλ‖∞ = c
if and only if λ = νp.

(xvii) For λ > νp, Sλ ∩A+
0 ∩ (B(0, c)−B(0, β)) = ∅.

Theorem 3.5 (Sλ∩A+
1 for p > 2, see Fig. 5). Assume that p > 2 and f ∈ C2[0,∞)

satisfies (H1)-(H5). Then each solution uλ of (1.1) in A+
1 satisfies ‖uλ‖∞ = a or

‖uλ‖∞ = c. Moreover:

(i) For 0 < λ ≤ αp, Sλ ∩A+
1 ∩ ∂B(0, a) = ∅.

(ii) For λ > αp, there exists uλ ∈ A+
1 ∩∂B(0, a) such that Sλ∩A+

1 ∩∂B(0, a) =
{uλ} and ‖uλ‖∞ = a.

(iii) For 0 < λ ≤ νp, Sλ ∩A+
1 ∩ ∂B(0, c) = ∅.

(iv) For λ > νp, there exists uλ ∈ A+
1 ∩ ∂B(0, c) such that Sλ ∩A+

1 ∩ ∂B(0, c) =
{uλ} and ‖uλ‖∞ = c.

Theorem 3.6 (Sλ∩A+
00 for p > 2, see Fig. 5). Assume that p > 2 and f ∈ C2[0,∞)

satisfies (H1)-(H5). Then each solution uλ of (1.1) in A+
00 satisfies ‖uλ‖∞ = β.

Moreover,
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(i) For λ 6= λp and λ > 0, Sλ ∩A+
00 = ∅.

(ii) For λ = λp, there exists uλ ∈ A+
00 such that Sλ ∩A+

00 = {uλ} and ‖uλ‖∞ =
β.

Theorem 3.7 (Sλ∩A+
01 for p > 2, see Fig. 5). Assume that p > 2 and f ∈ C2[0,∞)

satisfies (H1)-(H5). Then each solution uλ of (1.1) in A+
01 satisfies ‖uλ‖∞ = β.

Moreover,
(i) For 0 < λ ≤ λp, Sλ ∩A+

01 = ∅.
(ii) For λ > λp, there exists uλ ∈ A+

01 such that Sλ ∩A+
01 = {uλ} and ‖uλ‖∞ =

β.

4. A weakened condition and two examples

We point out that the convexity condition of θp(u) = pF (u)− uf(u) on (0, c) in
(H4) in Theorems 3.2-3.7 can actually be weakened; cf. Remark 9 in Addou and
Wang [3], which holds true in the case f(0) = 0 as well as in the positone case
f(0) > 0. More precisely, condition (H4) can be weakened as

(H4′) There exist 0 ≤ rp < sp < c such that

(p− 2)f ′(u)− uf ′′(u) > 0 for 0 < u < rp, (It is not necessary if rp = 0.)

(p− 2)f ′(u)− uf ′′(u) < 0 for rp < u < sp,

(p− 2)f ′(u)− uf ′′(u) > 0 for sp < u < c, (It can be weakened below.)

We note that in (H4′) if rp = 0 then condition (H5) is automatically satisfied since
it can be easily shown that, for p > 1, Ψp(σp) > 0 = Ψp(rp).

We also note that in (H4′) the condition

(p− 2)f ′(u)− uf ′′(u) > 0 for sp < u < c

can actually be weakened as

θ′p(u) = (p− 1)f(u)− uf ′(u)

{
≤ 0 for sp < u < σp,

≥ 0 for d ≤ u ≤ c,

θ′′p (u) = (p− 2)f ′(u)− uf ′′(u) ≥ 0 for σp ≤ u < d,

where d ∈ (σp, c] is defined by

d :=

{
c if θp(c) ≤ θp(tp),
inf{u ∈ (σp, c] : θp(ξ) > θp(tp) for all ξ ∈ (u, c]} otherwise,

(4.1)

where tp is the unique zero of θ′p(u) on (rp, sp).
Thus we summarize that (H4′) can be weakened as follows:

(H4′′) There exist 0 ≤ rp < sp < σp < d < c such that

(p− 2)f ′(u)− uf ′′(u) > 0 for 0 < u < rp, (It is not necessary if rp = 0.)

(p− 2)f ′(u)− uf ′′(u) < 0 for rp < u < sp,

θ′p(u) = (p− 1)f(u)− uf ′(u)

{
≤ 0 for sp < u < σp,

≥ 0 for d ≤ u ≤ c,

θ′′p (u) = (p− 2)f ′(u)− uf ′′(u) ≥ 0 for σp ≤ u < d,

where d is defined in (4.1).
For example, Theorem 3.2 can be generalized as
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Theorem 4.1 (Sλ for 1 < p ≤ 2, see Fig. 3). Assume that 1 < p ≤ 2 and
f ∈ C2[0,∞) satisfies (H1)-(H3), ((H4′) or (H4′′)) and (H5). Then the results in
Theorem 3.2 hold.

Therefore, in the case that f(0) > 0, p = 2 and r2 = 0, Theorem 4.1 generalizes
[12, Theorem 1]. We give two examples of classes of nonlinearities of Theorem 4.1.

Proposition 4.2. Let p = 2. f = f3(u) = −(u−a)(u−b)(u−c) with a = 1, b = 3,
and

c > 2b− a = 5 (⇔
∫ c

a

f3(u)du > 0).

Then f3 satisfies all conditions (H1)-(H3), (H4′) and (H5) in Theorem 4.1.

Proof. It is easy to see that f3(u) = −(u−1)(u−3)(u−c) satisfies (H1), (H2), (H5)
and (H4′) with r2 = 0 for c > 5. Finally, we check (H3) for c > 5. We compute
that

θ2(u) =
1
2
u4 − 1

3
(c + 4)u3 + 3cu,

β = β(c) =
1
3
(2c + 5− 2

√
c2 − 7c + 10) ∈ (3, c),

and θ2(β) < 0 for c > c̃ ≈ 5.1193, where c̃ is the unique zero of θ2(β) on (5,∞).
Although for 5 < c ≤ c̃ ≈ 5.1193, θ2(β) ≥ 0, and thus Theorem 1.1 does not apply.
We compute that

θ′2(u) = 2u4 − (c + 4)u2 + 3c

and find that

σ2 = σ2(c) =
1
6
{
c + 4 +

(c + 4)2

(c3 + 12c2 + 114c + 64 + 18
√
−c4 − 12c3 + 33c− 64c)1/3

+
(
c3 + 12c2 − 114c + 64 + 18

√
−c4 − 12c3 + 33c− 64c

)1/3}
.

satisfies 0 < σ2 < β and θ2(σ2) < 0 for 5 < c ≤ c̃; we omit the detailed numerical
simulations here. So f3 satisfies (H3) for 5 < c ≤ c̃.

We conclude that f3(u) = −(u−1)(u−3)(u−c) satisfies all conditions (H1)-(H3),
(H4′) and (H5) in Theorem 4.1 for c > 5. �

Proposition 4.3 (See Fig. 6 for ε = 0.2). Let p = 2. For 0 < ε < 1, let

0 < a = sin−1 ε < b = π − sin−1 ε < c = 2π + sin−1 ε

and f = f4(u) satisfy

f4(u) =

{
− sinu + ε for 0 < u < c,

< 0 for u > c.

Then f4 satisfies all conditions (H1)-(H3), (H4′′) and (H5) in Theorem 4.1 for
ε > 0 small enough.

Proof. For f = f4(u), we find that

θ2(u) = u sinu + 2 cos u + εu− 2,

θ′2(u) = u cos u− sinu + ε.
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Figure 6. (a) Graph of f4(u) = − sinu + ε on (0, c) for ε = 0.2,
a ≈ 0.2014, b ≈ 2.9402, c ≈ 6.4845, β ≈ 4.7770, r2 = 0, s2 = π ≈
3.1416, σ2 ≈ 4.4473. (b) Graph of θ2(u) on (0, c). t2 ≈ 0.8650,
d ≈ 6.1084.

Let σ2 = σ2(ε) be the unique zero of θ′2(u) on (π, 2π) ⊂ (b, c) and β = β(ε) be the
unique zero of ∫ u

a

f4(s)ds = εu + cos u− ε sin−1 ε−
√

1− ε2

on (b, c). It can be checked easily that
(i) f4 satisfies (H1) and (H2) for 0 < ε < 1.
(ii) f4 satisfies the condition

∫ c

a
f4(u)du > 0 in (H3) for 0 < ε < 1. Also, for

ε > 0 small enough, by continuity, 0 < σ2(ε) < β(ε) since σ2(0) ≈ 4.4934 <
β(0) = 2π, and

θ2(σ2(ε)) < 0 (4.2)
since θ2(σ2(0)) ≈ −6.8206 < 0. So f4 satisfies (H3) for ε > 0 small enough.

(iii) We check that f4 satisfies (H4′′). First

θ′2(0) = f4(0) = ε > 0, (4.3)

θ′′2 (u) = −uf ′′4 (u) = −u sinu


< 0 for 0 = r2 < u < s2 = π,

> 0 for s2 = π < u < 2π,

< 0 for 2π < u < c = 2π + sin−1 ε.

(4.4)

Also, for ε > 0 small enough, let t2 = t2(ε) be the unique zero of θ′2(u) =
u cos u− sinu + ε on (0, π). It can be proved that limε→0+ t2(ε) = 0. More
precisely, we compute that

t2(ε) ∼ (2ε)1/3 as ε → 0+

and hence
θ2(t2(ε)) ∼ 21/3ε4/3 as ε → 0+.

Thus

θ2(2π) = 2επ > θ2(t2(ε)) for ε > 0 small enough. (4.5)

We also find that

θ′2(2π) = 2π + ε > 0, (4.6)
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θ′2(c) = c cos c = (2π + sin−1 ε)
√

1− ε2 > 0. (4.7)

So by (4.2)-(4.7), it can be proved that there exists d ∈ (σ2, 2π] such that
f4 satisfies

θ′′2 (u) = −uf ′′4 (u) = −u sinu < 0 for 0 = r2 < u < s2 = π,

θ′2(u) = f4(u)− uf ′4(u) = u cos u− sinu + ε

{
< 0 for s2 < u < σ2,

> 0 for d ≤ u ≤ c = 2π + sin−1 ε,

θ′′2 (u) = −uf ′′4 (u) = −u sinu > 0 for σ2 ≤ u < d;

see Fig. 6(b). We omit the detailed proofs here. So f4 satisfies (H4′′).
(iv) f4 satisfies (H5) automatically for 0 < ε < 1 since r2 = 0.
We conclude that f4 satisfies all conditions (H1)-(H3), (H4′′) and (H5) in The-

orem 4.1 for ε > 0 small enough. �

5. Proofs of main results

First, we have the next lemma which holds for nonlinearities f ∈ C[0,∞) satis-
fying (H1), (H2) and the condition

∫ c

a
f(s)ds > 0 in (H3). We omit the proof.

Lemma 5.1. Assume that f ∈ C[0,∞) satisfies (H1), (H2) and the condition∫ c

a
f(s)ds > 0 in (H3). Consider the function defined by

s 7−→ G(λ, E, s) := Ep − p′λF (s),

where p > 1, E ≥ 0 and λ > 0 are real parameters. Then
(i) If E > Ec := (p′λF (c))1/p > 0, then the function G(λ, E, ·) is strictly

positive on (0,∞).
(ii) If E = Ec, then the function G(λ, E, ·) is strictly positive on (0, c) and

vanishes at c.
(iii) If Ea := (p′λF (a))1/p < E < Ec, then the function G(λ, E, ·) has a unique

zero s1(λ, E) on (β, c) and is strictly positive on (0, s1(λ, E)). Moreover,
(a) The function E 7→ s1(λ, E) is C1 on (Ea, Ec) and

∂s1

∂E
(λ, E) =

(p− 1)Ep−1

λf(s1(λ, E))
> 0 for all E ∈ (Ea, Ec).

(b) limE→Ea
+ s1(λ, E) = β and limE→E−c

s1(λ, E) = c.
(iv) If E = Ea, then

G(λ, E)



> 0 for 0 < s < a,

= 0 for s = a,

> 0 for a < s < β,

= 0 for s = β,

< 0 for β < s < c.

(v) If 0 < E < Ea, then the function G(λ, E, ·) has a unique zero s2(λ, E) on
(0, a) and is strictly positive on (0, s2(λ, E)). Moreover,
(a) The function E 7→ s2(λ, E) is C1 on (0, Ea) and

∂s2

∂E
(λ, E) =

(p− 1)Ep−1

λf(s2(λ, E))
> 0 for all E ∈ (0, Ea).

(b) limE→0+ s2(λ, E) = 0 and limE→E−a
s2(λ, E) = a.
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(vi) If E = 0, then G(λ, 0, s)

{
< 0 for 0 < s ≤ a,

< 0 for β ≤ s ≤ c.

Now, for p > 1, λ > 0 and E ≥ 0, we let

X1(λ, E) := {s ∈ dom G(λ, E, ·) = (0,∞) : G(λ, E, u) > 0 for all u ∈ (0, s)}.

In view of Lemma 5.1, it follows that

X1(λ, E) =



(0,∞) if E > Ec,

(0, c] if E = Ec,

(0, s1(λ, E)] if Ea < E < Ec,

(0, a] if E = Ea,

(0, s2(λ, E)] if 0 < E < Ea,

∅ if E = 0.

Therefore, r1(λ, 0) := 0, and

r1(λ, E) := supX1(λ, E) =



∞ if E > Ec,

c if E = Ec,

s1(λ, E) if Ea < E < Ec,

a if E = Ea,

s2(λ, E) if 0 < E < Ea,

Also, we let

X2(λ, E) :=
{
s > r1(λ, E) : s ∈ dom G(λ, E, ·) = (0,∞),

G(λ, E, u) > 0 for all u ∈ (r1(λ, E), s)
}

In view of Lemma 5.1,

X2(λ, E) =



∅ if E > Ec,

(c,∞) if E = Ec,

∅ if Ea < E < Ec,

(a, β) if E = Ea,

∅ if 0 < E < Ea,

∅ if E = 0.

Therefore, r2(λ, E) :=

{
β if E = Ea,

∞ otherwise.
Let

D1(p, λ) :=
{
E > 0 : r1(λ, E) ∈ dom G(λ, E, ·) = (0,∞),

G(λ, E, r1(λ, E)) = 0, and f(r1(λ, E)) > 0
}

= (0, Ea) ∪ (Ea, Ec)

and

D2(p, λ) :=
{
E > 0 : r2(λ, E) ∈ dom G(λ, E, ·) = (0,∞),

G(λ, E, r2(λ, E)) = 0, and f(r2(λ, E)) > 0

= {Ea}.
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Note that the definition domains of the time maps T1 and T2 are

D̃1(p, λ) :=
{
E ≥ 0 : r1(λ, E) ∈ dom G(λ, E, ·) = (0,∞), G(λ, E, r1(λ, E)) = 0,

and
∫ r1(λ,E)

0

(G(λ, E, u))−1/pdu < ∞
}
,

D̃2(p, λ) :=
{
E ≥ 0 : r2(λ, E) ∈ dom G(λ, E, ·) = (0,∞), G(λ, E, r2(λ, E)) = 0,

and
∫ r2(λ,E)

0

(G(λ, E, u))−1/pdu < ∞
}

In the present case, (0, Ea) ∪ (Ea, Ec) ⊂ D̃1(p, λ) ⊂ [0, Ea] ∪ [Ea, Ec], and
D̃2(p, λ) ⊂ {Ea}. We define, for E ∈ D̃1(p, λ), the time map

T1(λ, E) :=
∫ r1(λ,E)

0

(G(λ, E, u))−1/pdu

=
∫ r1(λ,E)

0

(Ep − p′λF (u))−1/pdu

= (p′λ)−1/p

∫ r1(λ,E)

0

(F (r1(λ, E))− F (u))−1/pdu,

since G(λ, E, r1(λ, E)) = Ep − p′λF (r1(λ, E)) = 0. For all λ > 0, r1(λ, ·) is an
increasing C1-diffeomorphism from (0, Ea] onto (0, a] and from (Ea, Ec] onto (β, c].
Thus T1 may be written as

T1(p, λ,E) = (p′λ)−1/pS(p, r1(λ, E)) for E ∈ D1(p, λ),

where for all p > 1, S(p, ·) is defined by

S(p, α) :=
∫ α

0

(F (α)− F (u))−1/pdu for all α ∈ (0, a] ∪ (β, c]. (5.1)

Note that S(p, ·) takes its values in [0,∞]. We define, for E ∈ D̃2(p, λ), the time
map

T2(p, λ,E) :=
∫ r2(λ,E)

0

(G(λ, E, u))−1/pdu = (p′λ)−1/pS(p, r2(λ, E)).

Note that, if D̃2(p, λ) 6= ∅ then D̃2(p, λ) = {Ea} and r2(λ, E) = β. That is why we
extend the definition domain of S(p, ·) by including the eventual range of r2(λ, ·);
that is, we define S(p, ·) on (0, a]∪ [β, c]. On the other hand, continuity arguments
imply that if D̃2(p, λ) = {Ea} then

T2(p, λ,Ea) = (p′λ)−1/pS(p, r2(λ, E)) = (p′λ)−1/pS(p, β)

= lim
α→β+

(p′λ)−1/pS(p, α) = lim
E→E+

a

(p′λ)−1/pS(p, r1(λ, E))

= lim
E→E+

a

T1(p, λ,E).

So we simply study the function α 7→ S(p, α) for α ∈ (0, a]∪ [β, c], and if S(p, α) <
∞, we intend that

S(p, α) =

{
(p′λ)1/pT1(p, λ,Eα := r−1

1 (λ, α)) if α ∈ (0, a] ∪ (β, c],
(p′λ)1/pT2(p, λ,Ea) if α = β.
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Lemma 5.2. f ′(a) < 0 and f ′(c) < 0.

The proof of Lemma 5.2 is easy but tedious; we omit it.

Lemma 5.3. (i) S(p, 0) = 0 if p > 1.
(ii) S(p, a) = ∞ if and only if 1 < p ≤ 2.
(iii) S(p, β) = ∞ if and only if 1 < p ≤ 2.
(iv) S(p, c) = ∞ if and only if 1 < p ≤ 2.

Proof. (i) For p > 1 and 0 < α < a, we write S(p, α) in (5.1) as

S(p, α) =
∫ α

0

(F (α)− F (u))−1/pdu

= α(F (α))−1/p

∫ 1

0

(
1− F (αt)

F (α)
)−1/p

dt (let u = αt).

Applying l’Hopital’s rule, it is easy to see that limα→0+ α(F (α))−1/p = 0 and
limα→0+

F (αt)
F (α) = t. Therefore, S(p, 0) = limα→0+ S(p, α) = 0 ·

∫ 1

0
(1 − t)−1/pdt =

0 · p′ = 0. Hence the result follows.
(ii) Recall that for p > 1, S(p, a) =

∫ a

0
(F (a) − F (u))−1/pdu. Note that F (a) −

F (u) = − 1
2f ′(a)(a − u)2 + o((u − a)2) near a− and by Lemma 5.2, f ′(a) < 0.

Therefore,

(F (a)− F (u))−1/p ≈ (−f ′(a)/2)−1/p(a− u)−2/p near a−.

Then easy computation shows that S(p, a) = ∞ if and only if 1 < p ≤ 2.
(iii) We write

S(p, β) =
∫ β

0

(F (β)− F (u))−1/pdu =
( ∫ a

0

+
∫ β

a

)(
F (β)− F (u)

)−1/p
du.

(Eventual singularity at β−) Note that F (β)− F (u) = f(β)(β − u) + o(β − u)
near β−. Since f(β) > 0, (F (β) − F (u))−1/p ≈ (f(β))−1/p(β − u)−1/p near β−.
Then easy computation shows that

∫ β

β−ε
(F (β) − F (u))−1/pdu < ∞ for p > 1 and

ε > 0 sufficiently small.
(Eventual singularity at a−) Since F (β) = F (a) by (H3), the same arguments as
those used in the proof of part (ii) above imply that

∫ a

0
(F (β)− F (u))−1/pdu = ∞

if and only if 1 < p ≤ 2.
(Eventual singularity at a+) Since F (β) = F (a), the same arguments as those
used in the proof of part (ii) above imply that

∫ a+ε

a
(F (β) − F (u))−1/pdu = ∞ if

and only if 1 < p ≤ 2 for ε > 0 sufficiently small.
In above analysis, S(p, β) = ∞ if and only if 1 < p ≤ 2.
(iv) Recall that for p > 1, S(p, c) =

∫ c

0
(F (c) − F (u))−1/pdu. Note that F (c) −

F (u) = − 1
2f ′(c)(c − u)2 + o((u − c)2) near c− and by Lemma 5.2, f ′(c) < 0.

Therefore,

(F (c)− F (u))−1/p ≈ (−f ′(c)/2)−1/p(c− u)−2/p near c−.

Then an easy computation shows that S(p, c) = ∞ if and only if 1 < p ≤ 2. �

Next, we study the variations of S(p, α) for α ∈ (0, a)∪(β, c). For p > 1, S′(p, α)
is given by

S′(p, α) =
1
pα

∫ α

0

θp(α)− θp(u)
(F (α)− F (u))1/p

du for α ∈ (0, a) ∪ (β, c), (5.2)
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Figure 7. Graph of θp(u)

where θp(u) = pF (u)− uf(u). This implies

θ′p(u) = (p− 1)f(u)− uf ′(u),

θ′′p (u) = (p− 2)f ′(u)− uf ′′(u).

Thus by (H1) and (H4),
θp(0) = 0,

θ′p(0) = (p− 1)f(0) > 0,

θ′′p (u)


> 0 for 0 < u < rp,

< 0 for rp < u < sp,

> 0 for sp < u < c.

(5.3)

In addition, by (H3), (H2) and Lemma 5.2,

θp(β∗) < 0,

θp(c) = pF (c)− cf(c) = pF (c) > 0,

θ′p(c) = (p− 1)f(c)− cf ′(c) = −cf ′(c) > 0.

Hence there exist tp ∈ (rp, sp) and σp ∈ (sp, c) such that

θp is strictly increasing on (0, tp), (5.4)

θp is strictly decreasing on (tp, σp), (5.5)

θp is strictly increasing on (σp, c). (5.6)

In addition, there exist δp ∈ (tp, σp) and γp ∈ (σp, c) such that

θp(δp) = θp(γp) = 0. (5.7)

The typical graph of θp(u) on [0, c] is depicted in Fig. 7.

Lemma 5.4. For p > 1, the following statements hold
(i) S(p, α) is strictly increasing on (0, a).
(ii) S(p, α) has exactly one critical point, a minimum, on (β, c). More precisely,

there exists a unique mp ∈ (β, c) such that S(p, α) is strictly decreasing on
(β, mp) and is strictly increasing on (mp, c).
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Proof. Part (i). By (5.2)-(5.4), it suffices to show that

0 < a < tp for p > 1. (5.8)

Note that
θp(a) = pF (a)− af(a) = pF (a) > 0,

and by Lemma 5.2,

θ′p(a) = (p− 1)f(a)− af ′(a) = −af ′(a) > 0,

then a ∈ (0, tp) ∪ (γp, c) by (5.3)–(5.7). If a ∈ (γp, c) (⊂ (σp, c)), then (5.6) implies
that θp is strictly increasing on (a, c). Hence

θ′p(u) > 0 for u ∈ (a, c). (5.9)

However, (H2) implies that there exists ηp ∈ (a, b) (⊂ (a, c)) such that f(ηp) < 0
and f ′(ηp) = 0. Therefore,

θ′p(ηp) = (p− 1)f(ηp)− ηpf
′(ηp) = (p− 1)f(ηp) < 0 for p > 1,

which leads to a contradiction with (5.9). Therefore, (5.8) holds and hence part (i)
follows. Part (ii) follows by exactly the same arguments used to prove [3, Lemma
4.7]. To this end, it suffices to prove the following two lemmas. �

Lemma 5.5. For p > 1, S′′(p, α) + (p/α)S′(p, α) > 0 for all α ∈ (max{σp, β}, c).

The proof of Lemma 5.5 is the same as that of [3, Lemma 4.6]; we omit it.

Lemma 5.6. Assume that p > 1.
(i) If p > 2 then S′(p, c) = ∞.
(ii) If β < σp then S′(p, α) < 0 for all α ∈ (β, σp].
(iii) If β = σp then S(p, β) < ∞ then −∞ ≤ S′(p, β) < 0.
(iv) If β > σp and S(p, β) < ∞ then S′(p, β) = −∞.

Proof. The proofs of parts (i) and (iii) follow exactly as those of parts (i) and (iii) of
[3, Lemma 4.5]; we omit them. For part (ii) we point out that by (H3) (θp(β∗) < 0
where β∗ ≤ β) it follows that δp < β. Then the argument used to prove Lemma
4.5(ii) of [3] can apply to prove S′(p, α) < 0 for all α ∈ (β, σp]. So part (ii) holds.
Proof of part (iv). Since F (β) = F (a) > 0, it follows that the integral representing
S′(p, β), has two singularities; one at a and the other at β. So we write

S′(p, β) = (pβ)−1(Ia− + Ia+ + Iβ),

where

Ia− :=
∫ a

0

θp(β)− θp(u)
(F (β)− F (u))(p+1)/p

du,

Ia+ :=
∫ (a+β)/2

a

θp(β)− θp(u)
(F (β)− F (u))(p+1)/p

du,

Iβ :=
∫ β

(a+β)/2

θp(β)− θp(u)
(F (β)− F (u))(p+1)/p

du.

We next show Iβ < ∞ and Ia± = −∞. First we show Iβ < ∞. Since (c >) β > σp,
it follows that θ′p(β) > 0. Therefore,

θp(β)− θp(u)
(F (β)− F (u))(p+1)/p

≈
θ′p(β)

(f(β))(p+1)/p

1
(β − u)1/p

near β−.
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Since 1/p < 1 and θ′p(β)(f(β))−(p+1)/p > 0, easy computations show that Iβ < ∞.
We then show Ia± = −∞. Note that

θp(β)− θp(u)
(F (β)− F (u))(p+1)/p

≈ θp(β)− θp(a)
(−f ′(a)/2)(p+1)/p

1
(a− u)2(p+1)/p

near a.

Since 2(p + 1)/p > 1 and

θp(β)− θp(a)
(−f ′(a)/2)(p+1)/p

=
−βf(β)

(−f ′(a)/2)(p+1)/p
< 0,

easy computations show that Ia± = −∞. This completes the proof of Lemma 5.6.
Therefore, the proof Lemma 5.4 is also complete. �

Lemma 5.7. For p > 2, 0 < αp < λp < ∞.

Proof. By (3.2), (5.1) and Lemma 5.3(iii), for p > 2,

λp =
{ ∫ β

0

(F (β)− F (u))−1/pdu
}p

/p′ =
{

lim
α→β+

S(p, α)
}p

/p′ < ∞.

We then find that

λp = {
∫ β

0

(F (β)− F (u))−1/pdu}p/p′

= {
∫ a

0

(F (β)− F (u))−1/pdu +
∫ β

a

(F (β)− F (u))−1/pdu}p/p′

> {
∫ a

0

(F (β)− F (u))−1/pdu}p/p′

= {
∫ a

0

(F (a)− F (u))−1/pdu}p/p′ (since F (β) = F (a))

= αp > 0 (by (3.1)).

This completes the proof. �

Let u be a positive solution of (1.1), then 0 < ‖u‖∞ ≤ a or β ≤ ‖u‖∞ ≤ c. In
addition, u ∈ A+

0 ∪A+
1 ∪A+

00 ∪A+
01 by Lemma 2.2.

By Lemma 5.3(ii)-(iv), for p > 2, S(p, a) < ∞, S(p, β) < ∞, S(p, c) < ∞. In
this case we have the following three statements:
(i) Suppose for λ = αp = (S(p, a))p/p′, uαp is the corresponding solution of (1.1)
satisfying ‖uαp

‖∞ = uαp
(0) = a. Then

u′αp
(x) = {p′αp[F (a)− F (u(x))]}1/p > 0 for − 1 ≤ x < 0

by Lemma 2.1. So uαp
∈ A+

0 . Then for each λ > αp,

uλ(x) :=

{
uαp

(
( λ

αp
)1/p(|x| − 1 + (αp

λ )1/p)
)

if 1− (αp

λ )1/p < |x| ≤ 1,

a if |x| ≤ 1− (αp

λ )1/p

is a C1 dead core solution of (1.1) satisfying ‖uλ‖∞ = a,

u′λ(−1) = (p′λF (a))1/p > (p′αpF (a))1/p = u′αp
(−1) > 0,

and uλ ∈ A+
1 .
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(ii) Suppose for λ = νp = (Sp(c))p/p′, uνp
is the corresponding solution of (1.1)

satisfying ‖uνp‖∞ = uνp(0) = c. Then

u′νp
(x) = {p′νp[F (c)− F (u(x))]}1/p > 0 for − 1 ≤ x < 0

by Lemma 2.1. So uνp
∈ A+

0 . Then for each λ > νp,

uλ(x) :=

{
uνp

(
( λ

νp
)1/p(|x| − 1 + (νp

λ )1/p)
)

if 1− (νp

λ )1/p < |x| ≤ 1,

c if |x| ≤ 1− (νp

λ )1/p

is a C1 dead core solution of (1.1) satisfying ‖uλ‖∞ = c,

u′λ(−1) = (p′λF (c))1/p > (p′νpF (c))1/p = u′νp
(−1) > 0,

and uλ ∈ A+
1 .

(iii) Suppose for λ = λp = (S(p, β))p/p′, uλp
is the corresponding solution of (1.1)

satisfying ‖uλp
‖∞ = uλp

(0) = β. Then, by Lemma 2.1, there exists a unique
negative number −x0 ∈ (−1, 0) such that

uλp
(−x0) = a and u′λp

(−x0) = 0

and

u′λp
(x) = {p′λp[F (β)− F (u(x))]}1/p > 0 for x ∈ [−1, 0)− {−x0}.

So uλp ∈ A+
00. Then for each λ > λp,

uλ(x) :=


uλp

(
( λ

λp
)1/p|x|

)
if |x| ≤ (K0a

λ )1/p,

a if (K0a

λ )1/p ≤ |x| ≤ 1− (Kaβ

λ )1/p,

uλp

( |x|−1+(
Kaβ

λ )1/p+(
Kaβ
λp

)1/p

(
Kaβ

λ )1/p+(
Kaβ
λp

)1/p

)
if 1− (Kaβ

λ )1/p ≤ |x| ≤ 1

is a positive solution of (1.1) satisfying ‖uλ‖∞ = β,

u′λ(−1) = (p′λF (β))1/p > (p′λpF (β))1/p = u′λp
(−1) > 0,

and uλ ∈ A+
01, where

K0a := (
∫ a

0

(F (β)− F (u))−1/pdu)p/p′,

Kaβ := (
∫ β

a

(F (β)− F (u))−1/pdu)p/p′.

Hence Theorems 3.2-3.7 follow immediately by Theorem 2.3 and Lemmas 5.3-5.7.
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