# METABOLIC COST OF HATHA YOGA 

## THESIS

Presented to the Graduate Council of
Texas State University-San Marcos
in Partial Fulfillment of the Requirements

For the Degree

## Master of EDUCATION

By

Carolyn Cook Clay, B.E.S.S.

San Marcos, Texas
December 2003

## COPYRIGHT

by

## Carolyn Cook Clay

## ACKNOWLEDGEMENTS

Thank you to all: my husband Mike for his perpetual encouragement; my family and friends for their unwavering support; student interns who assisted with data collection; and my committee members Dr. Lisa Lloyd, Dr. John Walker, and Dr. Robert Pankey for their continual expertise, aid and guidance.

Special thanks to my committee chair, mentor and friend Dr. Lisa Lloyd for all that you have contributed to my education and professional character.

This manuscript was submitted on December 1, 2003

## TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS ..... iv
LIST OF TABLES ..... vi
CHAPTER
I. INTRODUCTION ..... 1
Purpose of the Study ..... 4
II. METHODS ..... 5
Subjects ..... 5
Instrumentation ..... 5
Test Procedures ..... 6
Statistical Analysis ..... 9
III. RESULTS ..... 11
IV. DISCUSSION, CONCLUSIONS, AND PRACTICAL APPLICATION ..... 16
REFERENCES ..... 24
APPENDIX A Hypothesis, Delimitations, Significance of the Study ..... 29
APPENDIX B Review of Literature ..... 32
APPENDIX C Informed Consent ..... 42
APPENDIX D Raw Data ..... 47
VITA ..... 65

## List of Tables

Page
Table 1: The 30-Minute Hatha Yoga Routine ..... 8
Table 2: $\quad$ Physical Characteristics of All Subjects $(n=26)$ ..... 12
Table 3: Cardiovascular and Metabolic Responses (mean $\pm$ SD) to Chair
Rest, Treadmill Walk, and Yoga Routine ..... 13
Table 4: Cardiovascular and Metabolic Responses (mean $\pm$ SD) to Sun Salutation and Non-Sun Salutation ..... 15

# METABOLIC COST OF HATHA YOGA 

## CHAPTER 1

## INTRODUCTION

With levels of obesity and physical inactivity approaching epidemic proportions (23), some leading organizations have developed recommended guidelines for promotion of physical activity and enhancement of physical fitness $(6,20,24)$. Also, the U.S. Surgeon General (6) suggests that people of all ages, both males and females, can substantially improve their health and quality of life by including a moderate amount of physical activity (e.g., a $30-\mathrm{min}$ brisk walk or $15-\mathrm{min}$ run), on most, if not all, days of the week (6). Moreover, additional health and fitness benefits might be gained through more frequent or longer duration of physical activity $(6,24)$. The American College of Sports Medicine (ACSM) recommends that in order to maintain optimal levels of cardiorespiratory fitness and body composition, an individual should perform 20 to 60 minutes of continuous or intermittent aerobic exercise at 50 to $85 \%$ of maximum oxygen uptake reserve $\left(\mathrm{VO}_{2} \mathrm{R}\right)$, or 65 to $90 \%$ maximum heart rate 3 to 5 days per week (24). Also, a bout of aerobic exercise conducted at recommended intensity and duration is expected to expend at least 250 calories (24). When combined with
appropriate dietary intake, sufficient aerobic training performed a minimum of 3 days per week will increase an individual's likelihood of successful weight-loss and long-term weight control $(15,24)$. Typically, these guidelines are met through conventional forms of physical activity, such as walking-hiking, running-jogging, cycling-bicycling, and group exercise (formerly known as aerobic dance) (24, 29). Surprisingly, less than $40 \%$ of adults meet the U.S. Surgeon General guidelines (6), and no more than 15\% of adults participate in physical activities with sufficient intensity and regularity to meet minimum ACSM recommendations (6, 24).

In an effort to increase the percent of those who meet recommended physical activity guidelines and, to promote physical fitness, curb obesity, and enhance health, some people participate in unconventional forms of physical activity, such as hatha yoga into their routine, specifically hatha yoga (12). The tradition of Yoga originated at least 5,000 years ago in India (9), where it was employed to help one redirect one's search for happiness and perfection from external sources (e.g. power and wealth) to internal, innate attributes $(11,28)$. Hatha yoga, i.e., the yoga of physical discipline, is one path (i.e., technique) of yoga that can be practiced to achieve a state of perfection and happiness (11, 28). Traditional hatha yoga integrates the practice of asanas (supine, seated, and standing postures), pranayamas (breathing techniques), yamas (the practice of nonviolence, truthfulness, nonstealing, and continence), and niyamas (observances of cleanliness, contentment, and practices which bring about perfection of body and sense, etc). Due to the focus of hatha yoga on physical
preparation and enhancement, hatha yoga has become the most commonly practiced path of yoga in the United States $(9,11)$.

Since the late 1960's (2, 9), all paths of yoga, including hatha yoga, have undergone various adaptations in the United States (9). Specifically, hatha yoga has become a method intended for physical fitness and health maintenance (9) rather than a method intended for perfection and happiness $(8,11)$. Consequently, the format of hatha yoga classes in the United States are typically 60 to 90 minutes in duration and are primarily limited to asanas and pranayamas (8).

Although hatha yoga has become a popular form of physical activity, there is no evidence whether it is an adequate mode of physical activity for providing the proper training stimulus required to improve cardiovascular fitness and weight control as described by ACSM (24). Most research on the cardiovascular and metabolic responses to hatha yoga is limited to static asanas (26, 27), pranayamas (22), and hatha yoga routines consisting of only standing asana (7). Specifically, Prasad et al (22) compared a certain yogic breathing technique to traditional modes of exercise, and in two similar studies standing (26) and seated (27) asanas where compared to resting in a chair and to lying in a supine horizontal position $(26,27)$. In all three studies, the specific hatha yoga techniques employed were not intense enough to be considered an adequate mode of physical activity for increasing aerobic capacity. The only study to examine the cardiovascular and metabolic responses to an entire hatha yoga routine of standing asanas confirmed the results of previous studies. DiCarlo et
al. (7) demonstrated that 32-minutes of lyengar-style hatha yoga standing asanas required a value of approximately 4 METs or $34 \% \mathrm{VO}_{2}$ max, much lower than recommended physical activity guidelines (24). Previous research has not investigated the cardiovascular and metabolic responses to a typical hatha yoga routine consisting of supine, seated, and standing asanas. Due to the limitations of previous research on this topic, it is still unknown as to whether hatha yoga is an adequate mode of physical activity for providing the proper training stimulus required to improve cardiovascular fitness and promote weight control as described by the ACSM (24).

## Purpose of the Study

The purpose of this investigation was: 1) to determine the acute metabolic and cardiovascular responses of a typical hatha yoga routine; 2 ) to compare these responses to the acute metabolic and cardiovascular responses to resting in a chair and walking on the treadmill at $93.86 \mathrm{~m}^{2} \mathrm{~min}^{-1}(3.5 \mathrm{mph})$; and 3) to identify whether a typical hatha yoga routine is an adequate mode of exercise for providing the proper training stimulus to enhance cardiovascular fitness and weight control as described by the American College of Sports Medicine (a minimum of $50 \% \mathrm{VO}_{2} \mathrm{R}$ or $65 \%$ HRmax) (24) .

## CHAPTER 2

## METHODS

## Subjects

Subjects included male and female volunteers recruited from a lifetime fitness and wellness yoga class at a University. To ensure subjects ability to follow a videotaped routine as well as reduce the risk of injury, subject participation criteria included a minimum of 1 month of formal yoga classes (at least 2 days per week). Written consent was obtained from all subjects after a detailed description of all testing procedures was provided. This investigation was submitted to and approved by the Protection of Human Subjects Committee, Texas State University at San Marcos.

## Instrumentation

A calibrated physician's scale (Detecto Scale Co., Jericho, New York) was used to obtain height and weight, and Lange calipers (Cambridge, MD) were used to measure skinfold thickness. Maximal and submaximal exercise tests were preformed on a Trackmaster treadmill (FullVision, Newton, KS). During each exercise test, subject's heart rate (HR) was measured by a Polar Vantage

XL telemetric heart rate monitor (Stanford, CT). Measures of expired air was analyzed throughout all tests with a PARVO Medics metabolic analyzer (Salt Lake City, UT). Ventilation $\left(\mathrm{V}_{\mathrm{E}}\right)$, oxygen consumption $\left(\mathrm{VO}_{2}\right)$, carbon dioxide production $\left(\mathrm{VCO}_{2}\right)$, and respiratory exchange ratio (RER) were determined from 60 -second averages. Calibration was preformed before each test using a certified gas mixture $\left(\mathrm{O}_{2}=16 \%\right.$ and $\mathrm{CO}_{2}=4 \%$, Scott Medical Products, Plumsteadville, PA).

## Test Procedure

Subjects visited the laboratory on two separate occasions, 2 to 14 days apart. Subjects were instructed to: (a) drink plenty of fluids over the 24 -hr period preceding the test; (b) avoid food, tobacco, nicotine, alcohol, and caffeine for at least 4 hours before testing; (c) avoid strenuous physical activity the day of the test; and (d) get 6 to 8 hours of sleep the night before the test (1).

The first laboratory visit included completion of an informed consent and a comprehensive health appraisal questionnaire as well as measurement of (a) height and weight (in exercise clothes, without shoes), (b) skinfold thickness, (c) resting oxygen consumption $\left(\mathrm{VO}_{2}\right)$, (d) exercise $\mathrm{VO}_{2}$, and (e) maximal oxygen consumption ( $\mathrm{VO}_{2} \mathrm{max}$ ). Body composition was assessed using a 3 -site skinfold procedure (13). All body size and composition measures were taken by an experienced test administrator, previously trained according to ACSM standards for body composition assessment (1).

Prior to maximal exercise testing, $\mathrm{VO}_{2}$ measurements were taken while resting in a chair and walking at $93.86 \mathrm{~m} \mathrm{~min}^{-1}(3.5 \mathrm{mph})$. Resting and submaximal $\mathrm{VO}_{2}$ were recorded for at least 5 minutes, or until a steady-state condition was achieved. Stable $\mathrm{VO}_{2}$ and $\mathrm{VCO}_{2}$ values ( $\pm 10 \%$ ) and steady HR ( $\pm 5$ beats $\mathrm{min}^{-1}$ ) during the last 3 minutes of each stage was the criteria for determining steady-state intensity (31).

After a brief rest period, subject's $\mathrm{VO}_{2}$ max was measured using the Bruce treadmill protocol (1). Peak $\mathrm{VO}_{2}$ was considered $\mathrm{VO}_{2}$ max if three of the following criteria were not met: (a) leveling off of $\mathrm{VO}_{2}$ despite an increase in workload; (b) achieving age-predicted maximal HR (220-age); (c) an RER greater than 1.15; and (d) failure to maintain pace despite strong verbal encouragement. Measurements of $\mathrm{VO}_{2}, \mathrm{VCO}_{2}, \mathrm{VE}$, and RER were determined from 60 -second averages. HR was recorded at the end of each minute.

To determine cardiovascular and metabolic responses to a typical hatha yoga session and to compare those results to that of a more traditional low impact exercise, such as walking $93.86 \mathrm{mmin}^{-1}(3.5 \mathrm{mph})$, subjects returned to the laboratory on a second occasion. Each subject was individually tested while performing a 30 -minute hatha yoga routine. The hatha yoga routine was developed and videotaped by the primary investigator. The American Aerobic Association International Sports Medicine Association (AAAI-SMA) certified yoga instructor, with two years of yoga instructing experience, developed a choreographed hatha yoga routine consisting of 5 minutes of preparation/warm-
up asanas, 20 minutes of conditioning asanas, and 5 minutes of cool-
down/resting asanas.

Table 1: The 30-Minute Hatha Yoga Routine

| Hatha Yoga Routine |  |
| :--- | :--- |
| Warm-up |  |
| Seated crossed leg: deep breathing | Should stretch overhead |
| Neck turns | Right knee to chest, hip opener |
| Chin to chest, chin to sky | Left knee to check, hip opener |
| Shoulder rolls backward | Cat/cow |
| Should rolls forward | Mountain |
|  | Conditioning Asanas |
| Sun Salutation (lasted 5 minutes) | Mountain |
| Mountain | Should stretch overhead |
| Right Triangle | Swan Dive: Forward Bend |
| Right Lunge | Plank |
| Right Warrior I | Knees, Chest, \& Chin |
| Right Warrior II | Cobra |
| 5 Pointed Star | Downward Facing Dog |
| Forward Bend | Table Top |
| Backward Bend | Downward Facing Dog: Right Leg Up |
| 5 Pointed Star | Table Top |
| Left Triangle | Downward Facing Dog: Left Leg Up |
| Left Lunge | Downward Facing Dog |
| Left Warrior I | Table Top |
| Left Warrior II | Cat/Cow |
| 5 Pointed Star | Fetus |
| Forward Bend | Seated Forward Bend |
| Backward Bend | Spinal Twist Left |
| Mountain | Spinal Twist Right |
| Right Leg Up Tree | Fish |
| Left Leg Up Tree | Butterfly |
| Mountain (held for 40 seconds) | Body Circles: Right |
| Right Leg Up Tree | Body Circles: Left |
| Left Leg Up Tree |  |
|  | Cool-Down |
| Corpus | Right Arm Lift: 3 Inches Off floor |
| Knee to Chest: Right Leg | Left Arm Lift: 3 Inches Off floor |
| Spinal Twist: Right Leg to Left Side | Right Leg Lift: 3 Inches Off floor |
| Knee to Chest: Left Leg | Left Leg Lift: 3 Inches Off floor |
| Spinal Twist: Left Leg to Right Side | Corpus |
|  |  |

The routine comprised of movements that are implemented in typical hatha yoga classes found in health clubs, fitness centers, private studios, etc. (Birkel). Subjects were asked to follow exact movements of the instructor on the videotape. During the conditioning phase, all asanas were held for 20 seconds except for the asanas during the Sun Salutation. The Sun Salutation involves 12 poses that are performed in coordination with each breath (2). The series of poses were repeated for 5 minutes. In addition, to closely resemble a typical hatha yoga session, the lights in the laboratory were dimmed and soft music played in the background.

## Statistical Analysis

A repeated measures analysis of variance (ANOVA) was conducted to determine if there were overall differences in absolute $\mathrm{VO}_{2}\left(\mathrm{~L}_{\mathrm{min}}{ }^{-1}\right)$, relative $\mathrm{VO}_{2}$ ( $\mathrm{ml} \mathrm{kg}^{-1} \mathrm{~min}^{-1}$ ), METs, EE (kcals $\mathrm{min}^{-1}$ ), or HR among the independent variables: 1) sitting in a chair, 2) walking at $93.86 \mathrm{~m}_{\mathrm{min}^{-1}}(3.5 \mathrm{mph})$, and 3 ) performing a hatha yoga routine. Paired $t$-tests compared the physiological differences between: 1) hatha yoga and resting in a chair, and 2) hatha yoga and walking at $93.86 \mathrm{~m} \mathrm{~min}^{-1}(3.5 \mathrm{mph})$. Single-sample t-tests compared the $\% \mathrm{VO}_{2} \mathrm{R}$ and $\%$ MHR of the 30 -minute yoga routine to the ACSM guidelines of $50 \% \mathrm{VO}_{2} \mathrm{R}$ and $65 \%$ MHR.

In addition, a repeated measures analysis of variance (ANOVA) was conducted to determine if there were overall differences in absolute $\mathrm{VO}_{2}\left(\mathrm{~L} \mathrm{~min}^{-1}\right)$, relative $\mathrm{VO}_{2}\left(\mathrm{ml} \mathrm{kg}^{-1} \mathrm{~min}^{-1}\right)$, METs, $\mathrm{EE}\left(\mathrm{kcals} \mathrm{min}^{-1}\right)$, or HR among the
independent variables: 1) Sun Salutation, and 2) other conditioning asanas (NonSun Salutation asanas). Paired t-tests compared the physiological differences between Sun Salutations and other conditioning asanas (Non-Sun Salutation asanas). Single-sample t-tests compared the $\% \mathrm{VO}_{2} \mathrm{R}$ and $\% \mathrm{MHR}$ of the Sun Salutation to the ACSM guidelines of $50 \% \mathrm{VO}_{2} \mathrm{R}$ and $65 \%$ MHR.

## CHAPTER 3

## RESULTS

Of the 30 subjects who volunteered for the study, 29 completed all three of the exercise tests. A female participant withdrew from the study due to pregnancy. In addition, since only 2 male participants completed all of the exercise tests, and their metabolic values were not comparable to the data collected from the sample of female participants ( $n=27$ ), the male subjects were excluded from this analysis. Lastly, the metabolic responses of one female participant were unduly influenced by prescription medication and excluded from this analysis. After data screening, the final sample size included 26 subjects. Table 2 includes the subjects' descriptive characteristics. This sample appears to be representative of female college students that are of fair to good aerobic fitness (17).

Table 2: Physical Characteristics of All Subjects $(n=26)$

| Variable | Mean $\pm$ SD | Range |
| :--- | :---: | :---: |
| Age (years) | $23.39 \pm 4.30$ | $19.00-40.00$ |
| Height (m) | $1.62 \pm .07$ | $1.48-1.71$ |
| Weight (kg) | $59.63 \pm 11.84$ | $41.36-93.18$ |
| \% Body fat | $22.79 \pm 7.67$ | $6.40-37.28$ |
| $\mathrm{VO}_{2} \mathrm{max}^{\left(\mathrm{ml} \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)}$ | $32.70 \pm 5.04$ | $25.50-44.00$ |

Table 3 reports the physiological responses (mean $\pm$ SD) for each dependent variable measured during each test. Repeated Measures ANOVA comparing the physiological responses of resting in a chair, walking at 93.86 $\mathrm{m} \mathrm{min}^{-1}$ ( 3.5 mph ), and performing the hatha yoga routine revealed significant differences in: 1) absolute $\mathrm{VO}_{2}\left(\mathrm{Lmin}^{-1}, F=281.74, p<.05\right)$ 2) relative $\mathrm{VO}_{2}$ $\left.\left.\left(\mathrm{ml} \cdot \mathrm{kg}^{-1} \mathrm{~min}^{-1}, F=577.8, p<.05\right), 3\right) \% \mathrm{VO}_{2} \mathrm{R}(F=1070.6, p<.05) 4\right) \mathrm{METs}(F=$ 557.8, $\left.p<.05), 5) \mathrm{EE}\left(\mathrm{kcalmin}^{-1}, F=275.2, p<.05\right), 6\right) \mathrm{HR}(F=217.05, p<.05)$, and 7) \%MHR. When compared to chair rest, hatha yoga elicited higher: 1) absolute $\left.\mathrm{VO}_{2}\left(\mathrm{~L} \cdot \mathrm{~min}^{-1}, t=-11.9, p<.05\right), 2\right)$ relative $\mathrm{VO}_{2}\left(\mathrm{ml} \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}, t=-12.7, p\right.$ $\left.\left.<.05), 3) \% \mathrm{VO}_{2} \mathrm{R}(t=-11.45, p<.05), 4\right) \mathrm{METs}(t=-12.7, p<.05), 5\right) \mathrm{EE}$ (kcal $\left.\left.\min ^{-1}, t=-12.0, p<.05\right), 6\right) \operatorname{HR}(t=-10.5, p<.05)$, and 7) \%MHR $(t=-$ 11.16, $p<.05$ ). Moreover, when compared to chair rest, hatha yoga required a $111 \%$ greater absolute $\mathrm{VO}_{2}\left(\mathrm{~L} \cdot \mathrm{~min}^{-1}\right), 111 \%$ greater relative $\mathrm{VO}_{2}\left(\mathrm{ml} \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$, 4330\% greater $\% \mathrm{VO}_{2} \mathrm{R}, 111 \%$ greater METs, $109 \%$ greater EE (kcal $\mathrm{min}^{-1}$ ), $24 \%$ greater HR, and a 111\% greater \%MHR. When compared to walking at 93.86 $\mathrm{m} \mathrm{min}-1(3.5 \mathrm{mph})$, hatha yoga elicited lower: 1 ) absolute $\mathrm{VO}_{2}\left(\mathrm{Lmin}^{-1}, t=-14.4, p\right.$
<.05), 2) relative $\left.\mathrm{VO}_{2}\left(\mathrm{ml}_{\mathrm{kg}}{ }^{-1} \cdot \mathrm{~min}^{-1}, t=-18.3, p<.05\right), 3\right) \% \mathrm{VO}_{2} \mathrm{R}(t=-15.9, p<$ .05), 4) METs $(t=-18.3, p<.05)$, 5) EE (kcal $\left.m^{-1}\right)(t=-14.1, p<.05)$, 6) HR $(t=$ $-10.7, p<.05)$, and 7) \%MHR ( $t=-11.49, p<.05$ ). Moreover, when compared to walking at $93.86 \mathrm{~m} \mathrm{~min}^{-1}(3.5 \mathrm{mph})$, hatha yoga required a $53 \%$ lower absolute $\mathrm{VO}_{2}\left(\mathrm{~L}^{\prime} \mathrm{min}^{-1}\right), 53 \%$ lower relative $\mathrm{VO}_{2} \mathrm{ml} \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}, 68 \%$ lower $\% \mathrm{VO}_{2} \mathrm{R}, 53 \%$ lower METs, $53 \%$ lower EE kcal $\mathrm{min}^{-1}, 19 \%$ lower HR, and $21 \%$ lower \%MHR.

Table 3: Cardiovascular and Metabolic Responses (mean $\pm$ SD) to Chair Rest, Treadmill Walk, and Yoga Routine.

| Variable | Chair Rest* $^{*}$ | Yoga Routine | Treadmill Walk** |
| :--- | :---: | :---: | :---: |
| $\mathrm{VO}_{2}\left(\mathrm{~L} \mathrm{~min}^{-1}\right)$ | $.21 \pm .06$ | $.45 \pm .12$ | $.97 \pm .23$ |
| $\mathrm{VO}_{2}\left(\mathrm{ml} \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$ | $3.59 \pm .71$ | $7.59 \pm 1.35$ | $16.17 \pm 1.88$ |
| $\%_{V_{2} \mathrm{R}}$ | $0.33 \pm 2.55$ | $14.62 \pm 5.51$ | $44.80 \pm 10.04$ |
| METs | $1.03 \pm .20$ | $2.17 \pm .39$ | $4.62 \pm .54$ |
| $\mathrm{EE}\left(\mathrm{kcal} \mathrm{min}^{-1}\right)$ | $1.07 \pm .27$ | $2.23 \pm .57$ | $4.76 \pm 1.15$ |
| $\mathrm{HR}\left(\right.$ beats $\left.\mathrm{min}^{-1}\right)$ | $84.87 \pm 11.79$ | $105.28 \pm 14.92$ | $133.41 \pm 17.13$ |
| $\% M H R$ | $45.73 \pm 5.67$ | $56.89 \pm 8.36$ | $67.77 \pm 8.75$ |

Note: $\mathrm{EE}=$ energy expenditure, $\mathrm{HR}=$ heart rate, $\% \mathrm{MHR}=$ percent maximal heart rate.

* Significantly lower than the 30-minute hatha yoga routine, $p<.05$.
** Significantly higher than the 30 -minutes hatha yoga routine, $p<.05$.

For improvements in cardiovascular fitness and promotion of weight control, the ACSM recommends that apparently healthy, fit adults exercise at $65 \%-90 \%$ of predicted MHR or $50 \%-85 \% \mathrm{VO}_{2} \mathrm{R}$ (24). During the hatha yoga routine, the participants exercised at $56.89 \%$ of MHR and $14.62 \% \mathrm{VO}_{2}$ R. When compared to the minimum recommended exercise guidelines, \%MHR during hatha yoga was significantly lower than $65 \% \mathrm{MHR}(t=-4.9, p<.05)$ and $\% \mathrm{VO}_{2} \mathrm{R}$ was significantly lower than $50 \% \mathrm{VO}_{2} \mathrm{R}(t=-32.7, p<.05)$.

Table 4 reports the physiological responses (mean $\pm$ SD) measured during Sun Salutation (i.e., during minutes 8 through 10) and during Non-Sun Salutation conditioning asanas (i.e., during minutes 11 through 25). Repeated Measures ANOVA comparing the physiological responses to Sun Salutation and Non-Sun Salutation revealed significant differences in: 1) absolute $\mathrm{VO}_{2}\left(\mathrm{Lmin}^{-1}\right.$, $t=14.12, P<.05), 2)$ relative $\left.\mathrm{VO}_{2}\left(\mathrm{ml} \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}, t=17.55, P<.05\right), 3\right) \% \mathrm{VO}_{2} \mathrm{R}(t$ $=14.46, P<.05), 4) \mathrm{METs}(t=17.55, P<.05), 5) \mathrm{EE}(t=13.29, P<.05), 6) \mathrm{HR}$ (12.06, $P<.05$ ), and \%MHR ( $t=11.68, P<.05)$. When comparing Sun Salutations to Non-Sun Salutations, Sun Salutations required an $82 \%$ greater absolute $\mathrm{VO}_{2}\left(\mathrm{Lmin}^{-1}\right), 81 \%$ greater relative $\mathrm{VO}_{2}\left(\mathrm{ml} \mathrm{kg}^{-1} \min ^{-1}\right), 154 \%$ greater $\% \mathrm{VO}_{2} \mathrm{R}, 81 \%$ greater METs, $65 \%$ greater EE (kcal min ${ }^{-1}$ ), $20 \%$ greater HR, and $20 \%$ greater \%MHR.

Table 4: Cardiovascular and Metabolic Responses (mean $\pm$ SD) to Sun Salutation and Non-Sun Salutation.

| Variable | Non-Sun Salutation | Sun Salutation* |
| :--- | :---: | :---: |
| $\mathrm{VO}_{2}\left(\mathrm{~L} \mathrm{~min}^{-1}\right)$ | $.43 \pm .11$ | $.78 \pm .21$ |
| $\mathrm{VO}_{2}\left(\mathrm{ml}^{*} \mathrm{~kg} \mathrm{~min}^{-1}\right)$ | $7.23 \pm 1.36$ | $13.08 \pm 2.46$ |
| $\%_{\mathrm{VO}_{2} \mathrm{R}}$ | $13.20 \pm 5.46$ | $33.54 \pm 10.65$ |
| METs | $2.10 \pm .41$ | $3.70 \pm .70$ |
| $\mathrm{EE}\left(\mathrm{kcal} \mathrm{min}^{-1}\right)$ | $2.28 \pm .59$ | $3.76 \pm 1.03$ |
| $\mathrm{HR}\left(\right.$ beats $\left.\mathrm{min}^{-1}\right)$ | $103.61 \pm 16.64$ | $123.85 \pm 16.67$ |
| \%MHR | $55.98 \pm 9.19$ | $66.99 \pm 9.99$ |

Note: $\mathrm{EE}=$ energy expenditure, $\mathrm{HR}=$ heart rate, \%MHR = percent maximal heart rate.
*Significantly higher than Non-Sun Salutations, $p<.05$.

Moreover during the Sun Salutations, the participants exercised at 66.99\% of MHR and $33.54 \% \mathrm{VO}_{2} \mathrm{R}$, when comparing the metabolic and cardiovascular responses of Sun Salutation to the minimum recommended physical activity guidelines as described by the ACSM (24). The \%MHR of Sun Salutation was not significantly different ( $t=1.0, p>.05$ ) than the recommended minimum of $65 \% M H R$, however the $\% \mathrm{VO}_{2} \mathrm{R}$ of the Sun Salutation was significantly lower ( $t=$ $-7.88, p<.05$ ) than the recommended minimum of $50 \% \mathrm{VO}_{2} \mathrm{R}$.

## CHAPTER 4

## DISCUSSION, CONCLUSIONS, AND PRACTICAL APPLICATION

Hatha yoga, is comprised of asanas (static poses), and pranayamas (breathing techniques) (9). It has become a popular form of physical activity in the United States (11). However, research has not yet determined whether it is an adequate mode of physical activity for providing the proper training stimulus required to improve cardiovascular fitness and weight control as described by the ACSM (24). This study examined the oxygen requirement and heart rate responses to a 30-minute hatha yoga routine comprised of a variety of asanas that are commonly performed during hatha yoga classes at a health club, private studio, fitness facility, etc. In addition, those responses were compared to the oxygen requirement and heart rate responses to walking at $93.86 \mathrm{~m} \mathrm{~min}^{-1}(3.5$ mph ), which is a well-established, adequate mode of moderate exercise for promoting cardiorespiratory fitness and weight control (1). According to the ACSM, an acceptable mode of moderate exercise for most healthy adults includes walking 3 to 4 mph (1). In particular, this study showed that the cardiovascular and metabolic responses during a 30-minute hatha yoga routine, although higher than at rest, were lower than the responses seen during moderate exercise, i.e., walking at $93.86 \mathrm{~m}^{\prime} \mathrm{min}^{-1}(3.5 \mathrm{mph})$.

Previous research has been limited in scope to the metabolic and cardiovascular responses to a particular static asanas and suggests that performing a static asana places minimal stress on the cardiovascular system $(26,27)$. For example, Rai et al (27) found that the average $\mathrm{VO}_{2}, \mathrm{METs}, \mathrm{EE}$, and HR during Siddhasana (i.e., a static seated asana) were $0.28 \mathrm{LO}_{2} \mathrm{~min}^{-1}, 1.20$ METs, $1.35 \mathrm{kcal} \mathrm{min}^{-1}$, and 73.8 beats $\mathrm{min}^{-1}$, respectively, in 6 men with a high breathing frequency (i.e., >10 breaths per minute during supine lying). In 4 men with a low breathing frequency (i.e., <5 breaths per minute during supine lying), average $\mathrm{VO}_{2}$, METs, EE, and HR during Siddhasana were $0.23 \mathrm{LO}_{2} \mathrm{~min}^{-1}, 1.00$ METs, $1.12 \mathrm{kcal} \mathrm{min}^{-1}$, and 82.10 beats $\mathrm{min}^{-1}$, respectively. The true relative exercise intensity $\left(\% \mathrm{VO}_{2} \mathrm{R}\right)$ of Siddhasana was not determined in this study; however, since Siddhasana required approximately 1 MET, it appears this asana fails to require an intensity beyond a state of rest. When compared to the 30minute hatha yoga routine in the present study, Siddhasana required a 62\% lower absolute $\mathrm{VO}_{2}, 81 \%$ lower METs, $65 \%$ lower kcal $\min ^{-1}$, and $43 \%$ lower beats $\mathrm{min}^{-1}$, respectively, in 6 men with a high breathing frequency, and a 97\% lower absolute $\mathrm{VO}_{2}, 117 \%$ lower METs, $99 \%$ lower kcalmin ${ }^{-1}$, and $28 \%$ lower beats $\min ^{-1}$, respectively, in 4 men with a low breathing frequency.

In a similar study (26), for the high breathing frequency group, the mean $\mathrm{VO}_{2}$, METs, EE , and HR during Virasana (i.e., a standing yogic asana) were 0.57 $\mathrm{LO}_{2} \mathrm{~min}^{-1}, 2.53$ METs, 2.76 kcal $\mathrm{min}^{-1}$, and 104.35 beats $\mathrm{min}^{-1}$, respectively, and for the low breathing frequency group $(n=4)$, were $0.50 \mathrm{LO}_{2} \mathrm{~min}^{-1}, 2.10 \mathrm{METs}$, $2.12 \mathrm{kcal} \mathrm{min}^{-1}$, and 101.40 beats $\mathrm{min}^{-1}$, respectively. Because $\mathrm{VO}_{2}$ max was not
measured in either study, percentage of oxygen uptake reserve $\left(\% \mathrm{VO}_{2} \mathrm{R}\right)$ could not be derived, and thus, true relative intensity of exercise could not be determined. However, based on the reported MET values, Virasana requires a light to very light exercise intensity (i.e., < 4.8 METs for young adults 20 to 39 years of age) and does not meet the minimal exercise intensity recommendations (i.e., 4.8 METs) for promoting cardiovascular fitness and weight control in young adults (24). In present study the 30-minute hatha yoga routine required a MET value of 2.17 , approximately $14 \%$ lower than the MET value of Virasana, in addition, $\mathrm{VO}_{2}$ max was measured, thus, $\mathrm{VO}_{2} \mathrm{R}$ was derived and true relative intensity of exercise was determined to be $14.62 \% \mathrm{VO}_{2} \mathrm{R}$ When compared to the average METs for walking at $93.86 \mathrm{~m}_{\mathrm{min}}{ }^{-1}(3.5 \mathrm{mph})$ as determined in this study, Virasana has at least a 45\% lower metabolic cost, 2.17 METs during Virasana vs. 4.62 METs during walking at $93.86 \mathrm{~m} \mathrm{~min}^{-1}(3.5 \mathrm{mph})$. In comparison, the hatha yoga routine (which was comprised of many different static postures) performed in this study had a 53\% lower metabolic cost than treadmill walking at $93.86 \mathrm{mmin}^{-1}$ ( 3.5 mph ).

Research on the cardiovascular and metabolic responses during an entire hatha yoga routine, consisting of many different asanas, is limited (7). DiCarlo et al. (7) documented the cardiovascular and metabolic responses to a 32-minute yoga routine consisting of two sets of 12 standing asansa performed on each side of the body. Mean HR and $\mathrm{VO}_{2}$ for the hatha yoga routine were 135 beats $\mathrm{min}^{-1}$ and $14.43 \mathrm{ml} \mathrm{kg}^{-1} \mathrm{~min}^{-1}$, respectively. In the present investigation, mean HR and $\mathrm{VO}_{2}$ during the hatha yoga routine was lower: 105 beats $\mathrm{min}^{-1}$ and
$7.59 \mathrm{ml}^{-} \mathrm{kg}^{-1} \mathrm{~min}^{-1}$. Such differences are expected since the routine in DiCarlo et al. (7) consisted of only standing asanas, whereas the routine in the present study included supine lying, sitting, and standing asanas. A variety of asanas were employed in this present study in an attempt to characterize the physiological responses to a typical hatha yoga routine that may be seen in a health club.

DiCarlo et al. (7) also compared the cardiovascular and metabolic responses of the 32 -minute yoga routine to 32 minutes of walking on a treadmill at $107.27 \mathrm{~m}^{\mathrm{min}}{ }^{-1}$ ( 4 mph ). On average, HR recorded during minutes 16, 24, and 32 was higher during the yoga routine than during treadmill walking $(138,139$, 144 beats $\min ^{-1}$ vs $117,118,120$ beats $\min ^{-1}$ ). HR recorded during minute 8 was the same during the yoga routine as during treadmill walking (119 beats $\min ^{-1}$ vs 114 beats $\mathrm{min}^{-1}$ ). Conversely, the $\mathrm{VO}_{2}$ recorded during minutes $8,16,24$, and 32 was significantly lower during the yoga routine than during treadmill walking $\left(13.7,15.6,14.0\right.$ and $14.4 \mathrm{ml} \mathrm{kg}^{-1} \mathrm{~min}^{-1}$ vs $18.6,19.0,19.0$, and $19.2 \mathrm{ml}^{-} \mathrm{kg}^{-1} \mathrm{~min}^{-}$ ${ }^{1}$ ). The metabolic cost of the yoga routine was 4.1 METS or $34 \%$ of $\mathrm{VO}_{2}$ max while the metabolic cost of treadmill walking at $107.27 \mathrm{~m} \mathrm{~min}^{-1}$ ( 4 mph ) was 5.4 METs or $46 \%$ of $\mathrm{VO}_{2}$ max.

In comparison to the present study, the 32-minute hatha yoga routine also required less oxygen than walking at a moderate intensity. In contrast to the findings in the present study, DiCarlo et al. (7) reported a higher heart rate response to the yoga routine than to treadmill walking. However, in both studies, hatha yoga was shown to elicit a disproportionately high heart rate response
relative to the oxygen consumption. For instance, in the present study, participants exercised at $14.6 \% \mathrm{VO}_{2}$ R and $67 \%$ MHR. During steady-state exercise, $20 \%$ of $\mathrm{VO}_{2} \mathrm{R}$ is expected to correspond to $35 \%$ of MHR (24). Similar results have been seen in another study that integrate arm movements while exercising (21) and may be due to the perception of an increase in strain relative to the size of musculature used when arm movements are integrated with lower body exercise (21). In other words, an increase in strain without a proportionate increase in muscle tissue augments peripheral feedback to the medulla, thereby resulting in an increase in heart rate without a concomitant increase in oxygen consumption (18). Additionally, disproportionate elevations in heart rate may be a response to the increase in venous pooling that may occur while holding static standing postures for extended periods of time (19). Because of the excessive elevation in HR during hatha yoga, determining the intensity of hatha yoga using the \%MHR method may not be as appropriate as $\% \mathrm{VO}_{2} \mathrm{R}$. In the present study RPE was not measured. Future studies should investigate whether RPE is a more appropriate indication of intensity during hatha yoga.

The present study also determined whether hatha yoga is an acceptable form of physical activity for promoting good cardiovascular health and optimal body composition. As identified by the ACSM, weight control and cardiovascular benefits result from regular aerobic performed for 20 to 60 minutes in duration at 50 to $85 \%$ of $\mathrm{VO}_{2} \mathrm{R}$ or 65 to $90 \%$ of MHR (24). Results of this study revealed that the 30 -minute hatha yoga routine did not require a high enough intensity to produce an adequate training stimulus. For instance, participants exercised, on
average, at $14.6 \% \mathrm{VO}_{2} \mathrm{R}$ and $56.89 \%$ MHR, significantly below the ACSM minimum recommendations for optimal intensity. However, further analysis revealed that the Sun Salutation, a specific series of more challenging asanas, increased exercise intensity well-above average values. Compared to the other conditioning asanas, the Sun Salutation increased $\mathrm{VO}_{2}, \mathrm{METs}, \mathrm{EE}$, and HR by $76,76,72$, and $20 \%$, respectively. Percent $\mathrm{VO}_{2} \mathrm{R}$ during Sun Salutation was $33.5 \% \mathrm{VO}_{2} \mathrm{R}$, which was significantly lower ( $\mathrm{t}=-7.88, p<.05$ ) than the $50 \%$ minimum recommended by the ACSM. However, \%MHR during Sun Salutation was $67 \%$ MHR, greater and not significantly different than the minimum of $65 \%$ MHR recommended by the ACSM. Therefore, in order to increase intensity, the Sun Salutation or similar series of asanas should comprise the greatest portion of a hatha yoga session.

Furthermore, according to the ACSM, when exercising within the recommended range of intensity and duration, a person is expected to expend at least 250 kcal (24). In the present study, subjects expended $2.23 \mathrm{kcal}_{\mathrm{min}}{ }^{-1}$. In order to expend at least 250 kcal during a similar hatha yoga session, a person would have to exercise approximately 112 minutes. Such a long duration may seem unreasonable; however, a typical hatha yoga class is 90 minutes in duration. Therefore, a participant in a 90-minute hatha yoga class can expect to expend approximately 200 kcal, which meets the current U.S. Surgeon General's recommendations of performing physical activity that uses approximately 150 kcal per day (6). Furthermore, a hatha yoga session comprised mainly of Sun Salutation and series of asanas similar to the Sun Salutation will greatly increase
energy expenditure. Mean energy expenditure for Sun Salutation was $3.76 \pm$ $1.03 \mathrm{kcal} \mathrm{min}^{-1}$ compared to Non-Sun Salutation $2.28 \pm 0.59 \mathrm{kcal} \mathrm{min}^{-1}(\mathrm{t}=13.3 . \mathrm{p}$ $<.05$ ).

In conclusion, based on $\% \mathrm{VO}_{2} \mathrm{R}$, the hatha yoga routine in this study was performed at a very light intensity, much lighter than walking at $93.86 \mathrm{~m} \mathrm{~min}^{-1}(3.5$ mph ). Such an intensity is too low to produce a training stimulus and result in large cardiovascular fitness improvements. However, with the integration of more challenging asanas, such as the Sun Salutation, a hatha yoga routine performed for 90 minutes may expend in excess of 250 kcal , adequate for the promotion of weight control. Although there may be little cardiovascular benefit to performing hatha yoga, it might still be considered an acceptable form of physical activity for enhancing muscular fitness $(5,16,25)$, flexibility (10), and psychological wellbeing (11).

## Practical Application

Information derived from this study can be used to characterize intensity of hatha yoga as well as to modify hatha yoga in order to increase intensity. A typical 90-minute hatha yoga session employs a variety of supine lying, sitting, and standing asanas. Based on the results of this study, such a variety of asanas does not achieve adequate intensity for promoting cardiovascular fitness.

However, this study did determine that the implementation of more challenging asanas, such as the Sun Salutation, will raise intensity and caloric expenditure, and possibly help with the promotion of weight control. For example, the average
energy requirement for the Sun Salutation is $3.77 \mathrm{kcal}_{\mathrm{min}}{ }^{-1}, 1.54 \mathrm{kcal} \mathrm{min}^{-1}$, higher than the average energy requirement for the hatha yoga routine in this study. Furthermore, due to the disproportionately high heart rate relative to oxygen consumption, the \%MHR method should not be employed to determine intensity during hatha yoga.

## REFERENCES

1. American College of Sports Medicine. Guidelines for Exercise Testing and Prescription ( $6^{\text {th }}$ ed.). Philadelphia: Lippincott Williams \& Wilkins, 2000.
2. Birkel, D.A. Hatha Yoga. Developing the Body, Mind and Inner Self. (3 ${ }^{\text {rd }}$ ed.). Iowa: eddie bowers publishing, inc., 2000.
3. Coulter, A.D. Anatomy of Hatha Yoga. A Manual for Students, Teachers, and Practitioners. Philadelphia: Body and Breath, Inc., 2001.
4. DAVIS, J.L. Yoga finds a new twist in the U.S. WebMDHealth Retrieved March 21, 2003 from http://www.webmd.com. 2003.
5. DASH, M., S. TELLES. Improvement in hand grip strength in normal volunteers and rheumatoid arthritis patients following yoga training. Indian J of Physio and Pharma. 3:355-360. 2001.
6. Department of Health and Human Services. Physical Activity and Health: A Report of the Surgeon General. Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, 1996.
7. DiCarlo, L.J., P.B. Sparling, B.T. Hinson, T.K. Snow, and L.B.

Rosskopf. Cardiovascular, metabolic, and perceptual responses to hatha yoga standing poses. Med. Exerc. Nutr. Health. 4:107-112. 1995.
8. Feuerstein G. The Yoga Tradition. Its History, Literature, Philosophy and Practice. Arizona: Hohm Press; 1998.
9. Feuerstein G., L. Payne. Yoga for Dummies. Foster City: IDG Books Worldwide, Inc; 1999.
10. Gharote M.L., S.K. Ganguly. Effects of a nine-week yogic training programme on some aspects of physical fitness of physically conditioned young males. Indian J of Med Sci. 10:258-263. 1979.
11. Hewitt J. The Complete Yoga Book. Yoga of Breathing, Yoga of Posture, Yoga of Meditation. New York: Schocken Books; 1977.
12. IVES, J.C. AND J. Sosnoff. Beyond the mind-body hype. The Physician and Sportsmedicine Online. Retrieved February 102003 from http://www.physsportsmed.com
13. JAckson, A.S., M.L. Pollock, and A. Ward. Generalized equations for predicting body density of women. Med. Sci. Sports \& Exerc. 12:175-182. 1980.
14. KLeiner C. Mind-body fitness. Yoga booms in popularity as a way to heighten flexibility, improve breathing and gain sanity. Retrieved May 13 2003, from http://www.usnews.com. 2002.
15. LLOYD, L.K. Are you ready to exercise? Starting an exercise program. American College of Sports Medicine. Fit Society Page Newsletter. Summer 2001.
16. Madanmohan, D.P. Thombre, B. Balakumar, T.K. Nambinarayanan, S. ThaKur, N. KRISHNAMURTHY, et al. Effect of yoga training on reaction time, respiratory endurance and muscular strength. Indian J of Physiol. Pharmacol. 4:229-233. 1992.
17. McArdle, W.F., F.I. Katch, and V.L. Katch. Exercise Physiology: Energy, Nutrition, and Human Performance. Baltimore: Williams and Wilkins, 1986.
18. McArdle, W.F., F.I. Katch, And V.L. Katch. Functional Capacity of the Cardiovascular System. In P. Darcy (Ed.), Exercise Physiology: Energy, Nutrition, and Human Performance ( $5^{\text {th }}$ ed., pp. 344-357). Baltimore: Lippincott, Williams and Wilkins, 2001.
19. McArdle, W.F., F.I. Katch, and V.L. Кatch. The Cardiovascular System. In P. Darcy (Ed.), Exercise Physiology: Energy, Nutrition, and Human Performance ( $5^{\text {th }}$ ed., pp. 305-324). Baltimore: Lippincott, Williams and Wilkins, 2001.
20. Mokdad, A.H., M.K. Serdula, W. Dietz, B. Bowan, J. Marks, and J. Koplan. The spread of the obesity epidemic in the United States, 19911998. JAMA. 282:1519-1522. 1999.
21. Olsen, M.S., H.N. Williford, D.L. Blessing, and R. Greathouse. The cardiovascular and metabolic effects of bench stepping exercise in females. Med. And Sci. in Sport and Excer. 23:1311-1316. 1991.
22. Prasad, K.V.V., Y.V. Ramana, P.S. Ra.Ju, M.V. ReDDY, And K.J.R. MURTHY. Energy cost and physiology efficiency in male yoga practitioners. J. Exerc. Phys. 4:38-44. 2001.
23. Prevalence of obesity among U.S. adults by state: 1991-2001. Retrieved November 25, 2003, from http://www.cdc.gov.
24. Pollock, M.L., G.A. Gaesser, J.D. Butcher, J.P. Despers, R.K. Dishman, B.A. Franklin, and C.E. Garber. The recommend quality and quantity of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Med. Sci. Sports Exerc. 30:975-991. 1998.
25. Raghur P., S. Telles. Muscle power, dexterity skill and visual perception in community home girls trained in yoga or sports and in regular school girls. Indian J of Physiol. Pharmacol. 4: 409-415. 1997.
26. RAI, L., AND K. RAM. Energy expenditure and ventilatory responses during virasana - a yogic standing posture. Indian J. Physiol. Pharmacol. 37:4550. 1993.
27.Ral, L., K. Ram, U. Kant, S.K. Madan, and S.K. Sharma. Energy expenditure and ventilatory responses during siddhasana-a yogic seated posture. Indian J. Physiol. Pharmacol. 38:29-33. 1994.
28. Rama, S. Lectures on Yoga. Illinois: Himalayan International Institute of Yoga Science and Philosophy. 1976.
29. RyAn, P. Beyond aerobics: why the term "group exercise" better reflects today's wide range of programming. Idea Today. 7:60-71. 1997.
30. Telles, S., S.K. Reddy, And H.R. Nagendra. Oxygen consumption and respiration following two yoga relaxation techniques. Applied Psychophysiology and Biofeedback. 25:221-227. 2000.
31. Walker, J.L., T.D. Murray, A.S. Jackson, J.R. Morrow, JR, and T.J. Michaud. The energy cost of horizontal walking and running in adolescents. Med. Sci. Sports \& Exer. 31:311-322. 1999.
32. Wilmore, J.H., D.L. Costill. Physiology of Sport and Exercise (2 ${ }^{\text {nd }}$ ed.). Champaign, IL: Human Kinetics, 1999.

## APPENDIX A

HYPOTHESIS, DELIMITATIONS, SIGNIFICANCE OF THE STUDY

## Hypothesis

On the basis of the available research, it is hypothesized that a typical HY routine will not produce a large enough training stimulus for optimal cardiovascular fitness and weight control as describe by ACSM (24), but will result in a high enough exercise intensity to meet the Surgeon General's recommendations for improving health and quality of life (6).

## Delimitation

This study is delimited to female college students, ranging in age from 19 to 40 years, with a minimum of 4 weeks of hatha yoga experience. Metabolic measurements will be limited to oxygen consumption $\left(\mathrm{VO}_{2}\right)$, METs , kilocalories (kcal), and heart rate (HR).

## Significance of the Study

In recent years, exercise participants have taken up hatha yoga as a form of physical exercise. The question at hand, which has not yet been determined by research, is whether hatha yoga offers an adequate training stimulus to provide cardiovascular fitness and weight control benefits.

A major concern that society is facing today is the obesity epidemic, as well as all of the many health risks involved with being obese. A fairly recent trend in the fitness field is a rise in the popularity of hatha yoga. Hatha yoga seems to attract participants with its low impact nature. Results from such a study may prove valuable to exercise participants as to whether or not their hatha yoga session is within recommended intensity ( 50 to $85 \%$ of maximum oxygen uptake reserve) for improving cardiovascular fitness and weight control.

## APPENDIX B

## REVIEW OF LITERATURE

## Review of Literature

The U.S. Surgeon General suggests that people of all ages, both males and females, can substantially improve their health and quality of life by including a moderate amount of physical activity (e.g., a 30-minute brisk walk or 15-minute run), on most, if not all, days of the week (6). Moreover, additional health and fitness benefits can be gained through greater amounts of physical activity (6, 24). Specifically, in order to maintain optimal levels of cardiorespiratory fitness and body composition, the American College of Sports Medicine (ASCM) recommends that an individual perform 20 to 60 minutes of continuous or intermittent aerobic exercise at 50 to $85 \%$ of maximum oxygen uptake $\left(\mathrm{VO}_{2}\right) 3$ to 5 days per week (24). A bout of aerobic exercise conducted at recommended intensity and duration will expend at least 250 to 300 calories. When combined with appropriate dietary intake, sufficient aerobic training performed a minimum of 3 days per week will increase an individual's likelihood of successful weightloss and long-term weight control $(15,24)$. Typically, these guidelines are met through conventional forms of physical activity, such as walking-hiking, runningjogging, cycling-bicycling, and group exercise (formerly known as aerobic dance) $(24,29)$. Surprisingly, less than $40 \%$ of adults meet the U.S. Surgeon General guidelines (6), and no more than 15\% of adults participate in physical activities with sufficient intensity and regularity to meet minimum ACSM recommendations $(6,24)$.

In particular, to help individuals of varying age, fitness, motivation levels, and exercise goals meet recommended exercise guidelines, a variety of both
conventional and unconventional exercise options is warranted. For instance, alternative forms of low impact physical activity, such as hatha yoga, may appeal to individuals who are often deterred by more conventional forms of exercise (4, 14).

Hatha yoga, i.e., the yoga of physical discipline, is one of the eight principle branches of yoga (9). Hatha yoga is a combination of four practices, two being more associated with a mental state of thought and belief, and two being physical, the practice of asanas (poses) and pranayamas (breathing techniques) (9). Hatha yoga has become increasing popular in recent years in the U.S. (11), and is the most widely practiced form of yoga in the United States (9). Since 1994, there has been a three-fold increase in yoga participants, with the current number of participants approaching 20 million $(4,14)$. However, research on the acute and chronic cardiovascular and metabolic responses to hatha yoga is limited. Because many individuals have incorporated hatha yoga into their physical activity programs, there is a need for research to determine whether hatha yoga is an adequate mode of exercise for providing the proper training stimulus to enhance cardiovascular fitness and weight control as described by ACSM (24).

## History of Yoga

Yoga can be dated as far back as 5,000 years ago in India (9). Although difficult to define, the traditional practice of yoga is employed for one to reach the ultimate goal of potential perfection and internal happiness (9). Hatha yoga, i.e.
the physical discipline uses asanas, pranayama, and mental exercises (meditation) (12) to achieve the state of mental equanimity (30) and selfawareness (8). In other words, through the practice of eastern-style yoga, a yogi can free his or her mind and allow the focus to be exclusively on a particular object of thought $(3,8)$.

The traditional goal of regular hatha yoga practice is to achieve enlightenment through proper purification and preparation of the body (9). Since the late 1960's $(2,9)$, all styles of yoga, including hatha yoga, have undergone various adaptations in the U.S. (9). Specifically, hatha yoga has been use as a method for achieving physical fitness and maintaining health (9) rather than a method for reaching potential perfection and internal happiness for spiritual growth and self-realization $(9,11)$. Subsequently, the practice of hatha yoga in the U.S. incorporated only the physical aspects, asanas and pranayamas (9).

Although hatha yoga has become a popular form of physical activity, research has not determined whether it is an adequate mode of exercise for providing the proper training stimulus required to promote cardiovascular fitness and weight control as described by the ACSM (24). Most research on the cardiovascular and metabolic responses to yoga has concerned eastern yoga and been performed in India (22,26,27). However, due to the differences in focus, format, and purpose among eastern yoga and western hatha yoga, results of these eastern studies should not be used to describe the physiological responses to western-style hatha yoga.

## Physiological Responses to an Acute Bout of Hatha Yoga

In determining whether regular hatha yoga practice positively impacts cardiorespiratory fitness and weight control, there is a need to first review the results of previous investigations on the physiological responses to asanas and pranayamas. From that, it may be determined whether a typical hatha yoga routine consisting of asanas and pranaymas provides an adequate training stimulus, i.e., whether it is performed at $50-85 \%$ of $\mathrm{VO}_{2}$ max, $50-85 \%$ of HRR , and $50-85 \%$ of MHR, (24), for promoting cardiorespiratory fitness and weight control. Current research is limited and includes the following physiological responses to one or more asanas and a single pranayama technique: energy expenditure (EE) in kcal $\mathrm{min}^{-1}(22,26,27)$, HR in beats $\min ^{-1}(7,22,26,27), \mathrm{VO}_{2}$ in either $\mathrm{LO}_{2} \cdot \mathrm{~min}^{-1}$ or $\mathrm{mlO}_{2} \mathrm{~kg}^{-1} \mathrm{~min}^{-1}(7,22,26,27$ ), and Metabolic Equivalents (METs) (7, 22, 26, 27).

Previous research is limited to mainly to the metabolic and cardiovascular responses to a particular static asana and suggests that performing a static asana places minimal stress on the cardiovascular system $(26,27)$. For example, in a study by Rai and Ram (26), reported in male yoga instructors, ages 25 to 37 years, mean $\mathrm{VO}_{2}, \mathrm{METS}, \mathrm{EE}$, and HR were $0.57 \mathrm{LO}_{2} \mathrm{~min}^{-1}, 2.53$ METs, 2.76 kcal $\mathrm{min}^{-1}$, and 104.35 beats $\mathrm{min}^{-1}$, respectively, during Virasana (i.e., a standing yogic asana) in 6 man with a high breathing frequency group (i.e., greater than 10 breaths per min), and $0.57 \mathrm{LO}_{2} \cdot \mathrm{~min}^{-1}, 2.53 \mathrm{METs}, 2.76$ kcal $\mathrm{min}^{-1}$, and 104.35 beats min $^{-1}$, respectively, during Virasana in 4 men with a low breathing
frequency (i.e., less than 5 breaths per min). According to their breathing frequency recorded during Shavasana, subjects were assigned to a breathing frequency group. Because $\mathrm{VO}_{2}$ max was not measured, percentage of oxygen uptake reserve $\left(\% \mathrm{VO}_{2} \mathrm{R}\right)$ could not be derived, and thus, true relative intensity of exercise could not be determined. However, based on the reported MET values, it appears that Virasana requires at a light to very light exercise intensity (i.e., <4.8 METs for young adults 20 to 39 years of age) and does not meet the recommendations (i.e., 4.8 METs) for improving cardiovascular fitness and weight control in young adults (24). When compared to conventional forms of moderate intensity aerobic exercise, such as walking at $93.86 \mathrm{~m} \mathrm{~min}^{-1}(3.5 \mathrm{mph})$, i.e., 5.5 METs (32), Virasana has at least a 45\% lower metabolic cost.

Rai et al (27) also studied the cardiovascular and metabolic responses to Siddhasana (i.e., a seated yogic posture), resting in a chair, and Shavasana (i.e., resting in a supine position) in 10 male yoga instructors, ages 25 to 37 years old. Again, according to their breathing frequency recorded during Shavasana, subjects were assigned to either a high breathing frequency (i.e., greater than 10 breaths per min ) or a low breathing frequency (i.e., less than 5 breaths per min) group. Mean $\mathrm{VO}_{2}$, METs, EE, and HR during Siddhasana (i.e., a static seated asana) were $0.28 \mathrm{LO}_{2} \cdot \mathrm{~min}^{-1}, 1.20 \mathrm{METs}, 1.35 \mathrm{kcalmin}^{-1}$, and 73.8 beats $\mathrm{min}^{-1}$, respectively, in 6 men with a high breathing frequency (i.e., greater than 10 breaths per min). For the low breathing frequency group ( $n=4$ ), mean $\mathrm{VO}_{2}, E E$, METS, and HR were $0.23 \mathrm{LO}_{2} \mathrm{~min}^{-1}, 1.00 \mathrm{METs}, 1.12{\mathrm{kcal} \mathrm{min}^{-1}}^{\mathrm{M}}$, and 82.10 beats $\mathrm{min}^{-1}$, respectively. True exercise intensity of Siddhasana was also not
determined in this study. However, since Siddhasana was performed at approximately 1 MET, it appears that this asana fails to require oxygen beyond a state of rest. Based on METs, the results of these two studies suggest that the metabolic requirement of the static seated asana, Siddhasana is not any higher than that of rest, while the standing yogic asana, Virasana, is almost 2.5 times that of rest. Therefore, in order to approach the recommended exercise intensity for promoting cardiovascular fitness and weight control, a typical hatha yoga routine should primarily consist of standing asanas.

The first study conducted in the United States on hatha yoga investigated the physiological responses to a continuous routine of various standing asanas (7). This study documented the effects of a 32-minute hatha yoga routine consisting of 12 standing asanas in 10 subjects ( 6 male and 4 female, aged 38 47 years) with at least 1 year of hatha yoga practice, and compared those responses to 32 minutes of walking on a treadmill at $107.27 \mathrm{~m} \mathrm{~min}^{-1}$ ( 4 mph ). Subjects held each asana for forty seconds and were allotted ten seconds for transitions between all asanas. On average, HR recorded during minutes 16, 24, and 32 was significantly higher ( $21-24 \mathrm{bpm}$ ) during yoga routine than treadmill. HR recorded during minute 8 was the same during the yoga routine as during treadmill walking ( 119 beats $\min ^{-1}$ vs 114 beats $\min ^{-1}$ ). Conversely, $\mathrm{VO}_{2}$ during treadmill in $\min 8,16,24$, and 32 were significantly higher (14.4-18.95 $\mathrm{LO}_{2} \cdot \mathrm{~min}^{-}$ ${ }^{1}$ ) than $\mathrm{VO}_{2}$ values during yoga routine metabolic cost of the yoga routine was reported to be 4.1 METS or $34 \%$ of $\mathrm{VO}_{2}$ max. The higher HR and RPE reported during yoga routine could possibly be attributed to the dynamic exercise involving
large muscle groups, hip and torso flexion, and/or the arm level during isometric contractions. Participants experiencing these responses could possibly misperceive the intensity of such a workload, when in fact the cardiovascular responses to the exercise are not enough to produce a training stimulus.

An integral part of hatha yoga is incorporating certain breathing techniques (pranayama), with asanas. A study conducted by Prasad et al (22) investigated the energy cost of nadisodhana (alternate nostril breathing) during vajrasans (a sitting asana). Results were then compared to more traditional forms of physical activity: 1) treadmill walking and 2) field-walking. Twelve healthy males with three years of hatha yoga experience, including pranayama training volunteered for the study. Each subject performed 4 tests: 1) a graded maximal exercise test (Bruce protocol), 2) nadisodhana 3) treadmill walking, and 4) field-walking each for a duration of 30 minutes. Test 2 involved nadisodhana breathing consisting of nasal inhalation and exhalation at a 1:2 ratio. Subjects were instructed to cycle their breaths according to an 8 second inhalation followed with a 16 second exhalation. After 5 cycles subjects were instructed to breathe normally for 1 minute and to repeat this routine for 30 minutes. In test 3, subjects walked at a pace of $49.88 \mathrm{~m} \mathrm{~min}^{-1}(1.86 \mathrm{mph})$ for 30 minutes on a treadmill. Test 4 required the subjects to walk a distance of $24.94 \mathrm{~m}^{\prime} \mathrm{min}^{-1}(.93$ mph ) in 30 minutes on a 400 m track. All 4 tests were performed one hour after bed rest between the hours of 7 am and 8am on consecutive days with graded maximal testing conducted on the $4^{\text {th }}$ day. The energy expenditure of nadisodhana and field-walking were derived from individual regression equations
using the $\mathrm{O}_{2}$ consumption and HR recorded during maximal exercise testing. Mean $\mathrm{VO}_{2}, \mathrm{EE}$, and HR were $0.72 \mathrm{LO}_{2} \mathrm{~min}^{-1}, 3.59 \mathrm{kcal} \mathrm{min}^{-1}$, and 80.2 beats $\mathrm{min}^{-}$ ${ }^{1}$, respectively, during treadmill walking, $0.56 \mathrm{LO}_{2} \mathrm{~min}^{-1}, 2.80 \mathrm{kcalmin}^{-1}$, and 74.8 beats $\mathrm{min}^{-1}$, respectively, during field-walking, and $0.45 \mathrm{LO}_{2} \mathrm{~min}^{-1}, 2.23 \mathrm{kcal} \mathrm{min}^{-1}$, and 66.9 beats $\mathrm{min}^{-1}$, respectively, during nadisodhana. Although speculative, incorporating such breathing techniques while performing lying and/or sitting asanas may increase the intensity of hatha yoga.

It appears that the practice of hatha yoga has become a popular form of physical activity and a method employed by many as a means for achieving physical fitness and health maintenance (9). Due to the limitations of research o this topic it is still unknown as to whether hatha yoga is an adequate mode of physical activity for providing the proper training stimulus required to improve cardiovascular fitness and weight control as described by ACSM (24). More research is needed to investigate the acute cardiovascular and metabolic responses to western-style hatha yoga and whether a typical western-style hatha yoga session meets minimum recommendations prescribed by ACSM for improvement in cardiovascular fitness and weight control.

Since each of the studies, except one, looked at either a single pranayama technique or a single asana, are only a few of the many asanas and pranayamas that are performed during a typical hatha yoga routine, caution should be used when using these results to determine whether a typical hatha yoga routine will provide an adequate training stimulus for promoting cardiovascular fitness and weight control.

However, even though hatha yoga has become a popular form of physical activity and a method employed by many as a means for achieving physical fitness and health maintenance (9), research has not yet determined whether it is an adequate mode of exercise for providing the proper training stimulus required to promote cardiovascular fitness and weight control as described by ACSM (24). More research is needed to investigate the acute cardiovascular and metabolic responses to western-style hatha yoga and whether a typical western-style hatha yoga session meets minimum recommendations prescribed by ACSM for improvement in cardiovascular fitness and weight control.

## APPENDIX C

INFORMED CONSENT

## Statement of Informed Consent

You are invited to participate in a study investigating the metabolic effects of hatha yoga. The purpose of this investigation is to determine whether a typical hatha yoga routine is an adequate mode of exercise for providing the proper training stimulus to enhance cardiovascular fitness and weight control as described by the American College of Sports Medicine. I am a graduate student and a graduate teaching assistant at Texas State University-San Marcos, in the Health, Physical Education, and Recreation Department. I am performing this study to fulfill my master's thesis requirement. I hope to learn that hatha yoga is an acceptable form of exercise for improving health-related physical fitness. You were selected as a possible participant in this study because your class was chosen to be the experimental class. You will be one of 30 students chosen to participate in this study.

## 1. Purpose and Explanation of the Test

If you decide to participate, you will complete the following on the first day of testing: a) a health history questionnaire; b) height, weight, 3 -site sum of skinfold, waist to hip ratio; c) 5 -minute chair rest; d) a 5 -minute treadmill walk at 3.5 mph ; e) a graded maximal exercise test. You will then be asked to return to the lab within 7 days for performance of a 30-minute typical hatha yoga routine.

## 2. Attendant Risks and Discomforts

There exists the possibility of certain changes occurring during walking, yoga, and graded maximal exercise test. These include abnormal blood pressure, fainting, irregular, fast, or closing heart rhythm, and in rare instances, heart attack, stroke, or death. Although there has been no research identifying a college-age student's risk of death during graded maximal exercise, the studies on the risk of death during graded maximal exercise for middle-aged men is 1 death per 10,000 tests. Every effort will be made to minimize these risks by evaluation and preliminary information relating to your health and fitness and by careful observations during testing. In addition, emergency equipment is located nearby in the athletic training offices and is available at all times.

## 3. Responsibilities of the Participant

Information you possess about your health status or previous experiences of heart-related symptoms (such as shortness of breath with low-level activity, pain, pressure, tightness, heaviness in the chest, neck, jaw, back and/or arms) with physical effort may affect the safety of your exercise test. Your prompt reporting of these and any other unusual feelings with effort during the exercise test itself is of great importance. You are responsible for fully disclosing your medical history, as well as symptoms that may occur during the test. You are also expected to report all medications (including non-prescription) taken recently and, in particular, those taken today, to the testing staff.

## 4. Benefits to be Expected

The results obtained from the exercise test may be used to classify your level of progress in an already established training program. Results can also be used to determine whether you are at risk for a chronic disease, such as cardiovascular disease, diabetes type II, and/or osteoporosis.

## 5. Inquiries

Any questions about the procedures used in the exercise test or the results of your test are encouraged. If you have any concerns or questions, please ask us for further explanations.

## 6. Use of Medical Records

Any information that is obtained in connection with this study and that can be identified with you will remain confidential and will be disclosed only with your permission. The data collected for this research will be kept for approximately one year in a file cabinet located in a locked closet in the Human Performance Lab.

## 7. Freedom of Consent

I hereby consent to voluntarily engage in an exercise test to determine my exercise capacity and state of cardiovascular health. My permission to perform
this exercise test is given voluntarily. I understand that I am free to stop the test at any point, if I so desire.

If you have any questions, please feel free to ask me now. If you any additional questions later feel free to contact me, (512) $245-1972$, or the chair of my thesis, Dr. Lisa Lloyd, (512) 245-8358 and we will be happy to answer them. Your decision whether or not to participate in this study or to discontinue will not prejudice your future relations with Texas State University or with me (i.e., your grade will not be affected if you decide to withdraw from this study).

You will be offered a copy of this form to keep.
Your signature indicates that you have read the information provided above and have decided to participate.

I have read this form, and I understand the test procedures, risks, discomforts, and benefits of the study that I am about to participate in. Knowing these risks and discomforts, and having had an opportunity to ask questions that have been answered to my satisfaction, I consent to participate in this study.

Signature of Participant

Signature of Witness

Signature of Investigator


## APPENDIX D

RAW DATA

| Subjects | $\begin{aligned} & \text { Gender } \\ & (F=0) \end{aligned}$ | Age | Weight (lbs) | Weight (kg) | Height (in) | Height (m) | $\underset{(\mathrm{kg} / \mathrm{m} 2)}{\mathrm{BMI}}$ | Female Tricep 1 | Female Tricep 2 | Female Tricep 3 | Tricep Avg | Female SI 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 40 | 114.5 | 52.04545 | 61.5 | 1.5621 | 21.32874 | 22 | 22 |  | 22 | 18 |
| 2 | 0 | 23 | 127 | 57.72727 | 65.25 | 1.65735 | 21.01612 | 14 | 12 | 13 | 13 | 11 |
| 3 | 0 | 23 | 104 | 47.27273 | 65.25 | 1.65735 | 17.21005 | 14 | 14 |  | 14 | 3 |
| 4 | 0 | 26 | 147 | 66.81818 | 67.5 | 1.7145 | 22.73106 | 9 | 9 |  | 9 | 6 |
| 5 | 0 | 23 | 145 | 65.90909 | 66 | 1.6764 | 23.45255 | 11 | 16 | 16 | 14.33333 | 26 |
| 6 | 0 | 25 | 121 | 55 | 65.5 | 1.6637 | 19.87068 | 12 | 13 |  | 12.5 | 12 |
| 7 | 0 | 22 | 134.5 | 61.13636 | 67.5 | 1.7145 | 20.79815 | 10 | 10 |  | 10 | 8 |
| 8 | 0 | 19 | 107.5 | 48.86364 | 63.75 | 1.61925 | 18.63623 | 14 | 12 | 12 | 12.66667 | 11 |
| 9 | 0 | 22 | 145 | 65.90909 | 63 | 1.6002 | 25.7393 | 12 | 11 |  | 11.5 | 18 |
| 10 | 0 | 22 | 121 | 55 | 64 | 1.6256 | 20.81303 | 26 | 26 |  | 26 | 14 |
| 11 | 0 | 27 | 141 | 64.09091 | 64.5 | 1.6383 | 23.87864 | 20 | 19 |  | 19.5 | 16 |
| 12 | 0 | 20 | 91 | 41.36364 | 64.5 | 1.6383 | 15.41104 | 4 | 4 |  | 4 | 2 |
| 13 | 0 | 22 | 169 | 76.81818 | 65.5 | 1.6637 | 27.75326 | 26 | 25 |  | 25.5 | 26 |
| 14 | 0 | 23 | 153 | 69.54545 | 64.25 | 1.63195 | 26.1129 | 27 | 26 |  | 26.5 | 16 |
| 15 | 0 | 25 | 139 | 63.18182 | 62.25 | 1.58115 | 25.27237 | 20 | 19 |  | 19.5 | 13 |
| 16 | 0 | 23 | 142 | 64.54545 | 63.5 | 1.6129 | 24.81137 | 25 | 25 |  | 25 | 11 |
| 17 | 0 | 20 | 126 | 57.27273 | 58.5 | 1.4859 | 25.93992 | 27 | 25 | 23 | 25 | 20 |
| 18 | 0 | 21 | 155.25 | 70.56818 | 64.75 | 1.64465 | 26.08927 | 37 | 35 |  | 36 | 15 |
| 19 | 0 | 22 | 100 | 45.45455 | 58.5 | 1.4859 | 20.58724 | 17 | 16 |  | 16.5 | 16 |
| 20 | 0 | 21 | 103 | 46.81818 | 58.25 | 1.47955 | 21.38727 | 14 | 13 |  | 13.5 | 7 |
| 21 | 0 | 22 | 100 | 45.45455 | 59.25 | 1.50495 | 20.06934 | 11 | 10 |  | 10.5 | 8 |
| 22 | 0 | 32 | 124 | 56.36364 | 65 | 1.651 | 20.67783 | 25 | 24 |  | 24.5 | 14 |
| 23 | 0 | 22 | 166 | 75.45455 | 61.75 | 1.56845 | 30.67214 | 25 | 23 | 24 | 24 | 22 |
| 24 | 0 | 22 | 107 | 48.63636 | 63.5 | 1.6129 | 18.69589 | 12 | 11 |  | 11.5 | 6 |
| 25 | 0 | 20 | 205 | 93.18182 | 65.5 | 1.6637 | 33.6652 | 31 | 34 | 30 | 31.66667 | 26 |
| 26 | 0 | 21 | 123 | 55.90909 | 65.5 | 1.6637 | 20.19912 | 21 | 25 | 21 | 22.33333 | 10 |


| $\begin{gathered} \text { Female } \\ \text { SI } 2 \end{gathered}$ | $\begin{gathered} \text { Female } \\ \mathrm{S} \mid 3 \end{gathered}$ | Avg si | Female Thigh 1 | Female Thigh 2 | Female Thigh 3 | Ave Thigh | SSF | FEMALE Body Density | FEMALE \% Bodyfat | Waist (cm) | Hip (cm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 19 |  | 18.5 | 31 | 30 |  | 30.5 | 71 | 1.034951 | 28.28333 | 67 | 90 |
| 11 |  | 11 | 26 | 23 | 22 | 23.66667 | 47.66667 | 1.054117 | 19.58733 | 51 | 89 |
| 4 |  | 3.5 | 28 | 27 |  | 27.5 | 45 | 1.056196 | 18.66284 | 56.5 | 87 |
| 7 |  | 6.5 | 8 | 8 |  | 8 | 23.5 | 1.073739 | 11.00596 | 70 | 92 |
| 21 | 21 | 22.66667 | 24 | 25 |  | 24.5 | 61.5 | 1.043855 | 24.20369 | 73 | 96 |
| 13 |  | 12.5 | 20 | 20 |  | 20 | 45 | 1.055918 | 18.7864 | 64.5 | 89 |
| 8 |  | 8 | 21 | 21 |  | 21 | 39 | 1.061134 | 16.48217 | 62 | 87.5 |
| 12 |  | 11.5 | 17 | 16 |  | 16.5 | 40.66667 | 1.060202 | 16.89218 | 64 | 83 |
| 18 |  | 18 | 20 | 21 |  | 20.5 | 50 | 1.052464 | 20.32505 | 76 | 103 |
| 12 | 13 | 13 | 39 | 33 | 32 | 34.66667 | 73.66667 | 1.035697 | 27.93922 | 62.5 | 88.5 |
| 18 | 18 | 17.33333 | 41 | 35 | 38 | 38 | 74.83333 | 1.034241 | 28.61201 | 64 | 96.5 |
| 3 |  | 2.5 | 6 | 6 |  | 6 | 12.5 | 1.084585 | 6.395712 | 54.5 | 74 |
| 27 |  | 37 | 39 | 37 | 37 | 37.66667 | 100.1667 | 1.01998 | 35.30371 | 78.5 | 105 |
| 15 |  | 15.5 | 41 | 34 | 38 | 37.66667 | 79.66667 | 1.031716 | 29.78322 | 78 | 109 |
| 17 | 20 | 27 | 23 | 20 |  | 21.5 | 68 | 1.039059 | 26.39258 | 66.5 | 94.5 |
| 14 | 15 | 13.33333 | 30 | 31 |  | 30.5 | 68.83333 | 1.038772 | 26.52409 | 67 | 96 |
| 14 | 15 | 16.33333 | 29 | 27 | 29 | 28.33333 | 69.66667 | 1.038628 | 26.59032 | 81 | 94.5 |
| 16 |  | 15.5 | 58 | 56 |  | 57 | 108.5 | 1.015844 | 37.27939 | 73 | 107 |
| 15 |  | 15.5 | 23 | 23 |  | 23 | 55 | 1.048707 | 22.01 | 56.5 | 82 |
| 7 |  | 7 | 20 | 20 |  | 20 | 40.5 | 1.060058 | 16.95561 | 59 | 86 |
| 8 |  | 8 | 13 | 12 |  | 12.5 | 31 | 1.067789 | 13.57473 | 56 | 81 |
| 12 | 12 | 12.66667 | 24 | 24 |  | 24 | 61.16667 | 1.042839 | 24.66563 | 62 | 89 |
| 20 | 22 | 21.33333 | 25 | 29 | 26 | 26.66667 | 72 | 1.036793 | 27.43378 | 84 | 107 |
| 5 |  | 5.5 | 15 | 16 |  | 15.5 | 32.5 | 1.066519 | 14.12687 | 51 | 81 |
| 25 |  | 25.5 | 42 | 46 | 44 | 44 | 101.1667 | 1.019728 | 35.42337 | 84.5 | 122.5 |
| 9 |  | 9.5 | 15 | 16 |  | 15.5 | 47.33333 | 1.054654 | 19.34844 | 59 | 85.5 |


| Ratio | Chair-Rest Min 3 ( $\mathrm{ml} / \mathrm{kg} / \mathrm{min}$ ) | Chair-Rest Min 4 ( $\mathrm{m} / \mathrm{kg} / \mathrm{min}$ ) | Chair-Rest Min 5 ( $\mathrm{m} / \mathrm{kg} / \mathrm{min}$ ) | ChairRest Min 3 (L/min) | ChairRest Min 4 (L/min) | ChairRest Min 5 (L/min) | ChairRest Min 3 (HR) | ChairRest Min 4 (HR) | ChairRest Min 5 (HR) | Average ( $\mathrm{ml} / \mathrm{kg} / \mathrm{min}$ ) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.744444 | 4.1 | 4.4 | 4 | 0.21 | 0.23 | 0.21 | 91 | 91 | 87 | 4.1666667 | 0.029762 |
| 0.573034 | 4.5 | 5.1 | 4.2 | 0.26 | 0.29 | 0.24 | 87 | 84 | 86 | 4.6 | 0.038194 |
| 0.649425 | 3.7 | 3.7 | 3.9 | 0.18 | 0.18 | 0.19 | 97 | 96 | 109 | 3.7666667 | 0.010217 |
| 0.76087 | 4.1 | 4.3 | 4.1 | 0.28 | 0.29 | 0.27 | 68 | 67 | 67 | 4.1666667 | 0.02008 |
| 0.760417 | 3.7 | 3.7 | 2.8 | 0.24 | 0.24 | 0.18 | 82 | 86 | 80 | 3.4 | -0.00431 |
| 0.724719 | 2.8 | 2.2 | 1.8 | 0.15 | 0.12 | 0.1 | 92 | 96 | 90 | 2.2666667 | -0.04602 |
| 0.708571 | 3.6 | 3.4 | 3.4 | 0.22 | 0.21 | 0.2 | 81 | 84 | 83 | 3.4666667 | -0.00085 |
| 0.771084 | 2.8 | 2.9 | 3.9 | 0.14 | 0.14 | 0.19 | 91 | 98 | 103 | 3.2 | -0.00917 |
| 0.737864 | 3.8 | 3 | 3.4 | 0.25 | 0.2 | 0.22 | 75 | 74 | 74 | 3.4 | -0.00389 |
| 0.706215 | 3.7 | 3.7 | 3.7 | 0.2 | 0.2 | 0.2 | 110 | 113 | 112 | 3.7 | 0.007813 |
| 0.663212 | 3.9 | 3.8 | 3 | 0.25 | 0.24 | 0.19 | 72 | 80 | 70 | 3.5666667 | 0.002315 |
| 0.736486 | 3.3 | 4 | 4 | 0.14 | 0.16 | 0.16 | 65 | 64 | 63 | 3.7666667 | 0.008715 |
| 0.747619 | 3.8 | 3.5 | 3.7 | 0.29 | 0.27 | 0.28 | 91 | 89 | 90 | 3.6666667 | 0.006061 |
| 0.715596 | 3.9 | 3.4 | 4.3 | 0.27 | 0.23 | 0.3 | 73 | 77 | 75 | 3.8666667 | 0.014493 |
| 0.703704 | 3.1 | 3.8 | 3.1 | 0.19 | 0.24 | 0.2 | 64 | 68 | 69 | 3.3333333 | -0.00758 |
| 0.697917 | 4 | 3.6 | 3.4 | 0.26 | 0.23 | 0.22 | 73 | 66 | 74 | 3.6666667 | 0.004115 |
| 0.857143 | 3.7 | 2.2 | 2.2 | 0.21 | 0.13 | 0.12 | 90 | 92 | 98 | 2.7 | -0.02857 |
| 0.682243 | 5.9 | 4.8 | 4.9 | 0.42 | 0.34 | 0.34 | 106 | 101 | 107 | 5.2 | 0.069388 |
| 0.689024 | 4.3 | 4.1 | 4.2 | 0.19 | 0.18 | 0.19 | 78 | 75 | 81 | 4.2 | 0.024823 |
| 0.686047 | 4.6 | 4.5 | 4.8 | 0.22 | 0.21 | 0.23 | 88 | 87 | 88 | 4.6333333 | 0.028333 |
| 0.691358 | 3.5 | 3 | 3 | 0.16 | 0.14 | 0.14 | 83 | 83 | 83 | 3.1666667 | -0.01134 |
| 0.696629 | 4.4 | 4.3 | 3.5 | 0.25 | 0.24 | 0.2 | 91 | 93 | 93 | 4.0666667 | 0.017436 |
| 0.785047 | 3 | 2.7 | 2.6 | 0.23 | 0.21 | 0.2 | 80 | 78 | 78 | 2.7666667 | -0.02537 |
| 0.62963 | 2.6 | 2 | 2 | 0.12 | 0.1 | 0.1 | 91 | 84 | 89 | 2.2 | -0.03951 |
| 0.689796 | 2.9 | 3 | 2.8 | 0.27 | 0.28 | 0.26 | 90 | 88 | 90 | 2.9 | -0.02381 |
| 0.690058 | 0.8 | 1 | 0.8 | 0.04 | 0.06 | 0.04 | 86 | 86 | 86 | 0.8666667 | 0.046667 |


| Average (Limin) | Average (HR) | 3.5 mph Min 3 ( $\mathrm{ml} / \mathrm{kg} / \mathrm{min}$ ) | 3.5 mph Min 4 ( $\mathrm{ml} / \mathrm{kg} / \mathrm{min}$ ) | $\begin{gathered} 3.5 \mathrm{mph} \\ \operatorname{Min} 5 \\ (\mathrm{ml} / \mathrm{kg} / \mathrm{min}) \end{gathered}$ | 3.5 mph Min 3 (L/min) | 3.5 mph Min 4 (L/min) | 3.5 mph Min 5 (L/min) | 3.5 mph Min 3 (HR) | 3.5 mph Min 4 (HR) | $\begin{gathered} 3.5 \mathrm{mph} \\ \operatorname{Min} 5 \\ \text { (HR) } \end{gathered}$ | Average ( $\mathrm{m} / \mathrm{kg} / \mathrm{min}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.216667 | 89.66667 | 12.9 | 12.4 | 14.4 | 0.67 | 0.65 | 0.75 | 133 | 133 | 135 | 13.23333333 |
| 0.263333 | 85.66667 | 19.5 | 19.2 | 18.8 | 1.13 | 1.11 | 1.08 | 139 | 139 | 141 | 19.16666667 |
| 0.183333 | 100.6667 | 15 | 14.5 | 14.1 | 0.71 | 0.68 | 0.67 | 124 | 122 | 122 | 14.53333333 |
| 0.28 | 67.33333 | 14.6 | 14.9 | 14.4 | 0.97 | 1 | 0.96 | 105 | 103 | 102 | 14.63333333 |
| 0.22 | 82.66667 | 14 | 14.7 | 13.3 | 0.92 | 0.97 | 0.88 | 145 | 146 | 148 | 14 |
| 0.123333 | 92.66667 | 19.2 | 19.2 | 18.9 | 1.05 | 1.05 | 1.04 | 156 | 155 | 157 | 19.1 |
| 0.21 | 82.66667 | 14.6 | 14.4 | 15 | 0.89 | 0.88 | 0.92 | 121 | 117 | 116 | 14.66666667 |
| 0.156667 | 97.33333 | 18.4 | 17 | 17.5 | 0.9 | 0.83 | 0.86 | 146 | 147 | 140 | 17.63333333 |
| 0.223333 | 74.33333 | 15.6 | 14.7 | 18.9 | 1.03 | 0.97 | 1.25 | 103 | 129 | 134 | 16.4 |
| 0.2 | 111.6667 | 16.8 | 15.5 | 15.2 | 0.92 | 0.86 | 0.83 | 171 | 173 | 173 | 15.83333333 |
| 0.226667 | 74 | 12.7 | 14.2 | 14.7 | 0.81 | 0.91 | 0.94 | 118 | 116 | 121 | 13.86666667 |
| 0.153333 | 64 | 12.5 | 14 | 14 | 0.52 | 0.58 | 0.58 | 109 | 105 | 108 | 13.5 |
| 0.28 | 90 | 16 | 16.5 | 15.8 | 1.23 | 1.27 | 1.21 | 121 | 121 | 122 | 16.1 |
| 0.266667 | 75 | 19.1 | 19.3 | 18.2 | 1.33 | 1.34 | 1.27 | 138 | 138 | 141 | 18.86666667 |
| 0.21 | 67 | 16.8 | 16.4 | 16.6 | 1.06 | 1.04 | 1.05 | 122 | 124 | 122 | 16.6 |
| 0.236667 | 71 | 15.2 | 15.4 | 14.7 | 0.98 | 0.99 | 0.95 | 109 | 107 | 108 | 15.1 |
| 0.153333 | 93.33333 | 17 | 17.7 | 15.5 | 0.98 | 1.01 | 0.89 | 155 | 160 | 161 | 16.73333333 |
| 0.366667 | 104.6667 | 17.9 | 16.2 | 17.9 | 1.27 | 1.14 | 1.26 | 153 | 155 | 158 | 17.33333333 |
| 0.186667 | 78 | 21.4 | 19.6 | 19.3 | 0.97 | 0.89 | 0.88 | 149 | 143 | 139 | 20.1 |
| 0.22 | 87.66667 | 16.3 | 17.1 | 15.8 | 0.76 | 0.8 | 0.74 | 121 | 125 | 127 | 16.4 |
| 0.146667 | 83 | 15.7 | 15.1 | 16.3 | 0.71 | 0.69 | 0.74 | 120 | 121 | 122 | 15.7 |
| 0.23 | 92.33333 | 16.9 | 17.4 | 17.4 | 0.95 | 0.98 | 0.98 | 128 | 129 | 130 | 17.23333333 |
| 0.213333 | 78.66667 | 15.8 | 16.8 | 16.2 | 1.2 | 1.27 | 1.22 | 139 | 142 | 143 | 16.26666667 |
| 0.106667 | 88 | 16 | 13.5 | 13.2 | 0.78 | 0.66 | 0.64 | 135 | 136 | 132 | 14.23333333 |
| 0.27 | 89.33333 | 17 | 17.2 | 17 | 1.58 | 1.6 | 1.58 | 143 | 149 | 148 | 17.06666667 |
| 86 | 86 | 12.5 | 12.3 | 11.4 | 0.7 | 0.69 | 0.64 | 140 | 141 | 137 | 50.69222222 |


|  | METs | Average (L/min) | Average (HR) | VO2 max ( $\mathrm{ml} / \mathrm{kg} / \mathrm{min}$ ) | vo2 max (L/min) | $\begin{gathered} \text { VO2 Max } \\ (H R) \end{gathered}$ | Yoga min 1 (m/kg/min) | Yoga min 2 (m/kg/min) | Yogamin 3 (m/kg/min) | Yoga min 4 (m/kg/min) | Yoga min 5 ( $\mathrm{ml} / \mathrm{kg} / \mathrm{min}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.434524 | 3.780952 | 0.69 | 133.6667 | 25.9 | 1.35 | 172 | 4.8 | 5.7 | 5.4 | 2.9 | 5 |
| 0.543981 | 5.47619 | 1.106667 | 139.6667 | 32.3 | 1.87 | 195 | 4.1 | 4.2 | 7.2 | 3.9 | 7.8 |
| 0.422733 | 4.152381 | 0.686667 | 122.6667 | 29.6 | 1.4 | 178 | 4.3 | 4.5 | 4.9 | 4 | 5.5 |
| 0.335341 | 4.180952 | 0.976667 | 103.3333 | 36.7 | 2.45 | 163 | 5.5 | 4.7 | 5.1 | 3.9 | 7.3 |
| 0.452586 | 4 | 0.923333 | 146.3333 | 26.7 | 1.76 | 184 | 4.7 | 4.8 | 5.2 | 3.9 | 7.3 |
| 0.58209 | 5.457143 | 1.046667 | 156 | 30.3 | 1.67 | 199 | 7 | 6 | 6.3 | 4.6 | 9 |
| 0.285592 | 4.190476 | 0.896667 | 118 | 42.6 | 2.6 | 189 | 3.4 | 4.1 | 4.4 | 4 | 7 |
| 0.432212 | 5.038095 | 0.863333 | 144.3333 | 36.2 | 1.77 | 197 | 4.5 | 3.6 | 5.1 | 2.7 | 7.9 |
| 0.501946 | 4.685714 | 1.083333 | 122 | 29.2 | 1.93 | 193 | 2.3 | 2.4 | 3.8 | 3.6 | 5.4 |
| 0.481771 | 4.52381 | 0.87 | 172.3333 | 29.1 | 1.6 | 191 | 3.4 | 3.4 | 4 | 3.4 | 5.1 |
| 0.359954 | 3.961905 | 0.886867 | 118.3333 | 32.3 | 2.07 | 175 | 1.6 | 1.4 | 4 | 2.5 | 3.2 |
| 0.326797 | 3.857143 | 0.56 | 107.3333 | 34.1 | 1.41 | 175 | 4.7 | 3.6 | 6.5 | 4.1 | 7 |
| 0.458182 | 4.6 | 1.236667 | 121.3333 | 31 | 2.38 | 168 | 4.9 | 4.2 | 5 | 3.6 | 6.1 |
| 0.607378 | 5.390476 | 1.313333 | 139 | 28.8 | 2 | 172 | 4.5 | 3.9 | 5.7 | 4.4 | 8.6 |
| 0.595455 | 4.742857 | 1.05 | 122.6667 | 25.5 | 1.61 | 155 | 4.5 | 3.2 | 7.3 | 4.1 | 6.8 |
| 0.28642 | 4.314286 | 0.973333 | 108 | 44 | 2.84 | 197 | 5.4 | 3.7 | 3.5 | 3.3 | 6.4 |
| 0.472619 | 4.780952 | 0.96 | 158.6667 | 31.5 | 1.8 | 203 | 2.6 | 3.5 | 4.3 | 3.6 | 4.3 |
| 0.564626 | 4.952381 | 1.223333 | 155.3333 | 28 | 1.93 | 197 | 4.6 | 4.6 | 6.6 | 6.8 | 6.3 |
| 0.588652 | 5.742857 | 0.913333 | 143.6667 | 31.7 | 1.44 | 187 | 5.6 | 4.2 | 5.5 | 4.2 | 6.7 |
| 0.3225 | 4.685714 | 0.766667 | 124.3333 | 43.5 | 2.04 | 195 | 3.3 | 4 | 6.2 | 5.2 | 9 |
| 0.414966 | 4.485714 | 0.713333 | 121 | 32.9 | 1.49 | 176 | 4.8 | 3.2 | 7.1 | 3.3 | 5.7 |
| 0.422564 | 4.92381 | 0.97 | 129 | 36 | 2.03 | 190 | 5.5 | 4.6 | 5.7 | 3.3 | 5.4 |
| 0.441753 | 4.647619 | 1.23 | 141.3333 | 32.4 | 2.44 | 195 | 3.4 | 2.8 | 5.7 | 3.2 | 7 |
| 0.326241 | 4.066667 | 0.693333 | 134.3333 | 36.4 | 1.77 | 181 | 7.2 | 6.4 | 5.6 | 4 | 9.7 |
| 0.53836 | 4.87619 | 1.586667 | 146.6667 | 28.7 | 2.67 | 203 | 4.1 | 3.1 | 3.2 | 3.3 | 6 |
| 0.676667 | 139.3333 | 0.676667 | 139.3333 | 34.8 | 1.94 | 197 | 3.9 | 4.1 | 5.9 | 4.8 | 8.2 |


| Yoga min 6 ( $\mathrm{m} / \mathrm{/kg} / \mathrm{min}$ ) | Yoga min 7 ( $\mathrm{ml} / \mathrm{kg} / \mathrm{min}$ ) | Yoga min 8 ( $\mathbf{m} / / \mathrm{kg} / \mathrm{min}$ ) | Yoga min 9 ( $\mathbf{m} / \mathrm{kg} / \mathrm{min}$ ) | $\begin{aligned} & \text { Yoga min } \\ & (\mathrm{ml} / \mathrm{kg} / \mathrm{min}) \end{aligned}$ | $\begin{aligned} & \text { Yoga } \min \\ & (\mathrm{ml} / \mathrm{kg} / \mathrm{min}) \end{aligned}$ | $\begin{aligned} & \text { Yoga min }_{12} \\ & (\mathrm{ml} / \mathrm{kg} / \mathrm{min}) \end{aligned}$ | $\begin{aligned} & \text { Yoga min } \\ & 13 \\ & (\mathrm{~m} / \mathrm{kg} / \mathrm{min}) \end{aligned}$ | $\begin{aligned} & \text { Yoga min } \\ & (\mathrm{ml} / \mathrm{kg} / \mathrm{min}) \end{aligned}$ | $\begin{aligned} & \text { Yoga min } \\ & (\mathrm{ml} / \mathrm{kg} / \mathrm{min}) \end{aligned}$ | $\begin{aligned} & \text { Yoga min } \\ & (\mathrm{ml} / \mathrm{kg} / \mathrm{min}) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4.7 | 5.8 | 7.6 | 5.8 | 6.6 | 4.2 | 4.9 | 9.2 | 4.8 | 6.4 | 8 |
| 8.8 | 13.7 | 14.2 | 14.2 | 15.6 | 11 | 10.8 | 10.7 | 11 | 9.6 | 9.8 |
| 5.1 | 11.7 | 12.2 | 13.6 | 11.2 | 9.3 | 9.1 | 8.3 | 7.9 | 8.2 | 8.7 |
| 10.5 | 13.7 | 16.4 | 15 | 13.3 | 9.8 | 9.6 | 8 | 8.3 | 9.4 | 7.8 |
| 11.6 | 16.1 | 16.2 | 15.8 | 14.6 | 11.3 | 11.3 | 10 | 8.8 | 9.8 | 8.7 |
| 11.6 | 16 | 15.8 | 15.5 | 15.9 | 11.5 | 11.3 | 10.7 | 7.6 | 10.7 | 9 |
| 10.6 | 16.5 | 14.5 | 16.1 | 12.9 | 10.5 | 9.9 | 7.8 | 10.8 | 10 | 8.4 |
| 8.1 | 13 | 14.3 | 14 | 14.4 | 9.3 | 10.4 | 9 | 8.3 | 8.1 | 8.6 |
| 8.8 | 12.4 | 14 | 13.3 | 12.1 | 8.4 | 6.5 | 7.4 | 6.5 | 5.1 | 6.9 |
| 5.8 | 11 | 11.6 | 11.1 | 11.5 | 6.3 | 7.9 | 6.6 | 4.5 | 7 | 7 |
| 5.6 | 10 | 12 | 10.1 | 11.1 | 7.7 | 7.5 | 6.3 | 6.5 | 5.7 | 6.3 |
| 8.3 | 11.9 | 13.9 | 13.5 | 12.5 | 10.9 | 8.9 | 7.9 | 8.8 | 8.7 | 8.1 |
| 7 | 9.5 | 11 | 9.3 | 10.2 | 8 | 7.4 | 7.8 | 6.6 | 7.5 | 7.3 |
| 11.3 | 15.7 | 16.1 | 16.3 | 14.4 | 11.5 | 8.5 | 9.1 | 9.3 | 8.6 | 7.8 |
| 11.6 | 16.6 | 18.5 | 15.3 | 16.1 | 10.4 | 10.7 | 9.4 | 7.7 | 9.4 | 9.5 |
| 8.5 | 10.6 | 12.9 | 11.4 | 11.7 | 8.2 | 7.6 | 8.5 | 7.2 | 7.6 | 7.1 |
| 5.1 | 8.7 | 7.5 | 6.3 | 9.4 | 5.9 | 5.4 | 4.9 | 3.2 | 3.8 | 5.6 |
| 10.5 | 14.3 | 14.1 | 16 | 12.2 | 12.9 | 9 | 9.5 | 8.9 | 9.2 | 8.3 |
| 8.2 | 10.2 | 13.7 | 12 | 11.9 | 6.6 | 11.1 | 6 | 8.1 | 6.6 | 4.5 |
| 6.2 | 13.8 | 14 | 12.5 | 13.6 | 10.1 | 8.6 | 6.7 | 7.9 | 7.8 | 7.1 |
| 7.7 | 11.6 | 12.6 | 10.4 | 11.9 | 6.7 | 8.6 | 7.1 | 6.9 | 7.9 | 7.5 |
| 7.1 | 10.4 | 11.7 | 11.2 | 10.5 | 8.8 | 3.7 | 8.4 | 6.5 | 7.8 | 6.6 |
| 9.5 | 15.4 | 13.9 | 13.6 | 13.8 | 7.3 | 7.7 | 6.7 | 6.8 | 6.3 | 7.4 |
| 11.5 | 16.4 | 17.5 | 16.3 | 13.2 | 13.5 | 11.5 | 11 | 10.7 | 9.3 | 10.1 |
| 9 | 11.5 | 13 | 11.1 | 12.5 | 9.4 | 9.4 | 6.8 | 6.3 | 8.8 | 8.1 |
| 9 | 15.5 | 16.2 | 16.2 | 15.5 | 11.8 | 10.2 | 9.7 | 9.2 | 10.6 | 9.9 |


| $\begin{aligned} & \text { Yoga min } \\ & (\mathrm{ml} / \mathrm{kg} / \mathrm{min}) \end{aligned}$ | $\begin{gathered} \text { Yoga min } \\ (\mathrm{ml} / \mathrm{kg} / \mathrm{min}) \end{gathered}$ | $\begin{gathered} \text { Yoga } \min _{19}^{(\mathrm{mi} / \mathrm{kg} / \mathrm{min})} \end{gathered}$ | $\begin{aligned} & \text { Yoga min } \\ & (\mathrm{m} / \mathrm{kg} / \mathrm{min}) \end{aligned}$ | $\begin{aligned} & \text { Yoga min } \\ & (\mathrm{ml} / \mathrm{kg} / \mathrm{min}) \end{aligned}$ | $\begin{gathered} \text { Yoga min }_{22} \\ (\mathrm{ml} / \mathrm{kg} / \mathrm{min}) \end{gathered}$ | $\begin{aligned} & \text { Yoga } \min \\ & (\mathrm{ml} / \mathrm{kg} / \mathrm{min}) \end{aligned}$ | $\begin{gathered} \text { Yoga min } \\ 24 \\ (\mathrm{~m} / \mathrm{kg} / \mathrm{min}) \end{gathered}$ | $\begin{gathered} \text { Yoga min }_{25} \\ (\mathrm{ml} / \mathrm{kg} / \mathrm{min}) \end{gathered}$ | $\begin{gathered} \text { Yoga min } \\ (\mathrm{ml} / \mathrm{kg} / \mathrm{min}) \end{gathered}$ | $\begin{gathered} \text { Yoga min } \\ (\mathrm{m} / \mathrm{kg} / \mathrm{min}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6.3 | 8.9 | 5.9 | 7.1 | 10.2 | 9.5 | 8.2 | 4.6 | 7.6 | 6.9 | 6.8 |
| 9.7 | 8.6 | 7.6 | 11 | 7.8 | 9.5 | 8.8 | 8.2 | 6.3 | 8.5 | 7 |
| 7.3 | 7.1 | 5.2 | 9.1 | 7.9 | 9.6 | 8.8 | 7.4 | 7.8 | 8.2 | 7.1 |
| 7.8 | 8.4 | 6.8 | 9 | 6.9 | 8.8 | 7.1 | 6.9 | 7.6 | 6.4 | 7.8 |
| 7.9 | 8 | 8.2 | 11.1 | 12 | 12.3 | 11 | 8.9 | 7.6 | 7.2 | 7.4 |
| 9.3 | 8.5 | 8.7 | 9.6 | 11.5 | 11.8 | 12 | 11.2 | 9.8 | 11.1 | 8.6 |
| 6.9 | 6.2 | 8.2 | 6.5 | 5.3 | 4.3 | 4.8 | 9.6 | 7.6 | 8.8 | 8.1 |
| 7.9 | 6.6 | 7.3 | 8.5 | 6.7 | 8.2 | 7.8 | 5.1 | 6.4 | 5.8 | 6.6 |
| 5.8 | 6.3 | 6 | 7.5 | 6.5 | 7.8 | 7.6 | 6.3 | 5.2 | 6.1 | 5.3 |
| 6.4 | 7.7 | 4.4 | 7.2 | 4.4 | 5.7 | 3.9 | 5.4 | 4.8 | 6.1 | 4.2 |
| 5.8 | 5.6 | 5.9 | 7.2 | 7.3 | 7.3 | 6.1 | 6.3 | 4.7 | 4.9 | 5.5 |
| 7.4 | 6.6 | 5.5 | 8.2 | 7.5 | 8.1 | 6.5 | 7.4 | 8 | 6.7 | 7.8 |
| 7.1 | 7 | 4.6 | 6.9 | 7.6 | 6.6 | 7 | 5.4 | 5.8 | 6.4 | 5.3 |
| 9.3 | 9 | 8.7 | 9.8 | 9 | 11 | 8.8 | 7.7 | 7.1 | 6.8 | 6.6 |
| 9.5 | 9.6 | 7.2 | 8.6 | 8.3 | 7.5 | 6.7 | 6.7 | 8.2 | 7.7 | 7.2 |
| 6.1 | 5.6 | 4.4 | 7.8 | 4.7 | 6.2 | 4.4 | 4.8 | 4.9 | 5.2 | 6 |
| 5.9 | 5.9 | 2.4 | 2.7 | 2 | 1.2 | 1.5 | 4.8 | 4.7 | 4.7 | 4 |
| 7.5 | 9 | 8.9 | 8.4 | 9 | 7.3 | 7.6 | 7.1 | 6.5 | 7.3 | 7 |
| 11.6 | 5.8 | 7.9 | 6.8 | 8.8 | 5.5 | 9.9 | 6.7 | 3.5 | 7.9 | 7.1 |
| 7.4 | 7.2 | 5.3 | 9 | 7.1 | 6.2 | 4.4 | 6.2 | 7.7 | 7.1 | 6.8 |
| 6 | 6.8 | 5.2 | 6.1 | 5.8 | 5.1 | 4.6 | 6.3 | 6.1 | 4.9 | 3.5 |
| 6.4 | 7.9 | 7.1 | 7.6 | 7.1 | 5.9 | 5.3 | 4.4 | 6.1 | 5 | 5 |
| 6.6 | 6.5 | 4.7 | 6.9 | 5.3 | 5.7 | 5.2 | 5.7 | 6.5 | 7.4 | 6.6 |
| 8.9 | 9.5 | 9.6 | 10.4 | 9.5 | 13.5 | 9.8 | 8.2 | 9.7 | 9.7 | 10.1 |
| 8.8 | 8.2 | 3.1 | 8.1 | 5.2 | 5.9 | 6 | 7.1 | 8 | 7.2 | 7.6 |
| 8.3 | 7.4 | 7 | 9.3 | 8 | 9.4 | 9.8 | 8.2 | 8 | 8.1 | 7.4 |


| $\begin{aligned} & \text { Yoga min } \\ & 28 \\ & (\mathrm{ml} / \mathrm{kg} / \mathrm{min}) \end{aligned}$ | $\begin{gathered} \text { Yoga min } \\ 29 \\ (\mathrm{ml} / \mathrm{kg} / \mathrm{min}) \end{gathered}$ | $\begin{gathered} \text { Yoga } \min \\ 30 \\ (\mathrm{ml} / \mathrm{kg} / \mathrm{min}) \end{gathered}$ | $\begin{gathered} \text { Yoga } \\ \text { (ml/kg/min) } \\ \text { average } \end{gathered}$ | METs | \%VO2R | Yoga min <br> 1 (L/min) | Yoga min <br> 2 (L/min) | Yoga min <br> 3 (L/min) | Yoga min <br> 4 (L/min) | Yoga min <br> 5 (L/min) | Yoga min 6 (L/min) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7.1 | 6.6 | 4.2 | 6.39 | 1.825714 | 0.13 | 0.25 | 0.3 | 0.28 | 0.15 | 0.26 | 0.24 |
| 5.3 | 7.1 | 5.5 | 8.9166667 | 2.547619 | 0.19 | 0.24 | 0.24 | 0.41 | 0.23 | 0.45 | 0.51 |
| 6.8 | 5.5 | 5.5 | 7.7266667 | 2.207619 | 0.16 | 0.2 | 0.21 | 0.23 | 0.19 | 0.26 | 0.24 |
| 6.7 | 8.8 | 3.7 | 8.3666667 | 2.390476 | 0.15 | 0.37 | 0.31 | 0.34 | 0.26 | 0.49 | 0.7 |
| 6.3 | 4.9 | 4.4 | 9.2433333 | 2.640952 | 0.25 | 0.31 | 0.31 | 0.34 | 0.25 | 0.48 | 0.76 |
| 9.1 | 7.7 | 6.7 | 10.136667 | 2.89619 | 0.25 | 0.39 | 0.33 | 0.34 | 0.25 | 0.5 | 0.64 |
| 6.8 | 6.1 | 2.4 | 8.0833333 | 2.309524 | 0.12 | 0.21 | 0.25 | 0.27 | 0.24 | 0.43 | 0.65 |
| 5.4 | 6.4 | 4.7 | 7.8233333 | 2.235238 | 0.13 | 0.22 | 0.17 | 0.25 | 0.13 | 0.39 | 0.4 |
| 5.1 | 3.9 | 3.2 | 6.7166667 | 1.919048 | 0.13 | 0.15 | 0.16 | 0.25 | 0.24 | 0.35 | 0.58 |
| 4.4 | 5.8 | 4.6 | 6.1533333 | 1.758095 | 0.10 | 0.19 | 0.19 | 0.22 | 0.19 | 0.28 | 0.32 |
| 3.5 | 3.5 | 3.3 | 5.9466667 | 1.699048 | 0.08 | 0.1 | 0.09 | 0.26 | 0.16 | 0.21 | 0.36 |
| 9.4 | 7 | 5.2 | 8.02 | 2.291429 | 0.15 | 0.19 | 0.15 | 0.27 | 0.17 | 0.29 | 0.34 |
| 5.5 | 4.7 | 3.5 | 6.6266667 | 1.893333 | 0.11 | 0.37 | 0.33 | 0.38 | 0.28 | 0.47 | 0.54 |
| 5.6 | 5.3 | 4.5 | 8.83 | 2.522857 | 0.21 | 0.31 | 0.27 | 0.4 | 0.3 | 0.6 | 0.78 |
| 6.2 | 5.8 | 3.6 | 8.7966667 | 2.513333 | 0.24 | 0.28 | 0.2 | 0.46 | 0.26 | 0.43 | 0.73 |
| 4.5 | 4.4 | 3.2 | 6.5266667 | 1.864762 | 0.07 | 0.35 | 0.24 | 0.22 | 0.22 | 0.41 | 0.55 |
| 4.9 | 3.9 | 3.8 | 4.55 | 1.3 | 0.04 | 0.15 | 0.2 | 0.25 | 0.2 | 0.25 | 0.29 |
| 6.8 | 4 | 4.3 | 8.4833333 | 2.42381 | 0.20 | 0.33 | 0.33 | 0.47 | 0.48 | 0.44 | 0.74 |
| 5 | 8.2 | 5.1 | 7.4966667 | 2.141905 | 0.14 | 0.25 | 0.19 | 0.25 | 0.19 | 0.3 | 0.37 |
| 5.7 | 4.1 | 3.7 | 7.4633333 | 2.132381 | 0.10 | 0.15 | 0.19 | 0.29 | 0.24 | 0.42 | 0.29 |
| 4.2 | 3.3 | 1.7 | 6.42 | 1.834286 | 0.10 | 0.22 | 0.15 | 0.32 | 0.15 | 0.26 | 0.35 |
| 5.4 | 5.1 | 4 | 6.65 | 1.9 | 0.10 | 0.31 | 0.26 | 0.32 | 0.18 | 0.31 | 0.4 |
| 3.7 | 5 | 3.9 | 7.0066667 | 2.001905 | 0.12 | 0.25 | 0.21 | 0.43 | 0.24 | 0.52 | 0.71 |
| 8.9 | 8 | 6.9 | 10.22 | 2.92 | 0.20 | 0.53 | 0.31 | 0.27 | 0.2 | 0.47 | 0.56 |
| 6 | 6.7 | 4.4 | 7.2633333 | 2.075238 | 0.15 | 0.39 | 0.29 | 0.3 | 0.31 | 0.56 | 0.84 |
| 7.7 | 6.1 | 4.9 | 9.01 | 2.574286 | 0.22 | 0.23 | 0.33 | 0.27 | 0.46 | 0.5 | 0.87 |


| Yoga min <br> 7 (L/min) | Yoga min <br> 8 (L/min) | Yoga min <br> 9 (L/min) | $\begin{gathered} \text { Yoga min } \\ (\mathrm{L} / \mathrm{min}) \end{gathered}$ | $\begin{gathered} \text { Yoga min } \\ (L 1 / \mathrm{min}) \end{gathered}$ | $\begin{gathered} \text { Yoga min } \\ (\mathrm{L} / \mathrm{min}) \end{gathered}$ | $\begin{gathered} \text { Yoga min } \\ \text { (L/ } / \mathrm{min} \text { ) } \end{gathered}$ | $\begin{gathered} \text { Yoga min } \\ \text { (Limin) } \end{gathered}$ | $\begin{gathered} \text { Yoga min } \\ (\mathrm{L} / \mathrm{min}) \end{gathered}$ | $\begin{gathered} \text { Yoga min } \\ 16 \\ (\mathrm{~L} / \mathrm{min}) \end{gathered}$ | $\begin{gathered} \text { Yoga min } \\ (\mathbf{L} / \mathbf{m i n}) \end{gathered}$ | $\begin{gathered} \text { Yoga min } \\ 18 \\ (\mathrm{~L} / \mathrm{min}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.3 | 0.39 | 0.3 | 0.34 | 0.22 | 0.26 | 0.48 | 0.25 | 0.33 | 0.41 | 0.33 | 0.46 |
| 0.79 | 0.82 | 0.82 | 0.9 | 0.63 | 0.62 | 0.62 | 0.64 | 0.56 | 0.56 | 0.56 | 0.49 |
| 0.55 | 0.58 | 0.64 | 0.53 | 0.44 | 0.43 | 0.39 | 0.37 | 0.39 | 0.41 | 0.34 | 0.33 |
| 0.92 | 1.1 | 1 | 0.89 | 0.65 | 0.64 | 0.53 | 0.55 | 0.63 | 0.52 | 0.52 | 0.56 |
| 1.06 | 1.07 | 1.04 | 0.96 | 0.75 | 0.75 | 0.66 | 0.58 | 0.64 | 0.57 | 0.52 | 0.53 |
| 0.88 | 0.87 | 0.85 | 0.87 | 0.64 | 0.62 | 0.59 | 0.42 | 0.59 | 0.5 | 0.51 | 0.47 |
| 1.01 | 0.89 | 0.99 | 0.79 | 0.64 | 0.61 | 0.48 | 0.66 | 0.61 | 0.51 | 0.42 | 0.38 |
| 0.63 | 0.7 | 0.68 | 0.7 | 0.45 | 0.51 | 0.44 | 0.41 | 0.4 | 0.42 | 0.38 | 0.32 |
| 0.82 | 0.92 | 0.87 | 0.8 | 0.56 | 0.43 | 0.49 | 0.43 | 0.34 | 0.46 | 0.38 | 0.41 |
| 0.61 | 0.64 | 0.61 | 0.63 | 0.35 | 0.44 | 0.36 | 0.25 | 0.39 | 0.39 | 0.35 | 0.42 |
| 0.64 | 0.77 | 0.65 | 0.71 | 0.5 | 0.48 | 0.4 | 0.42 | 0.37 | 0.4 | 0.37 | 0.36 |
| 0.49 | 0.58 | 0.56 | 0.52 | 0.45 | 0.37 | 0.33 | 0.37 | 0.36 | 0.34 | 0.31 | 0.27 |
| 0.73 | 0.85 | 0.72 | 0.79 | 0.61 | 0.57 | 0.6 | 0.51 | 0.58 | 0.56 | 0.54 | 0.54 |
| 1.09 | 1.12 | 1.13 | 1 | 0.8 | 0.59 | 0.63 | 0.65 | 0.6 | 0.55 | 0.65 | 0.63 |
| 1.05 | 1.17 | 0.97 | 1.02 | 0.66 | 0.68 | 0.59 | 0.49 | 0.6 | 0.6 | 0.6 | 0.6 |
| 0.68 | 0.84 | 0.74 | 0.76 | 0.53 | 0.49 | 0.55 | 0.46 | 0.49 | 0.46 | 0.4 | 0.36 |
| 0.5 | 0.43 | 0.36 | 0.54 | 0.34 | 0.31 | 0.28 | 0.18 | 0.22 | 0.32 | 0.34 | 0.34 |
| 1.01 | 0.99 | 1.13 | 0.86 | 0.91 | 0.63 | 0.67 | 0.63 | 0.65 | 0.58 | 0.53 | 0.64 |
| 0.46 | 0.62 | 0.55 | 0.54 | 0.3 | 0.51 | 0.27 | 0.37 | 0.3 | 0.2 | 0.53 | 0.26 |
| 0.65 | 0.66 | 0.59 | 0.63 | 0.47 | 0.4 | 0.31 | 0.37 | 0.37 | 0.33 | 0.35 | 0.34 |
| 0.53 | 0.57 | 0.47 | 0.54 | 0.3 | 0.39 | 0.32 | 0.31 | 0.36 | 0.34 | 0.27 | 0.31 |
| 0.58 | 0.66 | 0.63 | 0.59 | 0.49 | 0.21 | 0.47 | 0.37 | 0.44 | 0.37 | 0.36 | 0.45 |
| 1.15 | 1.04 | 1.01 | 1.03 | 0.84 | 0.57 | 0.5 | 0.51 | 0.47 | 0.55 | 0.49 | 0.48 |
| 0.8 | 0.85 | 0.79 | 0.64 | 0.65 | 0.56 | 0.52 | 0.45 | 0.49 | 0.43 | 0.46 | 0.47 |
| 1.07 | 1.21 | 1.04 | 1.17 | 0.87 | 0.88 | 0.64 | 0.58 | 0.82 | 0.75 | 0.82 | 0.77 |
| 0.91 | 0.91 | 0.86 | 0.66 | 0.57 | 0.54 | 0.51 | 0.59 | 0.55 | 0.46 | 0.41 | 0.39 |


| $\begin{gathered} \text { Yoga min } \\ (\mathrm{L} / \mathrm{min}) \end{gathered}$ | $\begin{gathered} \text { Yoga min } \\ 20 \\ \text { (L/min) } \end{gathered}$ | $\underset{21}{\text { Yoga min }} \underset{(\mathrm{L} / \mathrm{min})}{ }$ | $\begin{gathered} \text { Yoga min } \\ (\mathrm{L} / \mathrm{min}) \end{gathered}$ | $\begin{gathered} \text { Yoga min } \\ 23 \\ (\mathrm{~L} / \mathrm{min}) \end{gathered}$ | $\begin{gathered} \text { Yoga min } \\ 24 \\ (L / \mathrm{min}) \end{gathered}$ | $\begin{aligned} & \text { Yoga min } \\ & 25 \\ & \text { (L/min) } \end{aligned}$ | $\begin{gathered} \text { Yoga min } \\ 26 \\ \text { (Limin) } \end{gathered}$ | $\begin{gathered} \text { Yoga min } \\ (\mathrm{L} / \mathrm{min}) \end{gathered}$ | $\begin{gathered} \text { Yoga min } \\ 28 \\ \text { (L/min) } \end{gathered}$ | $\begin{gathered} \text { Yoga min } \\ 29 \\ (L / \mathrm{min}) \end{gathered}$ | Yoga min 30 (L/min) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.3 | 0.37 | 0.53 | 0.5 | 0.43 | 0.24 | 0.4 | 0.36 | 0.35 | 0.37 | 0.35 | 0.22 |
| 0.44 | 0.64 | 0.45 | 0.55 | 0.51 | 0.48 | 0.37 | 0.49 | 0.4 | 0.31 | 0.41 | 0.32 |
| 0.25 | 0.43 | 0.38 | 0.45 | 0.42 | 0.35 | 0.37 | 0.39 | 0.34 | 0.32 | 0.26 | 0.26 |
| 0.45 | 0.6 | 0.46 | 0.59 | 0.47 | 0.46 | 0.51 | 0.43 | 0.52 | 0.44 | 0.59 | 0.25 |
| 0.54 | 0.73 | 0.79 | 0.81 | 0.73 | 0.59 | 0.5 | 0.48 | 0.49 | 0.41 | 0.33 | 0.29 |
| 0.48 | 0.53 | 0.63 | 0.65 | 0.66 | 0.62 | 0.54 | 0.61 | 0.47 | 0.5 | 0.42 | 0.37 |
| 0.5 | 0.4 | 0.32 | 0.26 | 0.29 | 0.59 | 0.46 | 0.54 | 0.49 | 0.42 | 0.37 | 0.14 |
| 0.36 | 0.42 | 0.33 | 0.4 | 0.38 | 0.25 | 0.31 | 0.28 | 0.32 | 0.27 | 0.31 | 0.23 |
| 0.4 | 0.49 | 0.43 | 0.51 | 0.5 | 0.42 | 0.34 | 0.4 | 0.35 | 0.34 | 0.26 | 0.21 |
| 0.24 | 0.39 | 0.24 | 0.31 | 0.21 | 0.3 | 0.26 | 0.34 | 0.23 | 0.24 | 0.32 | 0.25 |
| 0.38 | 0.46 | 0.47 | 0.47 | 0.39 | 0.4 | 0.3 | 0.31 | 0.35 | 0.22 | 0.22 | 0.21 |
| 0.23 | 0.34 | 0.31 | 0.33 | 0.27 | 0.3 | 0.33 | 0.28 | 0.32 | 0.39 | 0.29 | 0.22 |
| 0.35 | 0.53 | 0.59 | 0.51 | 0.54 | 0.41 | 0.44 | 0.49 | 0.4 | 0.41 | 0.36 | 0.27 |
| 0.61 | 0.68 | 0.64 | 0.77 | 0.61 | 0.53 | 0.49 | 0.47 | 0.46 | 0.39 | 0.37 | 0.31 |
| 0.46 | 0.54 | 0.53 | 0.48 | 0.42 | 0.42 | 0.52 | 0.49 | 0.46 | 0.39 | 0.37 | 0.22 |
| 0.28 | 0.5 | 0.3 | 0.4 | 0.28 | 0.31 | 0.31 | 0.33 | 0.39 | 0.29 | 0.28 | 0.2 |
| 0.13 | 0.15 | 0.12 | 0.07 | 0.09 | 0.27 | 0.27 | 0.27 | 0.23 | 0.28 | 0.22 | 0.22 |
| 0.62 | 0.6 | 0.63 | 0.52 | 0.54 | 0.5 | 0.46 | 0.52 | 0.49 | 0.48 | 0.28 | 0.3 |
| 0.36 | 0.31 | 0.4 | 0.25 | 0.45 | 0.31 | 0.16 | 0.36 | 0.32 | 0.23 | 0.37 | 0.23 |
| 0.25 | 0.42 | 0.33 | 0.29 | 0.21 | 0.29 | 0.36 | 0.33 | 0.32 | 0.27 | 0.19 | 0.17 |
| 0.24 | 0.28 | 0.26 | 0.23 | 0.21 | 0.29 | 0.28 | 0.22 | 0.16 | 0.19 | 0.15 | 0.08 |
| 0.4 | 0.43 | 0.4 | 0.33 | 0.3 | 0.25 | 0.34 | 0.28 | 0.28 | 0.3 | 0.29 | 0.22 |
| 0.35 | 0.51 | 0.39 | 0.43 | 0.38 | 0.42 | 0.48 | 0.55 | 0.5 | 0.28 | 0.37 | 0.29 |
| 0.5 | 0.5 | 0.46 | 0.66 | 0.48 | 0.4 | 0.47 | 0.47 | 0.49 | 0.43 | 0.39 | 0.34 |
| 0.29 | 0.76 | 0.48 | 0.55 | 0.56 | 0.66 | 0.75 | 0.67 | 0.71 | 0.56 | 0.63 | 0.41 |
| 0.52 | 0.45 | 0.53 | 0.55 | 0.46 | 0.45 | 0.45 | 0.42 | 0.43 | 0.34 | 0.27 | 0.24 |


| Yoga (L/min) average | Yoga min 1 (HR) | Yoga min 2 (HR) | Yoga min 3 (HR) | $\begin{aligned} & \text { Yoga min } \\ & 4 \text { (HR) } \end{aligned}$ | Yoga min 5 (HR) | Yoga min 6 (HR) | Yoga min 7 (HR) | Yoga min 8 (HR) | $\underset{9(H R)}{\text { Yoga min }}$ | Yoga min 10 (HR) | Yoga min 11 (HR) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.332333 | 102 | 92 | 94 | 102 | 106 | 108 | 129 | 138 | 140 | 145 | 145 |
| 0.515333 | 88 | 82 | 95 | 101 | 110 | 121 | 134 | 128 | 135 | 117 | 121 |
| 0.365 | 97 | 100 | 104 | 108 | 132 | 126 | 131 | 120 | 120 | 123 | 105 |
| 0.558333 | 70 | 72 | 72 | 83 | 92 | 92 | 97 | 99 | 98 | 101 | 66 |
| 0.609 | 73 | 70 | 81 | 102 | 114 | 120 | 134 | 129 | 135 | 151 | 120 |
| 0.558 | 102 | 103 | 109 | 130 | 128 | 143 | 156 | 148 | 139 | 151 | 131 |
| 0.494 | 78 | 75 | 87 | 106 | 118 | 130 | 127 | 129 | 141 | 140 | 129 |
| 0.382 | 80 | 85 | 99 | 105 | 145 | 115 | 121 | 125 | 127 | 144 | 97 |
| 0.443 | 61 | 70 | 76 | 98 | 100 | 145 | 127 | 116 | 119 | 122 | 88 |
| 0.338667 | 103 | 104 | 109 | 111 | 135 | 150 | 152 | 154 | 157 | 169 | 152 |
| 0.381 | 69 | 74 | 84 | 96 | 141 | 132 | 15 | 127 | 122 | 109 | 168 |
| 0.332333 | 57 | 68 | 75 | 85 | 113 | 94 | 96 | 100 | 82 | 98 | 93 |
| 0.509 | 97 | 90 | 102 | 107 | 115 | 114 | 127 | 120 | 125 | 132 | 108 |
| 0.614333 | 80 | 79 | 92 | 102 | 112 | 125 | 134 | 131 | 132 | 137 | 112 |
| 0.556333 | 78 | 73 | 85 | 103 | 107 | 131 | 137 | 142 | 142 | 126 | 116 |
| 0.420667 | 65 | 65 | 63 | 82 | 92 | 99 | 102 | 96 | 99 | 96 | 80 |
| 0.260667 | 73 | 71 | 84 | 96 | 101 | 114 | 119 | 115 | 122 | 115 | 94 |
| 0.598667 | 72 | 110 | 111 | 120 | 113 | 131 | 139 | 145 | 144 | 142 | 139 |
| 0.340333 | 94 | 78 | 84 | 83 | 103 | 94 | 101 | 90 | 93 | 101 | 98 |
| 0.349333 | 89 | 91 | 88 | 103 | 104 | 111 | 112 | 117 | 112 | 90 | 115 |
| 0.291667 | 86 | 86 | 95 | 92 | 103 | 113 | 111 | 109 | 107 | 113 | 86 |
| 0.374 | 91 | 100 | 114 | 114 | 119 | 129 | 131 | 127 | 131 | 125 | 114 |
| 0.531667 | 75 | 76 | 87 | 93 | 115 | 116 | 121 | 115 | 115 | 130 | 119 |
| 0.501333 | 74 | 90 | 104 | 111 | 136 | 135 | 138 | 126 | 131 | 124 | 124 |
| 0.678 | 100 | 89 | 103 | 108 | 120 | 113 | 135 | 92 | 137 | 137 | 129 |
| 0.495161 | 78 | 81 | 93 | 104 | 114 | 111 | 111 | 129 | 128 | 122 | 111 |


| Yoga min 12 (HR) | Yoga min 13 (HR) | Yoga min 14 (HR) | Yoga min 15 (HR) | Yoga min 16 (HR) | Yoga min 17 (HR) | Yoga min 18 (HR) | Yoga min 19 (HR) | Yoga min 20 (HR) | Yoga min 21 (HR) | Yoga min 22 (HR) | Yoga min 23 (HR) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 145 | 135 | 132 | 143 | 143 | 143 | 143 | 139 | 134 | 122 | 133 | 126 |
| 124 | 100 | 130 | 121 | 109 | 112 | 109 | 103 | 113 | 94 | 100 | 97 |
| 138 | 129 | 112 | 95 | 107 | 114 | 128 | 131 | 107 | 99 | 108 | 100 |
| 66 | 66 | 66 | 71 | 71 | 71 | 71 | 97 | 71 | 81 | 80 | 77 |
| 155 | 134 | 133 | 102 | 109 | 117 | 125 | 132 | 140 | 133 | 132 | 99 |
| 142 | 128 | 147 | 122 | 125 | 132 | 130 | 144 | 132 | 150 | 129 | 122 |
| 120 | 116 | 135 | 133 | 117 | 126 | 103 | 112 | 107 | 110 | 113 | 117 |
| 148 | 129 | 119 | 124 | 118 | 112 | 132 | 108 | 111 | 120 | 118 | 125 |
| 116 | 81 | 111 | 83 | 109 | 97 | 102 | 94 | 91 | 86 | 106 | 74 |
| 154 | 158 | 163 | 153 | 156 | 151 | 162 | 141 | 131 | 147 | 127 | 126 |
| 92 | 137 | 113 | 112 | 107 | 100 | 92 | 104 | 99 | 104 | 99 | 115 |
| 71 | 63 | 97 | 80 | 98 | 78 | 88 | 85 | 75 | 77 | 72 | 75 |
| 142 | 128 | 127 | 122 | 113 | 106 | 103 | 109 | 112 | 104 | 116 | 105 |
| 112 | 112 | 104 | 104 | 104 | 104 | 104 | 135 | 114 | 119 | 117 | 112 |
| 111 | 107 | 122 | 124 | 109 | 99 | 97 | 124 | 104 | 93 | 103 | 114 |
| 110 | 79 | 92 | 61 | 80 | 72 | 91 | 80 | 68 | 70 | 69 | 63 |
| 94 | 94 | 94 | 94 | 94 | 115 | 106 | 102 | 99 | 94 | 94 | 101 |
| 131 | 141 | 140 | 140 | 140 | 140 | 113 | 139 | 118 | 126 | 129 | 132 |
| 89 | 78 | 76 | 76 | 107 | 96 | 82 | 85 | 88 | 82 | 83 | 81 |
| 109 | 97 | 99 | 110 | 105 | 104 | 95 | 100 | 101 | 93 | 84 | 94 |
| 118 | 99 | 111 | 87 | 95 | 97 | 93 | 97 | 89 | 88 | 82 | 75 |
| 134 | 116 | 128 | 111 | 122 | 113 | 132 | 127 | 111 | 118 | 108 | 108 |
| 96 | 104 | 105 | 101 | 101 | 101 | 101 | 111 | 86 | 92 | 94 | 109 |
| 102 | 102 | 102 | 110 | 110 | 120 | 115 | 111 | 106 | 112 | 103 | 121 |
| 145 | 131 | 137 | 116 | 136 | 134 | 128 | 153 | 124 | 118 | 160 | 100 |
| 91 | 92 | 98 | 79 | 79 | 79 | 79 | 90 | 87 | 78 | 88 | 113 |


| Yoga min 24 (HR) | Yoga min 25 (HR) | $\underset{26(H R)}{\text { Yoga min }}$ | Yoga min 27 (HR) | Yoga min 28 (HR) | Yoga min 29 (HR) | $\begin{aligned} & \text { Yoga min } \\ & \mathbf{3 0}(\mathrm{HR}) \end{aligned}$ | Yoga (HR) average | 3.5 mph Min 3 (REE) | 3.5mph Min 4 (REE) | 3.5 mph Min 5 (REE) | 3.5 mph Average (REE) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 127 | 123 | 113 | 102 | 104 | 103 | 108 | 123.9667 | 3.3 | 3.2 | 3.7 | 3.4 |
| 104 | 92 | 97 | 91 | 91 | 88 | 83 | 106.3333 | 5.6 | 5.6 | 5.4 | 5.533333 |
| 113 | 101 | 97 | 91 | 98 | 87 | 92 | 110.4333 | 3.4 | 3.3 | 3.3 | 3.333333 |
| 84 | 80 | 75 | 86 | 84 | 73 | 68 | 79.33333 | 4.8 | 4.9 | 4.7 | 4.8 |
| 104 | 97 | 97 | 101 | 98 | 84 | 85 | 113.5333 | 4.5 | 4.8 | 4.3 | 4.533333 |
| 145 | 130 | 124 | 119 | 124 | 102 | 111 | 129.9333 | 5.2 | 5.2 | 5.1 | 5.166667 |
| 107 | 86 | 98 | 92 | 89 | 73 | 84 | 109.9333 | 4.4 | 4.3 | 4.5 | 4.4 |
| 116 | 93 | 92 | 109 | 111 | 94 | 85 | 113.5667 | 4.5 | 4.2 | 4.3 | 4.333333 |
| 96 | 82 | 83 | 87 | 86 | 69 | 69 | 94.8 | 5 | 4.8 | 6.1 | 5.3 |
| 106 | 106 | 109 | 111 | 115 | 95 | 92 | 133.3 | 4.6 | 4.3 | 4.1 | 4.333333 |
| 90 | 95 | 95 | 90 | 108 | 79 | 85 | 101.7667 | 4 | 4.5 | 4.6 | 4.366667 |
| 91 | 67 | 83 | 88 | 90 | 62 | 61 | 82.06667 | 2.5 | 2.8 | 2.8 | 2.7 |
| 120 | 97 | 101 | 86 | 100 | 95 | 92 | 110.5 | 6 | 6.2 | 5.9 | 6.033333 |
| 121 | 79 | 82 | 95 | 102 | 74 | 82 | 107.0667 | 6.5 | 6.6 | 6.3 | 6.466667 |
| 107 | 95 | 87 | 95 | 92 | 71 | 72 | 105.5333 | 5.2 | 5.2 | 5.2 | 5.2 |
| 71 | 59 | 70 | 68 | 67 | 58 | 53 | 77.33333 | 4.6 | 4.7 | 4.5 | 4.6 |
| 99 | 90 | 92 | 93 | 82 | 71 | 74 | 96.2 | 4.7 | 5 | 4.4 | 4.7 |
| 120 | 115 | 115 | 114 | 123 | 102 | 105 | 124.9667 | 6.2 | 5.6 | 6.3 | 6.033333 |
| 87 | 84 | 83 | 80 | 78 | 78 | 77 | 86.96667 | 4.8 | 4.4 | 4.3 | 4.5 |
| 97 | 94 | 92 | 84 | 86 | 106 | 78 | 98.66667 | 3.7 | 4 | 3.7 | 3.8 |
| 88 | 87 | 84 | 87 | 80 | 73 | 71 | 93.4 | 3.5 | 3.4 | 3.7 | 3.533333 |
| 110 | 104 | 104 | 95 | 100 | 92 | 99 | 114.2333 | 4.6 | 4.8 | 4.8 | 4.733333 |
| 82 | 91 | 94 | 89 | 104 | 78 | 77 | 99.26667 | 5.8 | 6.2 | 6 | 6 |
| 114 | 113 | 98 | 108 | 115 | 77 | 77 | 110.3 | 3.7 | 3.2 | 3.1 | 3.333333 |
| 116 | 110 | 117 | 115 | 115 | 95 | 93 | 120.2 | 7.8 | 7.9 | 7.8 | 7.833333 |
| 80 | 81 | 77 | 85 | 91 | 79 | 81 | 93.63333 | 3.4 | 3.4 | 3.1 | 3.3 |


| 3.5 mph TOTAL (REE) | $\begin{aligned} & \text { VO2 max } \\ & 1 \text { (REE) } \end{aligned}$ | $\begin{aligned} & \text { VO2 max } \\ & 2 \text { (REE) } \end{aligned}$ | $\begin{aligned} & \text { VO2 max } \\ & 3 \text { (REE) } \end{aligned}$ | $\begin{aligned} & \text { VO2 max } \\ & 4 \text { (REE) } \end{aligned}$ | VO2 max 5 (REE) | VO2 max 6 (REE) | $\begin{aligned} & \text { VO2 max } \\ & 7 \text { (REE) } \end{aligned}$ | VO2 max <br> 8 (REE) | VO2 max 9 (REE) | $\begin{aligned} & \text { VO2 max } \\ & 10 \text { (REE) } \end{aligned}$ | VO2 max 11 (REE) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10.2 | 1.4 | 3 | 3.8 | 4.3 | 5.2 | 6.5 | 6.9 |  |  |  |  |
| 16.6 | 2.2 | 4 | 4.5 | 5.9 | 7 | 7.2 | 9.4 |  |  |  |  |
| 10 | 2.7 | 3.3 | 3.7 | 4.3 | 5.2 | 5.4 | 6.4 |  |  |  |  |
| 14.4 | 2.1 | 4.8 | 4.9 | 6.1 | 7.5 | 8 | 9.1 | 11.4 | 12.4 |  |  |
| 13.6 | 2.4 | 4.1 | 5.1 | 6.1 | 7.8 | 8.2 |  |  |  |  | - |
| 15.5 | 2.3 | 4.1 | 4.1 | 5.2 | 6.3 | 6.9 | 8.4 |  |  |  |  |
| 13.2 | 2.1 | 4.4 | 5 | 5.7 | 6.9 | 7.1 | 8.8 | 10.5 | 10.3 | 12.2 | 13.2 |
| 13 | 2.8 | 3.4 | 4.4 | 5 | 6.1 | 6.4 | 7.7 | 9.3 | 8.9 |  |  |
| 15.9 | 2.1 | 4.1 | 4.6 | 5.9 | 6.9 | 7.7 | 9.3 | 10.3 |  |  |  |
| 13 | 2.6 | 4.8 | 4.9 | 5.6 | 6.9 | 7.2 | 8.4 |  |  |  |  |
| 13.1 | 1.9 | 3.3 | 3.8 | 4.8 | 6.4 | 6.9 | 8.9 |  |  |  |  |
| 8.1 | 1.3 | 2.1 | 3.1 | 3.5 | 4.7 | 5 | 5.2 | 6.3 | 6.9 |  |  |
| 18.1 | 2.4 | 3.4 | 3.8 | 4.6 | 8.1 | 8.8 | 10.7 |  |  |  |  |
| 19.4 | 3.4 | 5.9 | 6.9 | 8 | 10 |  |  |  |  |  |  |
| 15.6 | 2.3 | 4.5 | 4.9 | 5.9 | 7.4 | 7.7 |  |  |  |  |  |
| 13.8 | 2.4 | 4.8 | 5 | 6.3 | 7.1 | 7.6 | 9.3 | 11.3 | 12.4 | 14 |  |
| 14.1 | 2.1 | 3.3 | 4.4 | 5.1 | 6.6 | 6.9 | 8.4 |  |  |  |  |
| 18.1 | 2.8 | 4.8 | 5.8 | 6.7 | 7.9 | 8.6 |  |  |  |  |  |
| 13.5 | 1.6 | 3.5 | 4 | 4.6 | 5.8 | 6.2 | 6.9 |  |  |  |  |
| 11.4 | 1.7 | 3.7 | 3.8 | 4.5 | 5.8 | 5.9 | 7.4 | 9.4 | 9.8 | 11 |  |
| 10.6 | 2 | 2.7 | 4.1 | 4.5 | 5.3 | 5.7 | 7.2 |  |  |  |  |
| 14.2 | 2.1 | 2.8 | 2.9 | 3.9 | 6.1 | 6.6 | 7.6 | 9.8 | 10.7 |  |  |
| 18 | 2.1 | 4.9 | 5.4 | 6.6 | 7.1 | 8.2 | 10.6 | 12.9 |  |  |  |
| 10 | 1.3 | 2.4 | 3.5 | 4.3 | 5.6 | 5.8 | 6.6 | 8.7 | 8.3 |  |  |
| 23.5 | 3.7 | 6.4 | 7.3 | 9.6 | 10.8 | 11.8 | 13.5 |  |  |  |  |
| 9.9 | 1 | 1.9 | 2.9 | 3.4 | 5.4 | 5.6 | 6.6 | 8 | 8.9 |  |  |


| VO2 max 12 (REE) | VO2 max AVERAGE (REE) | VO2 max TOTAL KCALS(REE) | Yoga min 1 (REE) | Yoga min 2 (REE) | Yoga min 3 (REE) | Yoga min 4 (REE) | Yoga min 5 (REE) | Yoga min 6 (REE) | Yoga min 7 (REE) | Yoga min 8 (REE) | Yoga min 9 (REE) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4.442857 | 31.1 | 1.3 | 1.6 | 1.6 | 0.8 | 1.3 | 1.2 | 1.5 | 1.9 | 1.5 |
|  | 5.742857 | 40.2 | 1.2 | 1.2 | 2 | 1.1 | 2.2 | 2.4 | 3.7 | 3.9 | 3.9 |
|  | 4.428571 | 31 | 1 | 1.1 | 1.2 | 1 | 1.3 | 1.2 | 2 | 2.8 | 3.1 |
|  | 7.366667 | 66.3 | 1.9 | 1.6 | 1.8 | 1.4 | 2.4 | 3.5 | 4.5 | 5.3 | 4.9 |
|  | 5.616667 | 33.7 | 1.5 | 1.6 | 1.7 | 1.3 | 2.3 | 3.6 | 5 | 5.2 | 5.1 |
|  | 5.328571 | 37.3 | 1.9 | 1.7 | 1.8 | 1.3 | 2.4 | 3 | 4.1 | 4.1 | 4.1 |
| 13.7 | 8.325 | 99.9 | 1 | 1.2 | 1.3 | 1.2 | 2.1 | 3.1 | 4.8 | 4.2 | 4.8 |
|  | 6 | 54 | 1.1 | 1 | 1.3 | 0.7 | 1.9 | 2 | 3.1 | 3.3 | 3.3 |
|  | 6.3625 | 50.9 | 0.8 | 0.8 | 1.2 | 1.2 | 1.7 | 2.8 | 3.8 | 4.4 | 4.2 |
|  | 5.771429 | 40.4 | 1 | 1 | 1.1 | 0.9 | 1.4 | 1.6 | 2.9 | 3.1 | 3 |
|  | 5.142857 | 36 | 0.5 | 0.5 | 1.2 | 0.8 | 1 | 1.7 | 2.9 | 3.6 | 3.1 |
|  | 4.233333 | 38.1 | 1 | 0.8 | 1.3 | 0.9 | 1.4 | 1.7 | 2.4 | 2.8 | 2.7 |
|  | 5.971429 | 41.8 | 1.8 | 1.7 | 2 | 1.5 | 2.2 | 2.6 | 3.5 | 4 | 3.5 |
|  | 6.84 | 34.2 | 1.5 | 1.3 | 1.9 | 1.5 | 2.9 | 3.8 | 5.2 | 5.3 | 5.5 |
|  | 5.45 | 32.7 | 1.4 | 1 | 2.3 | 1.4 | 2.1 | 3.5 | 5 | 5.6 | 4.7 |
|  | 8.02 | 80.2 | 1.8 | 1.3 | 1.2 | 1.1 | 2 | 2.7 | 3.2 | 3.9 | 3.5 |
|  | 5.257143 | 36.8 | 0.7 | 1 | 1.2 | 1 | 1.2 | 1.4 | 2.3 | 2 | 1.7 |
|  | 6.1 | 36.6 | 1.5 | 1.5 | 2.2 | 2.3 | 2.1 | 3.5 | 4.7 | 4.7 | 5.5 |
|  | 4.657143 | 32.6 | 1.3 | 1 | 1.3 | 1 | 1.5 | 1.9 | 2.3 | 3 | 2.7 |
|  | 6.3 | 63 | 0.8 | 0.9 | 1.4 | 1.2 | 2.1 | 1.4 | 3.1 | 3.1 | 2.8 |
|  | 4.5 | 31.5 | 1.1 | 0.8 | 1.7 | 0.8 | 1.3 | 1.7 | 2.5 | 2.8 | 2.3 |
|  | 5.833333 | 52.5 | 1.5 | 1.3 | 1.7 | 1 | 1.5 | 2 | 2.8 | 3.1 | 3 |
|  | 7.225 | 57.8 | 1.2 | 1 | 2 | 1.2 | 2.5 | 3.3 | 5.4 | 4.9 | 4.8 |
|  | 5.166667 | 46.5 | 1.7 | 1.6 | 1.5 | 1 | 2.3 | 2.7 | 3.7 | 4 | 3.8 |
|  | 9.014286 | 63.1 | 2.1 | 1.6 | 1.6 | 1.5 | 2.6 | 3.9 | 5 | 5.8 | 5 |
|  | 4.855556 | 43.7 | 1.1 | 1.1 | 1.7 | 1.4 | 2.3 | 2.5 | 4.1 | 4.3 | 4.4 |


| Yoga min 10(REE) | Yoga min 11(REE) | Yoga min 12(REE) | Yoga min 13(REE) | Yoga min 14 (REE) | Yoga min 15 (REE) | Yoga min 16 (REE) | Yoga min <br> 17 (REE) | Yoga min 18 (REE) | Yoga min 19 (REE) | Yoga min 20 (REE) | Yoga min 21 (REE) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.7 | 1.1 | 1.3 | 2.5 | 1.3 | 1.8 | 2.2 | 1.7 | 2.3 | 1.6 | 1.9 | 2.7 |
| 4.4 | 3.2 | 3.1 | 3.1 | 3.2 | 2.8 | 2.9 | 2.8 | 2.5 | 2.2 | 3.2 | 2.3 |
| 2.6 | 2.2 | 2.2 | 2 | 1.9 | 1.9 | 2.7 | 1.7 | 1.7 | 1.2 | 2.1 | 1.8 |
| 4.4 | 3.3 | 3.2 | 2.7 | 2.7 | 3.1 | 2.6 | 2.6 | 2.8 | 2.3 | 3 | 2.3 |
| 4.7 | 3.7 | 3.7 | 3.3 | 2.9 | 3.2 | 2.9 | 2.6 | 2.6 | 2.7 | 3.6 | 3.9 |
| 4.2 | 3.1 | 3.1 | 2.9 | 2.1 | 2.9 | 2.5 | 2.5 | 2.3 | 2.3 | 2.6 | 3 |
| 3.8 | 3.1 | 3 | 2.4 | 3.2 | 3 | 2.6 | 2.1 | 1.9 | 2.5 | 2 | 1.6 |
| 3.4 | 2.3 | 2.6 | 2.2 | 2.1 | 2 | 2.1 | 1.9 | 1.6 | 1.8 | 2.1 | 1 |
| 3.8 | 2.7 | 2.1 | 2.4 | 2.1 | 1.7 | 2.3 | 1.9 | 2 | 2 | 2.4 | 2.1 |
| 3.1 | 1.7 | 2.2 | 1.8 | 1.3 | 2 | 2 | 1.8 | 2.1 | 1.2 | 1.9 | 1.2 |
| 3.5 | 2.4 | 2.4 | 2 | 2.1 | 1.8 | 2 | 1.8 | 1.8 | 1.9 | 2.3 | 2.3 |
| 2.5 | 2.2 | 1.8 | 1.6 | 1.8 | 1.8 | 1.7 | 1.5 | 1.4 | 1.1 | 1.7 | 1.5 |
| 3.8 | 3 | 2.9 | 3.1 | 2.6 | 3.1 | 2.9 | 2.7 | 2.7 | 1.8 | 2.6 | 2.9 |
| 4.9 | 3.9 | 3 | 3.1 | 3.2 | 3 | 2.7 | 3.2 | 3.1 | 3 | 3.4 | 3.2 |
| 5 | 3.2 | 3.4 | 2.9 | 2.4 | 2.9 | 3 | 3 | 3 | 2.3 | 2.7 | 2.7 |
| 3.6 | 2.6 | 2.4 | 2.7 | 2.4 | 2.5 | 2.3 | 2 | 1.8 | 1.4 | 2.5 | 1.5 |
| 2.5 | 1.6 | 1.5 | 1.4 | 0.9 | 1.1 | 1.6 | 1.7 | 1.7 | 0.7 | 0.8 | 0.6 |
| 4.2 | 4.4 | 3.2 | 3.3 | 3.1 | 3.2 | 2.9 | 2.6 | 3.1 | 3 | 2.9 | 3.1 |
| 2.6 | 1.5 | 2.5 | 1.4 | 1.8 | 1.5 | 1 | 2.5 | 1.3 | 1.8 | 1.5 | 1.9 |
| 3 | 2.3 | 2 | 1.6 | 1.8 | 1.8 | 1.7 | 1.7 | 1.7 | 1.2 | 2 | 1.6 |
| 2.6 | 1.5 | 1.9 | 1.6 | 1.6 | 1.8 | 1.7 | 1.4 | 1.5 | 1.2 | 1.4 | 1.3 |
| 2.8 | 2.4 | 1 | 2.3 | 1.8 | 2.2 | 1.8 | 1.8 | 2.2 | 2 | 2.1 | 2 |
| 4.9 | 4.1 | 2.9 | 2.5 | 2.5 | 2.3 | 2.7 | 2.4 | 2.4 | 1.8 | 2.5 | 1.9 |
| 3.1 | 3.2 | 2.8 | 2.7 | 2.6 | 2.3 | 2.5 | 2.1 | 2.3 | 2.3 | 2.5 | 2.3 |
| 5.7 | 4.4 | 4.5 | 3.3 | 2.9 | 4 | 3.8 | 4.1 | 3.8 | 1.5 | 3.7 | 2.3 |
| 4.2 | 3.3 | 2.9 | 2.8 | 2.6 | 3 | 2.8 | 2.4 | 2.1 | 2 | 2.6 | 2.3 |


| Yoga min 22(REE) | Yoga min 23 (REE) | Yoga min 24 (REE) | Yoga min 25 (REE) | Yoga min 26 (REE) | Yoga min 27 (REE) | Yoga min 28 (REE) | Yoga min 29 (REE) | Yoga min 30 (REE) | $\begin{gathered} \text { Yoga } \\ \text { (REE) } \\ \text { average } \end{gathered}$ | $\begin{aligned} & \text { Yoga } \\ & \text { Total } \\ & \text { KcALS } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.5 | 2.2 | 1.2 | 2 | 1.8 | 1.8 | 1.8 | 1.8 | 1.2 | 1.703333 | 51.1 |
| 2.7 | 2.5 | 2.4 | 1.9 | 2.5 | 2.1 | 1.6 | 2.1 | 1.6 | 2.556667 | 76.7 |
| 2.2 | 2.1 | 1.8 | 1.8 | 1.9 | 1.7 | 1.6 | 1.3 | 1.3 | 1.813333 | 54.4 |
| 2.9 | 2.4 | 2.3 | 2.5 | 2.1 | 2.6 | 2.2 | 3 | 1.3 | 2.786667 | 83.6 |
| 4 | 3.6 | 3 | 2.5 | 2.4 | 2.4 | 2.1 | 1.6 | 1.4 | 3.003333 | 90.1 |
| 3.2 | 3.2 | 3.1 | 2.7 | 3 | 2.3 | 2.5 | 2.1 | 1.9 | 2.73 | 81.9 |
| 1.3 | 1.4 | 3 | 2.3 | 0.7 | 2.5 | 2.1 | 1.9 | 0.8 | 2.363333 | 70.9 |
| 2 | 1.9 | 1.3 | 1.5 | 1.4 | 1.6 | 1.3 | 1.5 | 1.2 | 1.883333 | 56.5 |
| 2.5 | 2.5 | 2.1 | 1.7 | 2 | 1.7 | 1.7 | 1.3 | 1 | 2.163333 | 64.9 |
| 1.6 | 1.1 | 1.5 | 1.3 | 1.7 | 1.1 | 1.2 | 1.6 | 1.2 | 1.686667 | 50.6 |
| 2.4 | 1.9 | 2 | 1.5 | 1.5 | 1.7 | 1.1 | 1.1 | 1 | 1.86 | 55.8 |
| 1.7 | 1.3 | 1.5 | 1.7 | 1.4 | 1.6 | 1.9 | 1.5 | 1.1 | 1.643333 | 49.3 |
| 2.5 | 2.7 | 2.1 | 2.2 | 2.5 | 2 | 2 | 1.8 | 1.4 | 2.536667 | 76.1 |
| 3.8 | 3 | 2.7 | 2.4 | 2.4 | 2.2 | 1.9 | 1.8 | 1.5 | 3.01 | 90.3 |
| 2.4 | 2.1 | 2.1 | 2.6 | 2.4 | 2.3 | 2 | 1.8 | 1.1 | 2.743333 | 82.3 |
| 2 | 1.4 | 1.5 | 1.6 | 1.7 | 1.9 | 1.4 | 1.4 |  | 2.076667 | 62.3 |
| 0.3 | 0.4 | 1.4 | 1.4 | 1.4 | 1.2 | 1.4 | 1.1 | 1.1 | 1.276667 | 38.3 |
| 2.6 | 2.6 | 2.5 | 2.2 | 2.5 | 2.4 | 2.3 | 1.4 | 1.5 | 2.9 | 87 |
| 1.3 | 2.3 | 1.6 | 0.8 | 1.7 | 1.5 | 1.1 | 1.8 | 1.2 | 1.686667 | 50.6 |
| 1.4 | 1 | 1.4 | 1.7 | 1.6 | 1.5 | 1.3 | 0.9 | 0.8 | 1.693333 | 50.8 |
| 1.2 | 1.1 | 1.4 | 1.4 | 1.1 | 0.8 | 0.9 | 0.7 | 0.4 | 1.45 | 43.5 |
| 1.7 | 1.5 | 1.2 | 1.7 | 1.4 | 1.4 | 1.5 | 1.4 | 1.1 | 1.84 | 55.2 |
| 2.1 | 1.9 | 2.1 | 2.3 | 2.7 | 2.4 | 1.3 | 1.8 | 1.4 | 2.573333 | 77.2 |
| 3.2 | 2.4 | 2 | 2.3 | 2.3 | 2.4 | 2.1 | 1.9 | 1.7 | 2.443333 | 73.3 |
| 2.7 | 2.8 | 3.3 | 3.7 | 3.3 | 3.4 | 2.8 | 3.1 | 2.1 | 3.343333 | 100.3 |
| 2.6 | 2.8 | 2.3 | 2.3 | 2.3 | 2.1 | 2.1 | 1.7 | 1.4 | 2.516667 | 75.5 |

## VITA

I, Carolyn Cook Clay, was born in Austin, Texas, March 8, 1980, to Van and Piper Cook. After graduating from Bastrop High in 1998 I began my college career at Texas Lutheran University. Within two semesters I transferred to Southwest Texas State University (now Texas State University-San Marcos). During my undergraduate studies I became extremely involved in the field of Exercise Physiology by: 1) becoming a certified American College of Sports Medicine Health/Fitness Instructor sm, 2) working as a research assistant, and intern, 3) joining professional organizations and attending professional conferences, 4) presenting a poster presentation at state level, and 5) serving as a student officer at both the university and state level.

After receiving my bachelor's in Exercise and Sports Science I immediately continued into my graduate work. I became a graduate teaching assistant for the Health, Physical Education, and Recreation Department, and codeveloped Total Fitness, a wellness program for the faculty and staff of Texas State University-San Marcos. I will continue working at Texas State UniversitySan Marcos as wellness coordinator for the university and surrounding area.

Permanent Address: 1624 Aquarena Springs Dr., \#F141 San Marcos, TX 78666 This thesis was typed by Carolyn Cook Clay.

