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A PRIORI BOUNDS AND EXISTENCE OF NON-REAL
EIGENVALUES OF FOURTH-ORDER BOUNDARY VALUE
PROBLEM WITH INDEFINITE WEIGHT FUNCTION

XIAOLING HAN, TING GAO

ABSTRACT. In this article, we give a priori bounds on the possible non-real
eigenvalue of regular fourth-order boundary value problem with indefinite
weight function and obtain a sufficient conditions for such problem to admit
non-real eigenvalue.

1. INTRODUCTION

In this article we study non-real eigenvalues of differential equations with in-
definite weights. The Sturm-Liouville problem with weighted functions is called
right-definite if the weighted function do not change signs. Otherwise, the problem
is called indefinite problem. The spectral theory of the right-definite problem with
self-adjoint boundary conditions has been accomplished, but the spectral struc-
ture of indefinite problems, especially both right and left indefinite problem, i.e.,
indefinite problem, is quite different from and more complicated than that of right-
definite problems. For example, there is neither upper nor lower bound for real
eigenvalues of indefinite Sturm-Liouville boundary problems. What is more, the
indefinite problem may have non-real eigenvalues. Such problems occur in certain
physical models, particularly in transport theory and statistical physics. The in-
definite nature of the problem was noticed by Haupt [7] and Richardson [12] at the
beginning of the previous century. For a review of the early work in this direction,
see [9].

In [10], the author considered the indefinite spectral problem

-y +qy=Iwy, y(-1)=y(1)=0, yeLi,[-1,1]
combined with conditions that ¢ and w are real-valued functions satisfying

w(r) #0 ae. on [-1,1], q,w e LY[-1,1],

2
||

and w(z) changes sign on [—1,1]. Here, L
the indefinite inner product

e / f@)glao(ds. f.g € Ry [-1.1]

[—1, 1] is a Krein space, equipped with
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The indefinite problems has discrete, real eigenvalues, unbounded from both below
and above, and may also admit non-real eigenvalues.
But most articles consider second-order differential equations; in this article, we
consider the indefinite spectral problem
ry = yW + qy = wy,
y(-1) =y(1) =y"(-1) =¢"(1) =0, yeLf,[-1,1]
combined with conditions that ¢ and w are real-valued functions satisfying

w(x) # 0 ae. on [-1,1], q,we L'[-1,1], (1.2)

(1.1)

and w(z) changes sign on [—1, 1]. We will first obtain a priori bounds for possible
non-real eigenvalues and then find sufficient conditions for the existence of non-real

eigenvalues of ([1.1)).

2. A PRIORI BOUNDS OF NON-REAL EIGENVALUES

For the indefinite problem (1.1)), let

Ty =y + qy = Mwly,

D=y =/ D=y =0, vy Y
be the corresponding right-definite problem.
Firstly, we consider the fourth-order differential equation
vt 4+ qu = wy, € [a,b] (2.2)
combined with the boundary conditions
By = y(a)cos(01) — " (a) sin(0;) = 0,
Bay = y(b) cos(f2) — v (b) sin(62) = 0, (2.3)
Bsy = y'(a) cos(03) — y"(a) sin(63) =0, '
Bay = y'(b) cos(01) — y" (b) sin(s) = 0,

where ¢ and w satisfies ([1.2]) and 61, 05,603,604 € R. The corresponding right-definite
problem is

y' +aqy = Nuwly (2.4)
combined with ([2.3)).
Assumption: A = 0 is not an eigenvalue of the boundary problems in questions.

Proposition 2.1. If problem (2.2)-(2.3) has non-real eigenvalues, then problem
(2.4)-(2.3) has at least one negative eigenvalue.

Proof. Let y = y(t, \) be the corresponding non-real eigenfunction of the non-real
eigenvalue A. Multiplying (2.2) by ¥ integrating over [a, b], we find

cot(62)[y(b)* — cot(61)[y(a)|* + cot(6s)[y' ()|

b
ot (B2)]y' () + / "2 + alyde

b
:)\/ wly|*dx
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Then the smallest eigenvalue v of ([2.4)) is given by the minimum of the left side of
the equation. Let y € Sy, where

So={y € L2, [a.blly.y/,y" € ACwcla, b, y™® + qy € L2, [a,b],
By = Boy = B3y = Byy =0}

Now the non-real eigenfunction y makes the left side of equation vanish. Moreover
y € Sp. Hence v < 0 since v = 0 is not an eigenvalue of (2.4)), i.e., the problem has
at least one negative eigenvalue. 0

Proposition 2.2 ([8]). If problem (2.4)-(2.3) has n negative eigenvalues, then
problem (2.2)-(2.3) has at most 2n non-real eigenvalues.

Denote by || - ||, the norm of the space LP[—1,1] and by || - ||¢ the maximum
norm of C[—1,1]. If zw(x) > 0 a.e. on [—1,1], we set
Si(e1) ={z € [-1,1] : zw(z) < &1}, mq(e1) = meas S1(¢,). (2.5)
If w € ACoe][—1,1], w' € L?[—1,1], w" € L?[-1,1], we set
Sa(ee) = {z € [-1,1] : w?(z) < £2}, ma(e2) = meas So(e2). (2.6)

A value of x about which w(z) changes its sign will be called a turning point. If
w(z) has only one turning point, we will obtain the following a priori bounds for
possible non-real eigenvalues.

Theorem 2.3. Suppose that A is, if it exists, a non-real eigenvalue of (1.1). If
zw(x) >0 a.e. on [—1,1], then
2v2|gllc(L + V/lla-T1lIgllc + v2lla—1]19llc)

|Re A| < )
£

1
A < 2Y219le( + Vila-Trli¢le)
< g |

1
where e1 > 0 satisfies (1 —ma(e1)[|¢]|%) > % and ¢_(z) = — min{0, ¢(z)}.

Proof. Let A be a non-real eigenvalue of (|1.1) and ¢ is the corresponding eigen-
function with ||¢]la = 1, ||¢|lc = max{|¢|,|d|,|¢"”|}. Multiplying both sides of

»™ + q¢ = Mwe by ¢ and integrating over the interval [z, 1] we have

1 1 1
,(¢’/’$)(x)+(¢”$)(x)+/ |¢“|2dx+/ q|¢|2dx:)\/ wlgdx.  (2.7)

x

Separating the real and imaginary parts of both sides of (2.4) yields

1 1 1
ReA/ w|¢>|2dx:Re(—gb”’@)(:c)+Re(¢"$)(x)+/ |¢)”|2dx+/ q|o|*dz,
1 P— PR
[ wloPds = n(—0"3)(2) + (07 z). (2.9)

We will use (2.8) and (2.9) to estimate Re A and Im A. To do this, let x = —1 in
(2.9). From Im A # 0 and ¢(—1) = 0 and ¢”(—1) = 0, we have fil w|g|?dz = 0
and hence, by (2.8)),

1 1
/ |¢"|2dx —|—/ q|p|*dx = 0. (2.10)
-1 -1
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Let [[g-[» = f_lqudl‘, then
[ 1eae=— [ aopar < [ q-toPde < ol o
—1 _1 _
1
and [~ q_|¢]*dz < [¢l|Z]lg— |1, hence

1
6”113 < llolZllg-1l, /1q7|¢l2dw < [lglIE lla-1ls- (2.11)

Since zw(z) > 0 a.e. on [—1, 1] one can find &1 > 0 such that (1—mq (e1)[|¢]|%) > 3,
where m; (¢1) is defined in . Using fil w|¢|?dx = 0, from (2.11)), we have

/ / |2dtdx—/11 2w(@)|6(x) 2ds

() Py P (2.12)
2 [ @i [ o)
> el - m(e)9l2) > -

Set g4 () = max{0, ¢(z)}, then ¢ = ¢y —¢— and |q| = ¢+ +q— = ¢+2q_. Repeatedly

using (2.10)), we have
1 1 1
| / / (6”12 + qlf?) dt da| = | / 2(16"]? + qlpf)da]
—1Jz —1

1
< / (6" + al? + 2q_|6[?)dx
—1

1
<2 [ qlofde <206l la-
—1
Now, by (2.11)) integrating (2.8]) gives

|Re/\\/ / ()2 dt do

1 1 pl
— [ Re(-0" D)o+ [ Re@ @)zt [ [ (67 + aloP)ataa]

<V2(|¢lle(X+ Vg l1li¢lle + V2lg-[l1l4lle)-
Therefore, in view of (2.11)), we conclude that

2v2||¢llc(1 + vlla-IhlI¢llc + v2lg-lliolle)

|Re \| < - (2.13)
Moreover, integrating (2.9) and using and (| -7 we have
Lim) < |Im>\|/ / w|¢|? dt dz
2 —-1Jz
(2.14)

=1 [ (m(=0"5)(@) + (e F)(a)
< VEJollc(t+ VI Tilolc)

This completes the proof. [
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When w(z) is allowed to have more turning points, we have the following result.

Theorem 2.4. Suppose that A is, if it exists, a non-real eigenvalue of (1.1). If
w € ACoe[—1,1], w',w" € L?[-1,1], then

Re )| < 2| ¢llc2lwlclla-lhli¢lle +2v2]w' 2y Ta-T1ll¢llc + vIa-T1llw”|l2]

€2

Tm A| < 2||¢llev/llg-h[2v2]w'[l2ll¢llc + [lw”|l2]
< -, 7

where €2 > 0 satisfies (1 — ma(e2)|d||%) > 1/2.

Proof. Let A be a non-real eigenvalue of ([L.1)) and ¢ the corresponding eigenfunction
with [|@]l2 = 1, [|$]lc = max{|¢|,|d’|,|¢”'|}. In this case we still can make use of

ED, (2.8) and (2.9). From (2.9), since Im X\ # 0, we have fil w|p|?dxr = 0. Thus,
2.10) and (2.11)) holds, and particularly,

o < llollE, 1113 < 2l¢l

1 (2.15)
lo”113 < llellZlla-1l, /1Q—|¢\2dx < llolEla-1i-

Multiplying both sides of ¢(*) + g = Aw¢ by w¢ and integrating over the interval
[—1,1] we have

1 1 1 1
/ wl¢” |*dx + 2/ ¢"w' @' dx + / ¢"w" pdx + / wq|¢|*dx
-1 —1 -1

—1

L (2.16)
= )\/ w?|¢|*da.
-1
Separating the real and imaginary parts of both sides of (2.17) yields
1 1 o 1 B
Re A / w?|¢|2dx = Re (2 / ¢"w’¢>’dx) +Re ( / ¢”w”¢dm>
! -t -t (2.17)

1 1
—|—/ w|<b”|2dx+/ wq|p|*dz,
-1

-1
Tm A / 1 w?|¢|dz = Im (2 / 1 ¢”w’$dx) +Im ( / 1 ¢>”w”$dx). (2.18)
-1 -1 -1

Now, using (2.15)) and |¢| = ¢+ +¢- = ¢ + 2¢_ and fil ql¢|?dr = —fil |¢" |d,
we obtain

1
I/lwlaﬁ”lzdxl < wllclolz a1l
1
| / welgPda| < wllclelZlla_ 1,
—1
1 o 1 1/2 1 1/2 1 /2 (2.19)
¢//wl¢/d$ § / ¢I/ de / w/ 2d1’ / (bl de .
1/ < ([ wrpas) ([ wpas)( [ o)
< V2|11 |w'[|2]|#l|E
1
I/ ¢"w" ¢dx| < \/llg—|1]|w"||2]|9llc-
-1
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Recall that ma(e2) = meas Sa(e2) defined by (2.6) and w?(z) > 2 on the set
Q(e2) := [-1,1]\Sa2(g2). Then (1 —ma(e2)||¢]|Z) > 3 yields

/1 w?(x)|¢(x)[*dw > 62/ |6(x)|*da

—1 9(62)

1
—o( [ w@pd = [ p@ie) @)

£2
> e2(1 — ma(e2)|9llE) > o

which, together with (2.17)), (2.18]) and (2.19)), completes the proof. d

In the particular case when ¢ > 0, by Theorems and we see that
has no any non-real eigenvalues, which is in accordance with the conclusion in
Proposition since does not have any negative eigenvalues.

In what follows, we impose the symmetry conditions on ¢ and w, namely,

q(z) = q(—x), w(—zx)=—-w(x). (2.21)
Under the conditions and , it is easy to see that if A € C be a eigenvalue
of and ¢ the corresponding eigenfunction, then —\ is an eigenvalue of
with the eigenfunction ¢(—z). Thus, if A = ia with o € R, then ¢(—z) = co(z)
for some ¢ # 0 since the geometric multiplicity is one. Then it follows that |¢| =1
from ¢(0) = ¢c4(0), ¢'(0) = ¢¢’(0), and |¢(0)| + |¢'(0)| # 0. To sum up, we have a

lemma.

Lemma 2.5. Let (1.2) and (2.21)) hold. If A € C is an eigenvalue of (1.1) with an
eigenfunction ¢, then —X\ is an eigenvalue of (L.1) with the eigenfunction ¢(—x).

Particularly, if A\ = ia with « € R and o # 0, then ¢(—x) = c¢p for some ¢ € C
with |c| = 1.

In this case, more accurate a priori bounds on imaginary eigenvalues can be
found if ¢ is bounded below and w keeps away from zero.

Theorem 2.6. Suppose that (2.21) holds and zw(z) > 0 a.e. on [—1,1]. If, for
some qo < 0 and wy > 0,

q(x) > qo, |w(x)|>wo, a.e xe[-1,1], (2.22)

then for any possible pure imaginary eigenvalue X of (L.1)), we have

Proof. Let ¢ be an eigenfunction corresponding to A = i with ||¢]l2 = 1, ||¢|lc =
max{|¢|, |¢'|,|¢"'|}. It follows from Lemma that there exists an w € [0, 2m)
such that ¢(—x) = e“¢(x) and —¢/(—x) = e“¢(x). So, |¢p(z)| and |¢'(x)| are
even functions. We see that — hold for this ¢. And

x

0
B@F < @) [ WoPas [ 0Ok =51608 cel-10 (220

-1

since |¢'(x)] is even. Actually, (2.24) is true for z € [—1,1] since |¢(z)| is even.



EJDE-2016/82 EXISTENCE OF NON-REAL EIGENVALUES 7

Since q(z) > qo, on [—1,1], it follows from (2.10)) and ||¢|2 = 1, that ||¢”||3 =
- f_ll q|¢|?dx < —qo. Then integrating (2.9) produces

Tm A / 1 / wldf? dt dz| = | / (Im(=0"5)(2) + (6 ) &)

(2.25)
< Valdlle(l + V).
Let 6 = 1/(4]|¢||Z). By (2.24)), we have
| / / (0 dt da
=L w(z)|p(a >|2dxzwo[1|x\|¢<x>\2dm
> wod ¢ (z)[*da (2.26)

|#| =6

> w05</11 |¢(x)|2d$ — /_66 |¢(x)|2d$)

Now, ) follows from and - O

3. EXISTENCE OF NON-REAL EIGENVALUES

Although a priori estimate can be given in section 2 and the exact number of
non-real eigenvalues are still difficult; there are recent studies by means of the
operator theory in Krein spaces [6]. In this section we prove the existence of non-
real eigenvalues.

Lemma 3.1 ([6]). If w; € L'[-1,1] and wj(xz) > 0 a.e. on [—1,1] for j = 1,2,
then the two eigenvalue problems

y D gy = wj(z)y, y(-1)=y(1)=y"(-1)=y"(1)=0, j=1,2 (3.1
have the same number of negative eigenvalues.

Let K be the Krein space L‘zw| [—1, 1], equipped with the indefinite inner product

1
- [ t@a@u@de. fae Ly (3:2)

and T be a self-adjoint operator in K with domain D(T) = {y € L‘w‘[ 1,1y, v, y" €
ACio[-1,1], T € L|2w\ [—1,1]}. See [1L B, B]. We say that the operator T has k neg-
ative squares, k € Ny, if there exists a k-dimensional subspace X of K in D(T)

such that [Tf, f] < 01if f € Xand f # 0, but no (k 4 1)-dimensional subspace with
this property.

Theorem 3.2. Let (2.21)) hold. If the eigenvalue problem
y W gy = Awly, y(-1)=y(1) =y"(-1)=y"(1) =0 (3.3)

has one negative eigenvalue and the rest eigenvalues are all positive, then (1.1)) has
exactly two purely imaginary eigenvalues.



8 X. HAN, T. GAO EJDE-2016/82

Proof. Let A = %7’ and B = ﬁT be the operators associated with 4 + qy = Awy

and y +qy = A w|y with boundary conditions, respectively. Then B is self-adjoint
with respect to the definite inner product

(f.9) = / @@ (o)lde, f.g € Ly [-1.1)

and A is self-adjoint with respect to the indefinite inner product .

It follows from Lemma and the assumption in Theorem that B has one
negative eigenvalue and the rest are positive, and hence, A has exactly one negative
square since [Af, f] = (Bf, f) and 0 is a resolvent point of A. It is well known
(see, [Bl [6]) that this implies the existence of exactly one eigenvalue A of
in R or the upper half-plane C™ and that if A € R with eigenfunction ¢ then
[Af, f] = Mf, f) < 0. Let A be such an eigenvalue with eigenfunction ¢. If X is
real, then —\ = —\ is also an eigenvalue with the eigenfunction ¢(—z) by Lemma

25l and

—Alp(=x), o(—2)] = Alp, 6] <0
by the odd symmetry of w. Thus, we get that A and —\ are two such eigenvalues,
which is a contradiction. Since A € C* implies —\ € C*, we see that A = —\, i.e.,
A is purely imaginary. The proof is complete. ]

For more details about non-real eigenvalue of second-order boundary value prob-
lems, please see [II, 21 [3] [, [TT], [13].
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