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AN ASYMPTOTIC PROPERTY OF SOLUTIONS TO LINEAR
NONAUTONOMOUS DELAY DIFFERENTIAL EQUATIONS

JULIO G. DIX, CHRISTOS G. PHILOS, IOANNIS K. PURNARAS

Abstract. We study first order linear delay differential equations with vari-
able coefficients and constant delays. Using solutions to a characteristic equa-

tion, we show asymptotic properties of solutions to the delay equation. To

illustrate the hypothesis of the main theorem, we present an example.

1. Introduction

We study the asymptotic behavior of solutions to the delay differential equation

x′(t) = a(t)x(t) +
k∑

j=1

bj(t)x(t− τj), for t ≥ 0 (1.1)

with initial condition

x(t) = φ(t), for min
1≤j≤k

{−τj} ≤ t ≤ 0, (1.2)

where the coefficients a and bj are continuous real-valued functions on [0,∞), the
delays τj are positive real numbers (j = 1, 2, . . . , k), k is a positive integer, and φ
is a given continuous function.

The work on this paper is motivated by the publication of the following interest-
ing results. Driver, Sasser and Slater [6] obtained significant results on asymptotic
behavior, non-oscillation, and stability of solutions to first order linear delay dif-
ferential equations with constant coefficients and one constant delay. Driver [4]
obtained similar results for first order linear autonomous delay differential equa-
tions with infinitely many distributed delays. The results in [6] have been improved
and extended by Philos [11] for first order linear delay differential equations with
coefficients that are periodic having a common period, and delays that are con-
stants multiples of this period. These results have been extended and improved
by Kordonis, Niyianni and Philos [10] for first order linear autonomous neutral de-
lay differential equations. The results in [10, 11] have been extended and slightly
improved by Philos and Purnaras in [12]. There the authors study first order lin-
ear neutral delay differential equations with periodic coefficients having a common
period and constant delays that are multiples of this period. Graef and Qian [7]
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obtained results closely related to the ones above for first order forced delay differ-
ential equations. Driver [5] and Arino and Pituk [1] obtained important results for
linear differential systems with small delays.

In the present paper, we define a characteristic equation and then utilize its solu-
tion to state asymptotic results for solutions of the delay equation. Also we obtain
a non-oscillation result, Remark 2.2. Our main result is stated as Theorem 2.3 and
proved in the next section. The limit obtained in Theorem 2.3 is found explicitly
when the solution to the characteristic equation is a constant. An application of
Theorem 2.3 provides a necessary and sufficient condition for all solutions of (1.1)
to be bounded, and a necessary and sufficient condition for all solutions of (1.1) to
tend to zero at ∞. The last section contains an example and discussions on the
results of the paper.

2. Statement of Results

We shall assume that the delays are positive and denote

τ = max{τj : 1 ≤ j ≤ k}, σ = min{τj : 1 ≤ j ≤ k} .

Let C([−τ, 0], R) denote the set of continuous real-valued functions on [−τ, 0].
By a solution x to the delay differential equation (1.1), we mean a continuous

real-valued function, defined on [−τ,∞), which is continuously differentiable on
[0,∞) and satisfies (1.1). It is well-known that for each given φ ∈ C([−τ, 0], R),
problem (1.1)-(1.2) has a unique solution; see for example [2, 8, 9].

With the delay equation (1.1), we associate the integral equation

λ(t) = a(t) +
k∑

j=1

bj(t) exp
[
−

∫ t

t−τj

λ(s)ds
]
, for t ≥ 0 ;

λ(t) = λ0(t), for − τ ≤ t ≤ 0

(2.1)

which is called the (generalized) characteristic equation of (1.1). This equation is
obtained when looking for solutions of the form

x(t) = φ(0) exp
[ ∫ t

0

λ(s)ds
]
.

Note that this solution can not change sign; i.e., x(t) is either positive or negative
or identically zero.

By a solution λ to the characteristic equation, we mean a continuous real-valued
function, defined on [−τ,∞), which satisfies (2.1).

Lemma 2.1. For each λ0 in C([−τ, 0], R), the characteristic equation has a unique
global solution.

Proof. Let u(t) = exp
[ ∫ t

0
λ(s)ds

]
for t ≥ 0, and w(t) = exp

[ ∫ t

0
λ0(s)ds

]
for −τ ≤

t ≤ 0. Then using the characteristic equation, for 0 ≤ t ≤ σ, we obtain the linear
differential equation

u′(t) = λ(t)u(t) = a(t)u(t) +
k∑

j=1

bj(t)w(t− τj)
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with u(0) = 1. The solution to this equation is

u(t) =
[
1 +

∫ t

0

k∑
j=1

bj(s) exp
[ ∫ s−τj

0

λ0(r) dr −
∫ s

0

a(r) dr
]
ds

]
exp

[ ∫ t

0

a(r) dr
]

which allows defining λ(t) = u′(t)/u(t) on [0, σ]. For the next interval, let w(t) =
u(t) on [−τ, σ]. Then for σ ≤ t ≤ 2σ, we obtain the differential equation

u′(t) = a(t)u(t) +
k∑

j=1

bj(t)w(t− τj)

whose solution is

u(t) =
[
1 +

∫ t

0

k∑
j=1

bj(s) exp
[ ∫ s−τj

0

λ(r) dr −
∫ s

0

a(r) dr
]
ds

]
exp

[ ∫ t

0

a(r) dr
]

(2.2)
which allows defining λ(t) on [σ, 2σ]. Proceeding in this manner, we define λ(t) for
all t ≥ −τ , which completes the proof. �

Remark 2.2. If the solution to (1.1)-(1.2) does not have zeros on some interval
[t∗ − τ, t∗], then the solution does not have zeros on [t∗,∞); i.e., the solution can
not change sign on [t∗,∞). To show this claim let t∗ be the initial time for the char-
acteristic equation and λ0(t) be given implicitly by x(t) = x(t∗) exp

[ ∫ t

t∗
λ0(s) ds

]
,

with t∗ − τ ≤ t ≤ t∗. Then, by the uniqueness of solutions to (1.1),

x(t) = x(t∗) exp
[ ∫ t

t∗
λ(s) ds

]
, for t ≥ t∗ .

Therefore, x(t) can not have zeros on [t∗,∞).

Our main result is the following theorem.

Theorem 2.3. Assume that

sup
t≥τ

k∑
j=1

|bj(t)|τj exp
[
−

∫ t

t−τj

λ(s)ds
]

< 1 . (2.3)

Then for each solution x of (1.1)-(1.2) there exists a constant Lφ,λ0 such that

lim
t→∞

x(t) exp
[
−

∫ t

0

λ(s)ds
]

= Lφ,λ0 ,

and

lim
t→∞

{
x(t) exp

[
−

∫ t

0

λ(s)ds
]}′

= 0.

Remark 2.4. Under the conditions of Theorem 2.3, a solution to (1.1) can not grow
faster than the exponential function determined by the characteristic equation; i.e.,
there exists a constant M such that∣∣x(t)

∣∣ ≤ M exp
[ ∫ t

0

λ(s)ds
]
, for t ≥ 0 .

Remark 2.5. When the solution to (2.1) is a constant λ0 satisfying (2.3),

lim
t→∞

x(t) exp(−tλ0) = Lφ,λ0 .

In particular when zero is the solution to (2.1), limt→∞ x(t) = Lφ,0.
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Note that if λ is a solution of (2.1), then

x(t) = φ(0) exp
[ ∫ t

0

λ(s)ds
]

is a solution of (1.1) with initial function φ(t) = φ(0) exp
[ ∫ t

0
λ(s)ds

]
. Then we

obtain easily the following results.

Remark 2.6. Under the assumptions of Theorem 2.3, we have:
(1) Every solution of (1.1) is bounded if and only if lim supt→∞

∫ t

0
λ(s)ds < ∞.

(2) Every solution of (1.1) tends to zero at ∞ if and only if
limt→∞

∫ t

0
λ(s)ds = −∞.

3. Proof of main result

Proof of Theorem 2.3. For solutions x of (1.1)-(1.2) and λ of (2.1), we define

y(t) = x(t) exp
[
−

∫ t

0

λ(s)ds
]
, t ≥ −τ.

Differentiating in this function, and using (1.1), (2.1), we obtain

y′(t)

=
(
x′(t)− x(t)λ(t)

)
exp

[
−

∫ t

0

λ(s)ds
]

=
( k∑

j=1

bj(t)x(t− τj)− x(t)
k∑

j=1

bj(t) exp
[
−

∫ t

t−τj

λ(s)ds
])

exp
[
−

∫ t

0

λ(s)ds
]
.

Using that x(t− τj) = y(t− τj) exp
[ ∫ t−τj

0
λ(s)ds

]
, the above equality yields

y′(t) = −
k∑

j=1

bj(t)[y(t)− y(t− τj)] exp
[
−

∫ t

t−τj

λ(s)ds
]

for t ≥ 0 .

From this equation and the fundamental theorem of calculus,

y′(t) = −
k∑

j=1

bj(t)
[ ∫ t

t−τj

y′(s)ds
]
exp

[
−

∫ t

t−τj

λ(s)ds
]

for t ≥ τ . (3.1)

If all bj ’s are identically zero on [τ,∞), from (3.1), y′ = 0 and y is constant on
[τ,∞) which would complete the proof. Therefore, we assume that at least one bj

is not identically zero on [τ,∞) . Let

µλ0 = sup
t≥τ

k∑
j=1

|bj(t)|τj exp
[
−

∫ t

t−τj

λ(s)ds
]
.

Then, by (2.3),
0 < µλ0 < 1 . (3.2)

Note that the maximum of |y′| on [0, τ ] depends on x and λ; hence, on the initial
functions φ and λ0. Let

Mφ,λ0 = max
{
|y′(t)| : 0 ≤ t ≤ τ

}
.

We shall show that Mφ,λ0 is also a bound of |y′| on the whole interval [0,∞); i.e.,

|y′(t)| ≤ Mφ,λ0 for all t ≥ 0 . (3.3)
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On the contrary, assume that there exist ε > 0 and t ≥ 0 such that |y′(t)| >
Mφ,λ0 + ε. Since |y′(t)| ≤ Mφ,λ0 for 0 ≤ t ≤ τ , by the continuity of y′, there exists
t∗ > τ such that

|y′(t)| < Mφ,λ0 + ε , for 0 ≤ t < t∗, and |y′(t∗)| = Mφ,λ0 + ε .

Using the definition of µλ0 , (3.1) and (3.2), we obtain

Mφ,λ0 + ε = |y′(t∗)|

≤
k∑

j=1

|bj(t∗)|
[ ∫ t∗

t∗−τj

|y′(s)|ds
]
exp

[
−

∫ t∗

t∗−τj

λ(s)ds
]

≤
(
Mφ,λ0 + ε

) k∑
j=1

|bj(t∗)|τj exp
[
−

∫ t∗

t∗−τj

λ(s)ds
]

≤
(
Mφ,λ0 + ε

)
(µλ0) < Mφ,λ0 + ε

which is a contradiction. Therefore, inequality (3.3) holds. If Mφ,λ0 = 0, from (3.3)
it follows that y′ = 0 and y is constant on [0,∞), which would complete the proof.
Therefore, we assume that Mφ,λ0 > 0.

In view of (3.1) and (3.3),

|y′(t)| ≤
k∑

j=1

|bj(t)|
[ ∫ t

t−τj

|y′(s)|ds
]
exp

[
−

∫ t

t−τj

λ(s)ds
]

≤ Mφ,λ0

k∑
j=1

|bj(t)|τj exp
[
−

∫ t

t−τj

λ(s)ds
]

≤ Mφ,λ0(µλ0) for t ≥ τ .

Using this inequality, we can show by induction that

|y′(t)| ≤ Mφ,λ0(µλ0)
n for t ≥ nτ (n = 0, 1, . . . ). (3.4)

For an arbitrary t ≥ 0, we set n = bt/τc (the greatest integer less than or equal to
t/τ). Then t ≥ nτ and t

τ − 1 < n. Thus, by (3.2) and (3.4),

|y′(t)| ≤ Mφ,λ0(µλ0)
n ≤ Mφ,λ0(µλ0)

t
τ−1. (3.5)

As t →∞, we have n →∞ and, by (3.2), (µλ0)
n → 0. Therefore, by (3.5),

lim
t→∞

y′(t) = 0

which proves the second limit in Theorem 2.3.
To prove that limt→∞ y(t) exists (as a real number), we use the Cauchy conver-

gence criterion. For t > T ≥ 0, from (3.5), we have

|y(t)− y(T )| ≤
∫ t

T

|y′(s)|ds ≤
∫ t

T

Mφ,λ0(µλ0)
s
τ−1 ds

= Mφ,λ0

τ

ln(µλ0)

[
(µλ0)

s
τ−1

]s=t

s=T

= Mφ,λ0

τ

ln(µλ0)

[
(µλ0)

t
τ−1 − (µλ0)

T
τ −1

]
.
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As T →∞, we have t →∞ and, by (3.2), the two right-most terms above approach
zero. Therefore, limT→∞ |y(t) − y(T )| = 0 which by the Cauchy convergence cri-
terion implies the existence of limt→∞ y(t). We call this limit Lφ,λ0 because it
depends on y which in turn depends on the initial functions φ and λ0. This shows
the first limit in Theorem 2.3 and completes the proof. �

4. Discussion

To illustrate the hypothesis in Theorem 2.3, we provide an example of a non-
autonomous (and non-periodic) delay differential equation of the form (1.1), for
which (2.1) has a explicit solution and satisfies (2.3).

Example. Let k = 1, τ1 = 2, and a(t) = 1/(2(t+3)), b1(t) = 1/(2(t+1)) for t ≥ 0.
It is easy to verify that

λ(t) =
1

t + 3
is a solution of (2.1) and satisfies (2.3). Indeed, we can easily check that

sup
t≥τ1

|b1(t)|τ1 exp
[
−

∫ t

t−τ1

λ(s)ds
]

= sup
t≥2

1
t + 3

=
1
5

< 1.

Remark 4.1. Finding conditions on a and bj that guarantee hypothesis (2.3)
remains an open question. To imply this hypothesis, we can use for example the
stronger condition

sup
t≥τ

k∑
j=1

|bj(t)| exp
[
−

∫ t

t−τj

λ(s)ds
]

<
1
τ

.

Furthermore, if, for each t ≥ 0, it holds bj(t) ≥ 0 for all j’s or bj(t) ≤ 0 for all j’s,
from the characteristic equation, it follows that

|λ(t)− a(t)| =
k∑

j=1

|bj(t)| exp
[
−

∫ t

t−τj

λ(s)ds
]
, for t ≥ 0 .

Note that this equality is obvious when k = 1. Under the above assumptions, the
condition (2.3) is implied by supt≥0 |λ(t)− a(t)| < 1/τ . This is the strategy in the
next lemma.

Lemma 4.2. Assume that the coefficients a, bj and the initial function of the
characteristic equation satisfy the following conditions for all t ≥ 0: bj(t) ≥ 0 and,
for some c with 0 ≤ c < 1

τ ,∑
j∈J(t)

bj(t) exp
[ ∫ t−τj

0

λ0(s) ds−
∫ t

0

a(s) ds
]

+
∑

j 6∈J(t)

bj(t) exp
[ ∫ t−τj

0

c ds−
∫ t

t−τj

a(s) ds
]
≤ c,

(4.1)

where J(t) consists of those indices j for which t− τj ≤ 0, (j = 1, 2, . . . k). Then

sup
t≥0

k∑
j=1

|bj(t)|τj exp
[
−

∫ t

t−τj

λ(s)ds
]

< 1 ,

which implies the hypothesis for Theorem 2.3.
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Proof. Since bj(t) ≥ 0, the definitions of τ and of λ imply
k∑

j=1

bj(t)τj exp
[
−

∫ t

t−τj

λ(s)ds
]
≤ τ

k∑
j=1

bj(t) exp
[
−

∫ t

t−τj

λ(s)ds
]

= τ |λ(t)− a(t)| .

The statement of this lemma follows if we show that |λ(t)− a(t)| ≤ c for t ≥ 0. As
in the proof of Lemma 2.1, let u(t) = exp

[ ∫ t

0
λ(s) ds

]
for t ≥ −τ , with λ defined

by (2.1). From the characteristic equation,

λ(t)− a(t) =
k∑

j=1

bj(t) exp
[
−

∫ t

t−τj

λ(s) ds
]

=
1

u(t)

k∑
j=1

bj(t) exp
[ ∫ t−τj

0

λ(s) ds
]
.

Since u(t) is the solution given by (2.2), for t ≥ 0,

λ(t)− a(t) =

∑k
j=1 bj(t) exp

[ ∫ t−τj

0
λ(s) ds

]
exp

[
−

∫ t

0
a(s) ds

]
1 +

∫ t

0

∑k
j=1 bj(s) exp

[ ∫ s−τj

0
λ(r) dr −

∫ s

0
a(r) dr

]
ds

.

Since bj(t) ≥ 0, the denominator in the above expression is greater than or equal
to 1 and

|λ(t)− a(t)| ≤
k∑

j=1

bj(t) exp
[ ∫ t−τj

0

λ(s) ds−
∫ t

0

a(s) ds
]
. (4.2)

When 0 ≤ t ≤ σ, we have t − τj ≤ 0, then all j’s are in the class J(t) and
t− τj ≤ s ≤ 0. So we use λ(s) = λ0(s) in (4.2). Therefore, (4.1) implies

|λ(t)− a(t)| ≤ c for all t in [0, σ] . (4.3)

For each fixed t in [σ, 2σ], we have two possible cases:
Case 1: j ∈ J(t). Here t − τj ≤ 0 and t − τj ≤ s ≤ 0; so we use λ(s) = λ0(s) in
(4.2). Then, for this case, each summand in (4.2) is equal to

bj(t) exp
[ ∫ t−τj

0

λ0(s) ds−
∫ t

0

a(s) ds
]
.

Case 2: j 6∈ J(t). Here 0 < t − τj ≤ σ and 0 ≤ s ≤ t − τj ≤ σ. Using (4.3),
λ(s) ≤ a(s) + c and, in this case, each summand in (4.2) is bounded by

bj(t) exp
[ ∫ t−τj

0

c ds−
∫ t

t−τj

a(s) ds
]
.

From the two cases above and (4.1), we have |λ(t)−a(t)| ≤ c on [σ, 2σ]. Inductively,
we can prove the same inequality on [2σ, 3σ], [3σ, 4σ], etc. This completes the
proof. �

We remark that the class J(t) is non-empty only when t ≤ τ . Then the first
summation in (4.1) needs to be less than or equal to c only for small t, which is
not too restrictive. Meanwhile the class J(t) is empty for t > τ , and the second
summation needs to be less than or equal to c for all large t. This is very restrictive.
In particular, it requires

∫ t

t−τj
a(s) ds → ∞ as t → ∞. Note that in the example

above a, bj do not satisfy the conditions of Lemma 4.2.
The real number Lφ,λ0 , in Theorem 2.3, has been given explicitly in two special

cases: For linear autonomous delay differential equations and for linear delay dif-
ferential equations with periodic coefficients having a common period and constant
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delays that are multiples of this period. See [4, 6, 7, 11] (and [10, 12] for linear
neutral delay differential equations).

The proof of Theorem 2.3 is based on an integral representation of y′. Meanwhile,
in the autonomous case, and in the case where the coefficients are periodic with a
common period and the delays are multiples of this period, the proof is based on
an integral representation of y. See [4, 6, 7, 11] (and [10, 12] for the neutral case).

We would be interested in generalizing our theorem to linear delay differential
equations with variable coefficients and variable delays. For variable delays that
are bounded, this seems easy to be achieved. However, the general case of variable
delays seems to be somewhat difficult. Asymptotic behavior of solutions to dif-
ferential equations with variable delays and variable coefficients has been studied
in [3], using a method that does not use characteristic equations. Furthermore,
it would be interesting to generalize our theorem for linear non-autonomous delay
differential equations with infinitely many distributed delays. It will be the subject
of a future work to extend the present results to linear neutral delay differential
equations with variable coefficients and constant delays.
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