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CHAPTER I

INTRODUCTION

Throughout this paper I present an expansion of an article from the journal

Mathematische Zeitschrift called ”Groups with Automorphisms Inverting most El-

ements”, by Hans Liebeck and Desmond MacHale. Although the structure of the

groups under consideration in this article had previously been determined by C. T.

C. Wall using character theory, Liebeck and MacHale demonstrate an alternative

approach to determining the structure of finite nonabelian groups in which there

exists some automorphism inverting more than half of the group elements. It is

noteworthy however that this group structure need not apply to groups with au-

tomorphisms inverting exactly half of the group elements.

As will be shown, a group is abelian if and only if there exists some automor-

phism that inverts the group elementwise. It follows that the groups under con-

sideration in this paper are nearly abelian. We will show that such groups have

an abelian subgroup of index 2 or are nilpotent of class 2 of a specific type as will

be outlined in Theorem (4.10). After developing the structure of these groups we

will restrict the groups under consideration to finite nonabelian groups in which the

identity automorphism inverts more than half of the group elements. We will show

that these groups are precisely those groups in which at least half of the group ele-

ments are involutions and will close by outlining the structure of this smaller class

of groups in Theorem (5.10).
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CHAPTER II

NOTATION

Throughout this paper G will denote a finite nonabelian group. For any auto-

morphism α of G, we let Sα denote the set of elements in G inverted by α and we

define

I(α) =
|Sα|
|G|

.

Furthermore we define I(G) = max I(γ) as γ runs through all automorphisms of G.

Thus the objective of this paper is to determine the possible structures of a finite

nonabelian group G in which I(G) > 1
2
. Such a group will be referred to as a >1

2
-

group and any automorphism inverting over half of the group elements will be re-

ferred to as a > 1
2
-automorphism. Note that we use the convention of writing func-

tions from from the right whenever function composition is relevant. Finally, for

subgroups H and K of G we define [H,K] = {〈[h, k]〉 = 〈h−1k−1hk〉 : h ∈ H, k ∈ K}

and we define |G : H| to be the index of H in G.
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CHAPTER III

PRELIMINARY THEOREMS

Liebeck and MacHale begin by developing results that relate the subgroup struc-

ture of an arbitrary > 1
2
-group to the elements that are inverted by > 1

2
-automorphisms

of the group. We will do the same but will also develop additional results that will

serve to simplify several of the proofs in the next chapter. We begin by proving a

well known result regarding arbitrary abelian groups.

(3.1) Lemma. A group is abelian if and only if it has an automorphism invert-

ing it elementwise.

Proof. (⇒) Let H be an abelian group. Define the function α by (a)α = a−1 for

all a ∈ H. Let x, y ∈ H and suppose that (x)α = (y)α. Then x−1 = y−1. It follows

easily that x = y so α is injective. As (x−1)α = x we see that α is surjective. Thus

all that remains is to verify that α is a homomorphism. Since H is abelian we have

(xy)α = (xy)−1 = y−1x−1 = x−1y−1 = (x)α(y)α

as desired.

(⇐) Now suppose that α is an automorphism that inverts the group H element-

wise. Then for all x, y ∈ H we have

xy = (y−1x−1)α = (y−1)α(x−1)α = yx.

Thus H is abelian and the proof is complete.

(3.2) Lemma. Let α be an automorphism of G and let s ∈ Sα. Let Is be the

inner automorphism of G induced by s and define β = Isα. It follows that Sβ =

Sαs
−1 = sSα. In particular, I(β) = I(α).

Proof. Notice first that (g)β = (g)Isα = g−1 if and only if(s−1gs)α = g−1 if and

only if (s−1)α(gs)α = g−1 if and only if (gs)α = s−1g−1 = (gs)−1 if and only if
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gs ∈ Sα for any g ∈ G. Thus for g ∈ G, we have g ∈ Sβ if and only if gs ∈ Sα if

and only if g ∈ Sαs−1. This demonstrates the first equality.

Similarly, for g ∈ G we have

(g)β = (s−1gs)α = g−1

if and only if

(s−1g)α(s)α = g−1

if and only if

(s−1g)α = g−1s = (s−1g)−1.

So for g ∈ G, we have g ∈ Sβ if and only if s−1g ∈ Sα if and only if g ∈ sSα. This

demonstrates the second equality. Thus,

I(α) =
|Sα|
|G|

=
|sSα|
|G|

=
|Sβ|
|G|

= I(β)

which completes the proof.

The following theorem leads to an important result concerning arbitrary abelian

subgroups of > 1
2
-groups. Namely, any abelian subgroup of a > 1

2
-group G is in-

verted elementwise by some > 1
2
-automorphism of G.

(3.3) Subgroup Theorem. Let H be a subgroup of a > 1
2
-group G. Then

there exists a > 1
2
-automorphism of G that inverts more than half of the elements

of H and hence maps H onto itself. Moreover, I(H) ≥ I(G).

Proof. Let α be a > 1
2
-automorphism of G. Notice that |Sα| = I(α)|G|. Then

as G may be written as the disjoint union of right cosets of H in G, there must be

some coset of H in G, Hs say, such that at least I(α)|Hs| elements of Hs are in

Sα. Thus we have |Hs ∩ Sα| ≥ I(α)|Hs| and it follows that |H ∩ Sαs−1| ≥ I(α)|H|.

Now define β = Isα. We may without loss of generality assume that s ∈ Sα

4



since we know that there is some hs ∈ Hs ∩ Sα and Hhs = Hs. Hence by Lemma

(3.2) we have

|H ∩ Sβ| = |H ∩ Sαs−1| ≥ I(α)|H| = I(β)|H|.

Thus,

|H ∩ Sβ|
|H|

≥ I(β) = I(α) >
1

2

which tells us that β inverts over half of the elements in H. Hence |(H)β ∩ H| is

greater than |H|/2; and as (H)β ∩ H ≤ H we see that |(H)β ∩H| = |H|. Thus we

have (H)β = H and we see that β maps H onto itself as desired. Hence, β|H is an

automorphism of H such that

I(β|H) =
|H ∩ Sβ|
|H|

≥ I(β) = I(α).

So if we choose α such that I(α) = I(G), then we have I(β|H) ≥ I(G). Therefore,

I(H) ≥ I(G).

Note that the proof of the following result in ”Groups with Automorphisms In-

verting most Elements” was omitted. We offer a proof to clarify.

(3.4) Corollary. Let H ≤ G be an abelian subgroup of the > 1
2
-group G. Then

there is a > 1
2
-automorphism of G that inverts H elementwise.

Proof. By the Subgroup Theorem there exists a > 1
2
-automorphism of G that

inverts over half of H, β say, and β|H defines an automorphism of H. By Lemma

(3.1) there exists an automorphism that inverts H elementwise, γ say. Define δ

= β|Hγ−1 and note that δ ∈ Aut(H). Notice that for all x ∈ H such that x is in-

verted by β|H , we have

(x)δ = (x)β|Hγ−1 = (x−1)γ−1 = x.

Since β|H inverts over half of H we see that δ fixes over half of H. And as the set

5



of all elements that are fixed by δ, Fix(δ), forms a subgroup of H, we see that

Fix(δ) = H. Thus, δ is the identity map on H and β|H = γ. Therefore, β is an

automorphism of G that inverts H elementwise.

(3.5) Lemma. Let β be a > 1
2
-automorphism of G that inverts the abelian sub-

group H elementwise. Suppose that the right coset Hg of H in G has nonempty

intersection with Sβ. Then the number of elements in Hg that are inverted by β is

|CH(g)|.

Proof. By hypothesis we can choose some s ∈ Hg ∩ Sβ; and as s ∈ Hs we have

Hg = Hs. Notice that for h ∈ H, we have hs ∈ Sβ if and only if

h−1s−1 = (h)β(s)β = (hs)β = (hs)−1 = s−1h−1

if and only if h ∈ CH(s). Thus for h ∈ H, we have hs ∈ Sβ if and only if hs ∈

CH(s)s. It follows that Hg ∩ Sβ = CH(s)s. Now, s = hg for some h ∈ H. So x

∈ CH(s) if and only if x ∈ CH(hg) if and only if x(hg) = (hg)x if and only if hxg

= hgx if and only if xg = gx if and only if x ∈ CH(g) since H is abelian. Hence,

CH(s) = CH(g). Thus Hg ∩ Sβ = CH(g)s and we see that |Hg ∩ Sβ| = |CH(g)s| =

|CH(g)| and we have our result.

(3.6) Transversal Theorem. Let β be a > 1
2
-automorphism of G that inverts

the abelian subgroup H elementwise. Suppose that H is not contained properly in

any subgroup of G that is contained in Sβ. Then we may write G as the disjoint

union of cosets G = H ∪Hs2 ∪ · · · ∪Hsn where si ∈ Sβ for i ∈ {2, ..., n}.

Proof. Suppose for the moment that some coset of H in G, Hg say, contains

some s ∈ Sβ. Then Hg = Hs. Now, if Hs 6= H, then CH(s) must be a proper sub-

group of H. For otherwise, H1 = 〈s,H〉 ⊆ Sβ is an abelian subgroup that properly

contains H contradicting our hypothesis. Thus, as CH(g) = CH(s), we have

|CH(g)| = |CH(s)| ≤ |H|
2

=
|Hg|

2
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whenever Hs 6= H. It follows by Lemma (3.5) that if Hg 6= H, then at most half

of the elements of Hg are inverted by β. This tells us that each coset of H in G

necessarily contains some element of Sβ for otherwise β is not a > 1
2
-automorphism.

This completes the proof.

(3.7) Centralizer Theorem. Let β be a > 1
2
-automorphism of G that inverts

the abelian subgroup H elementwise. Suppose that H is not contained properly in

any subgroup of G that is contained in Sβ and write G = H ∪Hg2∪· · ·∪Hgn where

gi ∈ Sβ for i ∈ {2, ..., n}. Put qi = |H : CH(gi)|. Then |Sβ| = |H| +
n∑
i=2

|CH(gi)|,

where qi ≥ 2 (i = 2, ..., n) and
n∑
i=2

(1
2

- 1
qi

) < 1
2
.

Proof. The equation regarding the cardinality of Sβ is an immediate consequence

of Lemma (3.5); and by arguments in the Transversal Theorem we see that qi ≥ 2

(i = 2, ..., n). Thus, it remains to prove the last inequality.

Notice,

n∑
i=2

(
1

2
− 1

qi
) =

n− 1

2
−

n∑
i=2

1

|H : CH(gi)|

=
n− 1

2
−

n∑
i=2

|CH(gi)|
|H|

=
n− 1

2
− |Sβ| − |H|

|H|

=
n+ 1

2
− |Sβ|
|H|

<
n+ 1

2
− n|H|

2|H|
=

1

2
,

where the last inequality comes from the fact that |Sβ| > n|H|
2

. Hence result.

(3.8) Corollary. An automorphism of a > 1
2
-group G either inverts I(G)|G| ele-

ments of G or it inverts at most half of the elements of G.

Proof. Let α be a > 1
2
-automorphism of G and let H be an arbitrary maximal

abelian subgroup of G. Then by Lemma (3.2) and Corollary (3.4) there exists an
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automorphism of G, β say, that inverts H elementwise such that I(α) = I(β). Now,

by Lemma (3.1), we know that any subgroup of G contained in Sβ is necessarily

abelian. As H is a maximal abelian subgroup of G, H is not properly contained

in any subgroup of G contained entirely in Sβ. Thus, by the Centralizer Theorem,

|Sα| = |Sβ| = |H| +
n∑
i=2

|CH(gi)| where G admits the coset decomposition given in

the Centralizer Theorem. It follows that |Sα| is independent of α and that any >

1
2
-automorphism of G inverts I(G)|G| elements of G. This gives us our result.

(3.9) Remark. The previous result provides us with a general formula relat-

ing the maximal abelian subgroups of a > 1
2
-group G to I(G). It tells us that if

H is an arbitrary maximal abelian subgroup of a > 1
2
-group G, then I(G)|G| =

|H| +
n∑
i=2

|CH(gi)| where G admits the coset decomposition given in the Centralizer

Theorem. Furthermore, the Centralizer Theorem, or more specifically the inequality

regarding the indices qi, forces certain restrictions on H. Simple algebra techniques

demonstrate that one of the following conditions must be satisfied relative to a suit-

able ordering of the cosets of H in G:

I n = 2;

II n ≥ 3, qi = 2 (i = 2, ..., n);

III n ≥ 3, q2 ≥ 3, qi = 2 (i = 3, ..., n);

IV n ≥ 3, q2 = 3, q3 = 4 or 5, qi = 2 (i = 4, ..., n);

V n ≥ 3, q2 = q3 = 3, qi = 2 (i = 4, ..., n);

As we will see, some of these cases do not occur in the groups under consider-

ation. We obtain more results regarding the abelian subgroup structure of > 1
2
-

groups before demonstrating this.

(3.10) Squares Theorem. Let H be a subgroup of G that has maximum order

among subgroups of G contained in Sβ where β is a > 1
2
-automorphism of G. Then
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the square of every element inverted by β is in H.

Proof. First note that H is an abelian subgroup as subgroups contained in Sβ

are necessarily abelian. Let s ∈ Sβ. We may assume that s /∈ H as the result is

trivial otherwise. If |G : H| = 2, then H / G and the factor group G/H = {H,Hs}.

In this case, Hs2 = (Hs)2 = H so s2 ∈ H. Thus we may assume that |G : H| ≥ 3.

Recall that CH(s) is a proper subgroup of H. Consider two cases.

Case (i) |H : CH(s)| = 2. Define H1 = 〈s, CH(s)〉. As s commutes elementwise

with CH(s) and {s} ∪ CH(s) ⊆ Sβ, we have H1 ⊆ Sβ. We claim that s2 ∈ CH(s) ≤

H and the result follows in this case. To verify our claim, suppose s2 /∈ CH(s).

Then since s /∈ CH(s), we see that s2 /∈ CH(s)s; and since s2 ∈ H1, it follows that

|H1 : CH(s)| ≥ 3. Thus,

|H1| ≥ 3|CH(s)| > 2|CH(s)| = |H|

contradicting the definition of H. This verifies our claim.

Case (ii) q = |H : CH(s)| ≥ 3. By way of contradiction suppose that s2 /∈ H.

Then s /∈ Hs−1 so Hs 6= Hs−1. But CH(s) = CH(s−1) so

|H : CH(s)| = |H : CH(s−1)| ≥ 3.

It follows that the structure of G is subject to condition (3.9)V. So

q = |H : CH(s)| = |H : CH(s−1)| = 3.

We claim that s3 ∈ CH(s). To verify, suppose that s3 /∈ CH(s). Notice that s2 /∈

CH(s) so s3 /∈ CH(s)s; and s /∈ CH(s) so s3 /∈ CH(s)s2 either. As CH(s), CH(s)s,
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and CH(s)s2 are distinct cosets it follows that |H1 : CH(s)| ≥ 4. Thus,

|H1| ≥ 4|CH(s)| > 3|CH(s)| = |H|.

This contradicts the definition of H since we know that H1 ⊆ Sβ. Thus our claim is

verified and we have s3 ∈ CH(s).

Now, define G1 = 〈s,H〉. For the moment, assume that H/G1. Then s−1hs ∈ H

for all h ∈ H and so β inverts s−1hs for all h ∈ H. Thus,

s−1h−1s = (s−1hs)β = sh−1s−1 ⇐⇒ s2h−1 = h−1s2 ⇐⇒ hs2 = s2h

for all h ∈ H. It follows that CH(s−1) = H contradicting that q = 3. To see this,

notice that since s3 and hence s−3 ∈ H, we have

hs−1 = hs2s−3 = s2hs−3 = s2s−3h = s−1h

for all h ∈ H.

Thus we may assume that H 6 G1. It follows that s−1Hs 6= H. Now, choose an

arbitrary h ∈ H − CH(s). As H is abelian, CH(s) / H and we have |H/CH(s)| = 3.

Thus H/CH(s) is cyclic and generated by either of its nonidentity elements. So we

may write H/CH(s) = 〈hCH(s)〉. This tells us that we may write H = 〈h,CH(s)〉

and that h3 ∈ CH(s).

As h ∈ H we see that CH(s) = CH(sh) = CH(sh2) and that each of these

centralizers has index 3 in H. Since G must satisfy condition (3.9)V it follows that

two of the cosets Hs, Hsh, and Hsh2 must be equal. If Hs = Hsh then shs−1 ∈ H

and we get the contradiction that H / G1. If Hsh = Hsh2 then Hs = Hsh and we
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obtain the same contradiction. If Hs = Hsh2 then

Hsh = Hsh3 = Hh3s = Hs,

since h3 ∈ CH(s). Again we get the same contradiction. Thus s2 ∈ H.

(3.11) Index 2 Theorem. Let A be an abelian subgroup of maximum order

in G. Let β be a > 1
2
-automorphism of G inverting A elementwise. Then for every

s ∈ Sβ − A we have |〈s, A〉 : A| = 2.

Proof. Define G1 = 〈s, A〉 where s ∈ Sβ − A and write |G1 : A| = n. We consider

two cases.

Case (i) |A : CA(s)| = 2. Notice that if there exists some g ∈ G − A such

that g ∈ CG(G1), then g ∈ CG(A) and 〈g, A〉 is an abelian subgroup of G of order

greater than |A|. Thus, CG(G1) = CA(G1) = CA(s) = Z say. Clearly Z / G1 so we

may consider the factor group G1/Z. If G1/Z contains a coset, bZ, of order m > 2,

then the subgroup B = 〈b, Z〉 is abelian and |B| = m|Z| > 2|Z| = |A| which

contradicts the definition of A. Hence, all nonidentity elements of G1/Z are of or-

der 2 or equivalently, G1/Z is an elementary abelian 2-group. Thus, A/Z / G1/Z

and by correspondence, A / G1. Recall that any subgroup of G contained in Sβ is

abelian. Then as A is abelian of maximum order in G, A certainly has maximum

order among subgroups contained in Sβ. Thus, by the square’s theorem, s2 ∈ A.

Since G1/A is also an elementary abelian 2-group, it follows that G1/A = {A,As}

and |G1 : A| = 2 as desired.

Case (ii) |A : CA(s)| ≥ 3. By way of contradiction suppose that n > 2. Then

besides A and As, there exists a third coset of A in G1. Since s2 ∈ A, we may write

this third coset as Asa for some a ∈ A − CA(s). Note that we could possibly write

this third coset as Asas for some a ∈ A − CA(s). But in this case it follows easily

that Asa is distinct from A and As as well. Similarly, if we write this third coset as
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Asasa2 for some a, a2 ∈ A − CA(s), it follows easily that Asas or Asa2 is distinct

from A and As as well. (To verify, simply assume that Asas is equal to A or As.)

Thus, we choose to write this third coset in simplest from as Asa.

Now, since A is abelian, CA(s) = CA(sa) = CA(sa2). Thus,

|A : CA(s)| = |A : CA(sa)| = |A : CA(sa2)|.

Since As and Asa are distinct cosets of A in G1, we see that G1 is subject to con-

dition (3.9)V and that |A/CA(s)| = 3. It follows that A/CA(s) is cyclic and is gen-

erated by CA(s)a. Thus we may write A = 〈a, CA(s)〉 and we see that a3 ∈ CA(s).

Again, as

|A : CA(s)| = |A : CA(sa)| = |A : CA(sa2)|,

we see that two of the cosets, As, Asa, and Asa2 must be equal. Since A = 〈a, CA(s)〉,

in any case we may use an argument similar to that in the proof of the Squares

Theorem to determine that A / G1. It follows that

Asa = Aa3sa = Asa4 = AsAa4 = As.

This contradiction completes the proof.

We prove two final results before proceeding to the next section. Note that

these results are not included in ”Groups with Automorphisms Inverting most Ele-

ments” and were simply added for convenience.

(3.12) Lemma. If H is a finite elementary abelian 2-group of order 2n, then H

contains exactly 2n − 1 distinct subgroups of index 2.

Proof. Let H be an elementary abelian 2-group of order 2n. Then we may view

H as an n-dimensional vector space, V say, over the field of two elements. Thus,

maximal subgroups of H, or equivalently subgroups of index 2, may be viewed as
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subspaces of V of dimension n-1; and subgroups of H of order 2 may be viewed as

subspaces of V of dimension 1. In this proof I use the following well known linear

algebra result that I will not prove: If V is an n-dimensional vector space, then V

has the same number of k-dimensional subspaces as (n− k)-dimensional subspaces.

Using this result, we see that that the number of subgroups of index 2 in H is

equal to the number of subgroups of H of order 2. Thus, it suffices to count the

number of subgroups of order 2. Each nonidentity element of H generates such a

subgroup and these are clearly the only subgroups of order 2 in H. As there are

2n − 1 nonidentity elements of H the result follows.

(3.13) Lemma. Let H, K ≤ G be arbitrary subgroups of G with indices p and

q in G respectively. Then |G : H ∩ K| ≤ pq. Moreover, if p and q are relatively

prime, then |G : H ∩K| = pq.

Proof. Notice first that

|G| ≥ |HK| = |H||K|
|H ∩K|

⇐⇒ |G||H ∩K| ≥ |H||K| ⇐⇒ |G|
|H|
≥ |K|
|H ∩K|

.

Thus we have,

|K : H ∩K| ≤ |G : H|.

Hence,

|G : H ∩K| = |G : K||K : H ∩K| ≤ |G : K||G : H| = pq,

as desired. Now, since |H ∩ K| divides |H| and |K|, it follows that p and q divide

|G : H ∩ K|. Thus, if p and q are relatively prime, pq divides |G : H ∩ K| and

equality follows. This completes the proof.
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CHAPTER IV

THE STRUCTURE OF > 1
2
-GROUPS

In this section we use abelian subgroups of maximum order and results obtained

in the last section to develop the structure of finite nonabelian > 1
2
-groups. Through-

out this section, let G denote a finite nonabelian > 1
2
-group such that A ≤ G is an

abelian subgroup of maximum order in G.

(4.1) Theorem. The subgroup A is normal and G/A is an elementary abelian

2-group. Furthermore, if A, Ax, and Ay are distinct cosets of A in G, then Axy is

distinct as well.

Proof. By Corollary (3.4), there exists a > 1
2
-automorphism of G, β say, that

inverts A elementwise. As A is an abelian subgroup of maximum order in G and

subgroups contained in Sβ are necessarily abelian, A is a subgroup of maximum

order contained in Sβ. Let g ∈ G. Then by the Transversal Theorem, g = as for

some a ∈ A and s ∈ Sβ. Notice that g−1Ag = s−1a−1Aas = s−1As. Define G1 =

〈s, A〉. If s ∈ A then clearly g−1Ag = A so we may assume without loss that s /∈ A.

By the Index 2 Theorem, [G1 : A] = 2. Thus, A / G1. So g−1Ag = s−1As = A. As g

was chosen arbitrarily, it follows that A / G. Moreover, g2 = asas = as2(s−1as) ∈ A

since we know s2 ∈ A by the Squares Theorem. Thus G/A is an elementary abelian

2-group.

Now, suppose that A, Ax, and Ay are distinct cosets of A in G. If A = Axy,

then Ax = Ay−1 = A(y−2)y = Ay which is a contradiction. If Ax = Axy, then

Ax = AxAy = AyAx = Ayx. In this case it follows that yx ∈ Ax which tells us

that y ∈ A. We obtain a similar contradiction whenever Ay = Axy. Thus, Axy is

distinct from A, Ax, and Ay as desired. This completes the proof.

In Remark (3.9) we saw that if a maximal abelian subgroup H ≤ G has index

n in G (with I(G) > 1
2
), then the structure of G is subject to one of five conditions.

The following theorem demonstrates that only three of those conditons actually
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occur in the groups under consideration in this paper.

(4.2) Centralizer Structure Theorem Let β be a > 1
2
-automorphism of G

that inverts A elementwise. Let G = A ∪ Ag2 ∪ · · · ∪ Agn be a decomposition

of G into disjoint cosets of A in G such that gi ∈ Sβ for i ∈ {2, ..., n} and define

qi = |A : CA(gi)|. Then one of the following conditions must hold relative to a

suitable ordering of the cosets of A in G:

I n = 2;

II n = 2k (k ≥ 2), qi = 2 (i = 2, ..., 2k);

III n = 4, q2 = 4, q3 = q4 = 2.

Furthermore, if the first condition is met, then I(G) = q2+1
2q2

. If the second condition

is met, then I(G) = 2k+1
2k+1 . And if the third condition is met, then I(G) = 9

16
.

Proof. First notice that n = |G/A| must be a power of 2 for otherwise there

would exist a prime p 6= 2 dividing |G/A|. In this case it follows that G/A has an

element of order p and is not a 2-group. Next, we rule out conditions (3.9)IV and

V. By way of contradiction, suppose that q2 = 3 and that q3 = 3, 4, or 5. By Theo-

rem (4.1) we know that Ag2, Ag3, and Ag2g3 are distinct cosets of A in G. Assum-

ing that condition (3.9)IV or V holds, we see that |A : CA(g2g3)| = 2. Now, as A is

abelian and (g2)2 ∈ A, we see that CA(g3) = CA((g2)2g3). Thus,

CA(g3) = CA((g2)2g3) ≥ CA(g2) ∩ CA(g2g3) = B

say. By Lemma (3.13), |A : B| = 6 as 2 and 3 are relatively prime. It follows that

q3 6= 4 and q3 6= 5 since q3 must divide 6. Thus, we have ruled out condition (3.9)IV

and may assume that q2 = q3 = 3. Next, notice that

CA(g2g3) ≥ CA(g2) ∩ CA(g3) = C
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say. We claim that |A : C| = 3 or 9. In this case, as |A : CA(g2g3)| = 2 must

divide |A : C| we have reached a contradiction that rules out condition (3.9)V. To

verify our claim, notice that by Lemma (3.13), we have |A : C| ≤ 9. And as q2 = 3

must divide |A : C|, we see that |A : C| = 3, 6, or 9. Thus it suffices to show that

|A : C| 6= 6. Notice,

|A : C| = |A : CA(g2)||CA(g2) : C|

= 3|CA(g2) : C|

= 3
|CA(g2)|

|CA(g2) ∩ CA(g3)|

= 3
|CA(g2)||CA(g2)CA(g3)|
|CA(g2)||CA(g3)|

= 3
|CA(g2)CA(g3)|
|CA(g3)|

= 9
|CA(g2)CA(g3)|

|A|
.

Now, since A is abelian we have CA(g2)CA(g3) = CA(g3)CA(g2). Thus, CA(g2)CA(g3) ≤

A and so |CA(g2)CA(g3)| divides |A|. It follows that |A : C| 6= 6 and our claim is

verified.

Next we consider condition (3.9)III. Suppose that qi = 2 (i ≥ 3). Since (g3)2 ∈

A, we have

CA(g2) = CA(g2g
2
3) ≥ CA(g2g3) ∩ CA(g3) = D

say. Since q3 = 2 must divide |A : D| and by Lemma (3.13) we have |A : D| = 2 or

4. Thus q2 = |A : CA(g2)| = 2 or 4. As it turns out, the case where n = 4, q2 = 4,

and q3 = q4 = 2 arises in > 1
2
-groups but the case n = 2k (k > 2), q2 = 4, and qi = 2

(i = 3, ..., 2k) does not occur as we will now show.

Suppose that |G/A| = 2k (k > 2). As G/A is an elementary abelian 2-group we

may suppose that G/A is generated by x1A, ..., xkA where we select x1 such that

|A : CA(x1)| = 4 where |A : CA(x)| = 2 for all x /∈ A∪x1A. We claim that if Ax and
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Ay are distinct cosets of A in G such that CA(x) and CA(y) have index 2 in A, then

CA(x) = CA(y)⇒ CA(x) = CA(xy). (1)

To see this, assume that the necessary hypotheses are satisfied and that CA(x) =

CA(y). Then

CA(xy) ≥ CA(x) ∩ CA(y) = CA(x)

and so |A : CA(xy)| = 1 or 2. But by Theorem (4.1), A 6= Axy so xy /∈ A. Thus

|A : CA(xy)| = 2 since A is an abelian subgroup of maximum order in G. It follows

that CA(xy) = CA(x) and (1) is verified.

Now, each of x2, x3, x2x3, x1x2, x1x3, and x1x2x3 belong to disinct cosets of A

in G and each of their centralizers has index 2 in A. Moreover, since (x2)2 ∈ A,

CA(x1) = CA(x1x
2
2) ≥ CA(x1x2) ∩ CA(x2).

As |A : CA(x1x2) ∩ CA(x2)| ≤ 4 by Lemma (3.13) and |A : CA(x1)| = 4, it follows

that CA(x1) = CA(x1x2) ∩ CA(x2). Using similar methods we see that

CA(x1) = CA(x1x2) ∩ CA(x2)

= CA(x1x3) ∩ CA(x3)

= CA(x1x2x3) ∩ CA(x2x3).

(2)

Thus, CA(x1) is contained in each of these six centralizers. Notice also that since
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|A : CA(x1)| = 4 we have

CA(x1x2) 6= CA(x2), (3)

CA(x1x3) 6= CA(x3), (4)

CA(x1x2x3) 6= CA(x2x3). (5)

Now, since CA(x1x2) and CA(x2) are of index 2 in A and intersect to form CA(x1),

it follows that for all x ∈ A − CA(x1), we have x2 ∈ CA(x1). Thus, A/CA(x1) is an

elementary abelian 2-group of order 4. Hence, by Lemma (3.12), A/CA(x1) has 3

distinct subgroups of index 2. It follows by correspondence that there are exactly

3 subgroups of index 2 in A which contain CA(x1). Thus, the centralizers of x2, x3,

x2x3, x1x2, x1x3, and x1x2x3 are distributed over 3 subgroups of index 2 in A. It is

routine to verify by application of (1) that either CA(x2), CA(x3), and CA(x2x3) are

either all distinct or they are all equal. We will demonstrate that in either case we

obtain a contradiction.

Case (i) CA(x2) = CA(x3) = CA(x2x3). As there are only 3 distinct subgroups of

index 2 in A, by (3), (4), and (5), two of CA(x1x2), CA(x1x3) and CA(x1x2x3) must

be the same. If CA(x1x2) = CA(x1x2x3), then since (x1x2)2 ∈ A and by (1),

CA(x1x2) = CA(x1x2x1x2x3) = CA(x3) = CA(x2)

contradicting (3). If CA((x1x2)−1) = CA(x1x2) = CA(x1x3), then since Ax−1
2 x−1

1 and

Ax1x3 are distinct cosets of A in G, by (1) we have

CA(x−1
2 x−1

1 ) = CA(x−1
2 x−1

1 x1x3) = CA(x−1
2 x3) ≥ CA(x−1

2 ) ∩ CA(x3) = CA(x2).

This contradicts (3) since CA(x1x2) and CA(x2) are both of index 2 in A. If CA(x−1
3 x−1

1 ) =
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CA(x1x3) = CA(x1x2x3), then by a similar argument we have

CA(x−1
3 x−1

1 ) = CA(x−1
3 x2x3) ≥ CA(x−1

3 ) ∩ CA(x2x3) = CA(x3).

This contradicts (4) since CA(x1x3) and CA(x3) are both of index 2 in A. Thus this

case does not occur in the groups under consideration.

Case (ii) CA(x2), CA(x3), and CA(x2x3) are all distinct. In this case, as there

are only 3 distinct subgroups of index 2 in A, each of CA(x1x2), CA(x1x3), and

CA(x1x2x3) must be equal to one of CA(x2), CA(x3), or CA(x2x3); and by equation

(3) we have either CA(x1x2) = CA(x3) or CA(x2x3).

For the moment we assume that CA(x1x2) = CA(x3). Then by (1) we have CA(x1x2)

= CA(x3) = CA(x1x2x3). Now, by (4) we have either CA(x1x3) = CA(x2) or CA(x2x3).

If CA(x1x3) = CA(x2), then since Ax1x2 = Ax2x1 and by (1), for some a ∈ A we

have

CA(x1x3) = CA(x2) = CA(x2x1x3) = CA(ax1x2x3) = CA(x1x2x3) = CA(x3)

contradicting (4). Similarly, if CA(x1x3) = CA(x2x3), then we have

CA(x1x3) = CA(x2x3)

= CA(x1x3x2x3)

= CA(x1a1x2(x3)2)

= CA(x1a1x2)

= CA(a2x1x2)

= CA(x1x2)

= CA(x3)

for some a1, a2 ∈ A. Again, this contradicts (4).
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Thus CA(x1x2) 6= CA(x3) and we may assume that CA(x1x2) = CA(x2x3). Then

by (1) and similar arguments from the previous paragraph we have

CA(x1x2) = CA(x2x3) = CA(x1(x2)2x3) = CA(x1x3).

Now, by (5) we have either CA(x1x2x3) = CA(x3) or CA(x2). If CA(x1x2x3) = CA(x3),

then by (1),

CA(x1x2x3) = CA(x1x2(x3)2) = CA(x1x2) = CA(x2x3)

which contradicts (5). And if CA(x1x2x3) = CA(x2), by similar arguments we have

CA(x1x2x3) = CA(x1x2x3x2)

= CA(x1a1x3(x2)2)

= CA(x1a1x3)

= CA(x1x3a2)

= CA(x1x3)

= CA(x2x3)

for some a1, a2 ∈ A contradicting (5). Thus this case doesn’t occur in the groups

under consideration either. Since we obtain a contradiction in either case, we see

that G must satisfy one of the three conditions as stated in this theorem.

Throughout the rest of this paper, whenever a group G satisfies condition I, II,

or III of the Centralizer Structure Theorem, we will say that G is of Type I, II, or

III respectively. Now, to complete the proof, recall that I(G) = I(β). First, con-

sider G of Type I. In this case G = A ∪ Ag2. Thus, by Lemma (3.5), the number of
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elements in Ag2 that are inverted by β is equal to |CA(g2)|. It follows that

I(β) = I(G)

=
|A|+ |CA(g2)|

|G|

=
|A|+ |A|

q2

|G|

=
1

2
+

1

2q2

=
q2 + 1

2q2

,

as desired.

Next, consider G of Type II. In this case G = A ∪ Ag2 ∪ · · · ∪ Ag2k . Thus by

Lemma (3.5) we have

|G|I(α) = |G|I(G)

= |A|+
2k∑
i=2

|CA(gi)|

= |A|+
2k∑
i=2

|A|
2

= |A|+ (2k − 1)
|A|
2

= |A|(2k + 1

2
)

=
|G|
2k

(
2k + 1

2
)

= |G|(2k + 1

2k+1
).

Hence, I(G) = 2k+1
2k+1 .

Finally, consider G of Type III. In this case G = A ∪ Ag2 ∪ Ag3 ∪ Ag4. Thus by
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Lemma (3.5) we have

|G|I(G) = |A|+
4∑
i=2

|CA(gi)|

= |A|+ |A|
2

+
|A|
2

+
|A|
4

= |A|(9

4
)

= |G|( 9

16
).

Hence I(G) = 9
16

. This completes the proof.

We now focus our attention on > 1
2
-groups of Type II and III. Note that in

the proof of the next theorem we will use two well known commutator identities.

Namely, if x, y, and z are elements of G, then

[xy, z] = [x, z]y[y, z]

and

[x, yz] = [x, z][x, y]z.

The proofs of these identities are completely routine and will hence be omitted.

(4.3) Theorem. Suppose that G is of Type II or III. Then if x and y are ele-

ments of different cosets of A in G, then CA(x) 6= CA(y).

Proof. By way of contradiction, suppose Ax 6= Ay and that CA(x) = CA(y).

We claim that x, y /∈ A. It follows by Theorem (4.1) that xy /∈ A either. To verify,

suppose without loss of generality that x ∈ A. Then CA(y) = CA(x) = A which

implies that |A : CA(y)| = 1. As y /∈ A we obtain the contradiction that A is

not a maximal abelian subgroup of G. Thus our claim is verified. Moreover since

|A : CA(x)| = |A : CA(y)|, it follows by the Centralizer Structure Theorem that

|A : CA(x)| = 2.

Now, define G1 = 〈x, y, A〉. By the Subgroup Theorem, G1 is a > 1
2
-group and
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since |G1 : A| > 2 we see that G1 is of Type II or III. Notice that

CA(xy) ≥ CA(x) ∩ CA(y) = CA(x).

As xy /∈ A we see that |A : CA(xy)| 6= 1. Thus |A : CA(xy)| = 2 and we have

CA(xy) = CA(x) = CA(y) = Z say. Furthermore, since A, Ax, Ay, and Axy are all

distinct cosets of A in G, we see that G1 cannot be of Type III. It follows that G is

not of Type III either for otherwise we have G = A ∪ Ax ∪ Ay ∪ Axy = G1. Hence

we may assume that both G and G1 are of Type II.

Notice that since A is an abelian subgroup of maximum order in G, it follows

that CG(A) = A. Thus Z is the center of G1. As |A : Z| = 2 we may write

A = 〈a1, Z〉 = Z ∪ a1Z for some a1 ∈ A − Z. Note that CG1(a1) = A since

any element of G1 that commutes with a1 certainly centralizes Z and is hence an

element of CG(A) = A. We claim that

x−1a1x = a1z1, (6)

y−1a1y = a1z2, (7)

for distinct elements of order 2, z1 and z2 ∈ Z.

To see this, first notice that A / G1 so x−1a1x ∈ A. If x−1a1x = z0 for some

z0 ∈ Z, then it follows that a1 = (z0)x
−1

= z0 ∈ Z which is a contradiction. A

similar argument can be made for y−1a1y. To see that z1 6= z2, suppose otherwise.

Then x−1a1x = y−1a1y which implies that yx−1a1 = a1yx
−1. In this case we have

yx−1 ∈ CG1(a1) = A and it follows easily that Ax = Ay which is a contradiction.

Finally to see that z1 is of order 2, write (a1)2 = z0 for some z0 ∈ Z. Then

z0 = (z0)x = (a2
1)x = (ax1)2 = (a1z1)2 = z0(z1)2.
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It follows that (z1)2 = 1. A similar argument shows that z2 is also of order 2. Thus

our claim is verified.

Next note that x and y do not commute. For otherwise 〈x, y, Z〉 is an abelian

subgroup of G such that |〈x, y, Z〉| ≥ 4|Z| = 2|A| > |A| which contradicts the

definition of A.

Now, let α be a > 1
2
-automorphism of G1 that inverts A elementwise. We may

assume that α inverts x and y by the Transversal Theorem. Thus, (axy)α = a−1x−1y−1

for all a ∈ A. We know by Lemma (3.5) that α inverts |CA(xy)| elements or equiv-

alently half of the elements of Axy. Furthermore, α doesn’t invert any elements

in Zxy for if some zxy ∈ Zxy is inverted by α, then z−1x−1y−1 = (zxy)α =

y−1x−1z−1. This leads to the contradiction that xy = yx. It follows that (axy)α =

(axy)−1 for all a ∈ A−Z. In particular, we have y−1x−1a−1
1 = (a1xy)−1 = (a1xy)α =

a−1
1 x−1y−1.

Thus, by (5) and (6) we have

a1xy = yxa1 = y(xa1z1)z1 = y(a1x)z1(z2)2 = (ya1z2)xz1z2 = (a1y)xz1z2.

It follows that xy = yxz1z2 and that x−1y−1xy = [x, y] = z1z2. Furthermore (5) and

(6) also tell us that,

[x, a1][a1, y] = (a1x)−1(xa1)(ya1)−1(a1y) = (xa1z1)−1(a1xz1)(a1yz2)−1(ya1z2),

so we have

[x, a1][a1, y] = a−1
1 (x−1a1x)y−1a−1

1 (ya1) = a−1
1 (a1z1)y−1a−1

1 (a1yz2) = z1z2.

Now, by the commutator identities introduced prior to the start of this theorem, we
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see that

[xa1, ya1] = [x, ya1]a1 [a1, ya1] = ([x, a1][x, y]a1)a1 [a1, a1][a1, y]a1 .

Since [x, y] = z1z2 ∈ Z we have

[xa1, ya1] = ([x, a1][x, y])a1 [a1, y]a1 = a−1
1 [x, y][x, a1][a1, y]a1 = (z1z2)2 = 1.

Hence xa1 and ya1 commute and 〈xa1, ya1, Z〉 is an abelian subgroup of G. As

xa1, ya1 /∈ Z and Zxa1 6= Zya1, we obtain the contradiction that 〈xa1, ya1, Z〉 is

an abelian subgroup of G of order greater than A. This contradiction completes the

proof.

(4.4) Corollary. Suppose that G is of Type II or III and that G/A is an ele-

mentary abelian 2-group of order 2k (k ≥ 2) generated by Ax1, Ax2, ..., Axk. Put

Z = CA(x1) ∩ CA(x2) ∩ · · · ∩ CA(xk).

Then Z is the center of G and |A : Z| = 2k. Moreover, A/Z is an elementary

abelian 2-group.

Proof. First write G = 〈x1, ..., xk, A〉. Notice that the center of G must be con-

tained in A for if there exists some x ∈ CG(G) − A then 〈x,A〉 is an abelian sub-

group of G of order greater than |A|. Thus the center of G is the set of all elements

in A that commute with each of x1, ..., xk. It follows that the center of G is Z as

claimed. Consider two cases.

Case (i) G is of Type II. Then |A : CA(xi)| = 2 for i ∈ {1, ..., k}. It follows

immediately that A/Z is an elementary abelian 2-group. By Lemma (3.13) we have

|A : Z| ≤ 2k. As G/A has 2k − 1 nonidentity elements, by Theorem (4.3) there

are at least 2k − 1 distinct subgroups of index 2 in A, each containing Z. Hence by
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correspondence, A/Z has at least 2k − 1 distinct subgroups of index 2. Thus, by

Lemma (3.12) we have |A : Z| = |A/Z| = 2k.

Case (ii) G is of Type III. Then two of CA(x1), CA(x2), and CA(x1x2) have in-

dex 2 in A and the other has index 4 in A. We will prove the result in the case that

CA(x1) and CA(x2) are of index 2 in A. The other two cases are similar. Again, it

follows immediately that A/Z is an elementary abelian 2-group. By Lemma (3.13)

we see that |A : Z| ≤ 4. Since CA(x1x2) ≥ CA(x1) ∩ CA(x2) and |A : CA(x1x2)| = 4,

we see that |A : Z| = 4. This completes the proof.

(4.5) Lemma. Let G, G/A, and Z be defined as in Corollary (4.4) and suppose

that if G is of Type III, the generators x1 and x2 are chosen so that CA(x1) and

CA(x2) are of index 2 in A. Then for each i ∈ {1, ..., k} there exists an ai ∈ A and

a zi ∈ Z such that [ai, xi] = zi, [ai, xj] = 1 (j 6= i) where zi 6= 1 is of order 2.

Furthermore, if G is of Type II then z1 = z2 = · · · = zk; and if G is of Type III then

z1 6= z2.

Proof. We begin by defining

Di = CA(x1) ∩ · · · ∩ CA(xi−1) ∩ CA(xi+1) ∩ · · · ∩ CA(xk).

Note that by Lemma (3.13) we have |A : Di| ≤ 2k−1; and by Corollary (4.4) we

have |A : Z| = 2k. As A/Z is an elementary abelian 2-group, for any x ∈ Di we

have x2 ∈ Z. It follows that |Di : Z| = 2.

Thus we may choose some ai ∈ Di − Z = Di − CA(xi). Then [ai, xj] = 1 (j 6= i),

and [ai, xi] 6= 1. We will now show that [ai, xi] ∈ Z. First note that by a well known

commutator identity that can be found in the text ”Algebra: A Graduate Course”

by Martin Isaacs ([II], p. 110-111), we have

[x−1
i , x−1

j , ai]
xj [xj, a

−1
i , x−1

i ]ai [ai, xi, xj]
x−1
i = 1. (8)
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Now, since G/A is elementary abelian,

[x−1
i , x−1

j ] = xixjx
−1
i x−1

j = axjxix
−1
i x−1

j = a

for some a ∈ A. It follows that [x−1
i , x−1

j , ai]
xj = 1 as A is abelian. Also since

[ai, xj] = 1 (j 6= i), it follows that [xj, a
−1
i ] = 1. Thus we have [xj, a

−1
i , x−1

i ]ai = 1.

Hence, by (8) we have [ai, xi, xj]
x−1
i = 1 (j 6= i). Thus [ai, xi, xj] = 1xi = 1 (j 6= i)

and it follows that [ai, xi] ∈ CA(xj) (j 6= i). So we have [ai, xi] ∈ Di.

We claim that [ai, xi] ∈ CA(xi) as well. In this case we have that [ai, xi] ∈ Z

as desired. To verify our claim, notice that since A / G and A/Z is an elementary

abelian 2-group, we have

[[ai, xi], xi] = [a−1
i x−1

i aixi, xi]

= (x−1
i a−1

i xi)aix
−1
i a−1

i x−1
i aixixi

= ai(x
−1
i a−1

i xi)x
−1
i a−1

i x−1
i aix

2
i

= aix
−1
i (a−1

i )2x−1
i aix

2
i

= aix
−1
i (a−1

i )2x−1
i x2

i ai

= ai(a
−1
i )2x−1

i x−1
i x2

i ai

= 1.

Hence, [ai, xi] commutes with xi and our claim is verified. Therefore, we may write
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[ai, xi] = zi for some 1 6= zi ∈ Z. To see that zi is of order 2, notice

(zi)
2 = [ai, xi]

2

= a−1
i (x−1

i aixi)a
−1
i x−1

i aixi

= (a−1
i )2(x−1

i aixi)x
−1
i aixi

= (a−1
i )2x−1

i aiaixi

= x−1
i (a−1

i )2a2
ixi

= 1.

Thus, the first statement is proven. To complete the proof we must consider two

cases.

Case (i) G is of Type II. Consider CA(xixj) (j 6= i). We claim that aiaj ∈

CA(xixj). To see this, first notice that since aixi 6= xiai we have aixixj 6= xiaixj =

xixjai. So ai /∈ CA(xixj). Similarly, aj /∈ CA(xixj). As |A : CA(xixj)| = 2 we may

write A/CA(xixj) = {CA(xixj), CA(xixj)ai} = {CA(xixj), CA(xixj)aj}. It follows

that CA(xixj)ai = CA(xixj)aj. Thus, CA(xixj) = CA(xixj)a
2
i = CA(xixj)aiaj and

our claim is verified. Again, by the commutator identities introduced prior to Theo-

rem (4.3) we have

1 = [xixj, aiaj]

= [xi, aiaj]
xj [xj, aiaj]

= ([xi, aj][xi, ai]
aj)xj [xj, aj][xj, ai]

aj

= (zi)
ajxjzj

= zizj.

Thus, we have zizj = 1 = z2
i . It follows that zi = zj as desired.

Case (ii) G is of Type III. Then |A : CA(x1x2)| = 4 as the centralizers of x1

and x2 were chosen to be of index 2 in A. Notice that CA(x1x2) ≥ CA(x1) ∩ CA(x2)
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and that |A : CA(x1) ∩ CA(x2)| ≤ 4. It follows that CA(x1x2) = CA(x1) ∩ CA(x2).

Assume that a1a2 ∈ CA(x1x2). Then a1a2 ∈ CA(x1). As a2 ∈ CA(x1) we obtain

the contradiction that a1a2(a2)−1 = a1 ∈ CA(x1). It follows that a1a2 /∈ CA(x1x2).

Thus 1 6= [x1x2, a1a2] = z1z2 by arguments in the previous case. Finally, we see that

z1 6= (z2)−1 = z2 which completes the proof.

Note that the proof of the following corollary was omitted in the article that we

are analyzing. We offer a proof to clarify the result.

(4.6) Corollary. If G is of Type II or III, then [G,A] is in the center of G. More-

over, if G is of Type II, [G,A] has order 2; and if G is of Type III, [G,A] is non-

cyclic of order 4.

Proof. Continue to use the notation of Corollary (4.4) and Lemma (4.5). We

claim that we can write A = 〈a1, ..., ak, Z〉. To see this, let āi denote the coset aiZ

of Z in A and suppose that
k∏
j=1

(āj)
fj = Z (9)

where fj ∈ {0, 1} for all j ∈ {1, ..., k}. Suppose further that fi 6= 0 for some

i ∈ {1, ..., k}. The following notation seems a little unnatural as we proceed by

conjugating elements of G by cosets of Z in A. Technically, conjugation by a coset

yields another set. But in this case, since we are conjugating by cosets of the center

of G in A, we see that xaZ is just the set containing xa for all x ∈ G and a ∈ A. For

this reason, we identify the set xaZ = {xa} with the element xa.
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Notice that [ai, xi] = zi if and only if (ai)
−1xiai = xizi. Thus, by (9) we see that

x
∏k

j=1(āj)fj

i = (ak)
−fk · · · (a1)−f1xi(a1)f1 · · · (ak)fk

= (ak)
−fk · · · (ai)−fixi(ai)fi · · · (ak)fk

= (ak)
−fk · · · (ai+1)−fi+1xizi(ai+1)fi+1 · · · (ak)fk

= xizi

6= xi.

But as (xi)
Z = xi, we have obtained a contradiction. Thus,

∏k
j=1(āj)

fj = Z if and

only if fj = 0 for all j ∈ {1, ..., k}. It follows that

|{
k∏
j=1

(āj)
fj : fj ∈ {0, 1}}| = 2k = |A/Z|.

Thus, {
∏k

j=1(āj)
fj : fj ∈ {0, 1}} = A/Z and we may write A/Z = 〈a1Z, ..., akZ〉. So

A = 〈a1, ..., ak, Z〉 and our claim is verified.

Now, we may write G = 〈x1, ..., xk, A〉. To prove that [G,A] ≤ Z, it suffices to

show that [xi, A] ≤ Z for an arbitrary i ∈ {1, ..., k}. Let a ∈ A. Then we may write

a = (
∏k

j=1(aj)
fj)z for suitable fj ∈ {0, 1} and some z ∈ Z. Thus,

[xi, a] = (xi)
−1a−1xia

= (xi)
−1z−1(ak)

−fk · · · (a1)−f1xi(a1)f1 · · · (ak)fkz

= (xi)
−1(ak)

−fk · · · (ai)−fixi(ai)fi · · · (ak)fk

= (xi)
−1(ak)

−fk · · · (ai+1)−fi+1xizi(ai+1)fi+1 · · · (ak)fk

= zi

(10)

whenever fi = 1 and [xi, a] = 1 whenever fi = 0. Hence, [xi, A] ≤ Z for all i ∈

{1, ..., k} and we see that [G,A] ≤ Z. By (10) we also see that if G is of Type II,

30



then [G,A] = 〈zi〉 for any i ∈ {1, ..., k}; and if G is of Type III, then [G,A] =

{1, z1, z2, z1z2}. This completes the proof.

(4.7) Lemma. Continuing with the notation of Corollary (4.4) and Lemma

(4.5), the elements x1, x2, ..., xk can be chosen to commute pairwise.

Proof. Consider first G of Type II. By Corollary (4.6), [G,A] ≤ Z and has order

2. Furthermore we may write [G,A] = 〈[ai, xi]〉 = 〈z〉 for any i ∈ {1, ..., k}. We

first show that for i, j ∈ {1, ..., k} we have [xi, xj] = z or 1. Consider the abelian

subgroup Aj = 〈xj, CA(xj)〉. Since (xj)
2 ∈ A and commutes with xj we see that

x2
j ∈ CA(xj). Thus |Aj : CA(xj)| = 2 and |Aj| = |A|. So Aj is an abelian subgroup

of maximum order in G. It follows by Corollary (4.6) that [G,Aj] is of order 2; and

as 1 6= z = [aj, xj] ∈ [G,Aj], we may write [G,Aj] = 〈z〉. It follows that [xi, xj] = z

or 1.

We now prove by induction that the coset representatives x1, ..., xk may be cho-

sen to commute pairwise. Consider x1. For any j ∈ {2, ..., k} such that [x1, xj] = z,

we replace the coset representative xj by a1xj. Notice that for each such j, we have

[x1, a1xj] = [x1, xj][x1, a1]xj = z2 = 1

since z is in the center of G. Also note that for each xj that we replace, the re-

placement coset representative a1xj satisfies the same commutator relations with

each of the ai that we constructed in Lemma (4.5) as xj. In other words, [ai, a1xj] =

1 (j 6= i) and [aj, a1xj] = z. This completes the base case.

Now suppose that we have already chosen x1, ..., xk such that x1, ..., xi−1 com-

mute with xj for all j ∈ {1, ..., k}. Then in particular, xi commutes with x1, ...,

xi−1. For any j > i such that [xi, xj] = z, we replace the coset representative xj by

aixj. Notice that for each such j, we have

[xi, aixj] = [xi, xj][xi, ai]
xj = z2 = 1
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since z is in the center of G. Thus we’ve constructed new coset representatives that

commute with x1, ..., xi and our proof by induction is complete. Again notice that

these replacement coset representatives satisfy the same commutator relations with

each of the ai constructed in Lemma (4.5).

Now consider G of Type III. By Corollary (4.6), [G,A] ≤ Z and is non-cyclic

of order 4. Moreover, [G,A] = {1, z1, z2, z1z2}. I claim that [x1, x2] ∈ [G,A]. In

this case, it follows easily that either [x1, x2] = 1, [x1, a1x2] = 1, [a2x1, x2] = 1, or

[a2x1, a1x2] = 1. Thus we may choose coset representatives that commute. All that

remains is to verify my claim. Consider the abelian subgroup A1 = 〈x1, CA(x1)〉.

Since (x1)2 ∈ A and commutes with x1, we see that (x1)2 ∈ CA(x1). Thus |A1 :

CA(x1)| = 2 and |A1| = |A|. So A1 is an abelian subgroup of maximum order in G.

It follows by Corollary (4.6) that [G,A1] is non-cyclic of order 4. Clearly [a1, x1] =

z1 ∈ [G,A1]; and since a2 ∈ A commutes with x1 we see that [x2, a2] = (z2)−1 =

z2 ∈ [G,A1]. It follows that [G,A1] = {1, z1, z2, z1z2}. As [x1, x2] = [x2, x1]−1 ∈

[G,A1], we see that [x1, x2] ∈ {1, z1, z2, z1z2} = [G,A] as claimed. Notice once again

that these replacement coset representatives satisfy the same commutator relations

with each of the ai constructed in Lemma (4.5).

(4.8) Corollary. If G is of Type II or III, then [G,G] = [G,A]. Moreover, G is

nilpotent of class 2.

Proof. We first consider G of Type II. Continuing with the notation used in

Corollary (4.4) and Lemma (4.5) we may write

G = 〈x1, ..., xk, A〉 = 〈x1, ..., xk, a1, ..., ak, Z〉

and we may assume without loss that x1, ..., xk commute pairwise. By the com-

mutator relations obtained in Lemma (4.5) it follows that for all g, h ∈ G we have

[g, h] = z or 1 where z = z1 = · · · = zk. Thus [G,G] ≤ [G,A]. Equality fol-
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lows immediately. Thus by Corollary (4.6) we have [G,G] ≤ Z. As Z is a normal

subgroup of G that contains G′ = [G,G] we see that G/Z is abelian. Hence, G is

nilpotent of class 2. The result follows by an analogous argument for G of Type III.

This completes the proof.

(4.9) Lemma. Continuing with the notation of Corollary (4.4) and Lemma

(4.5), if G is of Type II, then G/Z is an elementary abelian 2-group of order 22k

and is generated by the cosets x1Z, ..., xkZ, a1Z, ..., akZ of Z in G. Similarly, if G

is of Type III, then G/Z is an elementary abelian 2-group of order 24 and is gener-

ated by the cosets x1Z, x2Z, a1Z, a2Z of Z in G.

Proof. First consider G of Type II. By the proof of Corollary (4.6) and by Lemma

(4.7) we may write

G = 〈x1, ..., xk, A〉 = 〈x1, ..., xk, a1, ..., ak, Z〉

where [xi, xj] = 1 (i 6= j). It follows immediately that

G/Z = 〈x1Z, ..., xkZ, a1Z, ..., akZ〉.

Notice that

|G : Z| = |G : A||A : Z| = 2k2k = 22k,

by Corollary (4.4). Thus, G/Z is of order 22k as claimed.

Now, consider xi for some i ∈ {1, ..., k}. As (xi)
2 ∈ A and commutes with xj for

each j ∈ {1, ..., k}, we see that (xi)
2 ∈ Z. Also by Corollary (4.4), (ai)

2 ∈ Z. Hence,

since G/Z is abelian and each generator of G/Z is of order 2, we see that G/Z is an

elementary abelian 2-group. An analogous argument for G of Type III completes

the proof.

The following theorem summarizes the results regarding nonabelian > 1
2
-groups
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obtained thus far. We continue with the notation developed in Corollary (4.4) and

Lemma (4.5).

(4.10) Structure Theorem. If G is a nonabelian > 1
2
-group, then G is one of

the following types.

Type I G has a maximal abelian subgroup A of index 2 in G. For any > 1
2
-

automorphism α of G,

I(α) = I(G) =
q + 1

2q

where q = |A : CA(x)| for any x /∈ A.

Type II G is nilpotent of class 2 with commutator subgroup 〈z〉 of order 2.

The center Z of G has index 22k (k ≥ 2) in G and G/Z is an elementary abelian

2-group. Moreover, G/Z is generated by the cosets x1Z, ..., xkZ, a1Z, ..., akZ, of Z

in G where

[xi, xj] = [ai, aj] = 1,

for all i, j ∈ {1, ..., k},

[ai, xj] = 1,

for all i, j ∈ {1, ..., k} such that i 6= j, and

[ai, xi] = z,

for all i ∈ {1, ..., k}. Furthermore, for any > 1
2
-automorphism α of G,

I(α) = I(G) =
2k + 1

2k+1
.

Type III G is nilpotent of class 2 with noncyclic and hence elementary abelian

commutator subgroup 〈z1, z2〉 of order 4. The center Z of G has index 24 in G and

G/Z is an elementary abelian 2-group. Moreover, G/Z is generated by the cosets
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x1Z, x2Z, a1Z, and a2Z of Z in G where

[x1, x2] = [a1, a2] = [a1, x2] = [a2, x1] = 1,

[a1, x1] = z1,

and

[a2, x2] = z2.

Furthermore, for any > 1
2
-automorphism α of G we have

I(α) = I(G) =
9

16
.
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CHAPTER V

GROUPS CONSISTING MOSTLY OF INVOLUTIONS

In this chapter we explore > 1
2
-groups in which the identity automorphism in-

verts more than half of the group elements. Using arguments from Corollary (3.4)

we see that if an automorphism α inverts over half of the elements of an abelian

group H, then α inverts H elementwise. For this reason we see that the groups

under consideration in this chapter are necessarily nonabelian, except for in the

case where the group is inverted elementwise by the identity automorphism. Notice

that such abelian groups are elementary abelian 2-groups or equivalently groups in

which all nonidentity elements are involutions.

Throughout this chapter, let G denote a finite nonabelian group in which the

identity automorphism, α say, inverts over half of the elements of G. Let A denote

an abelian subgroup of maximum order in G and let Z denote the center of G. Fi-

nally, let G′ denote the commutator subgroup of G. Notice that by the Structure

Theorem of > 1
2
-groups presented in the previous chapter, G must be of even order.

It follows that G has exactly I(G)|G| − 1 ≥ 1
2
|G| involutions.

(5.1) Lemma. Suppose that G is of Type I as defined in the Structure Theorem

of the previous chapter. Then the center Z of G is an elementary abelian 2-group.

Furthermore if A is an elementary abelian 2-group, then there exists an involution

in G − A that induces by conjugation an automorphism of G of order 2 in A. Oth-

erwise, there exists an involution in G− A that induces by conjugation an automor-

phism of G that inverts A elementwise.

Proof. First, consider the case in which A is an elementary abelian 2-group. It

follows immediately that Z is as well. As at least half of the elements in G are in-

volutions, we are guaranteed the existence of an involution x ∈ G − A. Thus, for

all a ∈ A, we have (ax)x = ax
2

= a. Thus, x induces by conjugation the desired

automorphism of G of order 2 in A.
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Next, consider the case in which A is not an elementary abelian 2-group. Since

A is an abelian subgroup of G, no more than half of A is inverted by α. Thus, less

than I(α)|A| elements of A are in Sα. Now, choose some involution x ∈ G − A.

As α is a > 1
2
-automorphism of G, it follows that at least I(α)|Ax| elements of Ax

are in Sα. Thus, by the proof of the Subgroup Theorem and by Corollary (3.4), the

inner automorphism, Ixα = Ix, inverts A elementwise. It follows that for all a ∈ A,

we have x−1ax = a−1. As x is an involution, we see that (xa)2 = 1 for all a ∈ A.

Thus, for all z ∈ Z we have (xz)2 = x2z2 = z2 = 1. Hence Z is an elementary

abelian 2-group as claimed.

Notice that in the latter case, G may be chosen to have arbitrary even order

greater than or equal to 6. To see this, let n = 2k for some k ≥ 3 and consider

the dihedral group, D2k, of order 2k. D2k has a cyclic and hence abelian subgroup

of index 2 that is inverted elementwise by the inner automorphism induced by any

involution outside of the cyclic subgroup.

It is important to note that in the article under consideration, Liebeck and MacHale

claim that in groups of Type I, abelian subgroups of maximum order are either el-

ementary abelian 2-groups that are inverted elementwise by the identity automor-

phism, or are not elementary abelian. However, this claim is false. To verify this

we consider the symmetric group on 3 elements, S3. Since S3 is a finite nonabelian

group with an abelian subgroup of index 2, 〈(123)〉, such that the identity automor-

phism is a > 1
2
-automorphism, S3 is of Type I. However, 〈(123)〉 is an abelian sub-

group of maximum order that is an elementary abelian 3-group. Thus we altered

the wording of the previous theorem to account for this mistake.

We now consider G of Type II or III as defined in the Structure Theorem of the

previous chapter. Note that as we found the justification of the following results

in ”Groups with Automorphisms Inverting most Elements” to be difficult to follow

or omitted entirely, we present alternative methods of determining the structure of
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these groups.

(5.2) Lemma. If G is of Type II or III, then the elements of odd order form a

subgroup Z0 of the center Z of G.

Proof. Let x and y be elements of odd order in G. Then xm = yn = 1 for some

odd integers m and n. We may assume that m and n are the smallest integers such

that this happens. As G/Z is an elementary abelian 2-group, we see that x−2 ∈ Z.

As xm ∈ Z, we also see that xm−2 ∈ Z. Since m is odd, we may continue this

process to show that x ∈ Z. Thus, elements of odd order are in fact contained in

the center of G.

Now, notice that (x−1)m = (xm)−1 = 1 so the order of x−1 divides m and is

hence odd. Furthermore,

(xy)mn = xmnymn = (xm)n(yn)m = 1,

so the order of xy divides mn and is hence odd. Thus, the elements of odd order in

G form a subgroup Z0 of Z and the proof is complete.

(5.3) Lemma. Let G be of Type II or III. Then G is a 2-group. Moreover, the

center Z of G is an elementary abelian 2-group.

Proof. By way of contradiction, suppose that there exists some x ∈ G of order

2j + 1 for some j ∈ N. Consider the subgroup H = 〈x〉. Let G = H ∪ Hg2 ∪ · · · ∪

Hgn be a decomposition of G into distinct right cosets of H in G. Notice that as

H is cyclic of odd order, there are no involutions in H. Consider the coset Hgi for

some i ∈ {2, ..., n} and suppose that there exists some involution in Hgi. We may

without loss of generality assume that gi is that involution for otherwise we simply

exchange coset representatives. Note that by Lemma (5.2), x ∈ Z. Thus for any

xbgi ∈ Hgi we have

(xbgi)
2 = x2b(gi)

2 = x2b 6= 1.
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Hence there is at most one involution in the coset Hgi and we have obtained the

contradiction that less than half of the elements in G are involutions. It follows im-

mediately that G is a 2-group as claimed.

To see that Z is an elementary abelian 2-group, suppose by way of contradiction

that there exists some x ∈ Z of order 4. Again, consider the subgroup H = 〈x〉

and let G = H ∪ Hg2 ∪ · · · ∪ Hgn be a decomposition of G into distinct right

cosets of H in G. Notice that x2 is the only involution in H. Consider the coset

Hgi for some i ∈ {2, ..., n} and assume that some element of Hgi is an involution.

We may without loss of generality assume that gi is that involtution for otherwise

we exchange coset representatives. Notice that

(xgi)
2 = x2(gi)

2 = x2 6= 1

as x ∈ Z. Similarly,

(x3gi)
2 = x6(gi)

2 = x2 6= 1.

It follows that exactly half of the elements of Hgi are involutions. Again we obtain

the contradiction that less than half of the elements of G are involutions. Thus,

there are no elements of order 4 in Z and Z is an elementary abelian 2-group as

claimed. This completes the proof.

(5.4) Corollary If G is of Type II, the center Z of G is isomorphic to the di-

rect product 〈z〉 × E where z generates the commutator subgroup of G and E is

an elementary abelian 2-group. Similarly, if G is of Type III, Z is isomorphic to the

direct product 〈z1, z2〉 × E where z1 and z2 generate the commutator subgroup of G

and E is an elementary abelian 2-group.

Proof. The proof of this result is based on a well known fact from linear alge-

bra that I will not prove: Any subspace of a vector space necessarily has a com-

plement in that vector space. By the previous theorem we know that Z is an ele-
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mentary abelian 2-group. Thus, we may view Z as a vector space over the field of

2-elements. Consider first G of Type II. Since 〈z〉 ≤ Z, we may view 〈z〉 as a sub-

space of Z. It follows that 〈z〉 has a complement E in Z. Such a complement is

clearly also an elementary abelian 2-group. Since 〈z〉 and E are both normal sub-

groups of Z, we have Z ∼= 〈z〉×E as desired. An analogous argument for G of Type

III completes the proof.

For the moment we focus our attention on the case where G of Type II.

(5.5) Lemma. Let G be of Type II. Then the elementary abelian 2-group E

obtained in Corollary (5.4) splits from G. Moreover, G is isomorphic to the direct

product G0 × E where G0 ≤ G is of Type II with center Z(G0) = 〈z〉 where z

generates the commutator subgroup of G.

Proof. Take G0 to be the largest subgroup of G with the property that the com-

mutator subgroup 〈z〉 of G is contained in G0 and G0 ∩ E = 1. Note that we are

guaranteed the existence of such a G0 since 〈z〉 satisfies the conditions. We see that

G0 E G since for all u ∈ G0 and for all g ∈ G we have ug = u[u, g] ∈ G0. As E ≤ Z

we see that E EG. We claim that G0E = G. It follows that G ∼= G0×E as desired.

To verify our claim, by way of contradiction suppose that G0E < G is a proper

subgroup of G and choose some g ∈ G − G0E. Define H = G0〈g〉. Then G0 < H

is a proper subgroup of H. By the definition of G0 there exists some nonidentity

element x ∈ H ∩ E. We may write x = agi for some a ∈ G0 and some i ∈ {0, 1, 2, 3}

since G/Z and Z are elementary abelian 2-groups. We consider four cases.

Case (i) i = 0. In this case x = a ∈ G0. As 1 6= x ∈ E this contradicts that

G0 ∩ E = 1.

Case (ii) i = 1. Thus x = ag. It follows that g = a−1x ∈ G0E. As we chose g to

be outside of G0E, this is a contradiction.

Case (iii) i = 2. Thus x = ag2. Now, g2 /∈ G0 for otherwise we obtain the

same contradiction as in the first case. In particular we see that g2 6= 1. Hence the
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order of g is greater than 2. As |G − G0E| ≥ |G|
2

, it follows that at least half of the

elements in G have order greater than 2 which is a contradiction.

Case (iv) i = 3. Thus x = ag3. As g−2 ∈ Z ∼= 〈z〉 × E which can be viewed as a

subgroup of G0E, we have g = g−2a−1x = a−1g−2x ∈ G0E. which is a contradiction.

Thus our claim is verified and we may have G ∼= G0 × E. It follows that A ∼=

A0 × E for some abelian subgroup A0 ≤ A of maximum order in G0. Notice that

since G/E ∼= G0 and A/E ∼= A0, we have

G/A ∼= (G/E)/(A/E) ∼= G0/A0.

It follows that G0 is of Type II. Now, as 〈z〉 ≤ G0 ∩ Z, we have 〈z〉 ≤ Z(G0). To see

the reverse containment, let x ∈ Z(G0). As G0 and E are both normal subgroups of

G that intersect trivially, we see that [x,E] = 1. It follows that x ∈ Z ∩ G0 = 〈z〉.

Thus the center Z(G0) of G0 is equal to 〈z〉 and the proof is complete.

Before proceeding to the next result we define what is known as the central

product of extraspecial p-groups.

(5.6) Definition. Let P1, ..., Pk be extraspecial p-groups. The finite group H

is the central product of P1, ..., Pk if the center of H is of order p and there exist

subgroups H1, ..., Hk of H such that Hi
∼= Pi for i ∈ {1, ..., k} where H = H1 · · ·Hk

and [Hi, Hj] = 1 for i, j ∈ {1, ..., k} such that i 6= j. In this case we write H =

P1 ◦ · · · ◦ Pk.

For the remainder of this paper we let D8 denote the dihedral group of order 8

and Q8 denote the quaternion group of order 8.

(5.7) Corollary. Let G be of Type II with commutator subgroup G′ = 〈z〉. The

subgroup G0 ≤ G as defined in Lemma (5.5) is an extraspecial 2-group of order

22k+1 where |G : A| = |G0 : A0| = 2k (k ≥ 2) and A0 is as defined in the proof of

Lemma (5.5). Moreover, G0 is isomorphic to the central product of k copies of D8.
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Proof. Let G′0 denote the commutator subgroup of G0 and Z(G0) denote the

center of G0. To prove that G0 is an extraspecial 2-group we must show that G0 is

a 2-group such that G′0 = Z(G0), |Z(G0)| = 2, and that G0/Z(G0) is an elemen-

tary abelian 2-group. As G0 is of Type II we know that G0 is a 2-group and that

G0/Z(G0) is an elementary abelian 2-group. By Lemma (5.5) we see that Z(G0) =

G′ is of order 2. Now, G0 is nonabelian so G′0 is nontrivial; and since G′0 ≤ G′ = 〈z〉

we see that G′0 = G′. Thus G′0 = Z(G0) as desired and G0 is an extraspecial 2-

group. By the Structure Theorem, Z(G0) = 〈z〉 has index 22k in G0. It follows that

|G0| = 22k|Z(G0)| = 22k+1.

The remainder of the proof follows from results obtained from the text ”Group

Representation Theory” by Larry Dornhoff ([I], p. 181-193). We see that any ex-

traspecial 2-group of order 22k+1 is isomorphic to the central product of k extraspe-

cial groups of order 23 and that D8 ◦ D8
∼= Q8 ◦ Q8. Since extraspecial groups

are nonabelian and the only two nonabelian groups of order 8 up to isomorphism

are D8 and Q8, it follows that either G0
∼= D8 ◦ D8 ◦ · · · ◦ D8 (k copies of D8) or

G0
∼= Q8 ◦D8 ◦ · · · ◦D8 (k − 1 copies of D8). We see that as the number of involu-

tions in Q8 ◦D8 ◦ · · · ◦D8 (k − 1 copies of D8) is only 22k − 2k − 1 < |G0|
2

, the latter

case is impossible. This completes the proof.

We now focus on the case in which G is of Type III.

(5.8) Lemma. Let G be of Type III. Then the elementary abelian 2-group E

obtained in Corollary (5.4) splits from G. Moreover, G is isomorphic to the direct

product G0 × E where G0 is of Type III with center Z(G0) = 〈z1, z2〉 where z1 and

z2 generate the commutator subgroup of G.

Proof. The proof of this result is analogous to the proof of Lemma (5.5).

(5.9) Lemma. Let G be of Type III and let G0 be defined as in the previous

lemma. Then G0 is isomorphic to the direct product of two copies of D8.

Proof. As G is of Type III, we may write G/Z = 〈x1Z, x2Z, a1Z, a2Z〉 where x1,
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x2, a1, and a2 satisfy the commutator relations established in the Structure Theo-

rem of the previous chapter. Let the subgroup E ≤ G be defined as in Corollary

(5.4). Then since G/E ∼= G0 and Z/E ∼= Z(G0) where Z(G0) is the center of G0,

we have

G/Z ∼= (G/E)/(Z/E) ∼= G0/Z(G0) = G0/〈z1, z2〉

where z1 and z2 generate the commutator subgroup of G. It follows that

G0/Z(G0) = 〈x1Z(G0), x2Z(G0), a1Z(G0), a2Z(G0)〉

and that

G0 = 〈x1, x2, a1, a2, Z(G0)〉 = 〈x1, x2, a1, a2〉.

Consider the subgroup P1 = 〈x1, a1〉 ≤ G0 and recall that G0/Z(G0) is an ele-

mentary abelian 2-group. Thus {x2
1, a

2
1} ⊆ {1, z1, z2, z1z2}. We consider two cases.

Case (i) x2
1 = 1 or z1 and a2

1 = 1 or z1. In this case, since [a1, x1] = z1 we have

P1 = {1, a1, x1, a1x1, z1, a1z1, x1z1, a1x1z1}. As P1 is nonabelian of order 8 we have

either P1
∼= D8 or Q8.

Case (ii) Otherwise. There are 12 subcases to consider. We claim that in any

subcase we obtain the contradiction that less than half of the elements in G0 are

involutions. To verify this claim, first notice that since [a1, x1] = z1 and [a2, x2] =

z2, we see that

P1 = {1, a1, x1, a1x1, z1, a1z1, x1z1, a1x1z1, z2, a1z2,

x1z2, a1x1z2, z1z2, a1z1z2, x1z1z2, a1x1z1z2}

is of order 16. Now, since G0 is of Type III, |G0 : Z(G0)| = 24. Thus |G0| = 64 and
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|G0 : P1| = 4. So we may write G0 as the disjoint union of cosets

G0 = P1 ∪ P1a2 ∪ P1x2 ∪ P1a2x2. (11)

Recall that [a2, P1] = [x2, P1] = [a2x2, P1] = 1 and {(a2)2, (x2)2, (a2x2)2} ⊆ 〈z1, z2〉.

In each subcase we simply count the number of involutions in G0 by considering

each coset in (11) separately.

We first consider the subcase in which x2
1 = 1 and a2

1 = z2. In this subcase we

have (a1x1)2 = a2
1x

2
1z1 = z1z2. Note that P1 has 7 involutions and consider the coset

P1a2. The number of involutions in P1a2 is equal to the number of solutions to the

equation

(ba2)2 = b2a2
2 = 1 (12)

where b ∈ P1. Thus if a2
2 = 1 then P1a2 has 8 involutions. If a2

2 = z1 then P1a2

has no involutions. If a2
2 = z2 then P1a2 has 4 involutions. And if a2

2 = z1z2 then

P1a2 has 4 involutions. Hence the coset P1a2 has at most 8 involutions. Similar rea-

soning tells us that the cosets P1x2 and P1a2x2 have at most 8 involutions as well.

Thus G0 has at most 7 + 8 + 8 + 8 = 31 < |G0|
2

involutions which is our desired con-

tradiction. Note that the subcase in which x2
1 = z2 and a2

1 = 1 results in the same

contradiction by an analogous argument.

Next we consider the subcase in which x2
1 = 1 and a2

1 = z1z2. In this subcase we

have (a1x1)2 = a2
1x

2
1z1 = z2. By arguments in the previous paragraph we obtain the

contradiction that G0 has at most 31 involutions. Note that the subcase in which

x2
1 = z1z2 and a2

1 = 1 is similar.

Next we consider the subcase in which x2
1 = z2 and a2

1 = z1z2. In this subcase we

have (a1x1)2 = a2
1x

2
1z1 = 1. Again by arguments in the first subcase we obtain the

contradiction that G0 has at most 31 involutions. The subcase in which x2
1 = z1z2

and a2
1 = z2 is similar.
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Next we consider the subcase in which x2
1 = z1 and a2

1 = z2. In this subcase

we have (a1x1)2 = a2
1x

2
1z1 = z2. Note that P1 has 3 involutions and consider the

coset P1a2. Again to count the involutions in P1a2 it suffices to count the number

of solutions to (12) where b ∈ P1. Thus if a2
2 = 1 then P1a2 has 4 involutions.

If a2
2 = z1 then P1a2 has 4 involutions. If a2

2 = z2 then P1a2 has 8 involutions.

And if a2
2 = z1z2 then P1a2 has no involutions. Hence the coset P1a2 has at most 8

involutions. Similar reasoning tells us that the cosets P1x2 and P1a2x2 have at most

8 involutions as well. Thus G0 has at most 3 + 8 + 8 + 8 = 27 involutions which

is our desired contradiction. Note that the subcase in which x2
1 = z2 and a2

1 = z1

results in the same contradiction by an analogous argument.

Next we consider the subcase in which x2
1 = a2

1 = z2. In this subcase we have

(a1x1)2 = a2
1x

2
1z1 = z1. By arguments in the previous paragraph we obtain the

contradiction that G0 has at most 27 involutions.

Next we consider the subcase in which x2
1 = z1 and a2

1 = z1z2. In this subcase

we have (a1x1)2 = a2
1x

2
1z1 = z1z2. Note that P1 has 3 involutions and consider the

coset P1a2. Again to count the involutions in P1a2 it suffices to count the number

of solutions to (12) where b ∈ P1. Thus if a2
2 = 1 then P1a2 has 4 involutions.

If a2
2 = z1 then P1a2 has 4 involutions. If a2

2 = z2 then P1a2 has no involutions.

And if a2
2 = z1z2 then P1a2 has 8 involutions. Hence the coset P1a2 has at most 8

involutions. Similar reasoning tells us that the cosets P1x2 and P1a2x2 have at most

8 involutions as well. Thus G0 has at most 3 + 8 + 8 + 8 = 27 involutions which is

our desired ccontradiction. Note that the subcase in which x2
1 = z1z2 and a2

1 = z1

results in the same contradiction by an analogous argument.

Finally, we consider the subcase in which x2
1 = a2

1 = z1z2. In this subcase we

have (a1x1)2 = a2
1x

2
1z1 = z1. By arguments in the previous paragraph we obtain the

contradiction that G0 has at most 27 involutions. This completes the verification of

our claim and tells us that case (ii) does not occur in the groups under considera-
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tion in this paper.

Hence P1
∼= D8 or Q8. Similarly we see that the subgroup P2 = 〈x2, a2〉 ∼= D8 or

Q8 as well. Notice that P1 ∩ P2 = 1 and that since [P1, P2] = 1 we have

G0 = 〈x1, x2, a1, a2〉 = 〈x1, a1〉〈x2, a2〉 = P1P2.

Since P1 and P2 are normal subgroups of G0 we see that G0
∼= P1 × P2. To see that

P1
∼= P2

∼= D8 we simply count involutions. Since Q8 has a single involution, Q8 ×

Q8 has only 3 involutions. And since D8 has only 5 involutions D8 ×Q8
∼= Q8 ×D8

has only 11 involutions. Both cases yield a group that contradicts the definition of

G0. Hence result.

The following theorem summarizes the structure of nonabelian > 1
2
-groups in

which at least half of the group elements are involutions.

(5.10) Theorem. If G is a > 1
2
-group in which at least half of the elements of G

are involutions then G is one of the following types.

Type I G has a maximal abelian subgroup A of index 2 in G. The center Z of

G is an elementary abelian 2-group. If A is inverted elementwise by the identity

automorphism then there exists an involution outside of A that induces by conju-

gation an automorphism of G of order 2 in A. Otherwise, there exists an involution

outside of A that induces by conjugation an automorphism of G that inverts A el-

ementwise. Finally, G has q+1
2q
|G| − 1 involutions where q = |A : CA(x)| for any

x /∈ A.

Type II G is a 2-group with maximal abelian subgroup A of index 2k in G for

some k ≥ 2. The center Z of G is an elementary abelian 2-group isomorphic to the

direct product 〈z〉 × E where z generates the commutator subgroup of G and E is

an elementary abelian 2-group. Moreover we have

G ∼= G0 × E ∼= (D8 ◦D8 ◦ · · · ◦D8)× E
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(k copies of D8) where G0 is an extraspecial 2-group of order 22k+1. Finally, G has

2k+1
2k+1 |G| − 1 involutions.

Type III G is a 2-group with maximal abelian subgroup A of index 4 in G.

The center Z of G is an elementary abelian 2-group isomorphic to the direct prod-

uct 〈z1, z2〉 × E where z1 and z2 generate the commutator subgroup of G and E is

an elementary abelian 2-group. Moreover we have

G ∼= D8 ×D8 × E.

Finally, G has 9
16
|G| − 1 involutions.

This completes our analysis of ”Groups with Automorphisms Inverting most

Elements”, by Hans Liebeck and Desmond MacHale.
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