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Solutions to perturbed eigenvalue problems of the

p-Laplacian in RN ∗

João Marcos B. do Ó

Abstract

Using a variational approach, we investigate the existence of solutions
for non-autonomous perturbations of the p−Laplacian eigenvalue problem

−∆pu = f(x, u) in RN .

Under the assumptions that the primitive F (x, u) of f(x, u) interacts only
with the first eigenvalue, we look for solutions in the space D1,p(RN ). Fur-
thermore, we assume a condition that measures how different the behavior
of the function F (x, u) is from that of the p−power of u.

1 Introduction

In this paper we study the existence of solutions for non-autonomous perturba-
tions of the p-Laplacian eigenvalue problem

−∆pu ≡ − div
(
|∇u|p−2∇u

)
= f(x, u) in RN , (1)

where u ∈ D1,p(RN ). We assume that the primitive F (x, u) of the nonlinearity
f(x, u) interacts only with the first eigenvalue of some p-Laplacian eigenvalue
problems with weights naturally associated with F (x, u). We also assume that
f : RN × R→ R is a continuous function satisfying the growth condition,

(f) |f (x, u) | ≤ a(x)|u|r + b(x)|u|s, ∀(x, u) ∈ RN × R

where a, b are continuous functions, a ∈ L∞(RN )∩Lr0(RN ) and b ∈ L∞(RN )∩
Ls0(RN ) with 0 ≤ r ≤ p− 1 ≤ s < p∗ − 1, r0 = Np/[Np− (r + 1)(N − p)], and
s0 = Np/[Np− (s+ 1)(N − p)]. In this context 1 < p < N , and p∗ denotes the
critical Sobolev exponent, p∗ = Np/(N − p).
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We are interested in finding weak solutions of (1) in the framework of
the reflexive Banach space D1,p(RN ), defined as the completion of C∞0 (RN )
with respect to the norm ‖u‖D1,p = ‖∇u‖Lp. By the Sobolev inequality,
‖u‖Lp∗ ≤ C0‖∇u‖Lp for all u ∈ D1,p(RN ), we see that D1,p(RN ) can be em-
bedded continuously in Lp

∗
(RN ) and that

D1,p(RN ) = {u ∈ Lp
∗

(RN ) : ∇u ∈ (Lp(RN ))N} .

For more details about this space, see e.g. [3]. As we shall see, under assumption
(f), the functional

I (u) =
1

p

∫
RN
|∇u|p dx−

∫
RN

F (x, u) dx, F (x, u) =

∫ u

0

f(x, s) ds,

is a C1 weakly lower semi-continuous functional defined on D1,p(RN ), and

I ′ (u)ϕ =

∫
RN
|∇u|p−2∇u∇ϕdx−

∫
RN

f(x, u)ϕdx, ∀ϕ ∈ D1,p(RN ).

Notice that critical points of the functional I are precisely the weak solutions of
(1). To get critical points of I we apply two “minimax” methods: a mountain
pass type argument and a minimization technique. To do this, we explore the
interaction of the potential F (x, u) with the first eigenvalue, in combination
with the following hypotheses which are related with a compactness condition
of Palais-Smale type.

(F1) There exists a measurable function a ∈ L∞(RN ) and a constant µ, 0 <
µ < p∗ such that

f(x, u)u− pF (x, u) ≥ a(x)|u|µ > 0, ∀(x, u) ∈ RN × (R− {0}),

(F2) For some p < q < p∗, lim sup
|u|→+∞

F (x,u)
a(x)|u|q ≤M < +∞ uniformly x ∈ RN

Let λ1(m) denote the first eigenvalue of the weighted nonlinear eigenvalue
problem in RN ,

−∆pu = λm(x)|u|p−2u,

where m ∈ LN/p(RN ) is a weight function which is positive on a subset of
positive measure. It is convenient to recall the variational characterization

λ1(m) = inf{

∫
RN
|∇u|pdx/

∫
RN

m|u|pdx : u ∈ D1,p(RN )− {0}} , (2)

and that λ1(m) is a positive real number, since by the Holder and Sobolev
inequalities ∫

RN
m|u|pdx ≤ ‖m‖LN/p‖u‖

p

Lp
∗ ≤ C‖m‖LN/p‖u‖

p
D1,p.
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Thus, ∫
RN |∇u|

pdx∫
RN m|u|

pdx
≥

1

C‖m‖
LN/p

> 0,

for all u ∈ D1,p(RN )−{0}. For more details about this eigenvalue problem, see
e. g. [1].

Now, we are ready to present the main results of this article.

Theorem 1 Assume that (f), (F1), and (F2) are satisfied. Furthermore, sup-
pose

(F3) There exist a function α ∈ L∞(RN ) ∩ L
N
p (RN ) and a positive Conant δ,

such that

F (x, u) ≤
1

p
α(x)|u|p ∀x ∈ RN , ∀|u| ≤ δ,

where either α ≤ 0 or λ1(α) > 1,

(F4) There exist a function ω ∈ L∞(RN ) ∩ L
N
p (RN ) and a positive constant

R, such that

F (x, u) ≥
1

p
ω(x)|u|p ∀x ∈ RN , ∀|u| ≥ R,

where ω > 0 on a subset of positive measure and λ1(ω) < 1.

Then, problem (1) has a nontrivial solution, provided that 0 < N(q − p)/p <
µ < q < p∗.

Next, we consider the case when the potential F (x, u) approaches ω(x)|u|p

as |u| → ∞, and therefore, it interacts with the first eigenvalue of the problem
−∆pu = λω(x)|u|p−2u. In fact, we assume that F (x, u) interacts with the first
eigenvalue λ1(ω), but its behavior is different from that of a p−power of u. As
we shall see, these facts lead to a standard situation for a global minimum.

Theorem 2 Assume that (f) and (F1) hold. Furthermore, suppose

(F5) There is a function ω ∈ L∞(RN ) ∩ L
N
p (RN ) such that

lim sup
|u|→+∞

pF (x, u)

|u|p
≤ ω(x) uniformly x ∈ RN ,

where either ω is ≤ 0 or λ1(ω) ≥ 1.

Then, problem (1) has a solution which is a global minimum of the associated
functional, provided that 0 < µ < p.
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Remark 1. If in Theorem 1, assumption (F1) is replaced by its “dual”,

(F̃1) f(x, u)u− pF (x, u) ≤ −a(x)|u|µ < 0, ∀(x, u) ∈ RN × (R− {0}) ,

it is not difficult to see that similar result holds. Hypotheses of this kind are a
measure of how different the behavior of F is from that of a p−power of u. It is
worth to observe that in many cases condition (F1) is implied by the following
Ambrosetti-Rabinowitz condition,

(AR) 0 < θF (x, u) ≤ uf(x, u), for all (x, u) ∈ RN × (R− {0}) and some
θ > p.

Indeed, by (AR), f(x, u)u−pF (x, u) ≥ (θ−p)F (x, u) and, moreover, F (x, u) ≥
min{F (x, 1), F (x,−1)}|u|θ > 0, ∀x ∈ RN and |u| ≥ 1. Thus, (F1) holds if
we assume also that there exist µ ≤ θ and a measurable function a ∈ L∞(RN )
such that F (x, u) ≥ a(x)|u|µ > 0, for all x ∈ RN and |u| ≤ 1. On the other
hand, Example 1 shows a function which satisfies condition (F1), but does not
satisfy (AR). Requirements similar to (F1)−(F2) were considered by Costa and
Miyagaki in [7] (see also [8, 9]) where a is constant. They obtained a nontriv-
ial solution for autonomous perturbations of the p-Laplacian on a unbounded
cylindrical domain, Ω = Ω0 × RN−K , with Ω0 bounded domain of RK . Their
solution, in the space W 1,p

0 (Ω), is obtained using the mountain pass argument
combined with the concentration-compactness principle of Lions.

In order to get the geometry of the mountain-pass, the number

λ1 = inf{

∫
Ω

|∇u|pdx/

∫
Ω

|u|pdx : u ∈W 1,p
0 (Ω)− {0}},

has been explored, and it is known ([5, 14]) to be equal to the first eigenvalue of
−∆p acting on W 1,p

0 (Ω0). In fact, the following condition for crossing the first
eigenvalue has been used,

lim supu→0 pF (u)/|u|p ≤ ξ < λ1 < η ≤ lim inf |u|→∞ pF (u)/|u|p .

For the non-autonomous perturbations of the p-Laplacian studied here, the
crossing of the first eigenvalue is expressed by requirements such as (F3) and
(F4). These conditions give the geometric shape required by the Mountain Pass
Theorem. Condition (F3) together with the growth condition (f) lead to the
fact that the origin is a local minimum of the associated functional, while as-
sumption (F4) implies that the functional is not bounded below. The interaction
of the potential F (x, u) with the first eigenvalue in elliptic eigenvalue problems
with weights in bounded domains have been considered by de Figueiredo and
Massabó in [11].

Remark 2. The same procedures as in Theorem 1, along with obvious mod-
ifications, show the existence of a nontrivial solution to the non-autonomous
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perturbation of the p-Laplacian studied by Yu in [18]:

l(u) ≡ − div(
(
a(x)|∇u|p−2∇u+ b(x)|u|p−2u

)
= f(x, u) in Ω and u|∂Ω = 0,

where Ω is a C1,δ (0 < δ < 1) exterior domain in RN , 0 < a0 ≤ a(x) ∈ L∞(Ω)∩
Cδ(Ω), and 0 ≤ b(x) ∈ L∞(Ω)∩C(Ω). Following this approach we complement
Theorem 1 in Yu, which corresponds to the to “super-linear case”. In [18],
a solution was obtained by working in the framework of a reflexive Banach
space E, defined as the completion of C∞0 (Ω) with respect to the norm ‖u‖pE =∫

Ω[|∇u|p+w(x)|u|p]dx, where w(x) = max{b(x), (1+|x|)−p}. From the Hardy-
type inequality,

∫
Ω
(1 + |x|)−p|u|pdx ≤

∫
Ω
[|∇u|p dx for all u ∈ C∞0 (Ω) it follows

that the norm induced by the operator l, ‖u‖pl =
∫

Ω[|a(x)∇u|p + b(x)|u|p]dx, is
equivalent to the norm in E. Therefore, in order to establish conditions of type
(F3) and (F4) we must explore “crossing conditions” involving the number

λ1(m) = inf{‖u‖pl /

∫
Ω

m(x)|u|pdx : u ∈ E − {0}},

which is positive in view of the Holder and Sobolev inequalities.

Remark 3. Problems involving unbounded domains have been studied re-
cently by several authors, among others Berestycki and Lions [4], Strauss [17],
and Drábek [12] (see also references therein).

2 Preliminary Results

Throughout this work C will denote a generic positive constant. Results similar
to the one in the next lemma have appeared in [18], and we sketch its proof here
for the benefit of the reader.

Lemma 1 Suppose that f is continuous and satisfies (f). Then the functional
I : D1,p(RN )→ R given by

I(u) =
1

p

∫
RN
|∇u|pdx−

∫
RN

F (x, u)dx,

is well defined and of class C1 with

I ′ (u)ϕ =

∫
RN
|∇u|p−2∇u∇ϕdx−

∫
RN

f(x, u)ϕdx, ∀ϕ ∈ D1,p(RN ). (3)

Moreover, the functional

K (u) =

∫
RN

F (x, u (x)) dx

is weakly continuous and K ′ is compact.
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Proof. As a consequence of assumption (f), with the aid of the Holder and
Sobolev inequalities, we see that I and I ′(u) are well defined on D1,p(RN ).

The idea in the rest of the proof is to use results similar to the ones known
on the case of bounded domains. We also use that the restriction operator
is continuous, that ‖a‖Lr0(RN−B(0,rn)) → 0, and that ‖b‖Ls0(RN−B(0,rn)) → 0
as n → ∞, for any (rn) increasing and unbounded sequence of positive real
numbers.

Let B(0, rn) denote the ball of radius rn centered at the origin of RN , and
let Kn : D1,p(B(0, rn))→ R denote the functional given by

Kn(u) =

∫
B(0,rn)

F (x, u)dx.

In view of (f), it is well known that Kn ∈ C1
(
D1,p (B(0, rn))

)
and that

K ′n(u)(v) =

∫
B(0,rn)

f(x, u)vdx, ∀v ∈ D1,p (B(0, rn)) .

Moreover, Kn is weakly continuous and K
′

n(u) is compact (cf. [10, 15]).
Next we prove that K is weakly continuous. Let uk ⇀ u weakly in D1,p(RN )

as k → ∞. Using hypothesis (f) and the Holder and Sobolev inequalities, we
obtain

|K(uk)−K(u)| ≤ |Kn(uk)−Kn(u)|

+C{‖a‖Lr0(RN−B(0,rn))(‖uk‖
r+1
D1,p + ‖u‖r+1

D1,p)

+‖b‖Ls0(RN−B(0,rn))(‖uk‖
s+1
D1,p + ‖u‖s+1

D1,p)} .

Given ε > 0, we choose rn sufficiently large such that

max{‖a‖Lr0(RN−B(0,rn)), ‖b‖Ls0(RN−B(0,rn))} < ε/2C . (4)

On the other hand, since the restriction operator u 7−→ u|B(0,rn) is continu-
ous from D1,p(RN ) into D1,p(B(0, rn) and Kn is weakly continuous, up to a
subsequence, we have

|Kn(uk)−Kn(u)| < ε/2 . (5)

Combining (4) and (5) we conclude that K is weakly continuous. To prove that
I ∈ C1

(
D1,p(RN )

)
, we must show that K ∈ C1

(
D1,p(RN )

)
and that

K ′(u)v =

∫
RN

f(u, x)vdx,

since the first term in I is C1 and its Fréchet derivative is the first term in
(3). For fixed u ∈ D1,p(RN ) and given ε > 0, we must show that there exists
δ = δ(u, ε) such that

|

∫
RN

F (x, u+ v) dx−

∫
RN

F (x, u)dx−

∫
RN

f(u, x)vdx| ≤ ε‖v‖D1,p ,
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for all v ∈ D1,p(RN ) with ‖v‖D1,p ≤ δ. Notice that if ‖v‖D1,p ≤ 1,

|

∫
RN

F (x, u+ v) dx−

∫
RN

F (x, u)dx−

∫
RN

f(u, x)v dx|

≤ |Kn(u+ v)−Kn(v) −K
′
n(u)v|

+C‖v‖D1,p{‖a‖Lr0(RN−B(0,rn))(‖uk‖
r
D1,p + ‖u‖rD1,p)

+‖b‖Ls0(RN−B(0,rn))(‖uk‖
s
D1,p + ‖u‖sD1,p)} .

Since a ∈ Lr0(RN ) and b ∈ Ls0(RN ), as before, we can choose rn sufficiently
large such that max{‖a‖Lr0(RN−B(0,rn)), ‖b‖Ls0(RN−B(0,rn))} < ε/2C. Using

that Kn ∈ C1
(
D1,p (B(0, rn))

)
, there exists δ = δ(u, ε) such that, for all

v ∈ D1,p(RN ) with ‖v‖D1,p ≤ δ,

|Kn(u+ v)−Kn(v)−K
′
n(u)v| ≤ ε‖v‖D1,p ,

and the proof that I is Fréchet differentiable is complete. To prove that K ′ is
continuous we use the estimate

|K ′ (uk)−K
′ (u) | ≤ |K ′n (uk)−K

′
n (u) |

+C‖a‖Lr0(RN−B(0,rn))(‖uk‖
r
D1,p + ‖u‖rD1,p)

+C‖b‖Ls0(RN−B(0,rn))(‖uk‖
s
D1,p + ‖u‖sD1,p)

together with the facts that K ′n is continuous, and that ‖a‖Lr0(RN−B(0,rn)) and
‖b‖Ls0(RN−B(0,rn)) converge to zero as n→∞.

Finally, to prove compactness, we use the diagonal method. Let uk ⇀ u
weakly in D1,p(RN ) as k → ∞. Since a ∈ Lr0(RN ) and b ∈ Ls0(RN ) we can
choose an increasing and unbounded sequence of positive real numbers (rn) such
that

max{‖a‖Lr0(RN−B(0,rn)), ‖b‖Ls0(RN−B(0,rn))} ≤ 1/2n.

On the other hand, for each natural number n, we have a subsequence (ukn), of
(uk), such that

‖K ′n(ukn)−K
′
n(u)‖ ≤ 1/2n,

since K ′n is compact. Thus, combining these two estimates,

‖K ′(ukn)−K
′(u)‖ ≤ C/n.

Therefore, the diagonal subsequence (ukk) leads to K ′(ukk)→ K ′(u). 2

In the next lemmas we prove that the functional I satisfies a compactness
condition of the Palais-Smale type which was introduced by Cerami in [6].

Definition Let J : E → R be a C1 functional. We say that J satisfies
condition (C) if every sequence (un) in E such that

(i) J(un)→ c
(ii) (1 + ‖un‖D1,p)‖J ′(un)‖(D1,p)∗ → 0,

(6)
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possesses a convergent subsequence.

Using this compactness condition, Bartolo, Benci and Fortunato in [2] ob-
tained rather general minimax results.

Lemma 2 (Compactness Condition I) Assume that (f), (F1), (F2), and
(F3) are satisfied with 0 < N(q − p)/p < µ < q < p∗. Then, the functional I
satisfies the compactness condition (C).

Proof. Let (un) ⊂ D1,p(RN ) be a sequence satisfying (6). From (F1) together
with (6), we have

C ≥ pI(un)− I
′(un)un

=

∫
RN

[f(x, un)un − pF (x, un)]dx

≥

∫
RN

a(x)|un|
µdx,

for some positive constant C and for sufficiently large n. Thus, (un) is a bounded
sequence in the Lebesgue space

Lµa(RN ) = {u :

∫
RN

a(x)|un|
µdx <∞}.

From [16], we have the interpolation inequality

‖u‖Lqa ≤ ‖u‖
1−t
Lµa
‖u‖t

Lp
∗
a
, ∀u ∈ Lµa(RN ) ∩ Lp

∗

a (RN ),

where 0 < µ < q < p∗ and t ∈ (0, 1) are such that 1/q = (1− t)/µ+ t/p∗. The
previous two inequalities and a ∈ L∞(RN ) imply

‖un‖Lqa ≤ C‖un‖
t
Lp∗ . (7)

Using (F2) and (F3) we obtain

F (x, u) ≤
α(x)

p
|u|p + Ca(x)|u|q, ∀(x, u) ∈ RN × R.

Thus, from (i) in (6), we achieve∫
RN
|∇un|

pdx = pI(un) + p

∫
RN

F (x, un) dx

≤ C +

∫
RN

α(x)|un|
pdx+ C

∫
RN

a(x)|un|
q dx ,
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which, in view of the variational characterization of the first eigenvalue λ1(α)
and (7), guarantees that

‖un‖
p
D1,p ≤ C + λ−1

1 (α)‖un‖
p
D1,p + C‖un‖

tq

Lp
∗(RN )

≤ C + λ−1
1 (α)‖un‖

p
D1,p + C‖un‖

tq
D1,p ,

where, in the last estimate we used the Sobolev inequality. Thus,

(1− λ−1
1 (α))‖un‖

p
D1,p ≤ C(1 + ‖un‖

tq
D1,p).

Therefore, due to λ1(α) > 1, the sequence (un) is bounded, since µ > N
p

(q − p)
is equivalent to tq < p.

Finally, by considering the functional J : D1,p(RN )→ R; J(u) = 1
p
‖un‖

p
D1,p ,

whose derivative, J ′ : D1,p(RN )→ J ′(D1,p(RN )), J ′(u)ϕ =
∫
|∇u|p−2∇u∇ϕ, is

an isomorphism, we have

(J ′)−1I ′(u) = u− (J ′)−1K ′(u).

This fact together with ‖I ′(un)‖(D1,p)∗ → 0 and the compactness of K ′, estab-
lished in Lemma 1, imply that (un) has a convergent subsequence. 2

Lemma 3 (Compactness Condition - II) Assume that (f), (F1), and (F5)
hold. Then the functional I satisfies the compactness condition (C), provided
that 0 < µ < p.

Proof. Let (un) be a sequence, in D1,p(RN ), satisfying

(i) I(un)→ c
(ii) (1 + ‖un‖D1,p)‖I ′(un)‖(D1,p)∗ → 0.

(8)

Due to the same argument used in the proof of the previous lemma, we need only
to prove that the sequence (un), is bounded. The proof will be carried out by
contradiction: suppose, up to a subsequence, that ‖un‖D1,p → ∞. Proceeding
as in the proof of Lemma 2, condition (F1) together with (8) lead to

‖un‖Lµa ≤ C. (9)

Note that, by assumption (F1),

d

ds

(
F (x, s)

sp

)
=
f(x, s)s− pF (x, s)

sp+1
≥ a(x)sµ−p−1,

for all x ∈ RN and s > 0. Now, integrating the above inequality over an interval
[u,U ] ⊂ (0,+∞), we obtain

F (x,U)

Up
−
F (x, u)

up
≥

a(x)

µ− p

(
1

Up−µ
−

1

up−µ

)
.
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From the hypothesis µ < p, passing to the lim sup in the last inequality, as
U → +∞, and using condition (F5), we obtain

F (x, u) ≤
1

p
ω(x)up −

a(x)

p− µ
uµ, ∀(x, u) ∈ RN × (0,+∞).

Similarly, we show that

F (x, u) ≤
1

p
ω(x)|u|p −

a(x)

p− µ
|u|µ, ∀(x, u) ∈ RN × R. (10)

Let vn = un/‖un‖D1,p . By passing to subsequences, we can find that vn con-
verges weakly in D1,p(RN ) and almost everywhere to a function v0 ∈ D1,p(RN ).
Therefore, ∫

RN
ω(x)|vn|

p dx→

∫
RN

ω(x)|v0|
p dx , (11)

because, by lemma 1, the functional K(u)
.
=
∫
RN ω(x)|u|pdx is weakly continu-

ous. Dividing (8.i) by ‖un‖
p
D1,p and using estimate (10), we have

1

p

∫
RN
|∇vn|

pdx−
1

p

∫
RN

ω(x)|vn|
pdx+

‖un‖µ

(p− µ)‖un‖D1,p

≤
C

‖un‖
p
D1,p

.

In view of ‖un‖D1,p →∞, (9), and (11), when passing to the limit we obtain

1 ≤

∫
RN

ω(x)|v0|
p ;

therefore, v0 is not identically zero. On the other hand, from (9), we have∫
RN

a(x)|vn|
µdx ≤

C

‖un‖
µ
D1,p

.

Which by Fatou’s Lemma, implies∫
RN

a(x)|v0|
µdx ≤ 0

and v0 = 0, almost everywhere, which is a contradiction. 2

Proof of Theorem 1

To obtain a nontrivial critical point of the functional I, will apply the following
version of the Mountain-Pass Theorem, with condition (C) instead of the usual
Palais-Smale compactness condition.
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Theorem 3 Let E be a real Banach space and I ∈ C1(E,R) satisfying condi-
tion (C). Suppose that I(0) = 0 and for some σ, ρ > 0 and e ∈ E, with ‖e‖ > ρ,
one has σ ≤ inf‖u‖=ρ I(u) and I(e) < 0. Then I has a critical value c ≥ σ,
characterized by

c = inf
γ∈Γ

max
0≤τ≤1

I(γ(τ)),

where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e}.

Remark 4. It is not difficult to see that the same proof of the standard
Mountain-Pass Theorem (cf. [15]) applies to the present context; since the
deformation theorem, Theorem 1.3 in [2], is obtained with condition (C) in a
Banach space framework. It is worth to observe also that this version of the
Mountain-Pass Theorem can be obtained as a consequence of Lemma 5 in [13].

The proof of Theorem 1 follows from Lemma 2, where the compactness
condition is proved, and the next lemma, where the geometric conditions are
checked.

Lemma 4 (Mountain-Pass Geometry) Suppose (f), (F3), and (F4) hold.
Then there exist positive constants σ and ρ such that I(u) ≥ σ if ‖u‖D1,p = ρ.
Moreover, there exists ϕ ∈ D1,p(RN ) such that I(tϕ)→ −∞ as t→∞.

Proof. Using the growth condition (f) and (F3), there exists a positive con-
stant Cδ such that

F (x, u) ≤
α(x)|u|p

p
+ Cδ|u|

p∗ .

Hence

I(u) ≥
1

p

∫
RN
|∇u|pdx−

1

p

∫
RN

α(x)|u|pdx− Cδ

∫
RN
|u|p

∗

dx

≥
1

p
(1− λ−1

1 (α))‖u‖pD1,p − Ĉδ‖u‖
p∗

D1,p ,

for some positive constant Ĉδ, where in the last inequality we have used the vari-
ational characterization of the first eigenvalue λ1(α) and the Sobolev inequality.
Since λ1(α) > 1, we can fix positive constants σ and ρ such that I(u) ≥ σ if
‖u‖D1,p = ρ.

Let us prove the second assertion. Consider ε > 0 such that λ1(ω) + ε < 1,
and choose ϕ ∈ C∞0 (RN )− {0} satisfying∫

RN
|∇ϕ|pdx ≤ (λ1(ω) + ε)

∫
RN

ω|ϕ|pdx.

From (F4), we have∫
RN

F (x, tϕ) dx =

∫
{x:|tϕ(x)|≥R}∩suppϕ

F (x, tϕ) dx
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+

∫
{x:|tϕ(x)|≤R}∩suppϕ

F (x, tϕ) dx

≥
|t|p

p

∫
{x:|tϕ(x)|≥R}∩suppϕ

ω(x)|ϕ|p dx− C ,

for some positive constant C. Thus,

I(tϕ) ≤
|t|p

p

[∫
RN
|∇ϕ|p dx−

∫
{x:|tϕ(x)|≥R}∩suppϕ

ω|ϕ|p dx

]
+ C

=
|t|p

p

[ ∫
RN
|∇ϕ|pdx−

∫
RN

ω|ϕ|p dx

+

∫
{x:|tϕ(x)|<R}∩suppϕ

ω|ϕ|pdx
]

Since, by the Lebesgue convergence Theorem,

lim
|t|→∞

∫
{x:|tϕ(x)|<R}∩suppϕ

ω|ϕ|pdx = 0,

there exists M > 0, such that∫
{x:|tϕ(x)|<R}∩suppϕ

ω|ϕ|pdx ≤ −
(λ1(ω) + ε− 1)

2

∫
RN

ω|ϕ|pdx, ∀|t| ≥M.

This fact together with our choice of ϕ imply that

I(tu) ≤
|t|p

p

(λ1(ω) + ε− 1)

2

∫
RN

ω|ϕ|pdx+ C, ∀|t| ≥M.

Thus, we have I(tu) < 0, for sufficiently large |t|. 2

Proof of Theorem 2

We shall obtain here the critical point by minimization. We have proved in
Lemma 3 that assumptions (F1) and (F5) imply

F (x, u) ≤
1

p
ω(x)|u|p −

a(x)

p− µ
|u|µ, ∀(x, u) ∈ RN × R.

Combining this estimate with the variational characterization of the first eigen-
value λ1(α), yields

I(u) ≥
1

p

∫
RN
|∇u|p dx−

1

p

∫
RN

ω(x)|u|p dx+
1

p− µ

∫
RN

a(x)|u|µ dx

≥
1

p
(1− λ−1

1 (ω))

∫
RN
|∇u|p dx+

1

p− µ

∫
RN

a(x)|u|µ dx.
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Thus, the functional I is bounded below, since λ1(ω) ≥ 1. Therefore, in view
of Lemma 3 in [13] and Lemma 3, I has a critical point u which is its global
minimum. 2

Examples

Example 1. Let F : RN × R→ R given by

F (x, u) =

{ 1
pω(x)|u|p ln |u| if u 6= 0,

0 if u = 0,

where ω is a positive measurable function in L∞(RN ) ∩ LN/p(RN ) such that
λ1(ω) < 1. Notice that, for all x ∈ RN and u 6= 0,

u
∂F

∂u
(x, u)− µF (x, u) =

(p− µ)

p
ω(x)|u|p ln |u|+

1

p
ω(x)|u|p.

Thus, condition (F1) is satisfied with µ = p, since

u
∂F

∂u
(x, u)− pF (x, u) =

1

p
ω (x) |u|p > 0, ∀x ∈ RN ,∀u 6= 0.

It is not difficult to see that the remaining hypotheses of Theorem 1 are satisfied.
On the other hand, if µ > p,

u
∂F

∂u
(x, u)− µF (x, u) = [(p− µ) ln |u|+ 1]

1

p
ω(x)|u|p < 0

for all x ∈ RN and |u| sufficiently large. Consequently, Ambrosetti-Rabinowitz
condition (AR) does not hold.

Example 2. Let ψ : [1,+∞) → [0,+∞) be a continuous nontrivial function

satisfying
∫ +∞

1 ψ(t)dt < ∞, and let H(u) = d +
∫ u

1 [ψ(t) + tµ−p−1] dt, u ≥ 1,
where d is such that limu→+∞H(u) = 1. Let F (x, u) = ω(x)upH(u)/p for x ∈
RN , u ≥ 1, where ω is a positive measurable function in L∞(RN )∩LN/p(RN ),
such that λ1(ω) ≥ 1. Notice that limu→+∞ pF (x, u)/up = ω(x) and that

u
∂F

∂u
(x, u)− pF (x, u) =

1

p
ω(x)up+1H ′(u) ≥

1

p
ω(x)uµ, x ∈ RN , u ≥ 1.

It is not difficult to see that F can be extended as a function F : RN × R→ R
such that the conditions of Theorem 2 are satisfied for all u ∈ R (cf. [9]).
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[13] João Marcos B. do Ó, Existence of Solutions for Quasilinear Elliptic Equa-
tions, J. Math. Anal. Appl., 207(1997), 104-126.

[14] M. J. Esteban, Nonlinear elliptic problems in strip-like domains: Symmetry
of positive vortex rings, Nonlinear Anal. 7(1983), 365-379.



EJDE–1997/11 João Marcos B. do Ó 15
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