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Abstract. In this article, we show the existence of at least three weak so-
lutions for p(x)-biharmonic equations with Navier boundary conditions. The

proof of the main result is based on variational methods. We also provide an

example to illustrate our results.

1. Introduction

The aim of this article is to establish the existence of at least three weak solutions
for the Navier boundary-value problem

∆2
p(x)u = λf(x, u(x)) + µg(x, u(x)), x ∈ Ω,

u = ∆u = 0, x ∈ ∂Ω
(1.1)

where Ω ⊂ RN (N ≥ 2) is a bounded domain with boundary of class C1, λ > 0,
µ ≥ 0, f, g ∈ C0(Ω× R), p(·) ∈ C0(Ω) with

max{2, N
2
} < p− := inf

x∈Ω
p(x) ≤ p+ := sup

x∈Ω

p(x)

and ∆2
p(x)u := ∆(|∆|p(x)−2∆u) which is the operator of fourth order called the p(x)-

biharmonic operator. This operator is a natural generalization of the p-biharmonic
operator (where p > 1 is a constant).

The operator ∆p(x)u := div(|∇u|p(x)−2∇u) is called the p(x)-Laplacian which is
a generalization of the p-Laplacian and possesses more complicated nonlinearities
than the p-Laplacian, for example, it is inhomogeneous.

Recently, the investigation of differential equations and variational problems with
variable exponent has become a new and interesting topic. The study of various
mathematical problems with variable exponent has been received considerable at-
tention in recent years. These problems are interesting in applications, for example
in nonlinear elasticity theory and in modelling electrorheological fluids (Acerbi and
Mingione [1], Diening [11], Halsey [13], Ruz̆ic̆ka [37], Rajagopal and Ruz̆ic̆ka [33])
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and from the study of elastic mechanics (Zhikov [42]), and raise many difficult
mathematical problems. After this pioneering models, many other applications
of differential operators with variable exponents have appeared in a large range
of fields, such as image restoration (Chen et al. [9]) and mathematical biology
(Fragnelli [12]).

Fourth-order equations can describe the static form change of beam or the sport
of rigid body. In [22], Lazer and Mckenna have pointed out that this type of
nonlinearity furnishes a model to study travelling waves in suspension bridges.
Numerous authors investigated the existence and multiplicity of solutions for the
problems involving biharmonic, p-biharmonic and p(x)-biharmonic operators. We
refer to [2, 4, 8, 10, 14, 16, 17, 18, 19, 21, 23, 24, 26, 27, 28, 38, 39, 40] for advances
and references of this area. For example, Li and Tang in [24] by using a three
critical points theorem obtained due to Ricceri, established the existence of at least
three weak solutions for a class of Navier boundary value problem involving the
p-biharmonic

∆(|∆u|p−2∆u) = λf(x, u) + µg(x, u), x ∈ Ω,
u = ∆u = 0, x ∈ ∂Ω

where λ, µ ∈ [0,+∞) and f : Ω̄×R→ R is a continuous function, and g : Ω×R→ R
is a Carathéodory function. Yin and Xu in [39] based on a three critical points
theorem due to Ricceri, obtained the existence of at least three weak solutions for
a class of quasilinear elliptic equations involving the p(x)-biharmonic operator with
Navier boundary value conditions. Also in [2] by using critical point theory, the
existence of infinitely many weak solutions for a class of Navier boundary-value
problem depending on two parameters and involving the p(x)-biharmonic operator

∆2
p(x)u = λf(x, u(x)) + µg(x, u(x)), x ∈ Ω,

u = ∆u = 0, x ∈ ∂Ω

where λ is a positive parameter, µ is a non-negative parameter, f, g ∈ C0(Ω× R),
was studied. Kong in [19] using variational arguments based on Ekeland’s varia-
tional principle and some recent theory on the generalized Lebesgue-Sobolev spaces
Lp(x)(Ω) and W k,p(x)(Ω) studied a p(x)-biharmonic nonlinear eigenvalue prob-
lem, while in [19] using variational arguments based on the mountain pass lemma
and some recent theory on the generalized Lebesgue-Sobolev spaces Lp(x)(Ω) and
W k,p(x)(Ω) he studied the multiplicity of weak solutions to a fourth order nonlin-
ear elliptic problem with a p(x)-biharmonic operator. In [17], based on variational
methods and critical point theory, the existence of solutions for the problem (1.1),
in the case µ = 0, was investigated. In fact, the existence of two solutions for the
problem under some algebraic conditions with the classical Ambrosetti-Rabinowitz
condition on the nonlinear term was established. Moreover, by combining two
algebraic conditions on the nonlinear term which guarantee the existence of two
solutions, applying the mountain pass theorem given by Pucci and Serrin the ex-
istence of the third solution for the problem was ensured, while in [16] based on
variational methods the existence of at least one weak solution for the same problem
was discussed.

We refer the reader to the recent monograph by Molica Bisci, Rădulescu and
Servadei [25] for related problems concerning the variational analysis of solutions of
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some classes of boundary value problems. Also for further studies on this subject,
we refer the reader to [3, 7, 31, 32, 34].

Inspired by the above works, in this article, we discuss the existence of at least
three weak solutions for (1.1), in which two parameters are involved. Precise esti-
mates of these two parameters λ and µ will be given. No asymptotic condition at
infinity is required on the nonlinear term. In Theorem 3.1 we establish the exis-
tence of at least three weak solutions for the problem (1.1). We present example
3.2 which illustrates Theorem 3.1. Theorem 3.3 is a consequence of Theorem 3.1.
As a consequence of Theorem 3.3, we obtain Theorem 3.5 for the autonomous case
and µ = 0. Finally, we present Example 3.6 in which the hypotheses of Theorems
3.5 are fulfilled.

2. Preliminaries

Let X be a nonempty set and Φ,Ψ : X → R be two functions. For all r, r1, r2 >
infX Φ, r2 > r1, r3 > 0, we define

ϕ(r) := inf
u∈Φ−1(−∞,r)

(supu∈Φ−1(−∞,r) Ψ(u))−Ψ(u)
r − Φ(u)

,

β(r1, r2) := inf
u∈Φ−1(−∞,r1)

sup
v∈Φ−1[r1,r2)

Ψ(v)−Ψ(u)
Φ(v)− Φ(u)

,

γ(r2, r3) :=
supu∈Φ−1(−∞,r2+r3) Ψ(u)

r3
,

α(r1, r2, r3) := max{ϕ(r1), ϕ(r2), γ(r2, r3)}.

We shall discuss the existence of at least three solutions to (1.1). Our main tool to
prove the results is [5, Theorem 3.3] that we now recall as follows.

Theorem 2.1. Let X be a reflexive real Banach space, Φ : X → R be a convex,
coercive and continuously Gâteaux differentiable functional whose Gâteaux deriva-
tive admits a continuous inverse on X∗, Ψ : X → R be a continuously Gâteaux
differentiable functional whose Gâteaux derivative is compact, such that

(A1) infX Φ = Φ(0) = Ψ(0) = 0;
(A2) for every u1, u2 ∈ X such that Ψ(u1) ≥ 0 and Ψ(u2) ≥ 0, one has

inf
s∈[0,1]

Ψ(su1 + (1− s)u2) ≥ 0.

Assume that there are three positive constants r1, r2, r3 with r1 < r2, such that
(A3) ϕ(r1) < β(r1, r2);
(A4) ϕ(r2) < β(r1, r2);
(A5) γ(r2, r3) < β(r1, r2).

Then, for each λ ∈] 1
β(r1,r2) ,

1
α(r1,r2,r3) [ the functional Φ − λΨ admits three critical

points u1, u2, u3 such that u1 ∈ Φ−1(]−∞, r1[), u2 ∈ Φ−1([r1, r2[) and u3 ∈ Φ−1(]−
∞, r2 + r3[).

Theorem 2.1 is a counter-part of a three critical point theorem by Ricceri [35, 36],
which extends previous results by Pucci and Serrin [29, 30].

We refer the interested reader to the papers [6, 15, 20] in which Theorem 2.1
has been successfully used to ensure the existence of at least three solutions for
boundary value problems.
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For the reader’s convenience, we recall some background facts concerning the
Lebesgue-Sobolev spaces with variable exponent and introduce some notation. For
more details, we refer the reader to [31, 32]. Set

C+(Ω) := {h : h ∈ C(Ω) and h(x) > 1,∀x ∈ Ω}.
For p(·) ∈ C+(Ω), define the variable exponent Lebesgue space Lp(·)(Ω) by

Lp(·)(Ω) := {u : Ω→ R measurable and
∫

Ω

|u(x)|p(x)dx <∞}.

We define a norm, the so-called Luxemburg norm, on this space by the formula

|u|p(·) = inf{β > 0 :
∫

Ω

|u(x)
β
|p(x)dx ≤ 1}

and (Lp(·)(Ω), |u|p(·)) becomes a Banach space, and we call it variable exponent
Lebesgue space. Define the variable exponent Sobolev space Wm,p(·)(Ω) by

Wm,p(·)(Ω) = {u ∈ Lp(·)(Ω)| Dαu ∈ Lp(·)(Ω), |α| ≤ m}
where

Dαu =
∂|α|

∂xα1
1 · · · ∂x

αN

N

u

with α = (α1, . . . , αN ) is a multi-index and |α| =
∑N
i=1 αi. The space Wm,p(·)(Ω),

equipped with the norm

‖u‖m,p(·) :=
∑
|α|≤m

|Dαu|p(·),

becomes a separable, reflexive and uniformly convex Banach space. We denote by
X∗ its dual.

We denote
X := W 2,p(·)(Ω) ∩W 1,p(·)

0 (Ω)

where Wm,p(·)
0 (Ω) denote the closure of C∞0 (Ω) in Wm,p(·)(Ω).

For u ∈ X, we define

‖u‖ = inf{β > 0 :
∫

Ω

|∆u(x)
β
|p(x)dx ≤ 1}.

Clearly, we observe that X endowed with the above norm is a separable and reflexive
Banach space.

Remark 2.2. From [41], the norm ‖u‖2,p(·) is equivalent to the norm |∆u|p(·) in
the space X. Consequently, the norms ‖u‖2,p(·), ‖u‖ and |∆u|p(·) are equivalent.
For the rest of this article, we use ‖u‖ instead of ‖u‖2,p(·) on X.

Proposition 2.3 ([34]). The conjugate space of Lp(·)(Ω) is Lq(·)(Ω) where q(·) is
the conjugate function of p(·); i.e.,

1
p(·)

+
1
q(·)

= 1.

For u ∈ Lp(·)(Ω) and v ∈ Lq(·)(Ω), we have∣∣ ∫
Ω

u(x)v(x)dx
∣∣ ≤ (

1
p−

+
1
q−

)|u|p(·)|v|q(·) ≤ 2|u|p(·)|v|q(·).

Proposition 2.4 ([34]). Let ρ(u) =
∫

Ω
|u|p(x)dx. For u, un ∈ Lp(·)(Ω), we have
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(1) |u|p(·) < (=;>); 1⇔ ρ(u) < (=;>) 1;

(2) |u|p(·) > 1⇒ |u|p
−

p(·) ≤ ρ(u) ≤ |u|p
+

p(·);

(3) |u|p(·) < 1⇒ |u|p
+

p(·) ≤ ρ(u) ≤ |u|p
−

p(·);
(4) |un|p(·) → 0⇔ ρ(un)→ 0;
(5) |un|p(·) →∞⇔ ρ(un)→∞.

From Proposition 2.4, for u ∈ Lp(·)(Ω) the following inequalities hold:

‖u‖p
−
≤
∫

Ω

|∆u|p(x)dx ≤ ‖u‖p
+
, if ‖u‖ ≥ 1, (2.1)

‖u‖p
+
≤
∫

Ω

|∆u|p(x)dx ≤ ‖u‖p
−
, if ‖u‖ ≤ 1. (2.2)

Proposition 2.5 ([38]). If Ω ⊂ RN is a bounded domain, then the embedding
X ↪→ C0(Ω) is compact whenever N

2 < p−.

From Proposition 2.5, there exists a positive constant c depending on p(·), N
and Ω such that

‖u‖∞ = sup
x∈Ω

|u(x)| ≤ c‖u‖, ∀u ∈ X. (2.3)

Corresponding to f and g we introduce the functions F : Ω × R → R and G :
Ω× R→ R, as follows

F (x, t) :=
∫ t

0

f(x, ξ)dξ for (x, t) ∈ Ω× R,

G(x, t) :=
∫ t

0

f(x, ξ)dξ for (x, t) ∈ Ω× R.

We say that a function u ∈ X is a weak solution of (1.1) if∫
Ω

|∆u(x)|p(x)−2∆u(x)∆v(x)dx−λ
∫

Ω

f(x, u(x))v(x)dx−µ
∫

Ω

g(x, u(x))v(x)dx = 0

holds for all v ∈ X.
In the sequel meas(Ω) denotes the Lebesgue measure of the set Ω.

3. Main results

In this section, we formulate our main results on the existence of at least three
weak solutions for problem (1.1). For our convenience, set

Gθ :=
∫

Ω

max
|ξ|≤θ

G(x, ξ)dx for θ > 0,

Gη := meas(Ω) inf
Ω×[0,η]

G(x, t) for η > 0.

If g is sign-changing, then clearly Gθ ≥ 0 and Gη ≤ 0.
Fix x0 ∈ Ω and choose s1, s2 with 0 < s1 < s2, such that B(x0, s2) ⊆ Ω where

B(x, s) stands for the open ball in RN of radius s and center x. Let

σ :=
2cp
−
π

N
2 (sN2 − sN1 )
NΓ(N2 )

×max
{[12(N + 2)2(s1 + s2)

(s2 − s1)3

]p−
,
[12(N + 2)2(s1 + s2)

(s2 − s1)3

]p+}
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and

ρ :=
2cp
−
π

N
2 (sN2 − sN1 )
NΓ(N2 )

×min
{[12(N + 2)2(s1 + s2)

(s2 − s1)3

]p−
,
[12(N + 2)2(s1 + s2)

(s2 − s1)3

]p+}
.

Fixing four positive constants θ1, θ2, θ3 and η ≥ 1, we put

δλ,g := min
{ 1
p+cp−

min
{θp−1 − λp+cp

− ∫
Ω
F (x, θ1)dx

Gθ1

,
θp
−

2 − λp+cp
− ∫

Ω
F (x, θ2)dx

Gθ2
,

(θp
−

3 − θ
p−

2 )− λp+cp
− ∫

Ω
F (x, θ3)dx

Gθ3

}
,

σηp+

p−cp− − λ
( ∫

B(x0,s1)
F (x, η)dx−

∫
Ω
F (x, θ1)dx

)
Gη −Gθ1

}
.

(3.1)

Theorem 3.1. Assume that there exist positive constants θ1, θ2, θ3 and η ≥ 1 with
θ1 < ρ

1
p− η, η < min{( p+

σp− )
1

p+ θ
p−/p+

2 , θ2} and θ2 < θ3 such that

(A6) f(x, t) ≥ 0 for each (x, t) ∈ Ω× [−θ3, θ3];
(A7)

max
{∫

Ω
F (x, θ1)dx

θp
−

1

,

∫
Ω
F (x, θ2)dx

θp
−

2

,

∫
Ω
F (x, θ3)dx

θp
−

3 − θ
p−

2

}
<

p−

p+σ

∫
B(x0,s1)

F (x, η)dx−
∫

Ω
F (x, θ1)dx

ηp+
.

Then, for every

λ ∈ Λ :=
( σηp+

p−cp−∫
B(x0,s1)

F (x, η)dx−
∫

Ω
F (x, θ1)dx

,

1
p+cp−

min
{ θp

−

1∫
Ω
F (x, θ1)dx

,
θp
−

2∫
Ω
F (x, θ2)dx

,
θp
−

3 − θ
p−

2∫
Ω
F (x, θ3)dx

})
and for every non-negative continuous function g : Ω×R→ R, there exists δλ,g > 0
given by (3.1) such that, for each µ ∈ [0, δλ,g), problem (1.1) has at least three weak
solutions u1, u2 and u3 such that maxx∈Ω |u1(x)| < θ1, maxx∈Ω |u2(x)| < θ2 and
maxx∈Ω |u3(x)| < θ3.

Proof. Our goal is to apply Theorem 2.1 to problem (1.1). We consider the auxiliary
problem

∆2
p(x)u = λf̂(x, u(x)) + µg(x, u(x)), x ∈ Ω,

u = ∆u = 0, x ∈ ∂Ω
(3.2)

where f̂ ∈ C0(Ω× R) defined setting

f̂(x, ξ) =


f(x, 0), if ξ < −θ3,

f(x, ξ), if − θ3 ≤ ξ ≤ θ3,

f(x, θ3), if ξ > θ3.
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If a weak solution of (3.2) satisfies the condition −θ3 ≤ u(x) ≤ θ3 for every x ∈ Ω,
then, clearly it turns to be also a weak solution of (1.1). Therefore, for our goal,
it is sufficient to show that our conclusion holds for (1.1). Consider the functionals
Φ,Ψ for every u ∈ X, defined by

Φ(u) =
∫

Ω

1
p(x)
|∆u(x)|p(x)dx, (3.3)

Ψ(u) =
∫

Ω

F (x, u(x))dx+
µ

λ

∫
Ω

G(x, u(x))dx. (3.4)

Let us prove that the functionals Φ and Ψ satisfy the required conditions in Theorem
2.1. It is well known that Ψ is a differentiable functional whose differential at the
point u ∈ X is

Ψ′(u)(v) =
∫

Ω

f(x, u(x))v(x)dx+
µ

λ

∫
Ω

g(x, u(x))v(x)dx

for every v ∈ X, as well as it is sequentially weakly upper semicontinuous. Recalling
(2.1), we have

Φ(u) ≥ 1
p+
‖u‖p

−
,

for all u ∈ X with ‖u‖ > 1, which implies Φ is coercive. Moreover, Φ is continuously
differentiable whose differential at the point u ∈ X is

Φ′(u)(v) =
∫

Ω

|∆u(x)|p(x)−2∆u(x)∆v(x)dx

for every v ∈ X. Also, Φ′ : X → X∗ is a compact operator (see [38, Lemma
3.1]). Furthermore, Φ is sequentially weakly lower semicontinuous. Therefore, we
observe that the regularity assumptions on Φ and Ψ, as requested of Theorem 2.1,
are satisfied. Define w by setting

w(x) :=


0, x ∈ Ω \B(x0, s2),
η[3(l4−s42)−4(s1+s2)(l3−s32)+6s1s2(l2−s22)]

(s2−s1)3(s1+s2) , x ∈ B(x0, s2) \B(x0, s1),

η, x ∈ B(x0, s1)

where l = dist(x, x0) =
√∑N

i=1(xi − x0
i )2. Then

∂w(x)
∂xi

=


0, if x ∈ Ω \B(x0, s2) ∪B(x0, s1),
12η[l2(xi−x0

i )−l(s1+s2)(xi−x0
i )+s1s2(xi−x0

i )]
(s2−s1)3(s1+s2) ,

if x ∈ B(x0, s2) \B(x0, s1),

∂2w(x)
∂x2

i

=


0, if x ∈ Ω \B(x0, s2) ∪B(x0, s1),
12η[s1s2+(2l−s1−s2)(xi−x0

i )2/l−(s1+s2−l)l]
(s2−s1)3(s1+s2) ,

if x ∈ B(x0, s2) \B(x0, s1),

N∑
i=1

∂2w(x)
∂x2

i

=


0, if x ∈ Ω \B(x0, s2) ∪B(x0, s1),
12η[(N+2)l2−(N+1)(s1+s2)l+Ns1s2]

(s2−s1)3(s1+s2) ,

if x ∈ B(x0, s2) \B(x0, s1).



8 S. HEIDARKHANI, G. A. AFROUZI, S. MORADI, G. CARISTI EJDE-2017/25

So, one has

ρηp
−

p+cp−
≤ Φ(w) =

∫
B(x0,s2)\B(x0,s1)

1
p(x)
|∆w(x)|p(x)dx ≤ σηp

+

p−cp−
.

On the other hand, bearing (A6) in mind and since g is non-negative, from the
definition of Ψ, we infer

Ψ(w) =
∫

Ω

[
F (x,w(x)) +

µ

λ
G(x,w(x))

]
dx ≥

∫
B(x0,s1)

F (x, η)dx.

Choose r1 = 1
p+

(
θ1
c

)p− , r2 = 1
p+

(
θ2
c

)p− and r3 = 1
p+

( θp−
3 −θ

p−
2

cp−

)
. From the condi-

tions θ1 < ρ
1

p− η, η < ( p+

σp− )
1

p+ θ
p−/p+

2 and θ2 < θ3, we achieve r1 < Φ(w) < r2 and
r3 > 0. For all u ∈ X with Φ(u) < r1, taking (2.1) and (2.2) into account, one has

‖u‖ ≤ max
{

(p+r1)
1

p+ , (p+r1)
1

p−
}
.

So, thanks to the embedding X ↪→ C0(Ω) (see (2.3)), one has ‖u‖∞ < θ1. From
the definition of r1, it follows that

Φ−1(−∞, r1) = {u ∈ X; Φ(u) < r1} ⊆ {u ∈ X; |u| ≤ θ1}.
Hence, by using assumption (A6), one has

sup
u∈Φ−1(−∞,r1)

∫
Ω

F (x, u(x))dx ≤
∫

Ω

sup
|t|≤θ1

F (x, t)dx ≤
∫

Ω

F (x, θ1)dx.

As above, we can obtain that

sup
u∈Φ−1(−∞,r2)

∫
Ω

F (x, u(x))dx ≤
∫

Ω

F (x, θ2)dx,

sup
u∈Φ−1(−∞,r2+r3)

∫
Ω

F (x, u(x))dx ≤
∫

Ω

F (x, θ3)dx.

Therefore, since 0 ∈ Φ−1(−∞, r1) and Φ(0) = Ψ(0) = 0, one has

ϕ(r1) = inf
u∈Φ−1(−∞,r1)

(supu∈Φ−1(−∞,r1) Ψ(u))−Ψ(u)
r1 − Φ(u)

≤
supu∈Φ−1(−∞,r1) Ψ(u)

r1

=
supu∈Φ−1(−∞,r1)

∫
Ω

[F (x, u(x)) + µ
λG(x, u(x))]dx

r1

≤
∫

Ω
F (x, θ1)dx+ µ

λG
θ1

1
p+

(
θ1
c

)p− ,

ϕ(r2) ≤
supu∈Φ−1(−∞,r2) Ψ(u)

r2
=

supu∈Φ−1(−∞,r2)

∫
Ω

[F (x, u(x)) + µ
λG(x, u(x))]dx

r2

≤
∫

Ω
F (x, θ2)dx+ µ

λG
θ2

1
p+

(
θ2
c

)p−
and

γ(r2, r3) ≤
supu∈Φ−1(−∞,r2+r3) Ψ(u)

r3
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=
supu∈Φ−1(−∞,r2+r3)

∫
Ω

[F (x, u(x)) + µ
λG(x, u(x))]dx

r3

≤
∫

Ω
F (x, θ3)dx+ µ

λG
θ3

1
p+

(
θp−
3 −θ

p−
2

cp−

) .

On the other hand, for each u ∈ Φ−1(−∞, r1) one has

β(r1, r2) ≥

∫
B(x0,s1)

F (x, η)dx−
∫

Ω
F (x, θ1)dx+ µ

λ (Gη −Gθ1)

Φ(w)− Φ(u)

≥

∫
B(x0,s1)

F (x, η)dx−
∫

Ω
F (x, θ1)dx+ µ

λ (Gη −Gθ1)
σηp+

p−cp−

.

From (A7) we obtain α(r1, r2, r3) < β(r1, r2). Finally, we verify that Φ − λΨ
satisfies assumption (A2) of Theorem 2.1. Let u1 and u2 be two local minima for
Φ − λΨ. Then u1 and u2 are critical points for Φ − λΨ, and so, they are weak
solutions of (1.1). Since we assumed f is nonnegative and since g is non-negative,
for fixed λ > 0 and µ ≥ 0 we have (λf +µg)(x, su1 +(1−s)u2) ≥ 0 for all s ∈ [0, 1],
and consequently, Ψ(su1 + (1− s)u2) ≥ 0, for every s ∈ [0, 1]. Hence, Theorem 2.1
implies that for every

λ ∈
( σηp+

p−cp−∫
B(x0,s1)

F (x, η)dx−
∫

Ω
F (x, θ1)dx

,

1
p+cp−

min
{ θp

−

1∫
Ω
F (x, θ1)dx

,
θp
−

2∫
Ω
F (x, θ2)dx

,
θp
−

3 − θ
p−

2∫
Ω
F (x, θ3)dx

})
and µ ∈ [0, δλ,g), the functional Φ−λΨ has three critical points ui, i = 1, 2, 3, in X
such that Φ(u1) < r1, Φ(u2) < r2 and Φ(u3) < r2+r3, that is, maxx∈Ω |u1(x)| < θ1,
maxx∈Ω |u2(x)| < θ2 and maxx∈Ω |u3(x)| < θ3. Then, taking into account the fact
that the solutions of problem (1.1) are exactly critical points of the functional
Φ− λΨ we have the desired conclusion. �

The following example illustrates the result of Theorem 3.1.

Example 3.2. Let Ω = {(x, y) ∈ R2 : x2 + y2 ≤ 2}. Consider the problem{
∆2
p(x,y)u = λf(u) + µg(u), (x, y) ∈ Ω,

u = ∆u = 0, (x, y) ∈ ∂Ω
(3.5)

where p(x, y) = x2 + y2 + 2 for all (x, y) ∈ Ω and

f(t) =

{
5t4, if t ≤ 1,
5√
t
, if t > 1.

By the expression of f we have

F (t) =

{
t5, if t ≤ 1,
10
√
t− 9, if t > 1.

Direct calculations give p− = 2 and p+ = 4. By choosing x0 = 0, s1 = 1 and
s2 = 2, we obtain σ = 39 × 224πc2 and ρ = 35 × 212πc2. We consider two cases for
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c. First, suppose that c ≤ 1. Choosing η = 1, θ1 = 10−8c, θ2 = 1012
√

2
and θ3 = 1012

we see that

max
{meas(Ω)F (θ1)

θ2
1

,
meas(Ω)F (θ2)

θ2
2

,
meas(Ω)F (θ3)

θ2
3 − θ2

2

}
=

8× 107π − 72π
1024

<
1

39 × 225πc2
(π − 4× 10−24c3π)

=
p−

p+σ

∫
B(x0,s1)

F (x, η)dx−
∫

Ω
F (x, θ1)dx

ηp+
,

which means the assumption (A7) is satisfied. It is easy to see that other assump-
tions of Theorem 3.1 are also fulfilled. Therefore, in this case, it follows that for
every

λ ∈
( 39 × 223π

π − 4× 10−24c3π
,

1024

32× 107πc2 − 288πc2
)

and for every non-negative continuous function g : R → R, there exists δ̂ > 0
such that for each µ ∈ [0, δ̂), then problem (3.5) has at least three weak solu-
tions u1, u2 and u3 such that maxx∈Ω |u1(x)| < 10−8c, maxx∈Ω |u2(x)| < 1012

√
2

and
maxx∈Ω |u3(x)| < 1012.

Now, suppose that c > 1. Choosing η = 1, θ1 = 10−8

c , θ2 = 1012
√

2
c3/2 and

θ3 = 1012c3/2, we have

max
{meas(Ω)F (θ1)

θ2
1

,
meas(Ω)F (θ2)

θ2
2

,
meas(Ω)F (θ3)

θ2
3 − θ2

2

}
=

8× 107πc
3
4 − 72π

1024c3

<
1

39 × 225πc2
(π − 4× 10−24π

c3
)

=
p−

p+σ

∫
B(x0,s1)

F (x, η)dx−
∫

Ω
F (x, θ1)dx

ηp+
,

which means the assumption (A7) is fulfilled. Clearly, other assumptions of Theo-
rem 3.1 in this case are satisfied too. Then, in this case, it follows for every

λ ∈
( 39 × 223π

π − 4×10−24π
c3

,
1024c3

32× 107πc
11
4 − 288πc2

)
and for every non-negative continuous function g : R → R, there exists δ > 0
such that for each µ ∈ [0, δ), the problem (3.5) has at least three weak solutions
u1, u2 and u3 such that maxx∈Ω |u1(x)| < 10−8

c , maxx∈Ω |u2(x)| < 1012
√

2
c3/2 and

maxx∈Ω |u3(x)| < 1012c3/2.
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For given positive constants θ1, θ4 and η ≥ 1, we set

δ′λ,g := min
{ 1
p+cp−

min
{θp−1 − p+cp

−
λ
∫

Ω
F (x, θ1)dx

Gθ1
,

θp
−

4 − 2p+cp
−
λ
∫

Ω
F (x, 1

p−√2
θ4)dx

2G
1

p−√2
θ4

,
θp
−

4 − 2p+cp
−
λ
∫

Ω
F (x, θ4)dx

2Gθ4

}
,

σηp+

p−cp− − λ
( ∫

B(x0,s1)
F (x, η)dx−

∫
Ω
F (x, θ1)dx

)
Gη −Gθ1

}
.

(3.6)

Now, we deduce the following straightforward consequence of Theorem 3.1.

Theorem 3.3. Assume that there exist positive constants θ1, θ4 and η ≥ 1 with
θ1 < min{ηp+/p− , ρ

1
p− η} and η < min{( p+

2σp− )
1

p+ θ
p−/p+

4 , θ4} such that

(A8) f(x, t) ≥ 0 for each (x, t) ∈ Ω× [−θ4, θ4];
(A9)

max
{∫

Ω
F (x, θ1)dx

θp
−

1

,
2
∫

Ω
F (x, θ4)dx

θp
−

4

}
<

p−

p+σ + p−

∫
B(x0,s1)

F (x, η)dx

ηp+
.

Then, for every

λ ∈ Λ′ :=
( (p+σ + p−)ηp

+

p−p+cp−
∫
B(x0,s1)

F (x, η)dx
,

1
p+cp−

min
{ θp

−

1∫
Ω
F (x, θ1)dx

,
θp
−

4

2
∫

Ω
F (x, θ4)dx

})
and for every non-negative continuous function g : Ω×R→ R, there exists δ′λ,g > 0
given by (3.6) such that, for each µ ∈ [0, δ′λ,g), problem (1.1) has at least three weak
solutions u1, u2 and u3 such that maxx∈Ω |u1(x)| < θ1, maxx∈Ω |u2(x)| < 1

p−√2
θ4

and maxx∈Ω |u3(x)| < θ4.

Proof. Choose θ2 = 1
p−√2

θ4 and θ3 = θ4. So, from (A9) one has∫
Ω
F (x, θ2)dx

θp
−

2

=
2
∫

Ω
F (x, 1

p−√2
θ4)dx

θp
−

4

≤
2
∫

Ω
F (x, θ4)dx

θp
−

4

<
p−

p+σ + p−

∫
B(x0,s1)

F (x, η)dx

ηp+

(3.7)

and ∫
Ω
F (x, θ3)dx

θp
−

3 − θ
p−

2

=
2
∫

Ω
F (x, θ4)dx

θp
−

4

<
p−

p+σ + p−

∫
B(x0,s1)

F (x, η)dx

ηp+
. (3.8)

Moreover, since θ1 < ηp
+/p− , from (A9) we have

p−

p+σ

∫
B(x0,s1)

F (x, η)dx−
∫

Ω
F (x, θ1)dx

ηp+

>
p−

p+σ

∫
B(x0,s1)

F (x, η)dx

ηp+
− p−

p+σ

∫
Ω
F (x, θ1)dx

θp
−

1
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>
p−

p+σ

∫
B(x0,s1)

F (x, η)dx

ηp+
− (p−)2

p+σ(p+σ + p−)

∫
B(x0,s1)

F (x, η)dx

ηp+

=
p−

p+σ + p−

∫
B(x0,s1)

F (x, η)dx

ηp+
.

Hence, from (A9), (3.7) and (3.8), it is easy to observe that the assumption (A7)
of Theorem 3.1 is satisfied, and it follows the conclusion. �

Remark 3.4. We observe that, in our results, no asymptotic conditions on f and
g are needed and only algebraic conditions on f are imposed to guarantee the
existence of solutions. Moreover, in the conclusions of the above results, one of the
three solutions may be trivial since the values of f(x, 0) and g(x, 0) for x ∈ Ω are
not determined.

Here, we want to point out a simple consequence of Theorem 3.3 when f does
not depend upon x and µ = 0. To be precise, consider the problem

∆2
p(x)u = λf(u(x)), x ∈ Ω,

u = ∆u = 0, x ∈ ∂Ω
(3.9)

where f : R→ R is a continues function. Put

F (t) =
∫ t

0

f(ξ)dξ for t ∈ R.

Theorem 3.5. Let f be a non-negative and nonzero function such that

lim
t→0+

f(t)
|t|p−−1

= lim
t→+∞

f(t)
|t|p−−1

= 0. (3.10)

Then, for every λ > λ∗ where

λ∗ = inf
{ (p+σ + p−)ηp

+

p−p+cp− meas(B(x0, s1))F (η)
: η ≥ 1, F (η) > 0

}
problem (3.9) has at least two non-trivial weak solutions.

Proof. Fix λ > λ∗ and let η ≥ 1 such that F (η) > 0 and

λ >
(p+σ + p−)ηp

+

p−p+cp− meas(B(x0, s1))F (η)
.

From (3.10) there is θ1 > 0 such that

θ1 < min{ηp
+/p− , ρ

1
p− η} and

F (θ1)

θp
−

1

<
1

λmeas(Ω)p+cp−
,

and θ4 > 0 such that

η < min
{

(
p+

2σp−
)

1
p+ θ

p−/p+

4 , θ4

}
,

F (θ4)

θp
−

4

<
1

2λmeas(Ω)p+cp−
.

Therefore, all assumptions of Theorem 3.3 are fulfilled and it ensures the conclusion.
�

Finally, we present an example in which the hypotheses of Theorem 3.5 are
satisfied.
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Example 3.6. We consider the problem

∆2
p(x,y)u = λf(u), (x, y) ∈ Ω,

u = ∆u = 0, (x, y) ∈ ∂Ω
(3.11)

where Ω = {(x, y) ∈ R2 : x2 + y2 ≤ 2}, p(x, y) = x2 + y2 + 2 for (x, y) ∈ Ω and

f(t) =

{
4t3, if t ≤ 1,
4√
t
, if t > 1.

A direct calculation shows that

F (t) =

{
t4, if t ≤ 1,
8
√
t− 7, if t > 1.

By simple calculations, we obtain p− = 2 and p+ = 4. Choosing x0 = 0, s1 = 1,
s2 = 2 and η = 1, we observe that all assumptions of Theorem 3.5 are fulfilled.
Therefore, it follows that for every

λ >
226 × 39πc2 + 2

8πc2
,

problem (3.11) has at least two distinct non-trivial weak solutions.
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