
EXPLOITING SHARED-MEMORY REUSE THROUGH SOURCE-LEVEL

TRANSFORMATION OF CUDA KERNELS

THESIS

Presented to the Graduate Council of
Texas State University-San Marcos

in Partial Fulfillment
of the Requirements

for the degree

Master of SCIENCE

by

Swapneela P. Unkule,B.E.

San Marcos,Texas
December 2011

EXPLOITING SHARED-MEMORY REUSE THROUGH SOURCE-LEVEL

TRANSFORMATION OF CUDA KERNELS

Committee Members Approved:

Apan Qasem, Chair

Martin Burtscher

Khosrow Kaikhah

Xiao Chen

Approved:

J. Michael Willoughby
Dean of the Graduate College

COPYRIGHT

by

Swpaneela Padmakar Unkule

2011

FAIR USE AND AUTHORS PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553, sec-
tion 107). Consistent with fair use as defined in the Copyright Laws, brief quotations from
this material are allowed with proper acknowledgment. Use of this material for financial
gain without the authors express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Swapneela Unkule, authorize duplication of this
work, in whole or in part, for educational or scholarly purposes only.

ACKNOWLEDGEMENTS

It is a pleasure to thank many people who made this thesis possible.

First and foremost I offer my sincere gratitude to my advisor Dr. Apan Qasem.

His guidance helped me in all the time of research and writing of this thesis. With his

enthusiasm, inspiration, and great efforts to explain things clearly and simply, he helped to

make this study successful. His wide knowledge and logical way of thinking have been of

great value for me. I could not have imagined having a better advisor and mentor.

I wish to express sincere thanks to my committee members Dr. Burtscher, Dr.

Kaikhah and Dr. Chen for their encouragement and insightful comments. I appreciate their

support. I am grateful to all the members of Computer Science department for assisting me

in many different ways. I am indebted to my student colleagues and friends for providing a

stimulating and fun environment to learn and grow. I offer my regards and blessings to all

of those who supported me in any respect during the completion of the project.

My special gratitude is due to my sister, brother-in-law and my dearest niece

Nishigandha who were always there to encourage me. I wish to thank my parents. They

raised me, supported me, taught me and loved me. To them I dedicate this thesis. Lastly,

and most importantly, the one above all of us, the omnipresent God, for answering my

prayers and giving me strength. Thank you so much Dear Lord.

This manuscript was submitted on October 28, 2011.

v

TABLE OF CONTENTS
Page

ACKNOWLEDGEMENTS . vi

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER

1 INTRODUCTION . 1

2 BACKGROUND . 7

3 RELATED WORK . 11

4 OVERVIEW OF FRAMEWORK . 14
4.1 Kernel Extraction . 14
4.2 Code Restructuring with CREST 15
4.3 Performance Analysis . 15

5 USER-GUIDED THREAD COARSENING 17
5.1 Notation and Terminology . 17
5.2 Dependence Analysis . 18
5.3 Safety Analysis . 19
5.4 Detecting Inter-thread Locality . 20
5.5 Code Transformation . 22
5.6 Estimating Register Pressure . 25

6 EXPERIMENTAL RESULTS . 27
6.1 Experimental Setup . 27
6.2 Impact on Register Pressure . 28
6.3 Performance Potential . 30
6.4 Multi-dimensional Coarsening . 31
6.5 Performance Sensitivity . 32
6.6 Overall Performance . 33
6.7 Register Estimates . 33

7 CONCLUSION AND FUTURE WORK 35

BIBLIOGRAPHY . 36

vi

LIST OF TABLES

Table Page

1 Memory access pattern . 9

2 List of kernels used for experiments . 27

3 Register estimation results . 33

vii

LIST OF FIGURES

Figure Page

1 Performance growth of NVIDIA’s GPUs vs Intels CPUs 2

2 Inter thread locality in stencil computation 4

3 CUDA thread hierarchy . 7

4 CUDA memory hierarchy . 8

5 Compilation flow with NVCC . 9

6 Overview of CREST . 14

7 CREST usage . 15

8 Simple thread coarsening . 22

9 Thread coarsening in the presence of syncthreads() 23

10 Thread coarsening in the presence of syncthreads() in loops 24

11 Performance sensitivity to register pressure 28

12 Performance characteristics of matrixmul 29

13 Performance characteristics of synth . 30

14 Multi-dimensional coarsening with transpose 31

15 Multi-dimensional coarsening with transpose kernel 32

16 Performance sensitivity for reduce . 32

17 Performance improvement by thread coarsening 33

viii

CHAPTER 1: INTRODUCTION

Concern over power consumption and heat dissipation has triggered a fundamental

shift in processor design. The trend of packing more transistors into smaller space, driven

by Moore’s law, has been replaced by the multicore design paradigm, where multiple sim-

plified cores are integrated into a single chip. The multicore design favors on-chip par-

allelism over increasingly faster processor speed and makes it imperative that parallelism

is achieved at multiple levels for achieving scalable high-performance. Since parallelism

is not automatic, the shift towards multicore processors also implies that the software has

more responsibility in extracting and exploiting the available parallelism.

Along with the multicore processors, the newest emerging technology to support

parallelism is GPU computing. GPU computing is the use of graphics processing units to

do general purpose scientific and engineering computing. The modern GPU is not only a

powerful graphics engine but also a highly parallel programmable processor featuring peak

arithmetic and memory bandwidth that substantially outpaces its CPU counterpart. GPUs

are massively multithreaded many-core chips with hundreds of cores and thousands of con-

current threads. The rapid increase in the performance of graphics hardware, coupled with

recent improvements in its programmability, has made graphics hardware a compelling

platform for computationally demanding tasks. As seen from Figure 1, GPU performance

growth has been substantially higher that CPU performance growth in the last few years.

Also, GPUs have a wide variety of application domains ranging from numeric computing

operations, data mining, fluid dynamics, bioinformatics to physical simulations and much

more. As the programmability of GPUs increases, the application domains are likely to

1

2

increase as well. Although the current power consumption of GPUs as a unit is still high,

because of their enormous compute power their FLOPS-per-watt ratio is much superior to

conventional CPUs [24]. Moreover, the cost per GFLOP for GPUs is an order of magnitude

less than that of mainstream supercomputers. These features have made GPUs a highly at-

tractive platform for the HPC community.

Figure 1: Performance growth of NVIDIA’s GPUs vs Intels CPUs [5]

Despite the fact that GPUs have dramatically increased the performance potential

of computing systems, achieving a high fraction of peak on these platforms still remains a

major challenge. GPUs are much more specialized than conventional CPUs and hence are

not applicable to as wide a range of HPC applications. Implementation of any algorithm

other than very regular streaming applications requires significant programming effort and

careful orchestration of thread granularity parameters to extract a sufficient amount of par-

allelism. Thus, many of the recent research efforts in GPU computing have focused on

implementing and tuning specific applications or classes of algorithms [11, 18, 24, 26, 31].

As a result, the body of literature on general strategies for optimizing for GPUs is fairly

thin. Although many CPU-centric optimizations can be effective for GPUs, at least in prin-

ciple, to date there have been few studies that have attempted to do a careful evaluation of

CPU optimizations that can be used on GPU [19, 27].

To fully realize the power of general purpose computation on GPUs, two key is-

sues need to be considered. First how to parallelize an application into concurrent work

3

items and distribute the workloads in a hierarchy of thread blocks and threads; and sec-

ond, how to efficiently utilize the GPU memory hierarchy, given its dominant impact on

performance. The memory subsystem on the GPU is structured somewhat differently than

its CPU counterpart. Effectively utilizing the memory system on the GPU is particularly

challenging because of the division of memory into various subspaces including global,

local, constant, shared and texture memory. Improved memory performance depends not

only on exploiting locality at higher levels of memory but also the placement of data in the

different subspaces [30].

GPU programming gives the programmer flexibility in deciding the number of

threads running per block and setting up a limit on the amount of registers and/or shared

memory used in a given kernel. For making full use of GPU capabilities it is necessary

to strike the right balance between each thread’s resource usage and number of simultane-

ously active threads.

This research investigates software strategies for better utilization of memory re-

sources on GPUs. Specifically, we focus on how controlling thread granularity can lead to

better utilization of the memory hierarchy and improved performance. Each multiproces-

sor contains one set of local 32-bit registers with size up to 32kB and shared memory up to

48kB. Since a multiprocessor’s registers and shared memory are split among all the threads

of block, the number of blocks a multiprocessor can process at once depends on the number

of registers and the amount of shared memory required per block for a given kernel. There-

fore, to achieve high performance on GPUs, it is necessary to understand the vital role of

on-chip resources and their interplay with other components of the architecture. Reducing

the number of threads running in a block implies each thread has access to a larger number

of registers and is less likely to incur bank conflicts while accessing shared memory. Bank

conflicts occur when multiple requests are made for data from the same bank. On the other

hand, having fewer threads per block will result in lower occupancy. Occupancy on GPUs

4

is defined as the ratio of the number of active warps and the maximum allowed warps on a

multiprocessor and is a good indicator of the amount of achieved parallelism. In general, it

is advisable to run large number of threads in order to achieve higher performance. This is

because a large number of threads leads to higher occupancy which opens up more oppor-

tunities for latency hiding, resulting in higher throughput. However, it has also been shown

that running fewer threads per block, although leading to lower occupancy, can improve

overall performance [30]. This performance improvement is attributed to fewer accesses to

shared memory and better utilization of registers per thread. In other studies, it has been

shown that increased register pressure per thread can lead to lower occupancy and huge

slowdowns in performance because of accesses to global memory [7, 29].

Register and shared memory usage is directly influenced by thread granularity or

the amount of work done per thread. Thread granularity of CUDA programs can be con-

trolled by a source-level transformation called thread coarsening. Thread coarsening can

be used to determine the amount of work done per thread and help in exploiting inter-thread

data reuse.

__global__ void stencil (float *A,

 float *B, int nx){

 __shared__ float C[nx];

 int i = threadIdx.x;

 if (i > 0 && i < nx)

 {

 A[i] = B[i] + B[i-1] +

 C[i] + C[i-1];

 }

// kernel invocation

stencil<<< 1, N>>>(A,B,N);

(a) kernel with one update per thread

__global__ void stencil (float *A,

 float *B, int nx){

 __shared__ float C[nx];

 int i = threadIdx.x * 2;

 if (i > 0 && i < nx - 1){

 A[i] = B[i] + B[i-1] + C[i] + C[i-1];

 A[i+1] = B[i+1] + B[i] + C[i+1] + C[i];

 }

}

// kernel invocation

stencil<<< 1, N/2>>>(A,B,N);

(b) kernel with two update per thread

Inter thread reuse

Potential

 Register

 reuse

Figure 2: Inter thread locality in stencil computation

5

We use a simple example to illustrate the interaction between data locality and

thread granularity and discuss its performance implications. Consider the CUDA kernel

shown in Figure 2(a). In this kernel, all threads are organized in one single-dimensional

thread block and each thread computes one element of array A, based on elements in B

and C. Arrays A and B are allocated in global memory whereas C is allocated in shared

memory. Because the computation is based on neighboring elements in B and C, the kernel

exhibits temporal reuse in both shared and global memory. Values in B and C, accessed in

thread i are reused by thread i+1. Although the register pool on a multiprocessor is shared

among threads in a warp, the distribution of registers occurs before thread execution and,

hence during execution a thread cannot access registers that belong to a co-running thread.

This implies that inter-thread data reuse will remain unexploited in the version of code

shown in Figure 2(a). In Figure 2(b), the kernel is transformed to perform two updates

per thread and is invoked with half as many threads as the original version, thereby increas-

ing thread granularity. This variant converts inter-thread reuse of data elements in B and

C into intra-thread reuse, allowing the compiler to allocate the values B[i] and C[i] into

registers of thread i, leading to better register reuse. Thus, the coarsening transformation

shown in Figure 2(b) can potentially reduce shared memory traffic by 25%. In the CUDA

programming model, however, employing a fewer number of threads for the same compu-

tation generally implies a lower warp occupancy. For the kernel in Figure 2, if we assume

8 registers per thread and 512 threads per block, then for a GPU with Compute Capability

(CC) 2.0, we would have a 100% occupancy. The occupancy remains at a 100% when we

reduce thread count to 256. However, it falls to just 67% when the thread count is reduced

to 128 because only 8 blocks can be mapped to an Streaming Multiprocessor simultane-

ously. Thus, for this kernel, executing two updates per thread will almost inevitably lead

to performance gains but any further coarsening will have to be weighed against the cost

of the reduced occupancy. The other performance consideration in this context is register

pressure. Increasing thread granularity can potentially increase the number of required reg-

isters. This can not only lead to spills and cause more accesses to global memory but also

6

have an impact on occupancy. If we assume a register count increase of two per coarsening

factor for the example kernel then, for a factor of 12, the number of required registers is

32, which drops the occupancy down to 33%. Therefore, all three factors inter-thread data

locality, register pressure and occupancy, need to be considered for profitable thread coars-

ening.

To understand the impact of thread coarsening on CUDA performance, this re-

search develops CREST, a source-to-source transformation that automatically applies thread

coarsening to CUDA programs. CREST takes a CUDA file as an input which is passed

through kernel extractor which extracts the kernel, along with the thread block size and the

coarsening factor provided as a pragma. I have develop the analysis required to determine

the legality and profitability of coarsening. I also develop an analytical model to estimate

the register pressure for a thread at the source level. I have provided experimental results

on a Fermi GPU to evaluate the effectiveness of our proposed strategy.

CHAPTER 2: BACKGROUND

CUDA (Compute Unified Device Architecture) is a parallel computing architec-

ture developed by NVIDIA Corp. It is designed to explore computing on GPUs with a

simple user interface, eliminating the need to understand the complex graphics interface.

CUDA is accessible to software developers through variants of industry standard program-

ming languages. Using CUDA, the latest GPUs become accessible for computation like

CPUs. CUDA C programming involves running code on two different platforms: a host

system that relies on one or more CPUs to perform calculations, and the device, which is

one or more CUDA-enabled NVIDIA GPUs. Unlike CPUs, GPUs have a parallel through-

put architecture that emphasizes executing many concurrent threads. In response to this

difference, CUDA extends C by allowing the programmer to define C functions, called

kernels, that, when called, are executed N times in parallel by N different CUDA threads,

as opposed to only once like regular C functions. CUDA threads are parallel portions of

Figure 3: CUDA thread hierarchy [12]

7

8

an application that are executed on the device as kernels. One kernel is executed at a time

and many threads execute each kernel. The C runtime for CUDA handles kernel loading

and preparing kernels before they are launched. CUDA context management, kernel con-

figuration, and parameter passing are all performed by the CUDA runtime. Fine-grained,

data-parallel threads are the fundamental means of parallel execution in CUDA. The kernel

functions typically generate a large number of threads to exploit data parallelism. All the

threads that are generated by a kernel during an invocation are collectively called a grid.

At the top level of the hierarchy, a grid is organized as a one or two dimensional array of

blocks as shown in Figure 3. The number of blocks in each dimension is specified by the

first special parameter given at the kernel launch. A thread block is a batch of threads that

can co-operate with each other. At the bottom level of the hierarchy, all blocks of a grid are

organized into an upto three dimensional array of threads. Each thread and block have an

ID that they use to compute memory addresses and make control decisions.

Figure 4: CUDA memory hierarchy

CUDA threads may access data from multiple memory spaces during their execu-

tion as shown in Figure 4. Each thread has a private local memory in DRAM. Each thread

block has a shared memory visible to all threads of the block and with the same lifetime

as the block. Finally, all threads have access to the same global memory. Threads within a

9

block cooperate via shared memory. Threads in different blocks cooperate through global

memory.The fastest memory available on GPU is the register space. Registers are accessi-

ble for read and write, local to each thread. The number of registers assigned to a thread is

rounded up to a multiple of four [1]. Table 1 summarizes different memory access patterns.

Table 1: Memory access pattern

Memory Location Cached Access Scope
Register On-Chip No Read-Write One thread

Local Off-Chip No* Read-Write One thread
Shared On-Chip N/A Read-Write All threads in a block
Global Off-Chip No* Read-Write All threads + host

Constant Off-Chip Yes Read-Only All threads + host

* cached in L1 on Fermi

Any source file containing CUDA language extensions must be compiled with

NVCC. NVCC is a compiler driver that simplifies the process of compiling CUDA code.

It provides simple and familiar command line options and executes them by invoking a

collection of tools that implement the different compilation stages.

Figure 5: Compilation flow with NVCC [9]

10

Figure 5 shows NVCC’s basic workflow, which consists of separating device

code from host code and compiling the device code into a binary form or cubin object. The

generated host code is output either as C code that is left to be compiled using another tool

or as object code directly by invoking the host compiler during the last compilation stage.

CHAPTER 3: RELATED WORK

Because general-purpose computing on GPUs is a fairly new idea and the technol-

ogy is still maturing, much of the software-based performance improvement strategies have

been limited to manual optimization. Ryoo et al. [25] present a general framework for op-

timizing applications on GPUs. Their proposed strategies includes utilizing many threads

to hide latency, and using local memories to alleviate pressure on global memory band-

width. Govindaraju et al. develop new FFT algorithms for the GPUs and hand optimize the

kernels to achieve impressive performance gains over the CPU-based implementation [16].

The key transformation used in their work was the combining of transpose operations with

FFT computation. Demmel and Volkov [30] manually optimize the matrix multiplication

kernel and produce a variant that is 60% faster than the autotuned version in CUBLAS 1.1.

Among the optimization strategies discussed in this work are the use of shorter vectors at

program level and the utilization of the register file as the primary on-chip storage space.

There has been some work in combining automatic and semi-automatic tuning

approaches with GPU code optimization. Murthy et al.have developed a semi-automatic,

compile time approach for identifying suitable unroll factors for selected loops in GPU

programs [21]. The framework statically estimates execution cycle count of a given CUDA

loop and uses the information to select optimal unroll factors. Liu et al. [34] propose a GPU

adaptive optimization framework (GADAPT) for automatic prediction of near-optimal con-

figuration of parameters that affect GPU performance. They take unoptimized CUDA code

as input and traverse an optimization search space to determine optimal parameters to trans-

form the unoptimized input CUDA code into optimized CUDA code. Choi et al. present a

11

12

model-driven framework for automated performance tuning of sparse matrix-vector multi-

ply (SpMV) on systems accelerated by GPU [11]. Their framework yields huge speedups

for SpMV for the class of matrices with dense block substructure, such as those arising

in finite element method applications. Williams et al. have also applied model-based

autotuning techniques to sparse matrix computation that have yielded significant perfor-

mance gains over CPU-based autotuned kernels [32]. Nukada and Matsuoko also provide

a highly-optimized 3D-FFT kernel [23]. Work on autotuning general applications on the

GPU is somewhat limited. Govindaraju et al. propose autotuning techniques for improving

memory performance for some scientific applications [15] and Datta et al. apply autotun-

ing to optimize stencil kernels for the GPU [14]. The MAGMA project has focused on

autotuning dense linear algebra kernels for the GPU, successfully transcending the ATLAS

model to achieve as much as a factor of 20 speedup on some kernels [22]. Grauer-Gray and

Cavazos present an autotuning strategy for utilizing the register and shared memory space

for belief propagation algorithms [17].

Automatic approaches to code transformation has been mainly focused on auto-

matically translating C code into efficient parallel CUDA kernels. Baskaran et al. present

an automatic code transformation system (PLUTO) that generates parallel CUDA code

from sequential C code, for programs with affine references [8]. The performance of the

automatically generated CUDA code is close to hand-optimized CUDA code and con-

siderably better than the benchmarks’ performance on a multicore CPU. Lee et al. [20]

take a similar approach and develop a compiler framework for automatic translation from

OpenMP to CUDA. The system handles both regular and irregular programs, parallelized

using OpenMP primitives. Work sharing constructs in OpenMP are translated into distribu-

tion of work across threads in CUDA. However, the system does not optimize data access

costs for access in global memory and also does not make use of on-chip shared memory.

With some different approach compared to the above work a novel optimizing

13

compiler for general purpose computation on GPU is developed [33], which addresses two

major challenges, effective utilization of the GPU memory hierarchy and judicious man-

agement of parallelism. This compiler accepts a naive GPU kernel function as an input.

Then it analyzes the code, identifies its memory access patterns, and generates both the

optimized kernel and the kernel invocation parameters. To generate the optimized kernel,

the compiler performs optimizations like thread/thread-block merge to enable data reuse,

grouping of memory access to vector data accesses, converting non-coalesced memory ac-

cesses into coalesced accesses, data prefetching and eliminating partition camping. Similar

to this work, a compiler framework for automatic parallelization and performance opti-

mization of affine loop nests on GPUs is presented by Manikandan et al. [7]. This work fo-

cuses on three significant performance influencing factors: efficient global memory access,

shared memory access and reduction of the dynamic instruction count. The optimization

techniques used include memory coalescing as well as model-driven empirical search for

optimal tile size and unroll factors,thereby providing a new approach for compiler opti-

mization on GPU.

The work presented in this thesis distinguishes itself from earlier work in two

ways. First the focus here is on automatic compiler methods rather than manual optimiza-

tion techniques. Second, the approach supports direct optimization of CUDA source rather

than C or OpenMP variants. Our research is similar to the compiler developed for gen-

erating optimized kernels. I am using the thread coarsening transformation for exploiting

inter-thread locality. I do not claim that this approach is superior to the approaches pro-

posed previously. Rather, my framework can be used in conjunction with many of the

strategies mentioned in this section.

CHAPTER 4: OVERVIEW OF FRAMEWORK

Figure 6 gives an overview of the code restructuring and tuning framework of

CUDA kernel, develop for this thesis. The framework leverages several existing tools,

including nvcc for compiling CUDA kernels and cudaprof for collection of performance

metrics. The kernel extractor and code restructurer have been developed from scratch. We

describe these tools next.

Kernel
Extractor

nvcc

CUDA Prof

(PAPI)

CUBIN
Code

Restructurer E
X

E
C

U
T

E

FEEDBACK

PSEAT

search + ML modeling

(Annotated)

CUDA

Source

SVM KCCA GA
planned

extension

Figure 6: Overview of CREST

4.1 Kernel Extraction

To facilitate analysis, a standalone Perl script is used to extract the kernel from the CUDA

source file before parsing. This simplifies the parser by setting aside everything external to

the kernel being analyzed. The extraction is performed on a line-by-line basis, using regular

expressions to detect the kernel-specific portion of the source file. The kernel is extracted

into a separate file for further processing and everything else is held in temporary files for

later reassembly. The kernel extraction is designed to be independent of the succeeding

phases and can be used in other applications where CUDA kernels need to be examined.

14

15

4.2 Code Restructuring with CREST

At the heart of the framework is a source-to-source code transformation tool (CREST) that

analyses the CUDA kernels and implements the thread coarsening transformation, among

others. A key feature of this tool is that it provides fine-grain control over optimizations

through the use of source code directives. With CREST, transformations can be applied at

the kernel level with parameters provided by the user. There are three parameters required

for the coarsening transformation. The first parameter is the file name. The second param-

eter is the coarsening factor and the third parameter is the block size as shown in Figure

7. The coarsening factor and block size specified using pragma values are extracted by the

front-end and then supplied as input parameters to the main coarsening routine.

CREST transpose_kernel 2 64

Kernel file
Coarsening
Factor

Block Size

Input Parameters

Figure 7: CREST usage

4.3 Performance Analysis

Many performance metrics used for tuning applications on CPUs are also relevant for GPU-

based tuning. There are several metrics, however, that hold special significance on GPUs

and there are some metrics that are not as pertinent. For instance, register spill count may

have less significance on GPUs, since typically the total number of registers available on

the GPU is much more than the number of registers available on the CPU. On the other

hand, because GPUs rely on having a large number of active warps for latency hiding,

metrics such as occupancy have special significance. On GPU platforms, the relationship

between code transformations and different aspects of performance is yet to be established.

16

Currently, we are manually observing the different performance metrics values

measured by the CUDA profiler and we use them in deciding the right coarsening factor

that will produce improved performance over the baseline. After every transformation. we

execute the kernel and check the cuda profile.log file created by CUDA profiler. Then we

manually compare the execution time required by the kernel for different coarsening factors

and select the one with the lowest execution time. In the future the performance metrics

will be fed directly into PSEAT to allow for autotuning of coarsening factors.

CHAPTER 5: USER-GUIDED THREAD COARSENING

In this section, we describe the thread coarsening transformation and discuss the

analysis needed to apply this transformation safely and profitably.

5.1 Notation and Terminology

We introduce the following notation and terminology to describe our transformation frame-

work.

N number of simple high-level statements in kernel

T number of threads in thread block

si ith static statement in kernel

synchi syncthreads primitive, executed as ith statement

in kernel

si � sj data dependence from si to sj

S(i,p) a statement instance: ith statement in kernel, executed

by pth thread

S(i,p) � S(j,q) a dependence between statement instances S(i,p) and

S(j,q), where S(i,p) is the source and S(j,q) is the sink

of the dependence

Cx coarsening factor along dimension x

17

18

5.2 Dependence Analysis

The goal of our dependence analysis framework is to determine if there is a dependence

between two statement instances. We require that the input to our framework is a CUDA

program that is legally parallelized for execution on a GPU. We make a assumption that,

in the absence of syncthreads() primitives (i.e., barrier synchronization), statement

instances that belong to different threads (or thread blocks) are independent. Here we are

not taking into account the lock step execution of threads in same warp. Thus, given this

framework we can make the following claim:

if @ syncthreads() primitives in the kernel body then

@S(i,p) � S(j,q), ∀i, j ∈ {N} and ∀p, q ∈ {T}

To detect and estimate inter-thread data locality, the analyzer needs to consider

read-read reuse of data, which may or may not occur between statement instances, regard-

less of the parallel configuration. For this reason, we extend our dependence framework to

handle input dependencies. Our framework handles the following two cases of dependence

between two statement instances:

(i) ∃ S(i,p) � S(j,q), iff S(i,p) and S(j,q) access the same memory location

(ii) ∃ S(i,p) � S(j,q), iff ∃ synchk such that k < j or i < k

Conventional dependence analysis [6] can be applied to statements within the

body of a kernel to determine if statements access the same memory location. For CUDA

kernels, one issue that complicates the analysis is that memory accesses can be depen-

dent on the value of the thread ID. For this reason, a subscript analysis of the source may

show two statements as accessing the same memory location e.g. the references a[i] and

a[i] but, if i depends upon thread id then they would access different locations. To handle

this situation we take the following strategy we first identify all statements in the kernel

that are dependent on thread ID values; we expand index expressions to replace subscripts

19

with thread ID values (using scalar renaming [13]) and then apply the subscript test on

the expanded expressions. Once all data dependencies have been identified, our depen-

dence analyzer makes another pass to identify dependencies that arise from the presence of

syncthreads(). This final pass mainly involves checking for the existence of condition

(ii) mentioned above.

5.3 Safety Analysis

For simplicity, we only describe the analysis necessary to safely apply thread coarsen-

ing along the innermost dimension, x. The same principles can be applied, in a relatively

straightforward manner, for coarsening along the y dimension and also for increasing thread

block granularity (i.e., fusing two thread blocks).

Two factors determine the legality of the coarsening transformation. One is the re-

lationship between the coarsening factor Cx and the number of threads in the original kernel

T , and the other is the presence of coarsening preventing dependencies. For coarsening to

be legal, there have to be enough threads available in the original configuration to satisfy

the coarsening factor. If the coarsening factor is larger than the original thread count, extra

work will be performed in each thread, violating the semantics. Also, when Cx does not

evenly divide T , special handling of the remaining threads is necessary, which complicates

the transformation and is likely to have a negative impact on overall performance. For this

reason, we enforce the constraint that Cx evenly divides T for coarsening to be legal. Thus,

the first legality constraint for coarsening is as follows:

T mod Cx = 0 (1)

A dependence between two statement instances will cause coarsening to be ille-

gal if, as a result of coarsening, the direction of the dependence is reversed. We refer to

such a dependence as a coarsening preventing dependence (cpd) and derive the following

20

conditions under which a cpd will not occur when the coarsening factor is Cx.

@ S(i,p) � S(j,p−q), where i, j ∈ {N}, p ∈ {Cx + 1, . . . , T}, q ∈ {1, . . . , Cx} (2)

or

∀S(i,p) � S(j,p−q), where i, j ∈ {N}, p ∈ {Cx + 1, . . . , T}, q ∈ {1, . . . , Cx}

@ S(k,p) � S(j,p−q), where k ∈ {j + 1, . . . , N} (3)

Constraint (2) describes the situation where we have no dependence between state-

ment instances within the coarsening range. Note, we are only concerned about depen-

dencies that emanate from a higher numbered thread. For the coarsening transformation,

dependencies that emanate from a lower numbered thread are irrelevant, since, by default,

in the merged code body after transformation, all statement instances in p get executed

after the last statement in q, where p > q. Thus, all such dependencies will be preserved

automatically. Constraint (3) considers the case where there is a dependence within the

coarsening range but we can avoid violating this dependence if, in the merged thread body,

we can move the source statement instance above the sink of the dependence.

5.4 Detecting Inter-thread Locality

A CUDA kernel exhibits inter-thread data locality if two threads in the same thread block

accesses the same location, either in shared memory or global memory. Generally, scalars

are allocated to registers within each thread and hence coarsening does not help with reuse

of such values. Thus, we focus on array references, which are typically not allocated to

registers by the compiler. Also, on the Fermi chip, it is possible for two threads to access a

memory locations that map to the same cache line.

Given this framework, an array reference in the kernel can only exhibit either

self-temporal or group-temporal inter-thread data reuse. Self-temporal reuse can only oc-

21

cur if no subscript in the array reference depends on any of the thread ID variables. If

the subscripts are not dependent on thread ID variables it implies that, all threads in the

thread block will access the same memory location for that reference. Thus, identifying

self-temporal reuse is simply a matter of inspecting each array reference and determining

if the subscript values are independent of thread ID values.

To compute group-temporal reuse, we introduce the notion of thread independent

dependence. There is a thread independent dependence between two references if it can

be established that there is a dependence between the two references when the entire ker-

nel executes as a single thread (i.e., executes sequentially). The advantage of using thread

independent dependencies is that their existence can be determined by using conventional

dependence tests. Once group-temporal reuse has been established between two references

M1 and M2 in a thread independent way, we determine if the locality translates to inter-

thread locality when the task is decomposed into threads. For inter-thread reuse to exist,

at least one subscript in either reference has to be dependent on the thread ID value. This

implies that, although M1 and M2 access the same memory location, the access may occur

from two different threads. We formally, define the presence of inter-thread reuse as fol-

lows.

There is inter-thread data reuse in kernel K if

(i) there exists an array reference A with subscripts i0, . . . , in in K such that no i ∈

{i0, . . . , in} is a function of the thread ID value

(ii) there exists thread independent dependence between array reference M1 and M2, and

at least one subscript in M1 or M2 is an affine function of the thread ID

22

5.5 Code Transformation

The goal of the coarsening transformation is to restructure the kernel to perform more work

in each thread. In essence, for a coarsening factor CF (CF > 1), we want thread i to

execute statements in thread (i + 1) through (i + CF − 1). This can be achieved by in-

troducing a loop in the kernel body that iterates CF times. Of course, the main challenge

is in determining what statements are included in the body of the loop and how the mem-

ory references need to be adjusted to affect the change. Figure 8 shows parts of a CUDA

kernel in its original and thread coarsened form. Here, BS represents block size while CF

represents the coarsening factor. In the coarsened version, a loop is added around the core

computation to execute CF times. The variable i is used to store the value of the current

thread id. This variable is incremented by BS/CF during each iteration of the loop, en-

suring that the correct location in array as is accessed.

__global__ void kernel1(int *in) {

 __shared__ float as[];

 sum = as[threadIdx.x] + 1;

}

(a) before

__global__ void kernel1(int *in){

 __shared__ float as[];

 int __i = threadIdx.x;

 for(int _k=0;_k<CF; _k++, __i+=(BS/CF)){

 sum = as[__i] + 1;

 }

}

(b) after

Figure 8: Simple thread coarsening

As mentioned in Section 5.3, the presence of syncthreads(), which acts as

a barrier synchronization, complicates the coarsening transformation. We identify three

separate cases related to syncthreads() that need to be handled by our algorithm:

(i) syncthreads() is not present in the kernel:

This is the simple case that corresponds to constraint (2), derived in Section 5.3. So

we assume that there are no dependencies between statement in different threads.

Therefore, in this case, we only need to insert the loop and adjust the memory refer-

ences (as shown in Figure 8).

23

__global__ void kernel2(int *in)

{

as[threadIdx.x] = in[index];

__syncthreads ();

sum = as[threadIdx.x] +

 as[threadIdx.x+2];

. . . .

}

(a) before

__global__ void kernel2(int *in){

 int __i = threadIdx.x;

 for(int _k = 0; _k < CF;

 _k++,__i+=(BS/CF)){

 as[__i] = in[index];

 }

 __syncthreads ();

 __i = threadIdx.x;

 for(int _k = 0; _k < CF;

 _k++,__i+=(BS/CF)){

 sum = as[__i] + as[__i+2]

 }

}

(b) after

Figure 9: Thread coarsening in the presence of syncthreads()

(ii) syncthreads() is present but is not control-dependent on any loop:

Figure 9 depicts the scenario where a syncthreads() primitive is present

in the kernel but the primitive does not appear inside a loop. In this case, to in-

crease thread granularity, we can insert the loop and then distribute it around the

syncthreads() statement. The distribution ensures that the barrier synchro-

nization is preserved, as it forces all statements controlled by the synchronization di-

rective to execute before the syncthreads() statement. The value of i needs

to be reinitialized at the point of distribution to ensure correct memory reference by

statements in the second loop. The case where there is a dependence from the part

of the code above the syncthreads() to the part following it and the value in

the dependence is a function of the thread ID needs special handling. In this situa-

tion, we need to change the scalar variable to an array with size equal to CF while

distributing the loop. This allows for all values computed in the top loop to be saved

and thus preserves the dependence across the two loops.

(iii) syncthreads() is present and is control-dependent on some loop:

24

__global__ void kernel3 (float* A) {

 __shared__ float as[] , sum;

 for (int i = 0; i <size; i++) {

 int v1 = as[threadIdx.x] ;

 __syncthreads();

 sum += as[i];

 }

}

(a) before

__global__ void kernel3 (float* A){

__shared__ float as[],sum;

. . . .

for (int i = 0; i <size; i++){

 int v1 = as[threadIdx.x] ;

 int v2 = as[threadIdx.x+(BS/CF)];

 __syncthreads();

 sum += as[i];

 }

. . . .

}

(b) after

Figure 10: Thread coarsening in the presence of syncthreads() in loops

If a synchronization primitive appears inside a loop in the kernel, then loop distri-

bution generally results in an illegal transformation. In such a case, we perform

(implicitly) an unroll of the loop by the coarsening factor. Figure 10 illustrates this

transformation.

Our coarsening algorithm accounts for all three cases mentioned above. The cur-

rent implementation will detect the third case but the unrolling of the coarsening loop has

to be performed by hand. The algorithm for thread coarsening is shown in Algorithm 1.

25

Algorithm 1 Thread Coarsening Transformation
find all the occurrence of syncthreads() in the kernel and store in a list
if none of the occurrence of syncthreads() are inside a loop OR list is empty then

get the first reference of the thread Id.
declare a new variable (i) and assign thread Id value to it.
add the variable declaration before the first reference of thread Id.
replace all the occurrences of thread Id with this new variable (i).
from block size and coarsening factor calculate the increment value (inc) for thread Id.
create a for loop with iterations equal to coarsening factor and increment the value of i by inc with each
iteration.
add this for loop after the variable declaration i.
if list is not empty then

repeat
take reference of next occurrence of syncthreads()
limit the for loop body before this reference.
after the reference of syncthreads() reinitialize variable i to thread Id value.
start a new for loop after reinitialization of i variable.
check for occurrences of syncthreads() in rest of the code.

until end of list
else

expand loop body untill last statement of kernel and return.
end if

else
return from function with error signal.

end if

5.6 Estimating Register Pressure

Both the PTX analyzer [2] and the CUDA profiler [5] can provide fairly accurate per-thread

register utilization information. Nevertheless, because we apply the code transformations

on CUDA source, we require a method to estimate register pressure at the source level.

To this end, we developed a register pressure estimation algorithm based on the strategy

proposed by Carr and Kennedy [10]. An outline of our algorithm is given in Algorithm 2.

Our approach operates on the source code AST. The basic idea is to identify references and

variables that will be stored in registers. If there are multiple references with register level

reuse, we predict that the compiler will coalesce them into a single register. Also, we are

not considering live ranges for the register.

26

Algorithm 2 Estimating Register Pressure
Create AST of the kernel.
repeat

Read each node in AST.
if node is of type variable declaration then

Add the variable name to the global array declared for storing all distinct variables in kernel.
if variable name and data type match with any of the kernel input variables then

set the scope as global.
else if variable name is preceded by ’shared’ keyword then

set scope as shared.
else if variable name is preceded by ’constant’ keyword then

set scope as constant.
else if variable name is preceded by ’local’ keyword then

set scope as local.
else

set the scope as register.
end if

else if node type is assignment then
if RHS has only one term and that term is a variable then

save the reference of position of RHS variable in global array with LHS variable.
end if

end if
until end of AST

CHAPTER 6: EXPERIMENTAL RESULTS

6.1 Experimental Setup

All experiments are performed on a Tesla C2050 NVIDIA Fermi GPU. The card has com-

pute capability 2.0 and consists of 448 cores divided among 14 multiprocessors. The num-

ber of 32-bit registers allocated to each multiprocessor is 32,768 and the amount of shared

memory available per block is 16 KB OF 48KB. For register estimation experiments we

have also used a GeForce 9800GT GPU. The card has compute capability 1.1. The GPU

consists of 112 cores divided among 14 multiprocessors. The number of 32-bit registers

allocated to each multiprocessor is 8192, and the amount of shared memory available per

block is 16KB. All CUDA programs are compiled with nvcc version 3.2, C programs

are compiled with GCC 4.1.2. The CUDA kernels used in transformation experiments are

described below:

Table 2: List of kernels used for experiments

Kernel Description Source
stencil computes sum of neigh-

boring elements within
a block

Hand coded

reduce computes min, max SC CUDA Tutorial [4]
lintext demonstrates use of

textures bound to pitch
linear memory

CUDA SDK 3.2

surfacewrite demonstrates use of
texture fetches in
CUDA

CUDA SDK 3.2

transpose performs transpose of a
single-precision matrix

CUDA SDK 3.2

27

28

We used the CUDA profiler to measure the performance parameters of each kernel. After

transforming a kernel with the required coarsening factor, we compiled it using nvcc and

then executed it by turning on the CUDA PROFILE flag. This flag creates a log file after

execution of a program that records the values of parameters listed in the CUDA profile

config file. After applying the thread coarsening transformation, some of these kernels did

not pass through the front end and we manually had to make some changes to the code.

6.2 Impact on Register Pressure

Although current GPU platforms provide a large number of registers per block [5], it has

been shown that for some kernels, ineffective use of the register space can cause significant

loss in performance [30].

1

2

3

4

5

6

7

8

9

10

12 11 10 9 8 7 6 5 4 3

n
o

rm
.
e

x
e

c
u

ti
o

n
 t
im

e

allowed registers per thread

walsh

dwthaar

matmul

vecmatmul

scan

binom

align

mergesort

scalarprod

Figure 11: Performance sensitivity to register pressure

To understand how register pressure (the ratio between required and available reg-

isters) can affect performance, we conducted a simple experiment with a select set of ker-

nels from the CUDA SDK [3]. Since the number of required registers in a thread cannot be

modified arbitrarily, we used the maxregcount flag in NVIDIA’s nvcc compiler to control

the number of allocated registers, and thereby the register pressure, in each kernel. Figure

11 shows normalized execution times for nine kernels as the register pressure is increased

progressively by decreasing the available registers. We observe that, except for matrix-

vector multiply (vecmatmul), the performance of all kernels is significantly impacted by

changes in register pressure. Closer inspection reveals that most of this performance loss is

29

due to additional accesses to local or shared memory, which can be curbed through better

register reuse.

0

100000

200000

300000

400000

500000

600000

700000

0 2 4 6 8 10 12 14 16 18

G
lo

b
a
l
A

c
c

e
s
s

Number of outputs / thread

Global Access

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10 12 14 16 18

O
c
c
u

p
a
n

c
y

Number of outputs / thread

Occupancy

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16 18

G
ig

a
 F

lo
p

s

Number of outputs / thread

Giga flops

0

1000000

2000000

3000000

4000000

5000000

6000000

0 2 4 6 8 10 12 14 16 18

S
h

a
re

d
 A

c
c
e
s
s

Number of outputs / thread

Shared Access

Figure 12: Performance characteristics of matrixmul

Another experiment that we conducted was thread coarsening of the matrix mul-

tiplication kernel from the CUDA SDK with few changes in the kernel. The coarsening

was done by hand because in this kernel the call to syncthread is control dependent on a

loop, which violates the legality condition of our framework. Figure 12 shows the corre-

sponding results obtained for coarsening factors ranging form 2 to 16. Threads in a block

are executed in a group of 32. Hence usually the block size selected is multiple of 32. We

required that the Coarsening Factor (CF) chosen should satisfy the equation (BS mod CF

= 0) where BS is the block size. So the coarsening factor used in the experiments are mul-

tiples of 2. We see that the performance increases up to a CF of 8 and decreases thereafter.

The performance increases from 168 Gflops to 259 Gflops, while the number of registers

used per thread increased from 21 to 63 for a coarsening factor of 8 over baseline. These

results are consistent with earlier work done by Volkov et al. [28].

30

6.3 Performance Potential

We conducted an experiment to gauge the effectiveness of the proposed strategy under ideal

circumstances. To this end, we construct a synthetic benchmark synth with a high degree

of inter-thread reuse. synth uses an array with 512K elements that is divided into 1024

blocks of size 512. Each thread running in a block computes the sum of all 512 elements

residing in the block stored in shared memory. Threads running on different blocks access

different elements.

0

1

2

3

4

5

6

7

8

9

2 4 6 8 10 12 14 16 18

S
p

e
e
d

 u
p

 O
v

e
r

B
a
s
e
li
n

e

Number of Outputs / thread

Speedup

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18

O
c
c
u

p
a
n

c
y

Number of Outputs / thread

Occupancy

0

50000

100000

150000

200000

250000

300000

350000

0 2 4 6 8 10 12 14 16 18

S
h

a
re

d
 M

e
m

o
ry

 A
c
c
e

s
s

Number of Outputs / thread

Shared Access

2300

2310

2320

2330

2340

2350

2360

2370

2380

0 2 4 6 8 10 12 14 16 18

G
lo

b
a
l
M

e
m

o
ry

 A
c
c
e

s
s

Number of Outputs / thread

Global Access

Figure 13: Performance characteristics of synth

We ran synth with varying coarsening factors from 2 to 16. Figure 13 shows

the overall performance, occupancy, and shared and global memory access for synth

as the coarsening factor is varied. The best speedup of 8.5 is obtained at a coarsening

factor of 16. This performance gain is directly attributed to reduced shared and global

memory traffic and an total increase of 8 registers per thread for the coarsening factor 16 as

compared to baseline. The shared memory traffic never increases as a result of increasing

the thread granularity, however, there is a spike in global memory access when going from

factor 2 to 4. This spike may be explained by the reduction in occupancy from 1 to 0.67.

Thus, the spike indicates a situation where the reduced number of threads causes spills.

31

Interestingly, the maximum performance is achieved at the lowest occupancy levels (16%),

which emphasizes the need for considering factors other than occupancy when optimizing

code for GPUs.

6.4 Multi-dimensional Coarsening

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10

S
p

e
e
d

 u
P

 O
v

e
r

B
a
s
e
li
n

e

Number of Outputs/thread

Coarsening in X direction

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10

S
p

e
e
d

 u
p

 O
v

e
r

B
a
s
e
li
n

e

Number of Outputs/thread

Coarsening in X and Y direction

Figure 14: Multi-dimensional coarsening with transpose

We evaluate the effects of coarsening along multiple dimensions with transpose.

The chart on the left in Figure 14 the shows performance of transpose for different

coarsening factors along the X dimension, while the chart on the right depicts the per-

formance when coarsening is done along both the X and Y dimensions manually. The

corresponding transpose kernels are shown in Figure 15. Clearly, for transpose, it is

more profitable to coarsen along both dimensions, which results in a speedup of 3.5 over

the baseline version.

As shown in the transpose kernel the index out and index in variables are used for

loading and storing different elements from the array. The values of these variables depend

on the thread Id values in the X as well as the Y direction. So when we perform coarsening

along the X and Y direction, we obtain a larger increase in performance as compared to

coarsening in a single direction.We also note that performance degrades (below the base-

line) for larger coarsening factors when coarsening along the X dimension. This indicates

that there is not enough inter-thread locality along this dimension to outweigh the costs of

lower occupancy. Therefore, it is important to consider data locality in other dimensions

32

__global__ void transpose(float *odata float* idata,

 int width, int height, int n)

{

 int __i = threadIdx.x;

 for(int __j=0;__j<2;__j++,__i+=8){

 int xIndex = blockIdx.x * TILE_DIM + __i;

 int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;

 int index_in = xIndex + width * yIndex;

 int index_out = yIndex + height * xIndex;

 for (int r=0; r < n; r++) {

 for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

 odata[index_out+i] = idata[index_in+i*width];

 }

 }

 }

}

(a) X direction

__global__ void transpose(float *odata float* idata,

 int width, int height, int n)

{

 int __i = threadIdx.x;

 int __k = threadIdx.y;

 for(int __j=0;__j<2;__j++,__i+=8){

 int xIndex = blockIdx.x * TILE_DIM + __i;

 int yIndex = blockIdx.y * TILE_DIM + __k;

 int index_in = xIndex + width * yIndex;

 int index_out = yIndex + height * xIndex;

 for (int r=0; r < n; r++) {

 for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

 odata[index_out+i] = idata[index_in+i*width];

 }

 }

 }

}

(b) X and Y Direction

Figure 15: Multi-dimensional coarsening with transpose kernel

when coarsening.

6.5 Performance Sensitivity

Although thread coarsening helps in improving performance, it is not guaranteed that per-

formance will always increase. Figure 16 shows the speedup observed for the reduce

kernel with different coarsening factors.

0

0.5

1

1.5

2

2.5

0 5 10 15 20

S
p

e
e
d

u
p

 O
v

e
r

B
a
s
e
li
n

e

Number of Outputs/thread

Speedup

Figure 16: Performance sensitivity for reduce

We observe that performance increases when the kernel is coarsened by factors

of 2 and 4 but beyond that it starts decreasing rapidly, with factor 16 almost doubling

the execution time. On further inspection, we found that this decrease in performance is

mainly due to an increase in global memory and shared memory accesses. This indicates

that perhaps not enough registers were available to exploit the exposed data reuse. The

other factor that contributes to the loss is the lower occupancy.

33

6.6 Overall Performance

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Stencil Reduce Lintext SurfaceWrite Transpose

 S
p

e
e
d

 u
p

 o
v

e
r

B
a
s
e
li

n
e

Figure 17: Performance improvement by thread coarsening

Figure 17 shows the speedup obtained for each kernel in our test suite using our

strategy. We only selected kernels that had some amount of inter-thread locality. There-

fore, it is not too surprising that we observe performance improvement on all five kernels.

The more interesting aspect of these results is that not all coarsening factors yielded good

performance for all kernels. In fact, for some coarsening factors the performance degraded

significantly.

6.7 Register Estimates

Table 3: Register estimation results

Kernel CREST CC 1.1 CC 2.0
matrixmul 17 13 21
asyncAPI 2 2 3

concurrentKernel 10 7 8
synth 7 3 12

transpose 9 6 5

In order to test the accuracy of our register pressure algorithm, we applied the al-

gorithm on some kernels and compared the predicted register value with the actual registers

used at execution time by passing these kernels through the CUDA profiler. After apply-

ing the algorithm on the kernel a file is created that gives a summary about the different

34

variables used, their probable storage location and finally the estimated number of registers

that will be used by that kernel. All kernels used here are baseline kernels and there is no

transformation performed on it. Table 3 shows the estimated number of registers per thread

in comparison with output produced by the CUDA profiler on compute capability 1.1 (CC

1.1) and 2.0 (CC 2.0) devices.

In case of thread coarsening transformation, we are not seeing a very large increase

in the number of registers after coarsening the kernel. However in other transformations

like loop unroll, unroll and jam we might see a significant increase in the amount of register

for the transformed kernel. So in future we can use the register estimate result in order to

select the optimal factor for these transformations.

CHAPTER 7: CONCLUSION AND FUTURE WORK

This thesis describes an automatic approach for controlling thread granularity in

GPU kernels. We develop the analysis required to apply the coarsening transformation

safely and profitably. The dependence analyzer presented can serve as a framework for

implementing a range of memory hierarchy transformations on the GPU. The model for

register pressure estimation can be used in developing compiler heuristics. The experimen-

tal results depict increased overall performance for kernels that exhibit inter-thread data

locality that outweighs the costs of lower occupancy by improving register reuse and re-

duce memory traffic. These results are preliminary and more extensive experimentation is

needed to evaluate the true effectiveness of the proposed method. Nevertheless, the results

emphasize the need for considering factors other than occupancy when optimizing code for

GPUs.

In the future we aim to combine the register pressure estimation with the thread

coarsening model. Also we plan to provide autotuning support for CREST to perform

coarsening with different factors and select the optimal factor based on execution time

feedback.

35

BIBLIOGRAPHY

[1] Cuda compiler driver nvcc.

http://moss.csc.ncsu.edu/ mueller/cluster/nvidia/2.0/nvcc 2.0.pdf.

[2] CUDA PTX ISA. http://www.nvidia.com/content/CUDAptxisa1.4.pdf.

[3] GPU Computing SDK. http://developer.nvidia.com.

[4] Kernel for min-max and reduction.

http://supercomputingblog.com/cuda/cuda-tutorial-3-thread-communication/.

[5] CUDA Programming Guide, Version 3.0. NVIDIA, 2010.

[6] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures. Morgan

Kaufmann, 2002.

[7] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Rountev, and

P. Sadayappan. A compiler framework for optimization of affine loop nests for gpg-

pus. In Proceedings of the 22nd annual international conference on Supercomputing,

ICS 08, 2008.

[8] M. M. Baskaran, J. Ramanujam, and P. Sadayappan. Automatic c-to-cuda code gen-

eration for affine programs. In R. Gupta, editor, CC, volume 6011 of Lecture Notes

in Computer Science, pages 244–263. Springer, 2010.

[9] P. E. Bernard, C. Berthelot, and G. Sauvebois. Integrating hpc and gpu

processors. http://www.cse.scitech.ac.uk/disco/mew19/Presentations/BULL Pierre-

EricBernard.pdf.

36

37

[10] S. Carr and K. Kennedy. Improving the ratio of memory operations to floating-point

operations in loops. ACM Transactions on Programming Languages and Systems,

16(6):1768–1810, 1994.

[11] J. W. Choi, A. Singh, and R. W. Vuduc. Model-driven autotuning of sparse matrix-

vector multiply on gpus. In PPoPP ’10: Proceedings of the 15th ACM SIGPLAN

symposium on Principles and practice of parallel programming, pages 115–126, New

York, NY, USA, 2010. ACM.

[12] Z. Cyril. Tutorial cuda. http://people.maths.ox.ac.uk/ gilesm/hpc/NVIDIA/.

[13] R. Cytron and J. Ferrante. What’s in a name? -or- the value of renaming for paral-

lelism detection and storage allocation. In ICPP’87, pages 19–27, 1987.

[14] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson,

J. Shalf, and K. Yelick. Stencil computation optimization and auto-tuning on state-

of-the-art multicore architectures. In SC ’08: Proceedings of the 2008 ACM/IEEE

conference on Supercomputing, pages 1–12, Piscataway, NJ, USA, 2008. IEEE Press.

[15] N. K. Govindaraju, S. Larsen, J. Gray, and D. Manocha. A memory model for

scientific algorithms on graphics processors. In SC ’06: Proceedings of the 2006

ACM/IEEE conference on Supercomputing, page 89, New York, NY, USA, 2006.

ACM.

[16] N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and J. Manferdelli. High per-

formance discrete fourier transforms on graphics processors. In SC ’08: Proceedings

of the 2008 ACM/IEEE conference on Supercomputing, pages 1–12, Piscataway, NJ,

USA, 2008. IEEE Press.

[17] S. Grauer-Gray and J. Cavazos. Optimizing and auto-tuning belief propagation on the

gpu. In Proceedings of the 23rd international conference on Languages and compilers

for parallel computing, LCPC’10, pages 121–135, 2011.

38

[18] I. Lashuk, A. Chandramowlishwaran, H. Langston, T. Nguyen, R. Sampath,

A. Shringarpure, R. Vuduc, L. Ying, D. Zorin, and G. Biros. A massively parallel

adaptive fast multipole method on heterogeneous architectures. In ACM/IEEE Conf.

Supercomputing (SC), Portland, OR, USA, November 2009, 2009.

[19] J. Lee, N. B. Lakshminarayana, H. Kim, and R. Vuduc. Hardware and software

prefetching mechanisms for gpgpu applications. In IEEE/ACM Intl. Symp. Microar-

chitecture (MICRO), December 2010, 2010.

[20] S. Lee, S.-J. Min, and R. Eigenmann. Openmp to gpgpu: a compiler framework for

automatic translation and optimization. In Proceedings of the 14th ACM SIGPLAN

symposium on Principles and practice of parallel programming, 2009.

[21] G. Murthy, M. Ravishankar, M. Baskaran, and P. Sadayappan. Optimal loop unrolling

for gpgpu programs. In IEEE International Symposium on Parallel Distributed Pro-

cessing, 2010.

[22] R. Nath, S. Tomov, and J. Dongarra. Accelerating gpu kernels for dense linear algebra.

In In Proceedings of 9th International Meeting on High Performance Computing for

Computational Science (VECPAR’10), 2010.

[23] A. Nukada and S. Matsuoka. Auto-tuning 3-d fft library for cuda gpus. In SC ’09:

Proceedings of the Conference on High Performance Computing Networking, Storage

and Analysis, pages 1–10, New York, NY, USA, 2009. ACM.

[24] A. Nukada, Y. Ogata, T. Endo, and S. Matsuoka. Bandwidth intensive 3-d fft kernel

for gpus using cuda. In Proceedings of the 2008 ACM/IEEE conference on Supercom-

puting, SC 2008, 2008.

[25] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W.-m. W.

Hwu. Optimization principles and application performance evaluation of a multi-

threaded gpu using cuda. In Proceedings of the 13th ACM SIGPLAN Symposium on

Principles and practice of parallel programming, 2008.

39

[26] S. S. Stone, J. Haldar, S. C. Tsao, W. Hwu, Z. Liang, and B. P. Sutton. Accelerat-

ing advanced mri reconstructions on gpus. In Proceedings of the 5th conference on

Computing frontiers, CF 08, pages 261272, New York, NY, USA, 2008.

[27] I. J. Sung, J. A. Stratton, and W. Hwu. Data layout transformation exploiting memory-

level parallelism in structured grid many-core applications. In Proceedings of the 19th

international conference on Parallel architectures and compilation techniques, PACT

10, 2010.

[28] V. Volkov. Better performance at lower occupancy.

http://www.cs.berkeley.edu/ volkov/volkov10-GTC.pdf, 2010.

[29] V. Volkov and J. Demmel. Lu, qr and cholesky factorizations using vector capabilities

of gpus. In Technical Report UCB/EECS-2008-49, EECS Department, University of

California, Berkeley, 2008.

[30] V. Volkov and J. W. Demmel. Benchmarking gpus to tune dense linear algebra. In SC

’08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing, 2008.

[31] C. Wei-Fan, D. Michael, H. Todd, P. Tyler, T. Kevin, H. Mary, W. Phil, and G. James.

Gpu acceleration of the generalized interpolation material point method. 2009.

[32] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. Optimiza-

tion of sparse matrix-vector multiplication on emerging multicore platforms. Parallel

Comput., 35(3):178–194, 2009.

[33] J. K. H. Z. Yi Yang, Ping Xiang. Gpugpu compiler for memory optimization and

parallel management. In Proceedings of the 2010 ACM SIGPLAN conference on

Programming language design and implementation, 2010.

[34] L. Yixun, E. Z. Zhang, and X. Shen. A cross-input adaptive framework for gpu

program optimizations. In Proceedings of the 2009 IEEE International Symposium

on Parallel&Distributed Processing, 2009.

VITA

Swapneela Padmakar Unkule, the daughter of Padmakar Unkule and Manisha Un-

kule was born on August 5, 1986 in Pune, Maharashtra, India. She received the degree

bachelor of engineering (B.E) in Electronics and Tele-Communication from Cummins Col-

lege of Engineering Pune, Maharashtra, India in 2008. Following her bachelors degree she

joined Infosys Technologies Ltd, one of the top IT company in India as a System Engineer.

After working for year and a half she entered in Masters of Science (M.S) degree program

at Texas State University-San Marcos in January 2010. During her masters she was em-

ployed as grader, research assistant, and graduate instructional assistant with Texas State

University-San Marcos. During her degree she was awarded with Southwest Research In-

stitute scholarship for 2011. For her good academic record she, received the membership

of Alpha Chi National College Honor Society.

Permanent Email Address: swapneela unkule@yahoo.com

This thesis was typed by Swapneela P. Unkule.

