

MASFA: MASS-COLLABORATIVE FACTED SEARCH FOR ONLINE

COMMUNITIES

by

Seth Cleveland, B.S.

A thesis submitted to the Graduate Council of
Texas State University in partial fulfillment

of the requirements for the degree of
Master of Science

with a Major in Computer Science
December 2013

Committee Members:

 Byron J. Gao, Chair

 Anne H.H. Ngu

 Yijuan Lu

COPYRIGHT

by

Seth Cleveland

2013

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,
section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations
from this material are allowed with proper acknowledgment. Use of this material for
financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Seth Cleveland, authorize duplication of this
work, in whole or in part, for educational or scholarly purposes only.

 iv

ACKNOWLEDGEMENTS

I acknowledge my advisor Dr. Byron J. Gao. I am grateful for his presence,

willingness, and support during my stint at Texas State. I especially acknowledge him

for setting a lofty goal to publish a paper based on this work. We did it. A paper was

published. I also appreciate my thesis committee Dr. Anne H.H. Ngu and Dr. Yijuan Lu.

Their participation and support was integral towards completing my Masters thesis.

Thank you. I also acknowledge the people who participated in the user study, Cullen

Fouts, Karl Fleddermann, Jennifer Foster, Raul Sieberauth, Rick Jones, Terry Penner,

Zulma Gregory, Laramie Gorbett, Justin Cleveland, and James Creel. I would also like to

acknowledge Vicky Wang for her early support with MASFA. Finally, I want to

acknowledge my managers for their support while working and completing my Masters

degree and thesis. They were Trent Johnson, Danita Day, Uwe Seelig, and Chris

Smouse. Thanks. I stand in gratitude and appreciation to all.

 v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ... iv	

LIST OF TABLES .. vii	

LIST OF FIGURES ... viii	

LIST OF ABBREVIATIONS .. ix	

ABSTRACT .. x

CHAPTER

 1. INTRODUCTION ... 1	

 2. BACKGROUND ... 6	

2.1 Direct Search ... 6	

2.2 Exploratory Search .. 7	

2.3 Mass-collaboration .. 9	

2.4 Information Extraction .. 9	

2.5 Inverted Index ... 11	

 3. LITERATURE SURVEY .. 13	

 3.1 Faceted Search .. 13	

 3.2 Mass-collaboration ... 16	

 3.3 Named Entity Recognition ... 16	

 4. MASFA FRAMEWORK ... 17	

 4.1 MASFA Architecture and Overview .. 17	

 4.2 Interface and Semantics ... 19	

 4.3 Facet Editing and Management .. 22	

 vi

 5. MASFA IMPLEMENTATION ... 29	

 5.1 MASFA Back End ... 29	

 5.2 MASFA Front End ... 31	

 5.3 MASFA API ... 32	

 5.4 MASFA Tools .. 39	

 6. MASFA ADMINISTRATION AND USER GUIDE .. 42	

 6.1 MASFA Administration ... 42	

 6.2 MASFA User Guide ... 44	

 7. EVALUATION .. 49	

 7.1 MASFA Dataset ... 50	

 7.2 Correctness Evaluation ... 51	

 7.3 Efficiency Evaluation ... 52	

 7.4 User Study .. 55	

 7.5 Discussion .. 58	

 8. CONCLUSION .. 60	

APPENDIX ... 61	

REFERENCES ... 64	

 vii

LIST OF TABLES

Table Page

1. Example Documents ... 12	

2. Example Inverted Index .. 12	

3. MASFA Categories ... 45	

4. Example Advanced Query Support .. 45	

5. MASFA vs. Keyword Task Timing .. 56	

6. MASFA Feedback .. 57	

 viii

LIST OF FIGURES

Figure Page

1. MASFA Screenshot .. 4	

2. Example Phrase Suffix Tree ... 11	

3. MASFA Architecture .. 17	

4. Facet Aggregation ... 24	

5. CraigsListAggregator Help ... 39	

6. CraigsListProcessor Help .. 40	

7. Process Help .. 40	

8. MASFA init script .. 43	

9. Adding Austin Furniture to Craigslist Categories .. 44	

10. Facet Retrieval Time ... 53	

11. Facet Tree Setup Time .. 54	

12. Facet Aggregation Time ... 55	

 ix

LIST OF ABBREVIATIONS

Abbreviation Description

RSS – Rich Site Summary A web standard electronic feed for

publishing frequently updated

information

JSON – Java Script Object Notation An electronic data format used in

web applications

API – Application Programming Interface A description of functionality that

defines interfaces between software

components

JDK – Java Development Kit Java programming language

compiler and APIs

XML – Extensible markup language A document machine encoding

language

AJAX - Asynchronous JavaScript and XML A web development technique for

asynchronous web applications

URL – Uniform resource locator A web address

HTML – Hyper text markup language A language for describing webpages

 x

ABSTRACT

Faceted search combines faceted navigation with direct keyword search,

providing exploratory search capacities allowing progressive query refinement. It has

become the de facto standard for e-commerce and product-related websites such as

amazon.com and ebay.com. However, faceted search has not been effectively

incorporated into non-commercial online community portals such as craigslist.org and

medhelp.org. This is mainly because unlike keyword search, faceted search systems

require metadata that constantly evolve, making them very costly to build and maintain.

In this thesis, we propose a framework, MASFA, which takes a human-machine approach

to build and maintain effective faceted search systems free of cost. In MASFA human

users, i.e. community members, contribute to the system in a mass-collaborative manner;

and machines assist humans based on a set of non-domain-specific techniques. The

MASFA approach is completely portable and can be deployed to any application domain

supporting a direct search interface. To demonstrate its utility we implemented, deployed,

and experimented with MASFA on a subset of Craigslist categories and made it open to

public access.

 1

1. INTRODUCTION

The term facet means “little face” and is often used to describe one side of a

many-sided object such as a cut gemstone. In information science, facets are metadata

that define alternative hierarchical categories for the information space, where each facet

(e.g., Make, Model, Manufacturer, Color, Price) is a taxonomy structure that can be used

to organize information, corresponding to a dimension in an OLAP (Online Analytical

Processing) system (J. Teevan, 2008). Unlike traditional categories, facets allow a

document to exist simultaneously in multiple overlapping taxonomies (K.-P. Yee, 2003).

While a single organizational structure is too limiting, multiple independent facets enable

flexible access by providing alternative ways of getting to the same information.

Faceted search adds structured browsing, or faceted navigation, to direct keyword

search, supporting interactive and progressive query refinement. More formally, faceted

search systems are a general knowledge management model based on a multi-

dimensional classification of heterogeneous data objects and are used to explore/browse

complex information bases in a guided yet unconstrained way through a visual interface

(Tzitzikas, 2009). Faceted search well addresses weaknesses of conventional discovery

oriented search paradigms. It emerged as a foundation for interactive information

retrieval. User studies demonstrate that faceted search interfaces are intuitive and easy to

use, providing more effective information seeking support than conventional search

paradigms (M. Hearst, 2002) (Karger V. S., 2005). Faceted search has become

increasingly prevalent in online information access systems and is currently the de-facto

 2

standard for e-commerce and product-related websites, such as amazon.com, ebay.com.

walmart.com, bestbuy.com, homedepot.com, and carmax.com.

Despite the prominent success in e-commerce, faceted search has not been

effectively incorporated into non-commercial online community portals such as

craigslist.org and medhelp.org. This is mainly because, compared to keyword search,

faceted search systems require structured metadata. In addition, such metadata constantly

evolves following the life cycles of products or topics. Community data are mainly free

texts and unstructured. Possibly, there are several ways to obtain the necessary metadata

and facilitate faceted search:

• Hiring and training employees as for e-commerce businesses. However,

community portals are usually not-for-profit and cannot afford the monetary cost.

• Forcing community members to publish structured data, e.g., by filling out forms.

However, this is not practical in general cases, as it would significantly increase

publishing costs. Popular community portals such as Craigslist only ask users to

input very simple metadata (e.g., category and price for products), which are far

from sufficient to support effective faceted search. Time-consuming browsing is

still the dominating pattern of search activities for Craigslist users.

• Automating generation of metadata by using text mining and named entity

recognition and classification techniques. However, facets and the metadata are

domain-specific. The facet structures organizing cars differ from the ones

organizing clothes. Existing techniques generally assume domain knowledge of

facet structures and make use of domain-specific, hand-crafted rules or machine

 3

learning models, which are costly to generate and update, and not portable across

domains (Sekine, 2007).

Today, thriving online communities have re-defined modern society and

transformed the way day-to-day activities are conducted. People spend more and more

time participating in various online communities on a daily basis. For example,

craigslist.org accounts for nearly 2% of global internet traffic. Despite the economic and

technical challenges, there is an increasing need to take on the challenges and facilitate

faceted search for online communities that enable more effective use and management of

community data.

In this thesis, we explore a novel direction in enabling faceted search for online

communities, utilizing the power of mass-collaboration or crowdsourcing (A. Doan,

2011). In particular, we introduce MASFA, the first framework for mass-collaborative

faceted search that can be deployed and operated free of cost. MASFA takes a human-

machine partnership approach, where humans, i.e., community members, contribute to

the faceted search system while using it, and machines assist humans in this process

based on non-domain-specific tools. The MASFA approach is completely portable and

can be deployed and maintained in any application domain. It can be highly effective at

significantly reducing user search time. Porting requires a web API for querying and

retrieving documents. The documents can come from any domain.

A MASFA prototype was implemented and deployed using a subset of Craigslist

categories based on a Craigslist RSS feed (www.craigslist.org/about/rss). The prototype

is open to public access and Figure 1 shows a screenshot of it. The left-hand panel

presents a set of facets, i.e., taxonomies. The right-hand panel presents refined search

 4

results (Craigslist ad items) for a given query that satisfy the condition specified by the

selected facet values. A community member can edit the facets by adding, deleting, and

modifying facet names and values.

Figure 1: MASFA Screenshot

In MASFA, the metadata (labels for Craigslist ad items) are “generated” in an

implicit, cost-free, and non-domain specific manner. Unlike conventional faceted search,

a facet value in MASFA is a set of positive and negative phrases that represent a Boolean

formula. The items satisfying the formula (covered by the facet value) are the ones that

contain any of the positive phrases and do not contain any of the negative phrases. This

corresponds to an implicit labeling of the satisfying items with the positive and negative

phrases. For example, “𝑃!, 𝑃!, 𝑃!, −𝑁!, −𝑁!” covers the items that contain either the

phrase 𝑃! or 𝑃! or 𝑃!, but not 𝑁! nor 𝑁! Suppose a user is interested in sports cars (small

 5

cars designed for performance) but not sport utility vehicles (special purpose vehicles for

towing with on and off road capabilities), they can create a facet value of “sports car,

sporty, -sport utility” under the “Style” facet. During faceted navigation, a user can select

multiple facet values from multiple facets. MASFA implements the CNF semantics for

the selected facets, where they form a conjunction of disjunctions.

In MASFA, community members can arbitrarily edit the facets. Such edits are

recorded in a temporal database (Snodgrass, 1999), so that the facets can be brought back

to any previous version for a given timestamp. By doing so MASFA actually provides an

implicit and public way of personalization, where a user can retrieve a preferred version

of facets by memorizing and specifying a timestamp.

In MASFA, machines collect historical data and generate frequent phrases, which

can be used to suggest addition or removal of facet values. Machines also contribute to

the formation of a robust, aggregated version of facets from the numerous human-edited

versions based on their life span and usage statistics. The aggregation incorporates

clustering techniques and is expected to smooth out noise and turbulence that are

common in mass collaboration tasks.

Contributions.

• We propose the first mass-collaborative framework MASFA to facilitate faceted

search for not-for-profit online community portals.

• MASFA is highly effective, yet completely portable and can be deployed and

operated free of cost.

• We implement, deploy and experiment MASFA on selected categories of

Craigslist, demonstrating its utility and promise.

 6

2. BACKGROUND

In this section, we discuss the background research and technologies required to

build, comprehend, and motivate MASFA.

2.1 Direct Search

In the context of web search, information retrieval attempts to mitigate

information overload by using a query-based technique. This technique is made popular

by many commercial search engines such as Google, Bing, Yahoo, etc. An inverted

index is built based on terms within a document collection and a user browses the

collection using queries. A typical user refines their query terms progressively and issues

multiple queries to search for relevant documents. Additionally, each query is matched

against the inverted index to best satisfy the present need. Unfortunately, the iterative

query based approach requires cognitive effort to develop a query that defines the users

need (Ryen White, 2009). Moreover, this process loses context surrounding the user’s

information need because each query is viewed as a single transaction against the index.

Direct search systems provide a baseline system for faceted search interfaces. There are

two significant direct search methods in existence – Boolean retrieval and ranked

retrieval.

Boolean Retrieval. Early search engines were based on a Boolean set-retrieval

method. They are different from modern search engines, which typically support both

Boolean and ranked retrieval. The Boolean retrieval model derives its name from the

query operators it supports. Basic Boolean retrieval systems support AND, OR, and

NOT operators. However, over time, the syntax was extended to support additional

operators (Tunkelang, 2009). Example extensions include keyword location in

 7

document, keyword synonyms, wildcard operators for partial word matching, and

operator grouping for improved result filtering. Boolean retrieval methods were a

popular retrieval method, however, as the world-wide-web came forward, the systems

were replaced with a better method called ranked retrieval (Christopher D. Manning,

2008).

Ranked Retrieval. Ranked retrieval simplifies the information seeking process

by allowing the user to use unstructured queries instead of constructing structured

queries. The method uses words to match and rank documents according to how relevant

the documents match the words. This method alleviates returning a precise set of results

to the user for simpler queries that return more relevant results (Tunkelang, 2009).

Unfortunately, this flexibility loses precision and still challenges the user to identify the

keywords necessary to return desired documents within the ranked results.

2.2 Exploratory Search

An alternative approach to direct search that requires less cognitive effort and

further simplifies the information seeking process is called exploratory search.

Exploratory search changes the information seeking process by presenting a user with

relevant information to search and navigate a document collection. Additionally, studies

show users can easily alter behaviors using an exploration technique (Bill Kules B. S.,

2007). One form of exploration is provided through a faceted interface. The user is

visually guided through an iterative process of query refinement and expansion, ideally

never encountering situations with zero results (Giovanni Maria Sacco, 2009). Facets

define the collection being searched and they are typically mutually exclusive. In other

words, the results covered by each facet are disjointed. A user progressively selects

 8

facets to narrow in on their information need and further refine their query. This

approach also lends itself to maintaining context around an information need. Early

faceted interfaces were based on a parametric search method.

Parametric Search. The parametric search method leverages the Boolean

search method by providing facets and allowing users to visually specify facet value

constraints to build queries. A query is typically an AND of ORs: values selected within

a single facet are combined using a logical OR, whereas constraints associated with

different facets are combined using a logical AND (Tunkelang, 2009). The key

difference between parametric search and Boolean search is that parametric search

performs set retrieval over structured data, facets, instead of unstructured data, free-form

text. Unfortunately, the parametric search often leads the user to either too many or too

few results. Furthermore, the interface lacks a clear method to support exploring the

search results with additional queries.

Faceted Navigation. Faceted navigation provides the method for exploring

results. Faceted navigation allows the user to elaborate a query progressively, seeing the

effect of each choice in one facet on the available choices in other facets (Tunkelang,

2009). Faceted navigation facilitates exploring, however, it doesn’t support searching

unstructured textual data.

Faceted Search. Faceted search is an application of exploratory search that

provides a keyword search interface with a method for navigation. Faceted search is also

the dominant technique applied in e-commerce sites like Amazon.com, Ebay.com,

Shopping.com, etc. For example, suppose a user wishes to purchase a vehicle on an e-

commerce site. A typical system presents a direct search interface with facet categories

 9

that directly relate to the vehicle domain. Such categories are vehicle make, model, year,

or mileage. However, to support this interface, businesses require significant effort to

maintain structured meta-data and build detailed lexicons. Considering the vehicle

domain as an example, by using common phrases and terms, a machine can readily

identify relevant patterns like Chevrolet, Toyota, Malibu, and Corolla. However, these

machines do not make good hierarchies with their facets (Hearst M. A., 2006). In the

aforementioned vehicle example, facets would ideally be organized with

Chevrolet/Toyota under make and Malibu/Corolla under model.

2.3 Mass-collaboration

An alternative technique to building hierarchies, which supplements the strengths

of machines, is mass-collaboration. Humans more readily know the organization of

facets based on social context and knowledge. Mass-collaboration (Williams, 2006),

human computation, and crowdsourcing are synonyms describing a phenomenon where a

multitude of humans are enlisted to help solve a wide variety of problems (A. Doan,

2011). Such systems are abundant on the World-Wide Web. Prime examples include

Wikipedia, Linux, Yahoo Answers, and Mechanical Turk-based systems. MASFA uses a

mass collaborative technique to support organizing facets in a hierarchy.

2.4 Information Extraction

Information extraction encompasses a set of tools, techniques, and tasks for

extracting structured knowledge from unstructured documents. Typically, unstructured

documents are computer readable in a format like XML, HTML, TXT, etc. The most

common form of unstructured documents consists of written natural language.

Information extraction attempts to find semantic data in the natural language and build

 10

structured data that can be easily used by computers. Information extraction identifies

information in texts by taking advantage of their linguistic organization. Any text in any

language consists of a complex layering of recurring patterns that form a coherent,

meaningful whole (Moens, 2006). Because natural language patterns may change with

different discourses, extraction may be either domain specific or domain unspecific.

Domain specific extraction builds tools and techniques to extract specific patterns

assuming the text is only in one domain, for example extract noun phrases from only

financial documents. The tools may work well for their specific domain, however, they

do not apply to other domains. When working with the open-web, because documents

span multiple domains, domain unspecific information extraction techniques are

essential. MASFA applies a domain unspecific method to extract named entities from

noun phrases within natural language text. This is also called named entity recognition.

MASFA uses a form of domain unspecific named entity recognition to build a vocabulary

that supports users with potential facets. Additionally, MASFA applies information

extraction to build an inverted index for supporting the user interface.

Phrase Extraction. A phrase is a sequence of one or more words that exists

within a phrase boundary. Phrase boundaries are punctuation marks or a non-natural

language element like an HTML tag. MASFA uses a suffix tree based approach

(Ukkonen, 1995) developed for clustering search engine results (Zamir, 1999). A suffix

tree is a trie of all suffixes that exist in a given sequence. A sequence can be characters,

words, numbers, etc. The phrase extraction process consists of first building a suffix tree

using Ukkonen’s algorithm, then walking the tree and extracting phrases. The suffix tree

algorithm consists of building a series of implicit suffix trees as nodes. The algorithm

 11

additionally builds suffix-links between nodes for common suffixes. The algorithm has

an amortized linear runtime. The building process annotates edges and nodes with the

word offsets in the original document. The offsets are used for future extraction. After

building the suffix tree, to extract phrases, walk the tree from root to each leaf node.

Each edge that doesn’t end in a leaf node becomes a potential phrase for extraction. The

following figure shows the suffix tree built from three sequences “cat ate cheese”,

“mouse ate cheese too”, and “cat ate mouse too.” The star represents the root node of the

tree. The dollar sign represents leaf nodes of the tree. Everything between dashes is a

non-leaf node. The extraction algorithm identifies the following phrases, “mouse”, “ate”,

“cat ate”, “cheese”, and “ate cheese.”

* - mouse - too $
 | - ate cheese too $
 - too $
 - ate - cheese - $
 | | - too $
 | - mouse too $
 - cheese - too $
 | - $
 - $
 - cat ate - cheese $
 - mouse too $	

Figure 2: Example Phrase Suffix Tree

2.5 Inverted Index

The inverted index is a dictionary that maps words to document postings within a

collection. The index supports satisfying ranked and Boolean queries. Building an

inverted index involves collecting the documents, tokenizing the document text,

performing linguistic processing which become the indexing terms, and building a

 12

dictionary and postings index (Christopher D. Manning, 2008). For example, assume the

following three documents for building an inverted index.

Table 1:Example Documents

Document Id Document Text
1 I am your father.
2 You should listen to your father.
3 Your mother listens to your father.

Tokenizing the documents turns the text in the documents into a list of tokens, consisting

of a word and its document id. Next, linguistic processing is applied to normalize and

filter tokens. Typical processing includes case normalization (for example making the

token word lower-case), stemming, and stop word removal. Stemming normalizes plural

words to singular and attempts to algorithmically find each words root form. Stop words

are common words that provide little statistical significance. Assume the following stop

words: “i, to, am, your” for this example. Finally, the processed tokens are inverted to

build an inverted index. The following table shows the inverted index built from the

example documents.

Table 2: Example Inverted Index

Word Document Postings
father 1, 2, 3
listen 2, 3
mother 3
should 2

MASFA uses the inverted index to support word to document id lookup for rapid phrase

matching. Additionally, MASFA uses the Boolean query retrieval to support a user

study.

 13

3. LITERATURE SURVEY

3.1 Faceted Search

Faceted search augments direct keyword search capabilities with faceted

navigation that enables interactive and exploratory query refinement. For many search

tasks an initial query is sufficient, and faceted search can be used to further describe what

to look for (Jonathan Koren, 2008). Faceted navigation is essentially a form of set

retrieval model related to Boolean parametric search and advanced search, which allows

users to formulate queries by specifying a set of constraints on the facet values.

Parametric search suffers from the million or none problem, where under-

specified queries return too many results and over-specified queries return no results. It

offers expressivity, but not guidance through the space of possible queries (Tunkelang,

Faceted Search, 2009). In addition, users are either ineffective at forming complex

queries or unwilling to take the effort. Most users do not use advanced search, and the

average query length is 2.4 words according to a study based on 60,000,000 searches

(Inan, 2006). Users prefer to specify as little as necessary in their query to find what they

are looking for (Edward Cutrell, 2006) (Doug Downey, 2008) (Dumais, 2009). Rather

than fully specifying their target upfront, they prefer to interact with the results to refine

their query as necessary. Faceted navigation fills in the piece that is missing in parametric

search: guidance. While parametric search requires users to express an information need

as a query in one shot and make selections across all facets of interest, faceted navigation

allows users to elaborate a query progressively (Tunkelang, Faceted Search, 2009).

The concept of faceted search dates back to 1933, when Ranganathan introduced

the colon classification scheme (Ranganathan, 1933) and developed the first library

 14

classification scheme based on facet analysis. The earliest efforts in the 1990s that

catalyzed faceted navigation include dynamic queries (Shneiderman B. , 1994) and view-

based search (Karger V. S., 2005). The former built a FilmFinder prototype to enable

exploration of a movie database (Shneiderman C. A., 1994). The latter built a

HIBROWSE prototype for a collection of documents from Lexis-Nexis.

In the mid 1990s, Marti Hearst developed Scatter/Gather, a cluster-based

approach to browsing large document collections (Mufti A. Hearst, 1995). She

subsequently worked on the well-known Flamenco project (flamenco.berkeley.edu)

(Hearst M. , 2000), developing faceted search tools and performing usability studies with

them. They developed an open-source faceted search engine supporting hierarchical

facets (sourceforge, netprojects, flamenco), and also researched issues such as automating

(domain-specific) metadata creation (Hearst E. S.) (E. Stoica, 2007).

The Relation Browser project (Marchionini, 2008) (Brunk, 2003) was originally

developed for the US Bureau of Labor Statistics to improve searching and navigating its

web site by a preview-oriented interface. The mSpace project (mspace.fm) (m. c.

Schraefel M. K., 2003) developed the mSpace Classical Music Explorer (m. c. Schraefel

S. A., 2005) that improves access to the classical music domain, especially for those who

do not have domain knowledge. The Parallax project (Karger D. H., 2009) introduced the

set-based browsing paradigm that lets users traverse the Web graph in an efficient

manner.

While faceted search continues to receive attention from the information retrieval

community (Osma Suominen, 2007) (Hearst M. A., Design recommendations for

hierarchical faceted search interfaces, 2006) (Debabrata Dash, 2008) (B.-Y, 2008) (Bill

 15

Kules R. C., 2009), database researchers have recently studied exploratory faceted search

over databases. Such efforts include minimum-effort driven dynamic faceted search in

structured databases (Senjuti Basu Roy H. W., 2008), building dynamic faceted search

systems over databases (Senjuti Basu Roy H. W., 2009), and automatic extraction of

facet hierarchies from text databases (Ipeirotis, 2008) (Wisam Dakka P. G., 2005).

Endeca (www.endeca.com), recently acquired by Oracle, delivers faceted search

for enterprises. It is most known for providing faceted search for e-commerce sites

including walmart.com and homedepot.com. Apache Solr (lucene.apache.org/solr),

Sphinx (sphinxsearch.com) and Drupal (drupal.org) are popular open source faceted

search engine libraries. Solr has powered the new FCC.gov site, Netflix and CNET.

While these efforts have resulted in huge success in e-commerce, none of them

provide complete portable and cost-free (in terms of faceted metadata generation and

maintenance) solutions for non-commercial online community portals. (Jonathan Koren,

2008) studied “personalized” interactive faceted search, but it concerns customization of

presentation of facets on the search interface, instead of generation of facets and metadata

as in our case.

Faceted search is a relatively new research field. It is part of the broader field of

human-computer information retrieval (HCIR) that applies interactive techniques to a

broad spectrum of information-seeking tasks (Tunkelang, Faceted Search, 2009). Note

that the huge success of faceted search in online retail may have overshadowed other

domains where it can be valuable. Some futurists even start to enthusiastically discuss the

feasibility and challenges of applying faceted search to the open Web (Jaime Teevan,

2008).

 16

3.2 Mass-collaboration

Mass-collaboration has been applied to information retrieval as in social search.

In contrast to established algorithmic or machine-based approaches, social search

determines the relevance of search results by considering the interactions or contributions

of users. Example social search engines include Google social search

(googleblog.blogspot.com/2009/10/introducing-google-social-search-i.html) and

“community powered” Eurekster Swiki (www.eurekster.com). Previous work Rants

(Byron J. Gao, 2010) and ClusteringWiki (David C. Anastasiu, 2011) attempted to

establish a mass-collaborative framework for tackling information retrieval tasks by

soliciting valuable inputs via motivated personalization. MASFA follows the same

concept but is applied to faceted search interface, instead of list interface as in Rants and

clustering interface as in ClusteringWiki.

3.3 Named Entity Recognition

If the facets are known, then the problem of obtaining faceted metadata boils

down to the problem of named entity recognition and classification (NERC), an

important sub-task of information extraction (IE). Existing NERC techniques make use of

handcrafted rules or machine learning methods, which are costly and not portable across

domains (Sekine D. N., 2007). (Kosseim, 2001) tested some systems on both the MUC-6

collection composed of newswire texts and a proprietary corpus made of manual

translations of phone conversations and technical emails. They report a drop of 20% to

40% in precision and recall for rule-based NERC systems.

 17

4. MASFA FRAMEWORK

Researching MASFA included building a web application, building a static

dataset with craigslist data, and evaluating the application with the data set. The web

application provides the necessary elements to present and manipulate facets using mass-

collaborative techniques. Additionally, the application supports requesting live data from

craigslist and any data set providing a web API. In this section, we discuss the MASFA

design. The design covers the architecture, interface semantics, facet editing, and phrase

extraction.

4.1 MASFA Architecture and Overview

Figure 3: MASFA Architecture

The figure shows the main architecture of MASFA. For each data source

category, e.g., Cars, MASFA maintains a set of facets that evolve over time. For a given

keyword query q within a selected category, the Query Processing module produces a set

of search results, R. Throughout the thesis, search results are often referred to as items

that can be product descriptions or Craigslist ads. Then, based on a chosen version of

 18

facets F, the Faceted Navigation module allows the user to interactively and

progressively refine the search results and produce R′, a refined set of items.

The Facet Editing and Management module takes human and machine efforts to

build and maintain facets. A community member (user) can start an editing session by

clicking the “Start Session” button. Then they can edit the facets by adding, deleting, and

modifying facet names and values. A successful editing session will result in a new

version with an assigned timestamp. The module has a temporal database back end that

records the entire evolving history of facets. A temporal database (Snodgrass, 1999) is a

database with built-in time aspects that are able to store different database states. In

MASFA, specifying a version’s timestamp in the “Timestamp” box brings its version

back. There are also “Prior” and “Next” buttons that can be used to navigate through all

the recorded versions.

MASFA does not provide explicit personalization, which would typically require

login access control and significant overhead in managing the numerous personal profiles

(versions). Based on the observation that facets are mainly descriptions of intrinsic

product or topic features instead of decentralized personal interests or opinions, the

temporal database design in MASFA actually provides a lightweight personalization

mechanism with full flexibility. A user can easily retrieve a preferred version of facets by

memorizing and specifying a timestamp.

By clicking the “Aggregated Facets” button, users can obtain a synthetic set of

facets. The aggregation utilizes clustering techniques by analyzing the numerous human-

edited versions considering their life span and usage statistics. It can effectively smooth

out noise and turbulence that are common in crowd sourcing tasks.

 19

4.2 Interface and Semantics

In a typical faceted search interface, there are sets of facets or taxonomies. Each

facet has a name, which can be of different types such as nominal, ordinal, interval, ratio,

or free-text. A facet is associated with facet values that are exhaustive (collectively

covering all the items) and mutually exclusive (not covering any item in common). For

example, facet Make would have Toyota, Chevrolet ... as its facet values. The values

within a facet can be a flat or hierarchical list.

In MASFA, facet values appear as a flat list. This is a design, not a technical

option. In general, faceted search works better with a broad taxonomy that is relatively

shallow, as this lets users combine more perspectives rather than get stuck in an eternal

drill down, which causes fatigue (www.uie.com/articles/faceted search/). Many

commercial sites such as Linkedin people search (linkedin.com) and the Costco wireless

phone shopping site (membership- wireless.com/index.cfm) use flat lists for clarity of

interface and logic. MASFA implements a mass-collaborative framework, where it is

particularly important to avoid unnecessary confusions and complications, making sure

that contributors share the same or similar understanding about the system and have a

common ground to work on collaboratively. Flat lists are much easier to visualize,

comprehend, and edit.

While the conventional exhaustiveness and mutual exclusiveness constrains

provide clear classification of items, their enforcement would incur significant difficulty

for community members to construct facets. MASFA relaxes these constraints by

allowing incomplete and overlapping coverage of items. A special value “Other” is added

whenever necessary to collect the items not covered by the sibling values within a facet.

 20

Reasonable overlapping of items will not be purposely ruled out. For example, if a car

has both black and blue colors, then the corresponding car ad item would be covered by

both “Black” and “Blue” values under the facet “Color”. In practice, a well-behaved

MASFA faceted search system would be nearly exhaustive and nearly mutually

exclusive. This relaxation does not compromise the utility of the system, yet successfully

avoids significant building and maintenance costs.

Unlike conventional faceted search, a facet value in MASFA is not a single value,

but a set of positive and negative phrases separated by commas. It represents a Boolean

formula and covers the items that satisfy the formula. Let V be a facet value, where

𝑃!, 𝑃!, ···, 𝑃! constitute the set of positive phrases and −𝑁!, −𝑁!, ···, −𝑁! constitute the

set of negative phrases. Then V corresponds to a Boolean formula of (𝑃! ∪ 𝑃! ∪⋯∪

𝑃!) ∩¬(𝑁! ∪ 𝑁! ∪⋯∪ 𝑁!). The items that satisfy the formula are the ones that

contain any of the positive phrases and do not contain any of the negative phrases. This

interpretation corresponds to an implicit way of generating metadata, where the satisfying

items are “labeled” by a set of positive phrases 𝑃!, 𝑃!, ···, 𝑃! and a set of negative

phrases −𝑁!, −𝑁!, ···, −𝑁!. Note that this implicit named entity recognition and

classification mechanism is not domain-specific. It can be utilized in any application

domain and does not incur maintenance or update cost.

In practice, the positive phrases are usually different mentions of the same (or

similar) target feature, for example, Chevrolet and Chevy. The negative phrases are used

to weed out different features that happen to have the same or similar mentions to those

of the target feature. For example, if the target feature is sport cars (small cars designed

for performance), then we may want to weed out sport utility vehicles (special purpose

 21

vehicles for towing with on and off road capabilities) by using a negative phrase “-sport

utility”.

During faceted navigation, multiple facet values maybe selected from multiple

facets. MASFA implements the CNF semantics for the selected facets, where they form a

conjunction of disjunctions. For example, if 𝑉! (e.g., Ford) and 𝑉! (e.g., Honda) are

selected from facet 𝐹! (e.g., Manufacturer) and 𝑈! (e.g., Black) and 𝑈! (e.g., Blue) are

selected from facet 𝐹! (e.g., Color), then the compound Boolean formula will be

(𝑉! ∪ 𝑉!) ∩ (𝑈! ∪ 𝑈!) (e.g., cars made either by Ford or Honda that are either black or

blue in color). The refined search results R′ will contain all the items from R (the original

search results for query q) that satisfy the compound formula.

In MASFA, each facet value V′ is associated with an item count in the form of x/y,

where y is the total number of original results for query q that are covered by V. The y

number is a function of q and V and will not change dynamically throughout the

progressive refinement process for query q.

If a sibling value V’ within the same facet has been selected, then x indicates the

maximum (not exact, because MASFA allows overlapping coverage among sibling facet

values) number of the items that can possibly be added (removed) to the refined results if

V is selected (de-selected). This is because MASFA implements CNF semantics for

selected facet values and selected sibling facet values are OR-connected. Suppose under

the facet “Color”, “Black” (9/9) has been selected and there are 9 items in the set of

refined results. The subsequent selection of “Blue” (5/5) would add at most 5 items to the

refined results if there is no overlapping between “Black” and “Blue”. If one car is black

 22

and blue (containing both words in the ad), then only 4 items will be added to the refined

results.

If none of the sibling values of V has been selected, then x indicates exactly the

number of items that will appear in the refined search results if V is selected. This is the

case even when some facet values from other facets have been selected because MASFA

implements CNF semantics for selected facet values and selected values from different

facets are AND-connected. If none of the sibling values but V has been selected, then x

only indicates the current number of refined results covered by V (which is also the total

number of refined results since V is the only value selected within the facet) and cannot

be used to predict the change of number of refined results once V is deselected. This is

due to a convenient but incorrect convention in faceted search: it is considered all values

within a facet are selected if none of them is selected.

Item count numbers contain very important information for progressive query

refinement. They provide a preview of the refined search results before a facet value is

actually selected.

Each facet name in MASFA is also associated with an item count in the form of

x′/y′, where y′ indicates the total number of original search results for the initial keyword

query q, and x′ indicates the total number of refined results for the selected facet values.

Obviously, all the facets will share the same x′/y′ at all times. Such numbers provide

summative information for the progressively refined search results.

4.3 Facet Editing and Management

A community member can start an editing session and edit the facets by adding,

deleting or modifying facet names and facet values. The refined results as well as item

 23

counts will be updated immediately and automatically after each edit. No login is

required. All edits in MASFA are available through context menus. The editing session

will expire in certain period of time (10 minutes) unless renewed. A successful editing

session with valid edits will result in a new version of facets to be created.

Machine-extracted phrases can assist with human editing. For example, phrases

Toyota, Honda, Audi, and BMW can be moved into one facet labeled with “Make”.

Phrases Wagons, Convertibles, and Pickup Trucks can be moved into one facet labeled

with Vehicle Type.

User edits are valuable contributions. It is important to keep the historical edits,

instead of only the current version of facets, for multiple beneficial purposes such as

aggregating user contributions and personalizing user preferences.

In MASFA, a temporal database (Snodgrass, 1999) is used to store all the user

edits, where addition and deletion (a modification is equivalent to a deletion plus an

addition) timestamps are recorded. Specifically, the facet trees are decomposed into pairs

of labels that correspond to edges, and the pairs are the actual stored database objects.

Addition timestamps and deletion timestamps together form a composite key in a

relational table. Note that in (David C. Anastasiu, 2011), we have used root-to-leaf paths

as the editing and storage unit, instead of the much simpler edges (label pairs). This is

because such paths are guaranteed to be unique, while edges are not and there are many

repeating edges in the hierarchical clustering interface. However, in the faceted search

scenario, edges rarely repeat and we can safely assume their uniqueness.

 24

Our current prototype does not stress concurrency control. It implements a simple

policy that only one user can edit the facets at a session. Community members can edit

any version of facets, not necessarily the current one.

The personalized and collaborative framework in (David C. Anastasiu, 2011)

provides explicit personalization for logged-in users, which incurs significant overhead in

managing the numerous personal profiles. We observe that in the scenario of faceted

search, facets mainly describe intrinsic product features or properties. Users usually share

centralized common cognition and comprehension about the representation and structure

of such features with few deviating personal preferences. Thus MASFA facilitates

version navigation and retrieval of an implicit and personalization mechanism.

Figure 4: Facet Aggregation

Algorithm:	
 Facet	
 aggregation	

Input:	
 	
 	
 	
 All	
 facet	
 versions,	
 their	
 life	
 span,	
 and	
 usage	
 statistics	

Output:	
 	
 F:	
 an	
 aggregated	
 version	
 of	
 facets	

1:	
 Decompose	
 each	
 version	
 into	
 a	
 facet	
 set	
 to	
 obtain	
 combined	
 facet	
 set	
 𝔽	

2:	
 Rank	
 facets	
 in	
 𝔽	
 according	
 to	
 their	
 life	
 span	
 and	
 usage	
 statistics	

3:	
 Compute	
 pair-­‐wise	
 similarity	
 for	
 facets	
 in	
 𝔽	

4:	
 ℂ = ∅	
 //initial	
 cluster	
 set	

5:	
 while	
 (𝔽 ≠ 0)	

6:	
 	
 	
 	
 	
 Remove	
 𝑓! ∈ 𝔽 with	
 highest	
 rank	

7:	
 	
 	
 	
 	
 Compute	
 similarity	
 of	
 𝑓! 	
 to	
 each	
 cluster	
 in	
 ℂ	

8:	
 	
 	
 	
 	
 Select	
 𝑐! ∈ ℂ	
 with	
 largest	
 similarity	

9:	
 	
 	
 	
 	
 if	
 (
 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑓! , 𝑐! ≥ 𝑡ℎ𝑟𝑒𝑠ℎℎ𝑜𝑙𝑑)	
 then	

10:	
 	
 	
 	
 	
 	
 	
 	
 	
 Assign	
 𝑓! 	
 to	
 𝑐! 	

11:	
 	
 	
 	
 	
 else	

12:	
 	
 	
 	
 	
 	
 	
 	
 	
 Create	
 new	
 cluster	
 with	
 𝑓! 	
 in	
 ℂ	

13:	
 	
 	
 	
 	
 end	
 if	

14:	
 end	
 while	

15:	
 For	
 each	
 cluster	
 in	
 ℂ choose	
 the	
 highest	
 ranked	
 member	
 and	
 insert	
 into	
 F	

	

 25

In particular, a user can create a preferred version of facets based on a close one

and easily retrieve it in the future by specifying the corresponding timestamp. This

version is personal, but not private. Any user can access it by specifying the timestamp or

using her/his own alias of it. Privacy is not of critical concern in faceted search. The users

can also navigate through all the previous versions of facets by using the “Prior” and

“Next” buttons. Our current prototype does not stress spamming issues. However, the

embedded personalization mechanism actually provides a very effective way of avoiding

spamming.

Facet Aggregation. Given the open nature of crowdsourcing systems, noise and

turbulence are common due to differences in preferences and understanding,

unintentional execution errors, or malicious spamming. Statistics-based aggregation can

effectively smooth out such noise and turbulence. In MASFA, by clicking the

“Aggregated Facets” button, users can obtain a synthetic set of facets. The aggregation

utilizes clustering techniques by analyzing the numerous human-edited versions

considering their life span and usage statistics.

Figure 4 presents the pseudo code for the facet aggregation algorithm of MASFA.

The idea of the algorithm is to decompose the facets of all versions and perform

clustering on them. Each cluster represents an equivalence class consisting of different

versions of the same facet. For each cluster, the best member is chosen and inserted into

F, the aggregated set of facets.

In line 2, facets are ranked according to their life span and usage statistics. In

general, facets with longer life spans and more usage tend to be more robust, enduring

and popular, and they are ranked high.

 26

In line 3, pairwise similarity of facets is computed using modified Jaccard

coefficient. Let 𝐹! and 𝐹! denote two facets, each consisting of a set of facet values, then

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝐹!,𝐹! = 𝐹! ∩ 𝐹!/min(|𝐹!|, |𝐹!|).

We use min (|𝐹!|, |𝐹!|) to replace |𝐹! ∪ 𝐹!| as in the standard Jaccard coefficient

to boost the similarity measure. This is because in practice, different facets (e.g., “Color”

and “Make”) rarely share facet values. In case two facets do share a few in common, it

would be a strong indication that they are actually different versions of the same facet

and should be clustered together. The cut-off threshold (line 8) is set to 10% in MASFA

but it is tunable.

In line 8, the similarity between a facet 𝐹! and a cluster 𝐶! of facets is computed

by computing the similarity between 𝐹! and the closest facet in 𝐶! using the modified

Jaccard coefficient.

Frequent Phrases. Frequent phrases can be used to suggest addition or removal

of facet values, serving as building blocks in facet construction and organization and

reducing editing workload of community members. It can also be used to add a layer of

machine supervision to reduce turbulence. The extracted phrases can be considered as a

superset of the common facet values. They are mixed, not unorganized into facets.

However, they are ranked according to frequency and made clickable, which makes them

useful even in progressive query refinement.

In a centralized category of documents, such as Car in Craigslist, facet values

(Toyota, Chevy, Blue, and Power Window) are frequently used as feature descriptors.

Thus, potentially a frequency-based, non-domain-specific approach can be used to extract

such facet values. In MASFA, a category of documents is collected and pre-processed.

 27

Then, a suffix-tree-based algorithm is used to extract frequent syntactic phrases. Then,

simple cleansing heuristics are applied to remove noisy phrases. The phrase extraction

techniques in MASFA are completely non-domain-specific and portable.

Pre-processing. In the beginning, duplicate items are removed using near-

duplicate detection techniques. This is important for frequency-based phrase extraction

because duplication can inflate the frequency of semantically meaningless long phrases

leading to added noise. A typical example of such noise is “Call me only if you interested

to buy this car 512-501-xxxx no message or email”. After removing duplicates, the

remaining documents are pre-processed by following standard tokenization, case folding,

and stemming procedures.

Implementation-wise, we used SpotSigs, a near-duplicate detection package

(www.mpi-inf.mpg.de/∼mtb/). SpotSigs identifies duplicate documents by first extracting

signature phrases in all documents, and then identifying documents with overlapping

signatures.

Syntactic Phrase Extraction. Common facet values are frequent semantic

phrases (not vice versa) because they are frequently used to describe product features.

Existing techniques for named entity recognition and classification use costly handcrafted

rules that are not portable across domains (David Nadeau, 2007). A syntactic phrase is a

continuous sequence of words. The words may not be semantically related to form a

coherent meaning. For example, “phrase is a continuous” is a syntactic phrase. Semantic

phrases are also syntactic phrases but not vice versa. Since semantic phrases tend to be

used frequently, and common facet values are frequent semantic phrases, frequency is a

strong indicator for facet values.

 28

MASFA uses a suffix tree-based approach to extract frequent syntactic phrases. In

particular, it uses a generalized suffix tree as a compressed trie to identify word

sequences inside a document collection. The suffix tree is built with Ukkonen’s algorithm

(Esko, 1995) over all tokens. Then, the syntactic phrases are extracted by traversing the

tree depth first. The phrase length is calculated by summing the edge span from the root

to a node. The phrase postings are collected from the edge postings. The postings are

aggregated from a child node back to the suffix tree root. Phrase extraction is explained

in (Zamir, 1999).

The frequency cut-off thresholds depend on the length of phrases. Smaller

thresholds are used for longer phrases. While MASFA currently determines the

thresholds heuristically, more sophisticated machine learning approaches can potentially

be used to learn the thresholds.

To remain effective, facets have to evolve along with community data, where new

products (e.g., Blu-ray players) or new features (e.g., 3D for TV) of products are

introduced continuously. MASFA performs phrase extraction periodically to identify

emerging frequent phrases, where previous frequent phrases are removed before building

the suffix tree.

Cleansing. The extracted syntactic phrases are a superset of facet values. To

improve accuracy, MASFA adopts heuristics to remove noise. The main heuristic is to

make use of a set of stop words containing common verbs, adverbs, and adjectives. Any

syntactic phrase starting or ending with a stop word will be removed. This simple

heuristic works well in our experience, yet it remains as an important future work

direction to further improve the extraction accuracy.

 29

5. MASFA IMPLEMENTATION

The MASFA implementation discusses the front end and back end software

components. MASFA is implemented as a web service in Java using JDK 1.7. In this

section, the implementation details for the front end, back end, clients, and APIs are

presented.

5.1 MASFA Back End

The MASFA back end provides a Craigslist client, facet data, and business logic

to manage the data. The back end is implemented using the Spring Model-View-

Controller package (MVC). Spring MVC provides custom presentations, JSON

serialization, database access, and custom business logic. The back end serves all facets

and processed data to the front end as JSON using AJAX (www.json.org/).

Craigslist Queries. Craigslist provides data as Really Simple Syndication feeds

(RSS) (www.craigslist.org/about/rss). RSS is essentially XML that follows a schema. The

XML data contains information for Craigslist ad-items such as title, timestamp, URL,

description, etc. MASFA implements a client that requests and parses the RSS feeds

using the open source library Rome (http://rometools.org). The URL, title, and

description information is used for processing. Craigslist provides RSS feeds by city and

category. For example, Craigslist provides 100 items for Austin cars and trucks for sale

by owner at http://austin.craigslist.org/cto/index.rss. Craigslist also provides query

capabilities. The following URL provides 25 items for the same category that contains

“honda”: http://austin.craigslist.org/search/cto?query=honda&srchType=T&format=rss.

Query Result Processing. To process query results retrieved from Craigslist, the

title and description fields are first extracted and then processed to build an inverted

 30

index. From each craigslist result the text fields are scanned into tokens using Jflex

version 1.4.3 (http://jflex.de/), where the following token types are identified: word,

number, punctuation, and end of content. Next, MASFA normalizes each token by

applying a case filter (turning all tokens into lower cases), a stemmer (using the snowball

stemmer at http://snowball.tartarus.org/), and a stop word filter to extract terms. MASFA

uses the union of two stop words sets at

http://snowball.tartarus.org/algorithms/english/stop.txt and

http://www.webconfs.com/stop-words.php. Finally, MASFA builds an inverted index

using the extracted terms. The inverted index tracks document ids, postings, and text

positions. It supports the front end by mapping facet values to terms and their documents.

Temporal Database. The MASFA back end has a Java H2 Database engine that

implements a temporal database. Java H2 (http://www.h2database.com/html/main.html)

was chosen for its setup simplicity for testing and production deployment. Additionally,

MASFA uses hibernate (http://www.hibernate.org/) to easily switch to other databases in

the future. There are three tables in the database: Facet, Liveliness, and Session.

• Session: The Session table supports tracking of edits. It contains four fields: id,

start, stop, and configuration, where start and stop are timestamps. Java supports

converting timestamps to an elapsed number of milliseconds. The configuration

field is a string describing a specific craigslist city and category.

• Facet: The Facet table records facet values and the facet names they belong to. It

contains four fields: id, configuration, parent, and value. The configuration field

identifies the craigslist city and category. The parent field records facet names for

 31

facet values. The value field is a comma-separated list of positive and negative

phrases.

• Liveliness: The Liveliness table records the life spans of facet names and values.

It contains three fields: id activated timestamp and deactivated timestamp, where

id is a foreign key referencing to the Facet table.

5.2 MASFA Front End

The MASFA front end provides dynamic user interface for editing facet trees

using Javascript and HTML. MASFA allows the user to retrieve facets from the back end

for a given timestamp, as well as processed Craigslist data for a given query. The

processed Craigslist data is cached to facilitate dynamic updates to facet names, facet

values, and their item counts. Each user edit to the facets during a session are sent to the

back end for storage.

jQuery (http://jquery.com/) provides the core functionality for dynamic user

interface based plugins and AJAX queries. The tree is presented using the Dynatree

jQuery plugin (http://code.google.com/p/dynatree/). Dynatree provides an interface to

dynamically build and manipulate trees in a Web browser. We used the hierarchical

selection and checkbox feature of the plugin. A context menu jQuery plugin

(http://abeautifulsite.net/2008/09/jquery-context-menu- plugin/) provides a user interface

to support creation, update, and deletion of facet names and values as tree nodes. After

editing a label, the item counts are updated dynamically.

To align the user labels with the terms and postings extracted from the Craigslist

data, the phrases are stemmed using a Javascript implementation of the Snowball

stemmer (http://code.google.com/p/urim/). The postings from phrases consisting of

 32

multiple terms are merged using the inverted index provided by the back end for a given

document set.

5.3 MASFA API

MASFA integrates the front-end and back-end through an API. In the Model-

View-Controller design, the controllers provide the necessary APIs to the browser.

MASFA provides three main controllers – craigslist, session, and home. In this section,

we document the APIs provided by MASFA. The APIs are provided as HTTP methods.

The craigslist and sessions controllers return JSON documents. The home controller

returns HTML documents for the browser to interact with the craigslist and session

controllers. The following sections document the craigslist and sessions JSON APIs in

detail.

Craigslist Controller API. The craigslist controller provides an API to retrieve

craigslist data, retrieve craigslist facets, and manipulate craigslist facets. Next, we

document each craigslist method, their input parameters, and results.

• Get

Get queries and processes a craigslist dataset. The method queries craigslist with the

provided location and feed using the query terms. The query response from craigslist

is processed. The processing includes token, term, and phrase extraction. Phrases

may be excluded in the output. Including phrases increases method response time.

Input Parameters

Location, Feed, Query, Phrases

Response Format

documents: the documents url, title, summary, price, and timestamp

 33

terms: inverted index build from the documents

tokens: text tokens, term, types, and their offsets in the documents

phrases: named entities in the documents when phrases are enabled

Example

http://dmlab.cs.txstate.edu/masfa/craigslist/get/austin/cto?query=vas&phrases=0

• Get Facets

Get facets retrieves all facets for the craigslist location and feed that are alive at given

timestamp.

Input Parameters

Location, Feed, Timestamp

Response Format

next: the next session version in the facet database

prior: the prior session version in the facet database

version: the version of the facets returns

facets: a list of tuples containing a facet category and a list of position and

negative labels

Example

http://dmlab.cs.txstate.edu/masfa/craigslist/get/facets/austin/cto

• Aggregate Facets

 34

Aggregate facets return the most relevant facets across all facet versions using

clustering and liveliness across versions. The method takes three parameters, a

craigslist location, a craigslist feed, and the percent similarity to form a cluster. The

percent similarity is not required and has a default value of 10%.

Input Parameters

Location, Feed, pSimularity

Response Format

facets: a list of facet tuples, each tuple contains a facet category and list of

positive and negative phrases

Example

http://dmlab.cs.txstate.edu/masfa/craigslist/aggregate/facets/austin/cto

• Activate Facet

Activate facet asserts a valid session exists for the craigslist location and feed. If a

session is not active, an error is returned. Otherwise, a new facet with provided

category and label are marked alive in the temporal database.

Input Parameters

Location, Feed, Facet Category, Facet Label

Response Format

Empty JSON document on success either a document with a JSON error message

Example

http://dmlab.cs.txstate.edu/masfa/craigslist/activate/facet/austin/cto?category=Pric

e&label=100-200

 35

• Deactivate Facet

Deactivate facet asserts a valid session exists for the craigslist location and feed. If a

session is not active, an error is returned. Otherwise, the facet with provided category

and label are marked not alive in the temporal database.

Input Parameters

Location, Feed, Facet Category, Facet Label

Response Format

Empty JSON document on success either a document with a JSON error message

Example

http://dmlab.cs.txstate.edu/masfa/craigslist/deactivate/facet/austin/cto?category=P

rice&label=100-200

• Deactivate Facet Category

Deactivate facet category asserts a valid session exists for the craigslist location and

feed. If a session is not active, an error is returned. Otherwise, all facets with

provided category are marked not alive in the temporal database.

Input Parameters

Location, Feed, Facet Category

Response Format

Empty JSON document on success either a document with a JSON error message

Example

http://dmlab.cs.txstate.edu/masfa/craigslist/deactivate/facet/category/austin/cto?ca

tegory=Price

 36

• Rename Facet

Rename facet asserts a valid session exists for the craigslist location and feed. If a

session is not active, an error is returned. Otherwise, the facet with provided category

and label is marked not alive in the temporal database. Additionally, a new facet is

marked alive in the database with the same category and new label.

Input Parameters

Location, Feed, Facet Category, Facet Label, New Facet Label

Response Format

Empty JSON document on success either a document with a JSON error message

Example

http://dmlab.cs.txstate.edu/masfa/craigslist/rename/facet/austin/cto?category=Pric

e&fromLabel=100-200&toLabel=100-201

• Rename Facet Category

Rename facet category asserts a valid session exists for the craigslist location and

feed. If a session is not active, an error is returned. Otherwise, all facets with

provided category are marked not alive in the temporal database. Additionally, all

facets with the old category are marked alive with the new category in the database.

Input Parameters

Location, Feed, Facet Category, New Facet Category

Response Format

Empty JSON document on success either a document with a JSON error message

Example

 37

http://dmlab.cs.txstate.edu/masfa/craigslist/rename/facet/category/austin/cto?from

Category=Color&toCategory=Colour

Session Controller API. The session controller manages sessions within

MASFA. The controller supports craigslist and any other potential client through a

formatted configuration parameter. The controller API supports starting, stopping,

extending, and testing sessions. The following documents the methods in detail.

• Start

Start begins a new session for provided configuration. The method returns the

starting and ending timestamp for the started configuration.

Input Parameters

Configuration

Response Format

Configuration: The configuration provided as input

Start: The starting timestamp for a session

Stop: The ending timestamp for a session

Example

http://dmlab.cs.txstate.edu/masfa/session/start/craigslist_austin_cto

• Stop

Stop ends a session for provided configuration. In nominal conditions, the method

should always return success, even when a session is not started.

Input Parameters

Configuration

Response Type

 38

HTTP Status Code

Response Format

HTTP Status Code = 200

Example

http://dmlab.cs.txstate.edu/masfa/session/stop/craigslist_austin_cto

• Extend

Extends increases the sessions stopping timestamp for provided configuration. The

stopping timestamp does not affect the facet version and all facets remain with the

starting timestamp. The method will return an error if a sessions not started.

Input Parameters

 Configuration

Response Format

Configuration: The configuration provided as input

Start: The starting timestamp for a session

Stop: The ending timestamp for a session

Example

http://dmlab.cs.txstate.edu/masfa/session/extend/craigslist_austin_cto

• Get

Get retrieves the active session data for provided configuration. Get will return an

empty document if a sessions is not started for the provided configuration.

Input Parameters

 Configuration

Response Format

 39

Configuration: The configuration provided as input

Start: The starting timestamp for a session

Stop: The ending timestamp for a session

Example

http://dmlab.cs.txstate.edu/masfa/session/get/craigslist_austin_cto

5.4 MASFA Tools

Several tools were written to facilitate offline analysis of craigslist. Especially,

extracting offline phrases and building a static data set using craigslist data. The tools

developed range from downloading craigslist RSS feeds, extracting documents from the

downloaded RSS feed, processing the extracted documents, and detecting duplicate

documents. These tools are available after building MASFA. The tools are run from a

Linux terminal.

CraigsListAggregator. CraigslistListAggregator downloads craigslist RSS

documents using the provided location and feed. The location and feed can be comma

separated. The tool also allows the user to set a download directory for the RSS

documents.

CraigsListIndexFeedAggregator: download and cache craigslist rss index
feeds
Option Description
------ -----------
-d, --directory <File> the craiglist directory to save
 results (default: craigslist/index)
-f, --feed feed to pull (comma separated)
-h, --help print this message
-l, --location city to pull feeds from (comma
 separated) 	

Figure 5: CraigsListAggregator Help

 40

CraigsListProcessor. CraigsListProcessor extracts data from a download

craigslist RSS document cache. The tool supports extracting JSON documents or

summary documents. The JSON documents support loading into the MASFA data set.

The summary documents support duplicate document detecting. The tool takes as input

the directory for the cached RSS documents, a comma separated list of locations and

feeds, and an optional list of document URLs to filter from the output.

CraigsListIndexProcessor: process downloaded craigslist data
Option Description
------ -----------
-d, --dir <File> craiglist dataset directory
-f, --feed feed to process
--filter <File> file containing urls to filter
-h, --help print this message
-l, --loc cities to process
-o, --output output type (summary|json)
-t, --total <Integer> total documents to process	

Figure 6: CraigsListProcessor Help

Process. Process supports extracting data from a collection of search results. The

tools supports RSS feeds from craigslist as well as output from other search engines. The

tools can extract tokens, phrases, and labels. The difference between phrases and labels

is that labels are normalized and filtered after phrase extraction. See below for further

help information.

Process: print information regarding cached search results
Option Description
------ -----------
-d, --documents display document content
-f, --file <File> a file or a directory that contains
 files to process
-h, --help print this message
-i, --input file input format (json|raw) (default:
 raw)
-l, --labels display labels extracted from all files
-o, --output output format (csv|raw) (default: raw)
-p, --phrases display phrases extracted from all
 files
-t, --tokens display document tokens 	

Figure 7: Process Help

 41

SpotSigs. The SpotSigs tool executes the duplicate document detection algorithm

over a collection of raw text documents. The SpotSigs author, (Martin Theobald, 2008),

provided the original implementation of the tool. Minor modifications were made to the

tool to execute in a JDK 1.7 environment.

process-dups.pl. Process-dups.pl is a Perl script that takes the duplicate

document output from SpotSigs and generates a list of duplicated documents. The file

with the highest size is not included in the output.

 42

6. MASFA ADMINISTRATION AND USER GUIDE

This section explains how to administer and use MASFA. The administration

section explains how to bring-up the MASFA software on a Linux computer. The user

guide explains how to use the MASFA web interface.

6.1 MASFA Administration

This section explains how to build the software, install the application, and how to

start/stop the MASFA service.

Building MASFA. Building the MASFA software requires a minimum

environment configuration of JDK 1.7 on a Linux like system. The JDK is available

through www.oracle.com. Install the JDK on a system using the instructions provided by

oracle. The MASFA source code exists on the dmlab server at

/var/www/masfa/masfa_source.tgz. The following steps explain how to build MASFA.

1) tar xzf masfa_sources.tgz

2) cd gummy

3) ./gradle clean build generateScripts

4) ./gradle generateScripts

After building, the MASFA web server exists in the directory: gummy-web-

server/build/server/. Additional tools supporting this work also exist in the directory:

build/bin.

Installing MASFA. After building the software, copy the files in gummy-web-

server/build/server into a system directory. The system directory used on the dmlab

server is /var/www/jetty/server. Also ensure all files in “/var/www/jetty” are owned by a

non-root user. In this example we use jetty. Next, as root, install the following system

 43

init script into /etc/init.d/jetty to ensure MASFA starts and stops on system startup and

shutdown.

#!/bin/bash

Some variables to make the below more readable
export MAFA_HOME=/var/www/jetty/server
export MASFA_USER=jetty
export MASFA_PORT=80

start()
{
 su -p -s /bin/sh $MASFA_USER -c "$MASFA_HOME/bin/startup
$MASFA_PORT > /dev/null &"
}

stop()
{
 su -p -s /bin/sh $MASFA_USER -c "$MASFA_HOME/bin/shutdown >
/dev/null &"
}

case "$1" in
 start)
 start
 ;;
 stop)
 stop
 ;;
 restart)
 stop
 start
 ;;
 *)
 echo $"Usage: $0 {start|stop|restart}"
esac
exit	

Figure 8: MASFA init script

Once installed, MASFA is started as root with the following command – service jetty

start. Next, using a web browser open this website http://HOSTNAME/masfa.

HOSTNAME is the name of the system where MASFA’s installed.

Adding a Craigslist Category. Adding a new Craigslist category requires

updating an HTML template file in the source code. After adding the category the source

code must be rebuilt and deployed. For example we will add the Austin furniture

 44

category to the set of available categories in MASFA. First, edit the following source

file: gummy-web/src/main/webapp/WEB-INF/views/home.ftl. Next, add the following

option to the source select HTML element in the aforementioned file: ‘<option

value="craigslist/austin/fua"> Craigslist/Austin/Furniture</option>’. Finally, rebuild and

install craigslist as per the instructions outlined above. The figure below shows the select

element with the added furniture option.

<select id="source" onchange="reset()">

 <option value="craigslist/austin/cto/masfa">Craigslist/Austin/Cars/Masfa</option>

 <option value="craigslist/austin/moa/masfa">Craigslist/Austin/Cell Phones/Masfa</option>

 <option value="craigslist/austin/sys/masfa">Craigslist/Austin/Computer/Masfa</option>

 <option value="craigslist/austin/cto">Craigslist/Austin/Cars</option>

 <option value="craigslist/austin/moa">Craigslist/Austin/Cell Phones</option>

 <option value="craigslist/austin/sys">Craigslist/Austin/Computer</option>

 <option value="craigslist/austin/fua">Craigslist/Austin/Furniture</option>

</select>

Figure 9: Adding Austin Furniture to Craigslist Categories

6.2 MASFA User Guide

The following describes how to use MASFA once the application’s installed. Use

the deployed version on the dmlab servers as reference

(http://dmlab.cs.txstate.edu/masfa).

Category Selection. MASFA presents the user with a collection of datasets to

query. One dataset is the MASFA dataset built from cached craigslist RSS feeds. The

other data set is the live craigslist data. The following table describes the possible

selections – their name, index, and source. The user selects a dataset using the drop-

down box. MASFA will pull the top results using the query words in addition to the

facets related to that data set and index.

 45

Table 3: MASFA Categories

Name Index
Data

Source

Craigslist/Austin/Cars/MASFA Austin, Cars MASFA

Craigslist/Austin/Cell Phones/MASFA Austin, Cell Phones MASFA

Craigslist/Austin/Computers/MASFA Austin, Computers MASFA

Craigslist/Austin/Cars Austin, Cars Craigslist

Craigslist/Austin/Cell Phones Austin, Cell Phones Craigslist

Craigslist/Austin/Computers Austin, Computers Craigslist

Data Querying. MASFA supports direct search with keyword and Boolean

query functionality. Put in a list of keywords and MASFA returns results with either

keyword or both in descending time order. Boolean searching the MASFA dataset and

Craigslist is different. Both datasets support Boolean operators and grouping. However,

the syntax is different. The Craigslist data source uses &, |, and () for and-ing, or-ing,

and grouping respectively. The MASFA data source uses AND, OR, and () for and-ing,

or-ing, and grouping respectively. The two examples below show how to precisely find

results for a 2010 or 2011 Blue Honda.

Table 4: Example Advanced Query Support

MASFA Craigslist

(2010 OR 2011) AND blue AND honda (2010 | 2011) & blue & honda

Facet Editing. After selecting the dataset with the desired craigslist category and

submitting a query, the user may find the facets lack a desired facet label or category. In

such a case, the user should start a facet editing session by pressing the button labeled

“Start Session.” If another user is actively in a session, MASFA will respond with an

 46

error. Otherwise, a session is started. The timestamp is updated with the session version.

The user can record that timestamp for personalization. After the sessions started the

user has the following options:

• Create a Facet

To create a facet, right-click the facet labeled “New Facet” on the hierarchy and

select “Edit.” A new facet is created for the user to provide a name. The user can

press “esc” to cancel facet creation, or, hit “enter” to complete facet creation.

• Edit, Delete a Facet

After a facet has been created, a user can delete or edit that facet. To accomplish

this, using the mouse, right-click a facet. Then select either edit or delete. Both

edit and delete affect the facet label value associations to the facet.

• Create a Facet Label Value

After creating a facet, a user can add label values to the facet. To add a new

value, right click the desired facet and select “New.” Afterwards, enter the

desired values. Press the “esc” key to cancel creation or press the “enter” key to

create the value. The values are comma-separated list of positive or negative

phrases. For example to create a value for Sports Cars and not Sports Utility

Vehicles, the values would be “sports car, -sports utility.” The positive phrases

require no characters, however, the negative phrases require a leading ‘-‘. The

phrases are case-insensitive and are stemmed. Hence, there would be no need to

add Sport or Sports to the values. MASFA also provides a special facet, price. A

user can add a numeric range to the MASFA price to select results. For example

 47

to create a price value for $0 to $1000.00, create a new facet in the price category

with the value 0-1000.00.

• Edit, Delete a Facet Label Value

After a facet’s been created, a user can delete or edit that facet value. To

accomplish this, using the mouse, right-click a facet value. Then select either edit

or delete. Editing follows the same rules as creation.

After editing completion, the user stops the session with the button labeled “Stop

Session.” The user can always return to this version of the facets using the timestamp

displayed.

Facet Aggregation. MASFA finds the best facet labels and categories through

aggregation. Facet aggregation identifies the best facets by removing noise with short-

lived facets. In other words, the facets that survived the longest and have the largest

group exists in the aggregated set. The button, Aggregate Facets, on the MASFA UI

returns said facets. The method also returns the timestamp the facet labels come from

with the facet category name.

Facet Personalization. MASFA provides facet personalization through

timestamp-based versioning. A user can record the timestamp during session editing or

remember the date he created the facet version. The timestamp is encoded in the

following format YYYYMMDD HH:mm:ss.SSS. YYYY is year, MM is month, DD is

day, HH is hour, mm is minutes, ss is seconds, and SSS is milliseconds. For example,

consider the following data October 5th 2012 at 4:00:00 PM. The timestamp would be

20121005 16:00:00.000. In addition to versioning, MASFA supports navigation. A user

can go to the next or prior version based on a given version. MASFA will not allow

 48

navigation past or before the latest and earliest version. The buttons on the UI labeled,

“Prior” and “Next” support navigation.

 49

7. EVALUATION

Evaluating MASFA covers three areas – correctness, efficiency, and utility.

Correctness evaluation shows the system was built according to design and requirements.

Correctness was measured through functional and unit software tests. Efficiency shows

the system performs according to real-time user expectations. Efficiency was measured

by timing pertinent system software components – data querying and processing, facet

retrieval, facet aggregation, and facet tree setup. Finally, utility measures MASFA’s

ability to assist and satisfy user expectations. The study compares the new collaborative

facet interface to a traditional keyword interface. The user study supports both objective

and subjective measurements. The objective measurements show the system’s ability to

improve searching compared to a traditional keyword based system by timing task

completion. The subjective measurement shows the user’s preference to MASFA over

keyword-based searching. MASFA provides a keyword-based interface emulating

craigslist using the MASFA data to support this study. This section also discusses the

MASFA data set used to support this study.

The MASFA application is maintained on a server with 2 Intel Xeon X5675

processors each having 6 cores @ 3.07GHz, 24GB memory, and 1.3TB disk storage,

running Apache Tomcat 6.0.26. In this section, we evaluate the correctness and efficiency

of MASFA. Experiments were performed on a PC with Intel Core i5 running Mac OSX

with 8GB of RAM. Google Chrome version 23.0.1271.64 was used for all front-end

efficiency and correctness measurements.

 50

7.1 MASFA Dataset

 A data set was built to support evaluating MASFA using static craigslist

documents. The data set is also intended to support constructing offline phrases for the

facets view and future research. The data set was built from the craigslist API producing

RSS documents. The data was taken from the top results in a craigslist category and city

roughly every 15 minutes over a period of 3 months. The data set contains 7 categories

over 5 cities. The categories include: cars and trucks for sale by owner, computers,

furniture, jewelry, cell phones, appliances, and electronics. The Texas cities include:

Austin, Corpus Christi, Dallas, Houston, and San Antonio. The total raw compressed

data downloaded as RSS files is 4.01 GB. The RSS documents are processed and stored

in an inverted index. The inverted index supports keyword-based queries similar to

craigslist and standard keyword query system. The data set also supports query operators

AND/OR and grouping with parenthesis.

The inverted index technology used is ElasticSearch

(http://www.elasticsearch.org/). ElasticSearch provides a full-text search engine, api, and

schema-less storage using Apache Lucene. The api accepts documents as name value

pairs in JSON. ElasticSearch comes configured with default text processing

technologies (ex. stemming and case folding) for the values in each document. Because

ElasticSearch accepts JSON documents and the craigslist api produced RSS feeds, an

extraction script was written to extract the relevant fields and convert the RSS documents

into JSON. Additionally, the SpotSigs duplicate document detection algorithm was used

to remove redundant documents before loading them into ElasticSearch. The JSON

fields extracted include: url, title, description, and date time. After processing, removing

 51

duplicates, and loading the data into ElasticSearch, the dataset size reduced to 1 GB.

Finally, the dataset was integrated into MASFA using ElasticSearch’s api. The api is

web-based, similar to craigslist, and provides the json documents for a given city and

category. The integration amounted to developing a json parser and changing the url to

use a hostname and method different than craigslists.

7.2 Correctness Evaluation

We applied formal software-testing techniques to ensure system correctness. Unit

and Functional testing were applied. Unit testing guaranteed the individual software units

work as designed. Example units include tokenization, phrase extraction, database

querying, etc. Junit 4.X was used as a Java test framework (https://github.com/

kentbeck/junit/wiki). A total of 203 unit tests were written and total execution time was

4.497 seconds. Additionally, 10 functional tests were manually executed to ensure

correctness with respect to requirements. Before executing the test cases, the system was

prepopulated with facets. We summarize the functional test cases as follows. All

functional test cases executed successfully.

• Query Functions

o Query with and without keywords

o Aggregate facets

o Time navigation

• Session Functions

o Start and stop session

o Session timeout with and without continue

• Edit Functions

 52

o Add, modify and delete facet name

o Add, modify and delete facet value

7.3 Efficiency Evaluation

We evaluated the execution efficiency of MASFA prototype in terms of query

processing, preprocessing, facet retrieval, facet tree setup, and facet aggregation. In

summary, MASFA is efficient with satisfactory response time. Typical response time for

most requests is within 1∼2 seconds. Although the facet tree setup time does not scale

well, it is sufficiently fast for practical sizes. Note that we used up to 320 labels (facet

values) in the experiments for evaluation purposes. Practical faceted search systems are

never as large. Excessive labels in a faceted search interface defeat its purpose of

reducing information overload. There are further enhancements that can be made to

improve response time. For example, the facets and data can be compressed. This is a

trivial change, however, this is not implemented in the MASFA.

Craigslist Query Processing. Craigslist API returns at most 100 search results

per query. We measured the processing time for Craigslist queries over multiple

executions for various Craigslist categories such as Austin cars and Austin cell phones.

On average, it takes MASFA 436ms to process the queries. The average data size of the

RSS feed was 90K.

Preprocess Craigslist Results. In MASFA, Craigslist search results are

preprocessed to generate tokens, terms and phrases and to build an inverted index. On

average, it takes MASFA 9.73ms for this preprocessing step. The average data size of the

RSS feed was 90K.

 53

Facet Retrieval. To evaluate facet retrieval efficiency, we measured the time

required to retrieve facet names and values from the temporal database back end. The

measurement did not include the facet serialization time into JSON. The time was

measured by increasing the number of labels (facet values), where the labels were

generated randomly. The measurement starts from 0 facet names up to 32 with 10 facet

values per facet. As shown in the figure below, facet retrieval in MASFA scales well.

Figure 10: Facet Retrieval Time

Facet Tree Setup. To evaluate facet tree setup efficiency, we measured the time

required to build facet trees on the front end. The measurement did not include any data

retrieval time. The facet names and values were randomly generated. A total number of

320 values over 32 facets with 10 values per facet were generated. As shown in the figure

below, the time to build facet trees grows exponentially. However, on average it took

0.00	

0.01	

0.02	

0.03	

0.04	

0.05	

0.06	

0.07	

0.08	

0.09	

0	
 10	
 20	
 40	
 80	
 160	
 320	

Ti
m
e	

[s
ec
on
ds
]	

Labels	

Facet	
 Retrieval	

 54

only 0.2 or 0.5 second to build facet tress consisting of 50 or 100 labels, which is very

acceptable. Practical effective faceted search systems never have more than 50 labels.

Nonetheless, further improvements for facet tree setup could be considered, e.g.,

by changing Javascript data structures and using a bit set to represent document ids

instead of an array of integers. Additionally, different Javascript tree presentation

libraries can be considered.

Figure 11: Facet Tree Setup Time

Facet Aggregation. To measure facet aggregation efficiency, we measured the

time to obtain the aggregated version of facets from all historical versions. For the

experiment, a version consisting of 10 facets with 10 values per facet was created. The

measurements started with 10 versions up to 60. As shown in the figure below, the facet

aggregation algorithm scales well with an increasing number of versions.

0.00	

0.50	

1.00	

1.50	

2.00	

2.50	

3.00	

3.50	

0	
 10	
 20	
 40	
 80	
 160	
 320	

Ti
m
e	

[s
ec
on
ds
]	

Labels	

Facet	
 Tree	
 Setup	

 55

Figure 12: Facet Aggregation Time

7.4 User Study

To show MASFA improves utility compared to keyword searching we developed

a user study. The user study consists of eight goal-oriented tasks using the MASFA data

set. The tasks leverage three craigslist categories in the data set – cars, cell phones, and

computers. Three tasks require the car category. Two tasks require the cell phone

category. Three tasks require the computer category. The users were asked to perform

the tasks using both MASFA and a keyword-based search interface to the MASFA

dataset. The users were asked to record their answers and collect times required to

complete the tasks. Additionally, the users were asked subjective questions regarding

MASFA. The evaluation tasks, data collection table, and questionnaire are defined in the

Appendix.

 The user study was performed with ten people. Each person was provided with

the evaluation form. The MASFA provides help through a website link on the front-

page. The study was semi-moderated. Each person was briefly shown MASFA’s basic

0.00	

0.05	

0.10	

0.15	

0.20	

0.25	

0.30	

0.35	

10	
 20	
 30	
 40	
 50	
 60	

Ti
m
e	

[s
ec
on
ds
]	

Versions	

Facet	
 Aggregation	

 56

functionality. The functionality included – how to edit facets and how to query data. The

people performing the user study came from diverse backgrounds. Their backgrounds

included -- students, professionals, and doctors. Additionally, a presentation was given to

the students. The presentation provided more detailed background knowledge and

research regarding MASFA. In the following two sections we discuss the objective and

subjective feedback collected from performing this user study.

Objective Evaluation. Objective user study evaluation of MASFA measures the

time to complete the eight tasks. Completing the tasks includes query for the data, facet

editing (MASFA only), and searching for the data in the results. The time data was

collected and aggregated for each craigslist category. The timing data collected shows

that MASFA improves task completion on average 52 seconds for an overall 25%

improvement compared to the keyword based searching. The most improved MASFA

category was the “Cell Phone” category. However, MASFA shows a negative change

with the “Car” category. The “Car” category was the first task. Users spent time

understanding the system during this task. However, users performance improved with

subsequent tasks.

Table 5: MASFA vs. Keyword Task Timing

Category Average MASFA
Time

Average Total Keyword
Time

Percent Improvement
(MASFA vs. Keyword)

All 155 207 25%
Car 175 170 -3%
Cell Phone 122 237 49%
Computer 158 223 29%

Subjective Evaluation. After completing the tasks, the users were presented

with a questionnaire to subjectively compare MASFA to a keyword-based search. The

 57

users were asked four things. Three of the four questions were to rate MASFA. The

questions were – is MASFA easy to use, Is MASFA easy to learn, and is MASFA helpful

compared to keyword search. The answers were rated from a 1 to 5. A 1 answer means

“No.” A 2 answer means “Moderately No.” A 3 answer means “Neutral.” A 4 answer

means “Moderately Yes.” A 5 answer means “Yes.” The fourth question was to provide

any feedback, improvements, concerns, etc. to improve MASFA.

The table below presents the distributions for the rated questions. From the

feedback, we can observe that most users found MASFA easy to use and learn.

Additionally, most users found MASFA helpful compared to keyword searching.

Table 6: MASFA Feedback

 MASFA - Easy to Use MASFA - Easy to Learn MASFA- Helpful
vs. Keyword

Yes 4 4 7
Moderately Yes 4 4 3
Neutral 1 1 0
Moderately No 1 1 1

In the feedback section, users shared a positive view of MASFA with areas to improve

their experience. In general, the users felt the facets speed up searching especially after a

complete facet tree is available. Users also found the online phrases useful. The phrases

helped identify useful facets for finding results and building the facet tree. Users also

stated the ability to add new facets were helpful compared to other existing faceted

interfaces because it allows them to add new data that isn’t modeled. Areas of

improvement identified by the users, was to grey out facets with zero results instead of

removing them. Users also expressed interest in having numeric ranges, for example, a

facet for years from 2000 to 2010. The users also wanted check boxes to easily deselect

 58

all facets. The last feedback was to highlight matching facets in the search result text to

improve finding text in matching documents. An area of concern was that users

experience an initial learning curve. This learning curve was noticed in the initial timing

results with MASFA. However, after they understood the system, they state the system

was useful.

7.5 Discussion

Evaluating MASFA successfully shows the system performs per specification,

effectively, and well compared to a keyword search interface. Considering the described

architecture and implication, there are many ways to further improve the system. Areas

to improve include providing more machine recommendations for facet building, spam

filtering, and creating more facet types.

This study did not include detailed analysis on the spam filtering technique

employed. Future work would be to analyze the technique against hypothetical

spamming to the tree. Possible spamming includes very long facet values, multiple

versions with spammed facets, or foul language. Alternative techniques to remove spam

would be implemented and evaluated.

The current method provides minimal machine support for building a facet tree.

The offline technique could be extended to make suggestions to adding values to facets.

Theoretically, a facet represents a classification and the facet values represent named

entities. A facet tree and their values could be used to identify frequent patterns for

extracting new facet values. The patterns would be extracted and applied offline.

Example patterns are words before and after a facet value. The new values would be

 59

presented in the UI as possible expansions to a facet with a confidence value. Users could

then selectively approve or deny any value.

 Another limitation of the current system regards continuous valued facets. As

identified through the user study, users created facets with numeric ranges and asked for

the feature in future versions. Continuous values are common in commerce sites. For

example, cars have mileage, year, and horsepower. Patterns could be developed by users

or extracted for identifying continuous valued facets from unstructured text.

 60

8. CONCLUSION

Faceted search has become the de facto standard for e-commerce and product-

related websites. However, it has not been effectively incorporated into non-commercial

online community portals such as craigslist.org due to economic and technical

difficulties. In this thesis, we proposed MASFA, the first mass-collaborative framework

that takes a human-machine partnership approach to build and maintain effective faceted

search systems. The MASFA approach is completely portable and can be freely deployed

in any application domain. We have implemented, deployed, and experimented MASFA

on selected categories of Craigslist to demonstrate the utility of our approach.

There are several interesting directions for future work based on this initial

development. For example, instilling more sophisticated concurrency control,

incorporating optional human management, increasing portable machine contribution,

and addressing facet spamming.

 61

APPENDIX

User Study Evaluation Form

Objective: Compare MASFA faceted search with a direct keyword search using
Craigslist data, demonstrating the utility and advantages of MASFA.

Task Procedure

1) Go to website,
Direct Search: http://dmlab.cs.txstate.edu/masfa/craigslist/
MASFA: http://dmlab.cs.txstate.edu/masfa/

2) Select category using drop-down box
3) Input queries to complete the task
4) Write time duration and answer in table

Tasks

1) How many blue or green 2010 Toyota Tundra are available?
Category: Craigslist/Austin/Cars/Masfa

2) How many 2000 to 2006 Chevrolet Corvettes are available?

Category: Craigslist/Austin/Cars/Masfa

3) Collect five contact phone numbers for a 2000 to 2003 325i BMW.

Category: Craigslist/Austin/Cars/Masfa

4) How many HTC EVO 4G cells phones new or like new are for sale?

Category: Craigslist/Austin/Cell Phones/Masfa

5) What’s the cheapest 4g black Iphone for AT&T networks?

Category: Craigslist/Austin/Cell Phones/Masfa

6) How many Apple laptops are for sale with 4 to 16 GB of memory and 1 or more TB

of disk space?
Category: Craigslist/Austin/Computer/Masfa

7) What’s the cheapest 17 inch HP Pavillion laptop for sale?

Category: Craigslist/Austin/Computer/Masfa

8) What’s the most expensive Intel I7 Acer gaming laptop for sale?

Category: Craigslist/Austin/Computer/Masfa

 62

MASFA: Evaluation Form

Name: __

Task Results

Task	
 MASFA	
 Answer	
 MASFA	

Time	
 	

(e.g.	
 1	
 min	

10	
 sec)	

Keyword	
 Answer	
 Keyword	

Time	

(e.g.	
 2	
 min	

5	
 sec)	

1	
 	
 	
 	
 	

2	
 	
 	
 	
 	

3	
 	
 	
 	
 	

4	
 	
 	
 	
 	

5	
 	
 	
 	
 	

6	
 	
 	
 	
 	

7	
 	
 	
 	
 	

8	
 	
 	
 	
 	

 63

MASFA Questionnaire

MASFA is easy to use

Disagree 1 2 3 4 5 Agree

MASFA is easy to learn

Disagree 1 2 3 4 5 Agree

MASFA is helpful with tasks compared to keyword search

Disagree 1 2 3 4 5 Agree

Comments (concerns, issues, suggestions):

 64

REFERENCES

A. Doan, R. R. (2011). Crowdsourcing systems on the world-wide web. Commun. ACM ,
54 (4), 86–96.

B.-Y, e. a. (2008). Beyond basic faceted search. Proceedings of the international
conference on Web search and web data mining (WSDM) .

Bill Kules, B. S. (2007, 7 24). Users can change their web search tactics: Design
guidelines for categorized overviews. ScienceDirect , 463–484.

Bill Kules, R. C. (2009). What do exploratory searchers look at in a faceted search
interface? Proceedings of the 9th ACM/IEEE-CS joint conference on Digital libraries
(JCDL) .

Brunk, G. M. (2003). Towards a general relation browser: A gui for information
architects. Journal of Digital Information , 4.

Byron J. Gao, J. J. (2010). Rants: A framework for rank editing and sharing in web
search. Proceedings of the 19th International World Wide Web Conference (WWW) .

Christopher D. Manning, P. R. (2008). Introduction to Information Retrieval. Cambridge:
Cambridge University Press.

David C. Anastasiu, B. J. (2011). Clusteringwiki: personalized and collaborative
clustering of search results . Proceeding of the 34th International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR) .

David Nadeau, S. S. (2007). A survey of named entity recognition and classification.
Lingvisticae Investigationes , 30 (1), 3-26.

Debabrata Dash, J. R. (2008). Dynamic faceted search for discovery-driven analysis .
Proceedings of the 17th ACM conference on Information and knowledge management
(CIKM) .

Doug Downey, S. D. (2008). Understanding the relationship between searchers’ queries
and information goals. Proceedings of the 17th ACM conference on Information and
knowledge management (CIKM) .

Dumais, S. T. (2009). Faceted search. In Encyclopedia of Database Systems (pp. 1103-
1109).

E. Stoica, M. A. (2007). Automating creation of hierarchical faceted metadata structures .
Proceedings of the Annual Conference of the North American Chapter of the Association
for Computational Linguistics (NAACL-HLT) .

 65

Edward Cutrell, D. R. (2006). Fast, flexible filtering with phlat. Proceedings of the
SIGCHI conference on Human Factors in computing systems (CHI) .

Esko, U. (1995). On-line construction of suffix trees. Algorithmica , 14 (3), 249-260.
Giovanni Maria Sacco, Y. T. (2009). Dynamic Taxonomies and Faceted Search: Theory,
Practice, and Experience (Vol. 25). Springer.

Hearst, E. S. (n.d.). Nearly-automated metadata hierarchy creation. Proceedings of HLT-
NAACL 2004: Short Papers , 2004.

Hearst, M. A. (2006). Clustering versus faceted categories for information exploration.
Communications of the ACM , 49 (4), pp. 59-61.

Hearst, M. A. (2006). Design recommendations for hierarchical faceted search interfaces.
Proceedings of SIGIR 2006 Workshop on Faceted Search .

Hearst, M. (2000). Next generation web search: Setting our sites. IEEE Data Engineering
Bulletin, Special issue on Next Generation Web Search (23), 38-48.

Inan, H. (2006). Search Analytics: A Guide to Analyzing and Optimizing Website Search
Engines. Book Surge Publishing .

Ipeirotis, W. D. (2008). Automatic extraction of useful facet hierarchies from text
databases . Proceedings of the 2008 IEEE 24th International Conference on Data
Engineering (ICDE) .

J. Teevan, S. T. (2008). Challenges for supporting faceted search in large, heterogeneous
corpora like the web. . The Second Workshop on Human-Computer Interaction and
Information Retrieval (HCIR) .

Jaime Teevan, S. T. (2008). Challenges for supporting faceted search in large,
heterogeneous corpora like the web . Second Workshop on Human-Computer Interaction
and Information Retrieval (HCIR) .

Jonathan Koren, Y. Z. (2008). Personalized interactive faceted search. WWW .

K.-P. Yee, K. S. (2003). Faceted metadata for image search and browsing. Proceedings of
the SIGCHI conference on Human factors in computing systems (CHI), .

Karger, D. H. (2009). Parallax and companion: Set-based browsing for the data web.
WWW Conference .

Karger, V. S. (2005). Magnet: supporting navigation in semistructured data environments
. Proceedings of the 2005 ACM SIGMOD international conference on Management of
data .

 66

Karger, V. S. (2005). Magnet: supporting navigation in semistructured data
environments. Proceedings of the 2005 ACM SIGMOD international conference on
Management of data (SIGMOD) .

Kosseim, T. P. (2001). Proper name extraction from non-journalistic texts.
Computational Linguistics in the Netherlands , 144-157.

M. A. Hearst, D. K. (1995). Scattergather as a tool for the navigation of retrieval results .
Working Notes of the AAAI Fall Symposium on AI Applications in Knowledge Navigation
and Retrieval .

m. c. Schraefel, M. K. (2003). mspace: interaction design for user-determined, adaptable
domain exploration in hypermedia . AH2003: Workshop on Adaptive Hypermedia and
Adaptive Web Based Systems .

m. c. Schraefel, S. A. (2005). The mspace classical music explorer: Improving access to
classical music for real people . V MUSICNETWORK OPEN WORKSHOP: Integration
of Music in Multimedia Applications .

M. Hearst, A. E.-P. (2002). Finding the flow in web site search . Commun. ACM .

Marchionini, R. G. (2008). The relation browser tool for faceted exploratory search.
Proceedings of the 8th ACM IEEE-CS joint conference on Digital libraries (JCDL) .

Martin Theobald, J. S. (2008). SpotSigs: Robust and Efficient Near Duplicate Detection
in Large Web Collections . SIGIR .

Moens, M.-F. (2006). Information Extraction: Algorithms and Prospects in a Retrieval
Context. Belgium: Springer.

Mufti A. Hearst, D. K. (1995). Scattergather as a tool for the navigation of retrieval
results . Working Notes of the AAAI Fall Symposium on AI Applications in Knowledge
Navigation and Retrieval, .

Osma Suominen, K. V. (2007). User-centric faceted search for semantic portals.
Proceedings of the 4th European conference on The Semantic Web: Research and
Applications (ESWC) .

Ranganathan, S. (1933). Colon Classification. Madras, India: Madras Library
Association.

Ryen White, R. W. (2009). Exploratory search: beyond the query-response paradigm
(Vol. 1). Morgan & Claypool Publishers.

Sekine, D. N. (2007). A survey of named entity recognition and classification.
Linguisticae Investigationes , 30 (1), 3-26.

 67

Senjuti Basu Roy, H. W. (2009). Dynacet: Building dynamic faceted search systems over
databases . Proceedings of the 2009 IEEE International Conference on Data Engineering
(ICDE) .

Senjuti Basu Roy, H. W. (2008). Minimum-effort driven dynamic faceted search in
structured databases. Proceedings of the 17th ACM conference on Information and
knowledge management (CIKM) .

Shneiderman, B. (1994). Dynamic queries for visual information seeking. IEEE Softw. ,
11:70-77.

Shneiderman, C. A. (1994). Visual information seeking: tight coupling of dynamic query
filters with starfield displays. Proceedings of the SIGCHI conference on Human factors
in computing systems: celebrating interdependence .

Snodgrass, R. T. (1999). Developing Time-Oriented Database. Applications in SQL .
Stanislaw Osinski, D. W. (2005, 5). A Concept-Driven Algorithm for Clustering Search
Results. IEEE Intelligent Systems , pp. 48-54.

Tunkelang, D. (2009). Faceted Search. Morgan & Claypool Publishers.
Tzitzikas, G. M. (2009). Dynamic Taxonomies and Faceted Search: Theory, Practice, and
Experience. Springer Publishing Company, Incorporated .

Ukkonen, E. (1995). On-Line Construction of Suffix Trees. Algorithmica , 14 (3), 249-
260.

Williams, D. T. (2006). Wikinomics: How Mass Collaboration Changes Everything.
Portfolio Hardcover.

Wisam Dakka, P. G. (2005). Automatic construction of multifaceted browsing interfaces.
Proceedings of the 14th ACM international conference on Information and knowledge
management (CIKM) .

Zamir, O. E. (1999). Clustering web documents: A phrase-based method for grouping
search engine results. University of Washington.

