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ABSTRACT

Teacher retention rate and student learning gain rates in the U.S. public school

systems plummeted during COVID-19 pandemic, erasing years of improvements. In

this body of research, we collect, integrate, and analyze all available public data in

the data science pipeline to see if public data can inform and impact the factors of

teacher attrition and learning loss. This is the first known study of the public data

to address the post-COVID educational policy crisis from a data science

perspective. To this end, we have developed an end-to-end large-scale educational

data modeling pipeline that (i) integrates, cleans, and analyzes educational data;

(ii) implements automated attribute importance analysis to draw meaningful

conclusions; and (iii) develops a suite of interpretable teacher attrition and learning

loss prediction models utilizing all data points and attributes. We demonstrate a

novel data-driven approach to discover insights from a large collection of

heterogeneous public data sources and to offer an actionable understanding to

policymakers about the (1) recruitment and retention of public teachers, and (2)

identifying learning loss tendencies and prevention of them in public schools.
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I. Introduction

Teacher attrition in K-12 education is prohibitively high in all corners of the

world [1]. Teacher attrition is defined as the number of teachers at a given level of

education who leave the profession in a given school year, expressed as the

percentage of teachers at that level and in that school year [2]. In 2016, the attrition

rates in public institutions in the K-12 countries surveyed ranged from 3.3% in

Israel to 11.7% in Norway [3]. In the United States, the teacher attrition rate was

8% on an annual basis. Statistical summaries now suggest that almost half of new

teachers leave the profession in five years or less [4]. Texas has a prohibitively high

teacher attrition rate of 10%, much higher than the national average. Historical

trends in Texas show that 19% leave after one year and 12% after the second year.

Half of newly trained and hired teachers leave the profession within 5 years [5].

Change in the teacher population is natural and desirable at a rate between 6%

and 8% for public schools around the world [2]. If the teacher attrition rate in a

school is less than 5%, it is likely that the school will stagnate. If the teacher

attrition rate is greater than 10%, the effect can be detrimental to the effectiveness

of a public school. The replacement of teachers has huge financial implications for

the public budget [3]. A 2007 study estimated that turnover costs ranged widely

from around $4,000 per teacher (those leaving the New Mexico Public Schools) to

almost $18,000 per teacher (who left Chicago Public Schools) [6]. The study was

used as a basis to estimate the total cost of excess teacher turnover in the United

States in 2007 at $7.34 billion annually with costs broken down to $70,000 per school

per year to cover the costs of teachers leaving that school with an additional $8,750

spent to replace each teacher leaving the district [7]. The high teacher attrition rate

is expensive and wasteful and also has a poor impact on student academic progress

[8]. A high turnover of teachers reduces the effectiveness and quality of education [8].
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COVID-19 also had an impact on teacher preparation [9]. A recent study

indicates how COVID-19 has led many veteran teachers to retire early and novice

teachers to consider alternative professions [10]. The COVID-19 pandemic also

forced many schools to close down across the world [10]. According to the latest

UNESCO statistics, there are 43 million students affected by the school shutdowns

and country-wide closures [3]. Learning loss even in high-income countries, such as

the Netherlands and Belgium, ranged from 0.08 to 0.29 standard deviation [11, 12].

In a recent paper, the global impact of school shutdown of 5 months could generate

learning losses that have a present value of $10 trillion [3]. In the US, researchers

have not reached a consensus on the impact of school reopening during the spread of

COVID-19 [9, 13]. This made it difficult for policy makers to decide when to reopen

the school, and these varied between states, counties, and school districts [14]. Thus,

the learning losses have not been uniform across the board [15, 16]. The Texas

Education Agency published a report documenting the loss of learning in public

schools (4% loss in reading and 15% loss in math on the STAAR exam), and how

the negative impact of COVID-19 erased years of improvement in reading and math

[17]. In this thesis, we propose a unified data science approach to address these two

issues: mitigating the U.S. public school teacher attrition crisis, discussed in section

IV and identifying resilience factors in Texas public schools in section V.
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II. Related Work

In this paper, we propose a novel data-driven approach for public data

integration and analysis on a scale, automated attribute importance analysis, and

robust prediction modeling. Therefore, we grouped related work into three

categories: “Data Science”, “Machine Learning”, and “Economy of Education”. The

first group focuses on quantitative research and the use of machine learning tools to

gain insight from the data on the relationship with the outcome without overfitting

the features to the data. The second group provides directions for selection of

machine learning models on predicting teacher attrition and learning loss with given

data. Finally, the last group of research products focuses on qualitative research,

where the objective is to propose, analyze, and establish the relevance of a single

attribute to the teacher attrition rate.

Data Science The application of machine learning (ML) tools for the

correlation of attributes with teacher attrition rates has increased from two studies

in 2010 to seven studies in 2017 [18]. The most popular ML techniques (logistic

regression, support vector machines, Bayesian belief network, decision trees, and

neural network) generally offer a good classification accuracy above 70% for simple

classification tasks [18]. From a data science perspective, the modeling approaches

evaluated are too narrow in scope, and feature engineering almost guarantees poor

domain/data translation results. A more elaborate evaluation of 30 selected articles

revealed deep neural networks (DNN), decision trees, support vector machine

(SVM), and nearest neighbor k (k-NN) as preferential methods to predict student

academic performance [19]. An even more elaborate review of 25,771 studies

selected 120 quantitative data analyses of teacher turnover in their meta-analysis,

and the methods and data sets evaluated suffer from the same drawback as the

overfitting attributes used in modeling [20]. Demographic, academic,
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family/personal, and internal assessments were found to be the most frequently used

attributes to predict student performance in class, at grade levels, on standardized

tests, etc. [21]. A large-scale data science study correlated the Big Fish Little Pond

Effect (BFLPE) in 56 countries in fourth grade math and 46 countries in eighth

grade math using large data from the Trends in International Mathematics and

Science Study (TIMSS) and a simple statistical analysis [22]. Recent findings show

that the state of the art in machine learning in tabular data outperforms existing

approaches and is not as sensitive to input bias and noise as DNN [23].

Machine Learning State-of-the art gradient boosted decision trees (GBDT)

models such as XGBoost [24], LightGBM [25], and CatBoost [26] are the most

popular models of choice when it comes to tabular data. In recent years, deep

learning models have emerged as state-of-the-art techniques on heterogeneous

tabular data: TabNet [27], DNF-Net [28], Neural Oblivious Decision Ensembles

(NODE) [29], and TabNN [30]. Although papers have proposed that these deep

learning algorithms are outperforming the GBDT models, there is no consensus that

deep learning is exceeding GBDT on tabular data because standard benchmarks

have been absent and open-source implementations, libraries, and their APIs are

lacking [31, 32]. Recent studies provide competitive benchmarks comparing GBDT

and deep learning models on multiple tabular data sets [31, 33, 34, 35]; however, all

of these benchmarks indicate that there is no dominant winner, and GBDT models

still outperform deep learning in general. The studies suggest to develop

tabular-specific deep learning models such that tabular data modalities, spatial and

irregular data due to high-cardinality categorical features, missing values, and

uninformative features cannot guarantee the same prediction power as deep learning

obtains from homogeneous data including images, audio, or text [33, 35].

Economy of Education Teacher turnover, teacher attrition, teacher retention,

and teacher recruitment have been analyzed in worldwide educational literature [3],
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taking into account specific societal characteristics that influence teachers to quit

their jobs in Sweden [36, 37], South Korea [20, 38], the United States [1, 39, 40, 41],

Canada [42], Finland [43], Nepal [44] and many other countries. All studies

handpicked attributes to explain teacher turnover: teacher characteristics, teacher

qualifications, school organizational characteristics, school resources, student body

characteristics, relational demography, accountability, and workforce measures.
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III. Methodology

The work proposes a unified data science pipeline for tabular data in the wild,

and validates the pipeline using teacher attrition data to predict whether a teacher

will leave teaching or not (Section IV), and using publicly available education,

COVID and census data to predict learning loss in math and reading scores in

Texas (Section V). The open multi source data for both cases are heterogeneous

tabular data, and we apply the same methodology for attribute selection and

prediction modeling.

Attribute Selection and Automated Importance Scoring

The work compares and contracts three major approaches for feature selection:

filter methods, embedded methods, and wrapper methods. For each approach, we

implement several data-driven automated attribute selection algorithms and offer an

interpretable suite of attribute importance analysis approaches and to avoid traps of

the Garbage In Garbage Out (GIGO) and Trivial Modeling.

Attribute Filtering by Mutual Correlations

Heterogeneous data tend to have a lot of overlapping information mixed with

numerical and categorical data. With this filter method distilling correlated

attributes mutually, our goal is to build a quasi-orthonormal attribute space to

observe any correlation between two features or a feature and our label. We wanted

to avoid artificial weighting of the attributes in the modeling step, so we utilized

this correlation filtering in this section to aggregate linearly related attributes in our

data set into one attribute. To this end, we first have expanded several categorical

attributes to multiple binary attributes as we found that multiple separate
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categories capture highly overlapping data. The Pearson correlation coefficient ρ

measures linear relationships between two normal distributed variables as

ρ = cov(X,Y )
σxσy

. Pearson’s coefficient estimate r, also known as a “correlation

coefficient,” for attribute feature vector x = (x1, ...xn) with mean x̄ and attribute

feature vector y = (y1, ...yn) with mean ȳ is obtained via a Least-Squares fit as

defined in Eq. III.1 as:

r =

∑n
i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

(III.1)

A value of 1 represents a perfect positive relationship, -1 is a perfect negative

relationship, and 0 indicates the absence of a relationship between variables. We use

attributes with high correlation coefficients to aggregate them into one attribute as

they are linearly dependent each other. Eventually, we could keep one attribute, the

most highly correlated to our label, of those overlapping attributes in our analysis.

Then, we can decide to combine all binary dummy-coded variables from related

categories as a set in variable selection. This approach thus reduces an attribute

dimension that is providing better interpretability of our attribute set and its

importance.

Multi-View Relevancy of the Attribute

To select and have a glimpse of the features that affect our prediction models,

we compare and contrast nine different approaches from the three methods

mentioned above—filter methods, embedded methods, and wrapper methods—to

evaluate the importance of features. Every approach of selecting minimum

redundancy and maximum relevancy feature set yields either a set of features

selected or a score of feature importance so that we can reduce the dimensionality of

feature space.
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• Filter methods:

– Variance Threshold: This is a simple and powerful approach to remove

attributes by eliminating all low-variance attributes in the training set

[45], since there is no meaningful information in that attribute. We

applied the threshold, 0.8*(1-0.8), to the training data set to remove a

characteristic containing 80% similar values and select the most relevant

attributes of k with the highest variance to the final set.

• Embedded methods:

– Lasso Regularization: This logistic regression with the penalty term

L1 shrinks the coefficients by minimizing the loss function during

training. As the method reduces the coefficients of the features to be

exactly zero, every feature with a nonzero coefficient value is considered

and selected in the final set as useful information on prediction, which

decreases the variance.

– Random Forests Feature Importance: random forests is a powerful

machine learning classification algorithm. The algorithm has a built-in

attribute importance measured by the Gini importance or mean decrease

impurity. This built-in feature of the algorithm that selects a feature with

higher certainty returns the importance of the feature, and we set a

threshold of the 50th percentile of the attribute importance to include a

relevant attribute to the final set. Interpreting the importance of these

selected features in tree-based machine learning models is challenging

when features are dependent [46] as tree split can be biased due to the

correlation between these dependent features.

• Wrapper methods:
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– Recursive Feature Elimination (RFE) algorithm starts by fitting the

two models to the full set of attributes in our data set, so we can

eliminate candidates with the smallest coefficient and remove the

importance of the features of the ridge regression and random forest,

respectively, which deteriorate the 10-fold cross-validation score of the

models in the training data. Attributes that are ranked according to the

importance of characteristics in penalized regularization regression

modeling on a small scale have been supported in the qualitative research

literature [47]. The final set is a set of candidates that does not

deteriorate the generalizability of the model [48] with the proper number

of features selected by 10-fold cross-validation.

– Permutation Feature Importance(PFI) method replaces the values

of a feature with redundant noise and measures the difference in the

accuracy score or other performance metrics between the baseline and

the permuted data set. Although PFI overcomes limitations on the

importance of impurity-based characteristics, since the importance of the

features drawn from the method does not have a bias toward

high-cardinality attributes, it suffers from a bias caused by the

correlation between features, as the impurity-based features are [49]. The

final set contains any feature with positive importance mean as the

method returns positive and higher values for more important features.

– Sequential Feature Selection (SFS) model selects an optimal set of

features by searching the feature space of all possible combinations in a

greedy manner. Each subset of features that add one predictor at a time

forward is evaluated based on the 5-fold cross-validation score of the

ridge regression and KNN models. As this greedy algorithm adds an

attribute one by one, it requires more computational efforts. The method
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is set to select a half of provided attributes to the final set.

Prediction Modeling

The two problems, (1) teacher attrition and (2) learning loss, go through two

steps of the prediction modeling process to compare and analyze the feature sets

selected using the attribute selection methods described in Section III. First, we

build baseline models using state-of-the-art machine learning methods. Then, we

implement new robust gradient boosting models with gradient boosting to examine

the performance and predictability of the models on each feature set.

Data preprocessing. Primarily, the data sets have been randomly split into

80% of the training set and 20% of the test set with shuffling and stratification on

the labels.

Evaluation metrics. To find the best model, we use performance metrics that

are suitable for prediction problems. First, we look at accuracy score for both

problems to get a big picture. Then, F1 score is measured to reflect precision and

recall harmonically. Additionally, Matthews correlation coefficient (MCC) is

regarded to consider true negatives, class imbalance, and multi-class of data.

State-of-the-art Modeling

The choice of State-of-the-art Modeling is rather simple and less complex to

train and interpret, as the purpose of having a baseline model is to provide

benchmarks of its predictability and deeper understanding of our data set. We have

established five state-of-the-art models including the ridge regression as the most

common logistic classification model, Support vector machines (SVM) and

KNearestNeighbor (KNN) for nonlinear and non-separable data, and two

decision-tree-based ensemble methods: random forests and gradient boosting.

Hyperparameter optimization. Each model runs with a 10-fold
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cross-validation of GridSearch to find optimal hyperparameters, and these

hyperparameters for optimization are listed in Table 1:

Table 1: List of hyperparameters optimized for five state-of-the-art models: ridge regression,
SVM, KNN, random forests, and gradient boosting

Model Hyperparameter

Ridge
regression

Regularization strength: [0.001, 0.01, 0.1, 1, 10, 100]
Solver finding weights minimizing cost function : [’newton-cg’, ’lbfgs’, ’liblinear’, ’sag’,
’saga’]

SVM Regularization strength: [0.001, 0.01, 0.1, 1, 10, 100]
Kernel type: [’linear’, ’rbf’]

KNN
Number of neighbors: [1, 3, 5, 7, 9, 11]
Algorithm computing nearest neighbors: [’ball_tree’, ’kd_tree’, ’brute’]
Leaf size passed to ’ball_tree’ or’kd_tree’: [10, 30, 50]

Random
forests

Maximum depth of the tree: [1, 6, None]
Number of trees in the forest: [50, 100, 200]
Function measuring the quality of a split: [’gini’, ’entropy’]
Minimum number of samples at a leaf node: [1, 5, 10]
Ratio of samples to draw from X: [0.1, 0.5, None]
Maximum number of leaf nodes growing trees: [10, 31, None]
Complexity parameter for tree pruning: [0, 0.001, 0.1]

Gradient
boosting

Learning rate: [0.1, 0.2, 0.3]
Number of boost iterations: [50, 100, 200]
Minimum number of samples at a leaf node:: [1, 5, 10]
Minimum weighted fraction of total sample weights at a leaf: [0.0, 0.1, 0.5]
Maximum depth of tree: [1, 3, 6]
Maximum number of leaf nodes growing trees: [10, 31, None]
Complexity parameter for tree pruning: [0, 0.001, 0.1]

Gradient Boosting Modeling

Our data fit the description of tabular data. Since gradient boosting approaches

showed the most robustness when dealing with heterogeneous tabular data [31], we

selected four advanced gradient boosting algorithms: XGBoost, LightGBM,

CatBoost, and HistGradientBoosting. Gradient Boosting assembles many weak

decision trees, and, unlike the random forests, the approach grows trees sequentially

and iteratively based on the residuals from the previous trees. Gradient boosting
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approaches handle tricky observations well and are optimized in terms of faster and

efficient fitting using data sparsity aware histogram-based algorithm. In contrast to

the pointwise split of the traditional Gradient Boosting that is prone to overfitting,

the algorithm’s approximate gradient creates estimates by creating a histogram for

tree splits. As this histogram algorithm does not handle the sparsity of the data,

especially for tabular data with missing values and one-hot encoded categorical

features, these algorithms improved tree splits. For example, XGBoost uses

Sparsity-aware Split Finding defining a default direction of tree split in each tree

node [24]. Also, LightGBM provides the Gradient-Based One-Side Sampling

technique, which is filtering data instances with large gradient to adjust the

influence of the sparsity, and Exclusive Feature Bundling combining features with

non-zero values to reduce the number of columns [25].

Handling categorical features. Handling categorical features is a challenge

in building a machine learning model for tabular data. While there are several ways

to process representing categorical features such as one-hot and ordinal encoding,

tree building and and splitting with these methods often result in unbalanced trees

and the sparsity of data, especially for high-cardinality categorical features. The

four gradient boost models implement and suggest optimal methods for processing

categorical features to optimize numerous boost steps for computing time and

memory consumption. LightGBM, HistGradientBoosting, and XGBoost use the

optimal split method [50] to group the categories of a feature and classify them as

continuous partitions according to the target variance to find the best split in the

histogram of sorted gradients[51, 52, 53]. CatBoost, however, proposes the method

called Ordered Target Statistics (TS), which improves the target encoding method

by using the history of all training data to compute TS instead of the target on a

test set [54]. All four models accept hyperparameters to handle categorical features,

such as categorical feature indices or thresholds to control one-hot encoding or the

12



number of tree split points.

Early stopping rounds. As the boost algorithm trains weak learners

iteratively, early stopping is used to reduce training time and avoid overfitting. At

every round of the boost, the model evaluates and decides whether to stop or

continue the training when the model shows no more improvement for a certain

number of consecutive rounds in terms of evaluation metric specified as the fit

parameter. For early stopping, a validation set, the split test set at the beginning of

the modeling process, and the number of early stopping rounds that is set to 10% of

the maximum number of boosting iterations are provided.

Hyperparameter optimization. To improve the gradient boosting models,

we can penalize and regularize the algorithm by hyperparameter tuning so that we

aim at increasing accuracy and avoiding overfitting. To begin with, constraining tree

structures reduces the growth of complex and longer trees by optimizing parameters

such as the number of trees, the depth of trees, and the number of leaves per tree.

In addition, setting a smaller learning rate, normally less than 0.5, allows weighting

trees to slow the learning by a small amount at each iteration to reduce errors.

Furthermore, setting the optimal L1 and L2 regularization terms penalizing the sum

of the leave weights improves the models by simplifying the complexity and size of

the model [24]. These hyperparameters in Table 2 are searched with a 5-fold

cross-validation RandomizedSearch with the number of iterations that is 20% of

parameter distributions of each model. For example, XGBoost is supposed to search

a total of 100 distributions of the parameters; the number of iterations for

RandomizedSearch is 20 times.
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Table 2: List of hyperparameters optimized for four advanced gradient boosting models:
XGBoost, LightGBM, CatBoost, HistGradientBoost

Model Hyperparameter

XGBoost

Number of boosting iterations: [50, 100, 200]
Maximum depth of the tree: [1, 6, 0]
Minimum sum hessian in one leaf: [0, 0.001, 0.1, 1]
Learning/shrinkage rate: [0.01, 0.1, 0.2, 0.3]
L1 regularization term (alpha): [0, 0.1, 10]
L2 regularization term (lambda): [0, 0.1, 10]
Minimum loss reduction (gamma): [0, 0.1, 10]

LightGBM

Number of boosting iterations: [50, 100, 200]
Maximum depth of tree: [1, 6, -1]
Minimum sum hessian in one leaf: [0, 0.001, 0.1, 1]
Learning/shrinkage rate: [0.01, 0.1, 0.2, 0.3]
L1 regularization term (alpha): [0, 0.1, 10]
L2 regularization term (lambda): [0, 0.1, 10]
Minimal gain to perform split: [0, 0.1, 10]

CatBoost

Number of boosting iterations: [50, 100, 200]
Maximum depth of the tree: [3, 6, 9]
Minimum number of samples per leaf: [1, 5, 10]
Learning/shrinkage rate: [0.01, 0.1, 0.2, 0.3]
L2 regularization term (lambda): [0, 0.01, 0.1, 1, 10]
Amount of randomness for scoring splits: [0, 5, 10, 15]

HistGradientBoosting

Number of boosting iterations: [50, 100, 200]
Maximum depth of tree: [1, 6, None]
Maximum number of leaves for each tree: [10, 31, 50, 64]
Minimum number of samples per leaf: [10, 20, 30]
Learning/shrinkage rate: [0.01, 0.1, 0.2, 0.3]
L2 regularization term (lambda): [0, 0.01, 0.1, 1, 10]
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IV. Mitigating U.S. Public School Teacher Attrition Crisis

United States Educational Public Data Summary

Figure 1: NCES Data Integration from 5 sources. First, TFS-Former Teacher and TFS-
Current Teacher data are concatenated with labeling 1: Current and 0: Former
teachers. Then, SASS data are joined with TFS in the order of Public Teach-
ers, Public Schools, then Public Principals by matching control numbers such as
SCHCNTL and CNTLNUM.

The National Center for Education Statistics (NCES) is the statistical agency

that collects all education-related data in the United States of America. NCES

collects international assessment data, administrative data on all public schools in

the United States, and national survey data and provides them to the research

community to inform policy and practice [55]. The Schools and Staffing Survey

(SASS) was an integrated multiyear study of public and private school districts,

schools, principals, and teachers designed to provide descriptive data on the context

of elementary and secondary education [56]. NCES and TFS led SASS seven times

between 1987 and 2011, 1987-1988, 1990-1991, 1993-1994, 1999-2000, 2003-2004,

2007-2008, and 2011-2012; however, the last three surveys are restricted-use data

[57]. SASS covered a wide range of topics, such as teacher demand, teacher and

principal characteristics, general conditions in schools, principals and teachers’

perceptions of school climate and problems in their schools, teacher compensation,

district hiring and retention practices, and basic characteristics of the student
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population [56]. The Teacher Follow-Up Survey (TFS) was a survey conducted a

year after the SASS survey. TFS surveys K-12 teachers who participated in SASS a

year earlier [56]. The collected data consist of a subsample of teachers who left

teaching within the year after SASS was administered and a subsample of those who

continued teaching, including those who remained in the same school as in the

previous year and those who changed schools [56].

In this work, we analyze the latest data and documents available for public-use

in 1999-2000 SASS and 2000-2001 TFS [56] in public schools, public school teachers,

and public school principals. Raw data include hundreds of attributes on teacher

demand, teacher and principal characteristics, general school conditions, principals

and teachers perceptions of school climate, teacher compensation, district hiring and

retention practices, and student demographics. We use these unchanged attributes

in our data science analysis. Furthermore, the TFS data contain binary labels on

the decision of teachers to stay teaching (1) or leave teaching (0). The data

integration pipeline is illustrated in Figure 1. Of 42,086 public teachers who

participated in the School and Staffing Survey (SASS) 1999-2000, only 4,156(<10%)

of the teachers participated in the Teacher Follow-Up Survey (TFS) 2000-2001, that

is, 2,477 current and 1,679 former teachers. 76.6% of the schools in the dataset have

at least 1 teacher who participated in SASS and TFS. 301 current and 215 former

teachers did not have the TFS data on the principal and school association, so we

excluded them for the labeled data. As a result, the initial set of 124 attributes

consists of 107 categorical attributes and 17 numerical attributes for 3,640 teachers,

and the 124 attributes include 70 attributes from public teachers, 9 attributes from

public principals, and 45 attributes from public schools. We observed an interesting

correlation of known qualitative attributes that affect the teacher attrition rate [40]

in Fig. 2. Our data shows that female teachers are 2/3 majority, while the turnover

rate is higher for male teachers (Fig. 2(a)); white non-Hispanic teachers are the
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Figure 2: SASS and TFS Exploratory Retention Analysis for gender, race/ethnicity, new
teacher, and teaching field. (a) female teachers are 2/3 majority while the turnover
rate is higher for male teachers; (b) white(Non-Hispanic) teachers are the majority
race/ethnicity in U.S. public schools with the higher turnover rate; (c)(d) Teachers
working more than 3 years and teachers teaching STEM subjects have higher
turnover rate.

majority race/ethnicity group in public schools in the US, and they have the highest

attrition rate (Fig. 2(b)); and the highest attrition yearly rate is for teachers

working more than 3 years (Fig. 2(c)) and for the teachers teaching STEM subjects

(Fig. 2(d)).

Attribute Aggregation, Selection, and Importance

We use a complete set of attributes for the attribute selection methods

introduced in Section III. With the selection of features using these methods, a

final modeling labeled data set is prepared for the prediction modeling with 3,640

teachers from 2,838 schools, comprised of 53 attributes and labels of 2,176 current

teachers and 1,464 former teachers.

Correlation Filtering for Overlapping Attributes

SASS and TFS data provide a lot of overlap information [56]. Our data set has

124 attributes for the 3,640 teachers, 107 categorical attributes, and 17 numerical

attributes, after initial integration. Before calculating correlation of coefficients and

examining linearly dependent attributes, we first treated categorical attributes with
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Figure 3: Attribute Correlation Analysis of the SASS/TFS data. The base_salary is highly
linearly correlated with the earnings_school and earnings_total. We use the high
correlation coefficient to aggregate linearly dependent attributes into one.

high-cardinality of categories, e.g. 80 categories as the major codes for the teachers’

BA or MA degrees into two categories, STEM or non-STEM major, and then the

rest of the categorical attributes were expanded to multiple binary attributes to

detect highly overlapping data. Our expanded set contains a total of 134 categorical

and 17 numerical attributes: 78 attributes for public teachers, 17 attributes for

public principals, and 56 attributes for public schools. The correlation coefficients of

the expanded data are illustrated in Figure 3, e.g. the base_salary is highly

correlated with the earnings_school and earnings_total attributes.

With the correlation coefficients of our data, we combined all binary variables if

they can be related categories as a set, as in the example of teaches_7to12 that is
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Table 3: Aggregated attributes filtered by correlations in SASS and TFS data

From Labels New Label From Labels New Label

teaches_7th

teaches_7to12: Teaching 7 to 12th
grades (1 0)

deg_P_Associate

deg_highest_P: Principal’s
highest degree (5 categories)

teaches_8th deg_P_Bachelors

teaches_9th deg_P_Masters

teaches_10th deg_P_Edu

teaches_11th deg_P_Doctorate

teaches_12th

pd_stipend

pd_finance: Professional
development pay (1 0)

hrs_tch_math hrs_taught_STEM: Hours of
teaching STEM subjects per weekpd_tuition_r hrs_tch_science

pd_conference_r

pd_travel_r

pd_release_t pd_time: Professional development
time off(1 0)pd_schedule_t

vacnc_gen_elem

vacnc_NonSTEM: Difficulty filling
the vacancies in Non-STEM fields
(1 0)

incen_gen_elem

incen_NonSTEM: Pay recruit
incentives in non-STEM fields (1 0)

vacnc_spec_ed incen_spec_ed

vacnc_english incen_english

vacnc_soc_st incen_soc_studies

vacnc_esl incen_esl

vacnc_foreign_lang incen_foreign_lang

vacnc_music_or_art incen_music_art

vacnc_vo_tech incen_voc_ed

type_Alternative

sch_type: School type (5
categories)

vacnc_comp_sci

vacnc_STEM: Difficulty of filling
vacancies in STEM fields (1 0)

type_Elementary vacnc_math

type_Regular vacnc_biology

type_Special vacnc_phys_sci

type_Voc_Tech

incen_certification

incen_pay: Pay incentives in
salary (1 0)

incen_STEM_comp_sci

incen_STEM: Pay recruit
incentives in STEM fields (1 0)

incen_excellence incen_STEM_math

incen_prof_dev incen_STEM_phys_sci

incen_location incen_STEM_biology

urbanicity_LargeCity
urbanicity: Urban locale (3
categories)urbanicity_SmallTown

urbanicity_MidCity

an aggregation of the variables from teaches_7th to teaches_12th. Second, we

combined all dummy-coded variables into a single attribute with multiple categories,

e.g. urbanicity_LargeCity, urbanicity_SmallTown, and urbanicity_MidCity became

urbanicity, as summarized in Table 3. Finally, the dimensionality of the data set has

been reduced to 53 attributes with 39 categorical and 14 numerical.

Maximum Relevance Feature Selection

As the dimension space of the attributes in our data set is reduced to the

smaller number, 53, we compared the nine different approaches explained in Section

III to notice their importance at a glance. Table 4 shows the number of attributes

selected from each approach; RFE with ridge regression selected the smallest set of
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Table 4: Nine feature selection approaches selected the number of features for Teacher At-
trition. The selection is illustrated in Figure 4 with distinguished bar colors marked
in the Color column.

Method Approach Features Color

Filter Variance Threshold 34

Embedded Lasso Regularization 38

Embedded Random Forests Feature Importance 27

Wrapper PMI - Random Forests 28

Wrapper PMI - Ridge Regression 33

Wrapper RFE - Ridge Regression 18

Wrapper RFE - Random Forests 49

Wrapper SFS - KNN 26

Wrapper SFS - Ridge Regression 26

numbers, 18, while RFE with random forests produced the largest set, which is 49

attibutes, as shown in Figure 4. All nine approaches selected four attributes:

remain_teaching (teacher responded to the survey question on the likelihood of

remaining in teaching), public_pt_exp (years of part-time teaching experience in

public schools), public_ft_exp (years of full-time teaching experience in public

schools) and level_Elementary (level of school in teaching is elementary) as the

most important attributes.

Figure 5 indicates the main attributes of random forests and random forests

Permutation to predict teacher attrition. If we use a threshold of 0.011,

public_ft_exp (years of full-time teaching experience in public schools),

remain_teaching (teacher responded to the survey question on how likely they will

remain in teaching), yrs_tch_before_P (years of teaching experience prior to

becoming a principal), num_dependents (number of dependent teachers), age_P

(age of a principal), new_teacher (teachers who teach 3 years or less),

level_Elementary (teachers teaching in an elementary school), and

hrs_taught_STEM (hours of teaching STEM subjects per week) are the only eight

overlapping highly impactful attributes. Vanilla random forests has 27 features with

an impact score greater than 0.011. Both methods select public_ft_exp as the most
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Figure 4: All nine methods select the
4 features remain_teaching,
public_pt_exp, public_ft_exp,
level_Elementary as the most
important features.

Figure 5: Random Forests Feature Impor-
tance and Permutation Attribute
ranking comparison

significant characteristic, which is the years of full-time teaching experience in

public schools. Specifically, since teachers work longer years as full-time teachers in

public schools, we can better predict teacher retention.
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Analysis and Prediction Modeling of Teacher Attrition

In this section, we offer policy makers the opportunity to draw meaningful

conclusions. We proposed an elegant and simple way to identify schools with critical

attrition personnel in unlabeled data. We analyze and compare state-of-the-art

machine learning models for teacher attrition rates. Our main goal was to help

educational researchers and policy makers gain insight into data and attrition rates.

Model Evaluation and Comparison

Figure 6: Five machine learning models fitted to the training and test sets with 10-fold
cross-validation of GridSearch. Test set accuracy, F1, and MCC results show stable
performance for all models except KNN.

Table 5: Best model of the five state-of-the-art machine learning models is gradient boosting
training 27 features.

Model Best Set Selection Method Accuracy [0,1] F1 [0,1] MCC [-1,+1]

Log Reg Ridge 28 PMI - Random Forests 0.761 0.808 0.496

SVM 33 PMI - Ridge 0.754 0.804 0.48

KNN 28 PMI - Random Forests 0.713 0.774 0.389

Random Forests 28 PMI - Random Forests 0.766 0.821 0.507

Gradient Boost 27 Random Forests Feature Importance 0.773 0.824 0.521

We used the labeled data set with 3,640 teachers from 2,838 schools: 53

attributes and labels of 2,176 current teachers and 1,464 former teachers. We

randomly split the data into a training set (2,192 teacher instances, 80%) and a test

set (728 teacher instances, 20%) with shuffling and stratification on the label. The

feature reduction methods produced a different number of attributes: the full set
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contains 53 attributes, and 18, 26, 26, 27, 28, 33, 34, 38 attributes are selected by

methods such as RFE and SFS with KNN and ridge regression, random forests

feature importance, PMI with random forests and ridge regression, Variance

threshold, and Lasso regularization, respectively. To evaluate each feature set

selected using different dimensionality reduction techniques, the five state-of-the-art

machine learning models have been built for the 10 different feature sets: ridge

regression, SVM, KNN, random forests, and gradient boosting. Then, the same

process was repeated for the advanced gradient boosting models, XGBoost,

LightGBM, CatBoost, and HistGradientBoosting, to compare and select the best

model on prediction of our label. The specification of the implementation of these

models is described in Section III.

The performance of the five state-of-the-art models in the test set, organized by

the number of attributes, is illustrated in Figure 6. In general, the metrics, accuracy,

F1, and MCC, show steady performance across all models except KNN and feature

sets. As the best performance of each model listed in the Table 5, decision-tree

based ensemble models, gradient boosting and random forests training 27 and 28

features selected by random forests feature importance and PMI with random

forests respectively, are the best performing model with the highest accuracy (77%),

and F1 (82%).

Figure 7: Four gradient boosting models fitted to the training and test sets with 5-fold
cross-validation of RandomizedSearch. With accuracy, F1, and MCC for the test
set compared with gradient boosting, the dimensionality reduction plays no role
for the performance of the models.
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Table 6: CatBoost fitting 27 features is the most robust model among Advanced gradient
boosting models.

Model Best Set Selection Method Accuracy [0,1] F1 [0,1] MCC [-1,+1]

CatBoost 27 Random Forests Feature Importance 0.783 0.832 0.543

HistGradientBoost 49 RFE - Random Forests 0.779 0.826 0.533

LightGBM 28 PMI - Random Forests 0.764 0.801 0.51

XGBoost 28 PMI - Random Forests 0.776 0.825 0.527

Next, we compared the four advanced gradient boosting models with our best

performing baseline models, gradient boosting. While the boosting models remain

stable for all sets of attributes regarding their test accuracy, F1, and MCC as shown

in Figure 7, the most robust performing boosting model is CatBoost trained 27

features selected by random forests feature importance with the best accuracy

(78%), F1 (83%), and MCC (54%) as summarized in Table 6. Furthermore, all four

gradient boosting algorithms performance is similar to, and not exceeding, the

vanilla gradient boost implementation as the difference of accuracy between them is

equal to or less than 1%.

Overall, the reduction in dimensionality does not play a role in all nine machine

learning models, and gradient boosting algorithms are performing slightly better

than the other state-of-the-art models.

Teacher Retention Prediction and Analysis

Figure 8: Teacher attrition prediction analysis for school and principal
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We proposed using the best gradient boosting model to predict teacher

attrition rates per school, and we demonstrated the results for teachers who did not

participate in the follow-up survey [56]. The training set contained 2,176 current

and 1,464 former teachers and an attrition rate of 40%, much higher than the

average United States teacher attrition rate (∼8%). We account for this by

tightening the model threshold for model prediction and assigning the label likely to

leave education only if the confidence in model prediction is greater than 0.8.

The entire labeled data (3,640 teachers) then became a training set, and a test

set contained 33,198 teachers (entries without principal and school associations were

removed). The average number of teachers per 7,428 schools analyzed is 4.47, and

only 358 schools have 10+ teachers participating in the SASS survey [56]. We could

not produce the teacher attrition rate predictions per 7,428 schools analyzed as the

data contains only categorical information on the total number of teachers per

school (<24, 25-34, >34) [56]. This new dataset does not contain two attributes

available only for the TFS data: marital status and the number of dependents. We

fit the XGBoost model with the best hyperparameters, the best gradient boosting

model for the Full feature set, with 51 features on the training dataset, and rank

predictions on the test set. Our model predicts 3,399 teachers from the unlabeled

SASS dataset have also left education (80%+ model confidence). The breakdown of

predictions is in Figure 8: (a) female principals have less former teachers(2.4%) than

male principals(7.9%); (b) Non-White principals have less Former teachers(1.3%)

than the ones for White principals(9%); (c) Secondary or Combined schools have

higher Former teacher ratio(8.6%) than Elementary school former teachers(1.6%),

and (d) schools located in Small town or rural areas have the highest percentage of

former teachers(4.7%) than schools in Large or Mid Urban Fringe (3.5%) following

Large or Mid Central City (2.1%).
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Full Feature vs. Raw Data for Gradient Boosting Models

Considering that the advanced gradient boosting models handle categorical

features that overcome data sparsity and unbalanced tree splits caused by one hot

encoding and high-cardinality categorical features, we experimented on categorical

feature support by fitting and comparing the models with the full feature set and

raw data. The full feature set represents 53 features, including 39 categorical and 14

numerical features that eliminated overlapping information with correlation

filtering. As for the raw data, we defined the integrated SASS and TFS data

accommodating 124 attributes with 107 categorical attributes and 17 numerical

attributes. We do not concern missing values in this experiment, as the SASS and

TFS data do not include missing values, as originally provided.

Table 7: Three data sets for experimenting on handling categorical features for XGBoost,
LightGBM, CatBoost, and HistGradientBoosting.

Data Set # of Attributes # of Categorical Use Categorical

Full Feature 53 39 Yes
Raw 124 107 Yes

Raw - One-Hot Encoded 596 0 No

We have prepared three data sets for the experiment: Full-Feature, Raw, and

Raw One-Hot Encoded are explained in Table 7. The data sets trained in the same

gradient boosting modeling process – XGBoost, LightGBM, CatBoost, and

HistGradientBoosting – with the choice of providing categorical feature indices as a

parameter. As illustrated in Figure 9, the feature engineering of the three data sets,

does not significantly affect test accuracy of the four gradient boosting models as

the accuracy of the models is steady for all data sets around 76%, except XGBoost,

61%. In fact, XGBoost, which supports categorical features with the recent version

1.6 experimentally, performs the worst with Raw data for F1 as 60% and MCC as

28%, while the same model does not fluctuate for the performance of the rest of the
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data sets. The key difference in this case is that Raw data have categorical

attributes with high-cardinality, since 5 attributes have a large number of categories

between 46 to 80; in contrast, Full feature and One-hot encoded Raw data sets have

very few categories for an attribute, from 2 to 5.

Figure 9: Three data sets fitted four advanced gradient boosting models. Using train and test
set split, RandomizedSearch and 5-fold cross validation, feature engineering shows
no effects on the performance of the four advanced grandient boosting models
except for XGBoost.
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V. Identifying Resilience Factors in Texas Public Schools

Texas Public Data Summary

Integrating Public Data

Table 8: Data from eight different sources are integrated by matching school district ID and
county FIPS code. After initial integration, data have 1,165 schools districts with
506 attributes in 253 counties in Texas.

Data Abbr Data Source Level Shape

CCD, NCES Common Core of Data National Center for Educa-
tion Statistics District (1189, 66)

STAAR, TEA
State of Texas Assessments
of Academic Readiness for
2018-2019 and 2020-2021

Texas Education Agency District (1184, 217)
(1182, 217)

LAUS, BLS Local Area Unemployment
Statistics

U.S. Bureau of Labor
Statistics County (254, 13)

Census Bureau Census Block Group 2010 Census Bureau County (254, 37)

Covid, DSHS Texas Public Schools
COVID-19 Data

Texas Department of State
Health Services District (1216, 7)

Covid, USAFacts Texas Coronavirus Cases
and Deaths USAFacts County (254, 8)

ADA, TEA Average Daily Attendance Texas Education Agency District (1226, 3)

ESSER, TEA Elementary and Secondary
School Emergency Relief Texas Education Agency District (1208, 6)

We wanted to help policy makers make more informative decisions on learning

recovery with localized efforts on each school district. Therefore, we collected data

from eight difference sources as described in Table 8 to answer our research

questions: (i) Are students from low-income backgrounds and minority students

experiencing more learning loss? (ii) Do students of different grade levels experience

learning loss differently? (iii) Does the school or school district reopening decision

influence learning loss experienced by students? (iv) Is the mode of instruction

(hybrid, remote, in person) related to learning loss? (v) Is school or district

attendance negatively correlated with learning loss? (vi) Does the local or regional
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infection rate lead to more learning loss? (vii) Does the local unemployment rate

negatively affect learning losses? If we can answer these questions with our approach,

we can also identify resilient factors in learning recovery for Texas public schools.

Primarily, we gathered the Common Core of Data (CCD) [58] which is the

primary database on public elementary and secondary education supplied by the

National Center for Education Statistics (NCES) in the United States. The CCD

provided us with public schools characteristics, student demographics by grade, and

faculty information at the school district in the state of Texas for the fiscal year

2019 and 2021. Then, we merged the CCD data with the State of Texas

Assessments of Academic Readiness (STAAR) data [59] from Texas Education

Agency (TEA) for fiscal year 2019 and 2021 at each school district. The STAAR

data we collected are the average scores for math and reading tests and the number

of students who participated in the tests for grade 3-8. These data also include the

numbers and average scores for students under various classifications, such as Title

1 participants, economically disadvantaged, free lunch, special education, Hispanic,

Black, White, and Asian. Next, our data merged with COVID-19 campus data from

the Texas Department of State Health Services (DSHS) [60], including the

self-reported student enrollment and on-campus enrollment numbers of the dates

September 28, 2020, October 30, 2020, and January 29, 2021 at each school district

in Texas. Additional COVID-19 data involved confirmed infection and death cases

[61] due to Coronavirus at each county from USAFacts. Also, the average daily

attendance (ADA) [62], which consists of the sum of attendance counts divided by

days of instruction, and data from the Elementary and Secondary School

Emergency Relief (ESSER) Grant Programs [63] – COVID-19 relief funding – were

collected from TEA for school district level. The ADA data for fiscal year 2019 and

2021 were added to our data to see the impact of district attendance, and the

ESSER data reflect the localized efforts of TEA allocating the grant amount at each
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school district in the fiscal year of 2020, 2021, 2022 and 2023. Also, we combined the

Local Area Unemployment Statistics (LAUS) data [64] from U.S. Bureau of Labor

Statistics (BLS) for the year 2019 and 2021 to examine the negative impact of

unemployment rate to learning loss at the county level. Additionally, Census block

group 2010 data [65] were included to grasp demographic characteristics at a county

for general population. At the end of the initial data integration merging data from

eight sources by matching school district ID and county FIPS code, the data set

represents 1,165 school districts of Texas located in 253 counties with 506

attributes, consisting of 1 categorical and 505 numerical.

Labeling into Multi-Class Classification Problem

Figure 10: Distribution of learning loss values for math and reading. It shows that more stu-
dents and school districts experienced learning loss in math and reading subject.

Our data set is unlabeled data; thus we need to create ground truth label for

further prediction processes. The data set contains average scale scores of the

STARR for math and reading between grades 3 and 8 for the fiscal years of 2019

and 2021. This means that each school district has total 24 attributes indicating the

scores for calculating learning loss. We first normalized each cell of the scores by the
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Figure 11: Four steps to label into 3 classes by calculating learning loss using the STAAR
scores. First, normalizing each score by dividing by the maximum score, then, get-
ting averages of the normalized scores, and getting delta of the average normalized
scores between 2021 and 2019, finally labeling the middle 50% of distribution as
"Expected", below Q1 as "Loss", and above Q3 as "Gain".

maximum score value of the attribute as described in Figure 11, Step 1. The

following Step 2 averaged these normalized scores for each year and subject, and

Step 3 calculated the loss as the difference of the scores, between 2019 and 2021 for

the perspective of 2019. Consequently, our label – learning loss – is decided

depending on the the loss value: if it is positive, there is learning gain, but a

negative value corresponds to learning loss. At this point, we plot a distribution of
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the loss values in Figure 10 to set a threshold determining the loss and gain. The

distribution shows that more districts have experienced the loss in math as the

median for math (-0.03) is lower than the median for reading (0). We decided to

proceed with further analysis and prediction separately for math and reading.

Therefore, Step 4 in Figure 11 describes creating 3 label classes; the middle 50% of

school districts is labeled as "Expected", and the loss values below 25th percentile

are set to be "Loss", and the loss values above 75th percentile become "Gain".

(a) Race/Ethnicity - All
Districts

(b) Race/Ethnicity - Math

(c) Race/Ethnicity - Reading

Figure 12: Exploratory data analysis for race/ethnicity of students. (a) the distribution in-
cludes four race/ethnicity groups of students, Hispanic, White, Black, and Asian;
(b) and (c) show Hispanic and White students correlated to the label as the
Hispanic population declines from Loss to Gain in contrast to White population
increases in the same direction for both math and reading.

With the data labeled as learning loss, Expected, and Gain, we analyzed each

of them in depth with respect to a correlation between attributes and the label. For

instance, Figure 12 reveals that White students are correlated to our label as they

are the majority population for Gain and decreased towards Loss label; on the other

hand, Hispanic students are 2/3 of Loss students then reduced as for Expected and
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Gain labels for both math and reading. Also, we realized that the locale of school

districts is correlated to the label learning loss, as illustrated in Figure 13. Figure 13

(a) confirms that over half the schools are located in rural areas in Texas despite the

positive correlation between rural areas and the label from Loss to Gain; however,

Loss occurring in schools located in City and Suburb areas increasingly appeared in

(b) and (c).

(a) Locale - All Districts

(b) Locale - Math

(c) Locale - Reading

Figure 13: Exploratory data analysis for locale of schools: (a) shows that the majority of
schools in Texas are located in Rural; (b) and (c) confirm that schools located
in City and Suburb experienced severe Loss compared to schools in Rural area
growing from Loss to Gain.

Attribute Selection and Importance

Since our data set contains 506 attributes for 1,165 school districts, in this

section, we engage in dimensionality reduction to obtain interpretability and identify

the resilience factors for learning loss. We first remove noise, missing values, from

the data, and then aggregate attributes conveying the same information for each

33



year of 2019 and 2021. In turn, we successfully reduced the number of attributes to

90 to finally adopt the attribute selection methods explained in Section III.

(a) Missing Values by Data Source (b) % of Attributes with Missing Values

Figure 14: 416 attributes out of 506 of the initial data set have missing values from 1 to
88%. 80% of the attributes with missing values has missing values less than 20%.

Handling Missing Values. Among the 506 attributes, 416 attributes contain

missing values from 3 data sources ranging from 1 to 88% in our data set: 408

attributes from STAAR, TEA, 6 attributes from CCD, NCES and 2 attributes from

COVID, DSHS data in Figure 14 (a). Of these 416 attributes, 80% have fewer than

20% missing values, but 11% of them have more than 60% missing values, as shown

in Figure 14 (b). While these missing values are predominantly from the STAAR

data, related to average scores and participants in the STAAR tests, the rest of the

8 attributes of the CCD and COVID data contain less than 9% missing values.

Thus, we decided to simply remove those attributes from the STAAR data and

impute the attributes related to the number of students in each grade to 0.

Furthermore, dropping rows with missing values from the CCD and COVID data

resulted in 119 attributes for 955 school districts.

Aggregating attributes. With the number of attributes reduced to 119 after
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Table 9: Examples of aggregating attributes containing the same information for each year
2021 and 2019. By calculating the delta between 2021 and 2019 for the perspective
of 2019, 68 of these attributes are reduced by half, 34 attributes. Full list is in
Table B.1

Attribute Aggregated Attribute Data

Total Schools 2020-2021 Total Schools Diff CCD, NCES
Total Schools 2018-2019

% Title 1 Eligible 2020-2021 % Title 1 Eligible Diff CCD, NCES
% Title 1 Eligible 2018-2019

% Hispanic 2020-2021 % Hispanic Diff CCD, NCES
% Hispanic 2018-2019

% Grades 1-8 2020-2021 % Grades 1-8 Diff CCD, NCES
% Grades 1-8 2018-2019

% Tested Reading G3 2020-2021 % Tested Reading G3 Diff STAAR,
TEA% Tested Reading G3 2018-2019

Unemployed Rate 2021 Unemployed Rate Diff LAUS, BLS
Unemployed Rate 2019

% ADA 2020-2021 % ADA Diff ADA, TEA
% ADA 2018-2019

handling missing values, we still have 68 attributes containing the same

characteristics for each year in 2019 and 2021. To improve readability and

interpretability, these attributes were aggregated into a single attribute by obtaining

delta values between 2019 and 2021 for the 2019 perspective. For example, the

attributes Total Schools 2020-2021 and Total Schools 2018-2019 are aggregated into

Total Schools Diff as provided in the example aggregation list in Table 9. As a

result, the dimension is reduced to 90 from 119.

Maximum Relevance Feature Selection

We executed the nine different feature selection approaches described in

Section III to detect the resilient factors for the loss of learning due to COVID-10

using the data set with 90 attributes and 955 school districts in Texas. As we

discriminate the subjects, math and reading, on predicting learning loss, the feature
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Table 10: Nine feature selection approaches selected the number of features for learning loss.
The selection is illustrated in Figure 15 with distinguished bar colors marked in
the Color column.

Method Approach Features Math Features Read-
ing Color

Filter Variance Threshold 21 20

Embedded Lasso Regularization 55 51

Embedded Random Forests Feature Importance 45 45

Wrapper PMI - Random Forests 70 26

Wrapper PMI - Ridge Regression 28 82

Wrapper RFE - Ridge Regression 6 5

Wrapper RFE - Random Forests 36 36

Wrapper SFS - KNN 45 45

Wrapper SFS - Ridge Regression 45 45

selection process has been repeated twice for each subject separately.

Table 10 indicates the dimension reduced to the various numbers by each

approach. RFE with random forests only selected 6 and 5 features for math and

reading, respectively; however, PMI method selected the largest number of features

for both subjects: 70 features for math using random forests and 82 features for

reading using ridge regression. The importance ranking of the features resulting

from the nine approaches is shown in Figure 15, (a) Top 15 for math, and (b) Top 14

for reading selected by 6 or more feature selection methods. Note that full selection

results are listed in Table B.2. The most significant feature predicting learning loss

in math is % of Campus 10/30/20, the enrollment of students in the campus district

on October 30, 2020, representing the mode of instruction. For reading subject, 3

important features are selected, all of which were resilience factors related to

Low-income backgrounds of students: CARES ESSER I 20 (Coronavirus Aid, Relief

and Economic Security (CARES) grant amount in 2020), ARP ESSER III 21

(American Rescue Plan Act (ARP) grant amount in 2021), % Reduced-price Lunch

Diff (Reduced-price Lunch Eligible Students Difference in percent between 2019 and

2021). Based on the characteristics of the top 15 (math) and 14 (reading) important

features selected by 6 or more selection methods in Figure 15, we analyzed the
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(a) Math - Top 15 features (b) Reading - Top 14 features

Figure 15: The Most important features for predicting learning loss in math and reading
selected by 6 or more feature selection methods. % On Campus 10/30/20 for
Math in (a), CARES ESSER I 20, ARP ESSER III 21, % Reduced-price Lunch
Diff for Reading in (b). Full list is in Table B.2

resilient factors for seeking the most impactful factor among them. Apparently,

Low-income and Grade level are the most influential resilient factors to predict

learning loss for both math and reading, as shown in Figure 11. Race/Ethnicity and

mode of instruction continued to be powerful resilient factors for both subjects; on

the other hand, Attendance and Census demographics are considered as significant

factors only by math, and Unemployment is important only for reading.

Although we now realize these important features can identify the resilient

factors for Loss or Gain in learning due to COVID-19 pandemic, it is still unknown

whether those features are positively impacting the learning or not. As an example,
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Table 11: Resilient factors for Top 15 (math) and 14 features (reading). Top 15 and 14
features for math and reading selected by 6 or more dimensionality reduction
approaches in Figure 15. Low-income and Grade level are the most impactful
resilient factors for both subjects.

Resilient Factor Math Reading

Low-income 4 5
Grade Level 4 4

Race/Ethnicity 3 1
Mode of instruction 2 3

Attendance 1 0
Census demographics 1 0

Unemployment 0 1

Figure 16: Analysis on the most important feature for predicting learning loss in math: %
On Campus 10/30/20. School districts in Gain and Expected label have more
students went to school on October 30, 2020.

we analyzed positive or negative correlations between the most important features

and our label, Loss, Expected, or Gain in math and reading.

Figure 16 indicates that % of Campus 10/30/20 is positively correlated with

Gain as the distribution of school districts with the highest proportion of students

on campus populated more for Gain and Expected in math; however, the students

experienced Loss are populated the most where the enrollment is 0%. It is clear that
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in-person classes, the mode of instruction, was the key to avoid Loss in math.

The most important features for reading, CARES ESSER I 20, ARP ESSER

III 21, provide a perspective on the federal funding. The features are part of the

Elementary and Secondary School Emergency Relief (ESSER) grant programs

which are federal funds granted to State education agencies (SEAs) providing Local

education agencies (LEAs) to address the impact due to COVID-19 on elementary

and secondary schools across the nation; thus, the funds have been administered by

Texas Education Agency (TEA) and allocated in each school district in Texas

[63, 66]. The ESSER funds have four programs as below:

CARES ESSER I: Authorized on March 27, 2020, as the Coronavirus Aid

Relief, and Economic Security (CARES) Act with $13.2 billion. Period of

availability is March 13, 2020 to September 30, 2022. Our data have the allocation

amount for the fiscal year of 2020.

CRRSA ESSER II: Authorized on December 27, 2020, as the Coronavirus

Response and Relief Supplemental Appropriations (CRRSA) Act with $54.3 billion.

Period of availability is March 13, 2020 to September 30, 2023. Our data have the

allocation amount for the fiscal year of 2021.

ARP ESSER III: Authorized on March 11, 2021, as the American Rescue

Plan (ARP) Act with $122 billion. Period of availability is March 13, 2020 to

September 30, 2024. Our data have the allocation amount for the fiscal year of 2021.

ESSER-SUPP: Authorized by the Texas Legislature to provide additional

resources for unreimbursed costs to support students not performing well

educationally. Period of availability is March 13, 2020 to August 31, 2023. Our data

have the allocation amount for the fiscal year of 2022 and 2023.

As shown in Figure 17 displaying the distribution of each fund amount

converted to the amount per student, the students experienced Loss in reading

received larger amount of funding for all funding programs on average than the
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(a) CARES ESSER I (2020) (b) CRRSA ESSER II (2021) (c) ARP ESSER III (2021)

(d) ESSER-SUPP (2022) (e) ESSER-SUPP (2023)

Figure 17: Analysis on the most important feature for predicting learning loss in reading:
CARES ESSER I 20, ARP ESSER III 21. Five ESSER funding programs alloca-
tion for school district per student indicate that school districts allocated higher
amount to the districts accommodating more students in Loss.

students experienced Gain or Expected in the same subject. Meaning that the

ESSER amounts have been distributed to proper districts in need of financial help

for adapting and preparing learning loss due to COVID-19 as the ESSER fund

amounts are calculated by formula based on the Title I, Part A grant that is

considered as a poverty proxy [63, 66].

Analysis and Prediction Modeling of Learning Loss

The various dimensions of the selected features were experimented with to

examine the effects of dimensionality reduction methods and the best set of the

features by predicting learning loss with the machine learning models introduced in

Section III. Then, our initial data set was also experimented with gradient boosting

models in terms of missing values and their imputation.
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Model Evaluation and Comparison

(a) Accuracy, F1, and MCC for Math

(b) Accuracy, F1, and MCC for Reading

Figure 18: Five state-of-the-art models fitted to 10 different feature sets for predicting learn-
ing loss. With train-test split, GridSearch, and 10-fold cross-validation, (a) gra-
dient boosting for math and (b) ridge regression perform the best, while the rest,
except KNN, also performs similarly.

Five state-of-the-art machine learning models – ridge regression, SVM, KNN,

random forests, and gradient boosting – fit our full set of 90 attributes and another

nine different sets of selected features from RFE with ridge regression and random

forests, Variance Threshold, SFS with ridge regression and KNN, random forests

feature importance, Lasso regularization, and PMI with ridge regression and

random forests as shown in Figure 15: 6, 21, 28, 45, 45, 45, 55, and 70 features for

math, and 5, 20, 26, 36, 45, 45, 45, 51, and 82 features for reading. For comparison

purposes, four advanced gradient boost models, XGBoost, LightGBM, CatBoost,

and HistGradientBoosting, train the same sets of features. Including hyparameter

optimization, details of these models establishments are described in Section III.
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Table 12: (a) CatBoost fitting 36 features for math and (b) CatBoost fitting 82 are the most
robust models predicting learning loss. These are resulted from the nine machine
learning models training the 10 features sets.

Model Best Set Selection Method Accuracy [0,1] F1 [0,1] MCC [-1,+1]

Log Reg Ridge 45 Random Forests Feature Importance 0.639 0.622 0.368

SVM 45 SFS - Ridge 0.628 0.584 0.343

KNN 55 Lasso Regularization 0.618 0.591 0.318

Random Forests 45 Random Forests Feature Importance 0.639 0.582 0.363

Gradient Boost 36 RFE - Random Forests 0.644 0.622 0.375

CatBoost 36 RFE - Random Forests 0.675 0.645 0.434

HistGB 45 SFS - KNN 0.634 0.609 0.35

LightGBM 70 PMI - Random Forests 0.644 0.601 0.372

XGBoost 21 Variance Threshold 0.66 0.616 0.405

(a) Math

Model Best Set Selection Method Accuracy [0,1] F1 [0,1] MCC [-1,+1]

Log Reg Ridge 45 SFS - Ridge 0.607 0.522 0.303

SVM 45 SFS - KNN 0.586 0.553 0.274

KNN 45 SFS - KNN 0.571 0.536 0.232

Random Forests 45 SFS - Ridge 0.592 0.513 0.26

Gradient Boost 45 SFS - Ridge 0.56 0.542 0.231

CatBoost 82 PMI - Ridge 0.623 0.548 0.338

HistGB 45 SFS - Ridge 0.576 0.495 0.219

LightGBM 90 No Reduction 0.602 0.516 0.288

XGBoost 90 No Reduction 0.613 0.535 0.312

(a) Reading

After training the five state-of-the-art models using 10-fold cross-validation of

GridSearch for training (80%) testing (20%) split sets, the performance, accuracy,

F1, and MCC of these models are plotted on bar graphs in Figure 18 (a) for math

and (b) for reading; predicting learning loss for reading shows weak performance

compared to math generally. While no clear differences between the performance of

all models, except KNN, and the number of attributes have been observed for both

subjects, gradient boosting for math and ridge regression for reading indicate the

best accuracy, F1, and MCC on average.

We also train the four gradient boosting models for the same sets of features

used above with 5-fold cross-validation of RandomizedSearch and train(80%)
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(a) Accuracy, F1, and MCC for Math

(b) Accuracy, F1, and MCC for Reading

Figure 19: Four advanced gradient boosting models fitted to 10 different feature sets for pre-
dicting learning loss. With train-test split, RandomizedSearch, and 5-fold cross-
validation, the best state-of-the-art models, gradient boosting and ridge regres-
sion, are compared with for math in (a) and reading in (b).

test(20%) split sets, and the performance comparison with the best state-of-the-art

models, gradient boosting for math and ridge regression for reading, are shown in

Figure 19, (a) math, and (b) reading. The gradient boosting algorithms also show

higher prediction power for math than reading and indicate no significant model

exceeding other models including the best state-of-the-art models in terms of the

performance.

For all nine models, the best feature set for each model is described in Table 12

(a) for math and (b) for reading; both subjects suggest CatBoost as the most robust

models: 36 features selected by RFE with random forests with accuracy (68%), F1

(65%) and MCC (43%) for math and 82 features selected by PMI with ridge

regression with accuracy (62%), F1 (55%) and MCC (34%) for reading.

Overall, the gradient boosting algorithms, CatBoost and XGBoost, are the best
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choice of all machine learning models we have experimented to predict learning loss

for both subjects. While these models performed better for predicting the loss in

math rather than reading in general, the performance gap between the four gradient

boosting models and the five state-of-the-art models except KNN is negligible as

their accuracy difference is around 3%. Also, no clear indication emerged when it

comes to the best dimensionality reduction technique that performs across all

models.

Best Features vs. Raw Data for Gradient Boosting Models

All four gradient boosting models we built – XGBoost, LightGBM, CatBoost,

and HistGrandientBoosing – are aware of the sparsity of data, such as missing

values, by finding optimal tree split. Recall that the initial data set, also known as

Raw data, containing 506 attributes (505 numerical and 1 categorical) for 1,165

school districts, includes 416 attributes with missing values as small as 1% and as

large as 88% of each attribute as shown in Figure 14. In this experiment, we

executed the pipeline of building the advanced gradient boosting models for Raw

data and compared with the models trained the data processed the feature

engineering techniques in terms of prediction power on learning loss. The

classification task completed for the respective subjects, math and reading. All

attributes with missing values except for 8 attributes are subject-specific, e.g., the

number of grade 3 students tested in math. After dropping the subject-specific math

attributes for reading and vice versa, 302 was the dimension of attributes for this

experiment for each subject. 212 out of 302 attributes contain missing values.

We have three data sets for comparison: (1) The best sets of features in

Table 12 from the four gradient boosting models performance result in Figure 19,

(2) Raw data with no imputation for missing values, and (3) Raw data imputed

missing values with mean values. Note that our data has only 1 categorical attribute
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(a) Train & Test Accuracy, MCC for Math

(b) Train & Test Accuracy, MCC for Reading

Figure 20: Four advanced gradient boosting models training Raw data including missing
values with or without imputation. MCC improved compared to the results using
the data with the best features selected through feature engineering appeared in
Table 12.

including no missing values, so the imputation method is limited to average. As for

the performance of Best Features vs. Raw data, all models improved with Raw data

throughout all performance metrics, especially MCC, for both subjects as appeared

in Figure 20; HistGradientBoost increased MCC the most as 47% following

LightGBM (43%), CatBoost (25%) and XGBoost (24%) for math, and the improved

MCC for reading is even steeper with 124% for HistGradientBoost and 45%, 43%,

and 41% for LightGBM, CatBoost, and XGBoost, respectively. For a closer look, we

also observed that Raw data set without imputation perform slightly better

compared to Raw data set with imputation for all models and subjects; MCC for

math rose the most, over 6%, in CatBoost and HistGradientBoost; in contrast,
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XGBoost showed the largest growing for MCC in reading with 10%.
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VI. Conclusion

Our intentional data science pipeline can automatically uncover important

attributes using public-use data and the nine different feature selection methods to

model two projects in this paper: teacher attrition and learning loss. While

reduction in dimensionality of data plays no role for the prediction power as the

nine machine learning models training the feature sets selected by the feature

selection method did not exhibit significant improvement for the performance, the

gradient boosting algorithms are generally performing better for both of projects. In

fact, the gradient boosting models such as XGBoost and CatBoost are superior for

handling categorical features and missing values as we experimented with raw data

for each project; 107 out of 124 attributes are categorical for teacher attrition data

set, and over 2/3 of attributes of learning loss data set contain missing values.

Reproducible experiments and datasets are published on [67].

Implications and Future Work

Policy makers can use our predictive models and analysis to focus resources on

the public school system including schools, students, and teachers to keep teachers

in public schools, and mitigate learning loss with possible interventions.

Teacher Attrition. Utilizing public-use SASS and TFS data in other years,

1987-1988, 1990-1991, 1993-1994, as test sets can determine the best performing

model among the current models as teacher samples are drawn from the different

years and population. In addition, we can build prediction models with

restricted-use data such as SASS and TFS in 2003-2004, 2007-2008, and 2011-2012

[57], or National Teacher and Principal Survey (NTPS) data, redesigned survey of

SASS conducted in 2015-2016 and 2017-2018 [68], to discover unknown important

47



factors for teacher attrition as those data contain unseen attributes and up-to-date

information. After affirming the current pipeline by experimenting with the new

data, we can apply the pipeline to segmented problems, for example, STEM teacher

retention.

Learning Loss. To alleviate learning loss, the findings of the project can shape

interventions in terms of policy planning. First of all, the most prominent resilient

factor of learning loss identified by both subjects, math and reading, is Low-income

background of students; so, Low-income factor can be considered for policy making

as in the example of the ESSER programs. Grade level – the important resilient

factor – and the different distributions of learning loss in each subject in Figure 10

suggest that personalize interventions with grade-specific and subject-specific efforts

might be required. Moreover, policy makers can also contemplate specific and

cross-sectional factors for the personalized interventions; for instance, Hispanic and

City resident students are the largest population suffering from learning loss as

appeared in the EDA on Race/Ethnicity of students and Locale of schools in

Figure 12 and 13. In the future, the key factors recognized and suggested in this

paper will be examined and tracked by running the current pipeline for the

up-to-date STARR 2021-2022 scores as learning recovery label and analyzing

whether these factors contribute to achieving the recovery.

Gradient Boosting Modeling. We confirmed that the gradient boosting

models such as CatBoost, XGBoost, and LightGBM offer enhanced quality of

classification when training raw data without preprocessing categorical features or

missing values. However, the models are "black-Box" as it is challenging to interpret

feature importance. Future work could include explaining the gradient boosting

models fitting raw data using the tree explainers such as SHAP and LIME, so that

we can obtain global feature importance for all districts in Texas and local feature

importance for each district or county level. These results will be compared with the
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current feature selection methods to evaluate the key factors.
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APPENDIX SECTION

APPENDIX A

Table A.1: Selected Teacher, Principal, and School Attributes in the SASS dataset. Value
(1 0): If the statement is true, the attribute value is 1, otherwise it is 0.

Teacher Label Description Teacher Label Description

num_dependents Number of dependents of teachers deg_T_MA Master’s degree (1 0)

married Married teacher (1 0) pd_time Professional development time off(1 0)

race_T_White Teacher’s race (1 White 0 Others) pd_finance Professional development pay (1 0)

race_T_Black Teacher’s race (1 Black 0 Others) remain_teaching Likely to remain in teaching (5-pt scale)

race_T_Hispanic Teacher’s Ethnicity (1 Hispanic 0 Others) field_STEM STEM is main teaching job (1 0)

gender_T_Female Teacher’s gender (1 F 0 M) hrs_taught_STEM Hours of teaching STEM subjects per week

summer_teaching Teaching summer school (1 0) public_ft_exp Years of full-time teaching in public schools

nonteaching_job Has a nonteaching summer job (1 0) public_pt_exp Years of part-time teaching in public
schools

nonschool_job Has a nonschool summer job (1 0) private_ft_exp Years of full-time teaching in private
schools

extracur_act Extracurricular Pay(1-T 0-F) field_same Same teaching field as 1yo (1 0)

merit_pay Income from merit pay (1 0) full_time Teaching full-time (1 0)

union_member Union member (1 0) teaches_7to12 Teaching 7 to 12th grades (1 0)

BA_major_STEM STEM major for BA (1 0) new_teacher Teaching 3 years or less (1 0)

MA_major_STEM STEM major for MA (1 0) stu_tch_ratio Student-Teacher ratio

field_cert_Regular Certificate type (1 Regular 0 Others)

Principal Label Description School Label Description

age_P Age of principal vacnc_STEM Difficulty of filling vacancies in STEM
fields (1 0)

salary_P Annual salary of principal region_Northeast School Location (1 Northeast 0 Others)

yrs_P_this_sch Years at current job region_West School Location (1 West 0 Others)

yrs_P_oth_schls Years as principal elsewhere minority_students Minority students percent

yrs_tch_before_P Years teaching prior to principal FRPL_eligible_k12 Free or reduced-price lunch eligible stu-
dents percent

yrs_tch_since_P Years teaching since principal sch_type School type (5 categories)

deg_highest_P Principal’s highest degree (5 categories) level_Elementary School level (1 Elementary 2 Others)

race_P_Black Principal’s race/Ethnicity (1 Black 0 Oth-
ers) urbanicity Urbanic locale (3 categories)

race_P_White Principal’s race/Ethnicity (1 White 0 Oth-
ers) title_I_receive Students receive Title I (1 0)

race_P_Hispanic Principal’s race/Ethnicity (1 Hispanic 0
Others) incen_pay Pay incentives on salary (1 0)

gender_P_Female Principal’s gender (1 F 0 M) incen_NonSTEM Pay recruit incentives on non-STEM fields
(1 0)
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APPENDIX B

Table B.1: Aggregated attributes containing the same information for each year 2021 and
2019. By calculating the delta between 2021 and 2019 for the perspective of 2019,
68 of these attributes are reduced by half, 34 attributes.

Attribute Aggregated Attribute Data

Total Students 2020-2021
Total Students Diff CCD, NCES

Total Students 2018-2019

Total Schools 2020-2021
Total Schools Diff CCD, NCES

Total Schools 2018-2019

Teachers:Students 2020-2021
Teachers:Students Diff CCD, NCES

Teachers:Students 2018-2019

Staff:Students 2020-2021
Staff:Students Diff CCD, NCES

Staff:Students 2018-2019

% White 2020-2021
% White Diff CCD, NCES

% White 2018-2019

% Operational Schools 2020-2021
% Operational Schools Diff CCD, NCES

% Operational Schools 2018-2019

% Title 1 Eligible 2020-2021
% Title 1 Eligible Diff CCD, NCES

% Title 1 Eligible 2018-2019

% Title 1 School-wide 2020-2021
% Title 1 School-wide Diff CCD, NCES

% Title 1 School-wide 2018-2019

% Reduced-price Lunch 2020-2021
% Reduced-price Lunch Diff CCD, NCES

% Reduced-price Lunch 2018-2019

% Prek 2020-2021
% Prek Diff CCD, NCES

% Prek 2018-2019

% Kinder 2020-2021
% Kinder Diff CCD, NCES

% Kinder 2018-2019

% Hispanic 2020-2021
% Hispanic Diff CCD, NCES

% Hispanic 2018-2019

% Grades 9-12 2020-2021
% Grades 9-12 Diff CCD, NCES

% Grades 9-12 2018-2019

% Grades 1-8 2020-2021
% Grades 1-8 Diff CCD, NCES
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% Grades 1-8 2018-2019

% Free Lunch 2020-2021
% Free Lunch Diff CCD, NCES

% Free Lunch 2018-2019

% Black 2020-2021
% Black Diff CCD, NCES

% Black 2018-2019

% Asian 2020-2021
% Asian Diff CCD, NCES

% Asian 2018-2019

% Tested Reading G8 2020-2021
% Tested Reading G8 Diff STAAR, TEA

% Tested Reading G8 2018-2019

% Tested Reading G7 2020-2021
% Tested Reading G7 Diff STAAR, TEA

% Tested Reading G7 2018-2019

% Tested Reading G6 2020-2021
% Tested Reading G6 Diff STAAR, TEA

% Tested Reading G6 2018-2019

% Tested Reading G5 2020-2021
% Tested Reading G5 Diff STAAR, TEA

% Tested Reading G5 2018-2019

% Tested Reading G4 2020-2021
% Tested Reading G4 Diff STAAR, TEA

% Tested Reading G4 2018-2019

% Tested Reading G3 2020-2021
% Tested Reading G3 Diff STAAR, TEA

% Tested Reading G3 2018-2019

% Tested Math G8 2020-2021
% Tested Math G8 Diff STAAR, TEA

% Tested Math G8 2018-2019

% Tested Math G7 2020-2021
% Tested Math G7 Diff STAAR, TEA

% Tested Math G7 2018-2019

% Tested Math G6 2020-2021
% Tested Math G6 Diff STAAR, TEA

% Tested Math G6 2018-2019

% Tested Math G5 2020-2021
% Tested Math G5 Diff STAAR, TEA

% Tested Math G5 2018-2019

% Tested Math G4 2020-2021
% Tested Math G4 Diff STAAR, TEA

% Tested Math G4 2018-2019

% Tested Math G3 2020-2021
% Tested Math G3 Diff STAAR, TEA

% Tested Math G3 2018-2019

Unemployed Rate 2021
Unemployed Rate Diff LAUS, BLS

Unemployed Rate 2019

Unemployed Level 2021
Unemployed Level Diff LAUS, BLS
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Unemployed Level 2019

Labor Force 2021
Labor Force Diff LAUS, BLS

Labor Force 2019

Employed 2021
Employed Diff LAUS, BLS

Employed 2019

% ADA 2020-2021
% ADA Diff ADA, TEA

% ADA 2018-2019

Table B.2: Full list of the dimensionality reduction approaches for predicting learning loss
for math and reading. It is organized by the number selected by the approaches
for math.

Feature
Selected

Math

Selected

Reading

Data

Source
Resilient Factor Description

% On Campus 10/30/20 8 6
Covid,

DSHS

District oncampus enrollmen of students (%)

on 10/30/20
Mode of instruction

CARES ESSER I 20 7 8
ESSER,

TEA
CARES ESSER I amount($) (2020) Lowincome

% Asian Diff 7 5
CCD,

NCES
Hispanic students difference (%) (20212019) Race/ethnicity

% Black Diff 7 7
CCD,

NCES
Black students difference (%) (20212019) Race/ethnicity

% Reducedprice Lunch Diff 7 8
CCD,

NCES

Reducedprice lunch eligible students differ-

ence (%) (20212019)
Lowincome

% Tested Math G8 Diff 7 4
STAAR,

TEA

Grade 8 students tested math exam differ-

ence (20212019)
Grade level

% ADA Diff 6 4
ADA,

TEA

Average daily attendance difference (%)

(20212019)
Attendance

Median Age 10 6 4
Census

Bureau
Median age of county population (2010) Census demographics

% On Campus 09/28/20 6 7
Covid,

DSHS

District oncampus enrollmen of students (%)

on 09/28/20
Mode of instruction

ARP ESSER III 21 6 8
ESSER,

TEA
ARP ESSER I amount($) (2021) Lowincome

CRRSA ESSER II 21 6 7
ESSER,

TEA
CRRSA ESSER II amount($) (2021) Lowincome

% Grades 18 Diff 6 5
CCD,

NCES

Grades 18 students difference (%) (2021-

2019)
Grade level

% Grades 912 Diff 6 5
CCD,

NCES

Grades 912 students difference (%) (2021-

2019)
Grade level

% Hispanic Diff 6 4
CCD,

NCES
Hispanic students difference (%) (20212019) Race/ethnicity

% Prek Diff 6 7
CCD,

NCES
Prek students difference (%) (20212019) Grade level
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# of Households 10 5 4
Census

Bureau
Number of households (2010) Census demographics

% HH MarriednoChild 10 5 4
Census

Bureau

Married couple households with no children

(%) (2010)
Census demographics

Avg Family Size 10 5 4
Census

Bureau
Average family size (2010) Census demographics

Avg Household Size 10 5 5
Census

Bureau
Average household size (2010) Census demographics

Median Age Female 10 5 5
Census

Bureau
Median age of female population (2010) Census demographics

Median Age Male 10 5 4
Census

Bureau
Median age of male population (2010) Census demographics

% County Infected 09/28/20 5 4
Covid,

USAFacts
Covid infection cases (%) on 09/28/20 COVID cases

% On Campus 01/29/21 5 6
Covid,

DSHS

District oncampus enrollmen of students (%)

on 01/29/21
Mode of instruction

ESSERSUPP 22 5 4
ESSER,

TEA
ESSERSUPP amount($) (2022) Lowincome

Unemployed Level Diff 5 6
LAUS,

BLS
Unemployment level difference (20212019) Unemployment

% Kinder Diff 5 5
CCD,

NCES

Kindergarten students difference (%) (2021-

2019)
Grade level

% White Diff 5 5
CCD,

NCES
White students difference (%) (20212019) Race/ethnicity

% Tested Math G3 Diff 5 4
STAAR,

TEA

Grade 3 students tested math exam differ-

ence (20212019)
Grade level

% Tested Math G5 Diff 5 4
STAAR,

TEA

Grade 5 students tested math exam differ-

ence (20212019)
Grade level

% Tested Math G6 Diff 5 6
STAAR,

TEA

Grade 6 students tested math exam differ-

ence (20212019)
Grade level

% Tested Math G7 Diff 5 6
STAAR,

TEA

Grade 7 students tested math exam differ-

ence (20212019)
Grade level

Locale_42Rural: Distant 5 3
CCD,

NCES
School locale Rural: Distant School Information

# of Families 10 4 4
Census

Bureau
Number of families (2010) Census demographics

# of Housing Units 10 4 3
Census

Bureau
Number of housing units (2010) Census demographics

% Age 1519 Pop 10 4 3
Census

Bureau
Age 1519 Population (%) (2010) Census demographics

% Age 2534 Pop 10 4 2
Census

Bureau
Age 2534 Population (%) (2010) Census demographics

% Age 59 Pop 10 4 2
Census

Bureau
Age 59 Population (%) (2010) Census demographics

% Age 7584 Pop 10 4 1
Census

Bureau
Age 7584 Population (%) (2010) Census demographics

% Asian Pop 10 4 4
Census

Bureau
Asian Population (%) (2010) Census demographics
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% Black Pop 10 4 4
Census

Bureau
Black Population (%) (2010) Census demographics

% HH FemaleChild 10 4 2
Census

Bureau

Femaleheaded households with children (%)

(2010)
Census demographics

% Housing Renter Occup 10 4 3
Census

Bureau
Renter Occupied Housing (%) (2010) Census demographics

% County Infected 10/30/20 4 3
Covid,

USAFacts
Covid infection cases (%) on 10/30/20 COVID cases

County Population 4 4
Covid,

USAFacts
County Population Census demographics

Labor Force Diff 4 5
LAUS,

BLS
Labor force difference (20212019) Unemployment

Staff:Students Diff 4 4
CCD,

NCES

Staffs and students ratio difference (2021-

2019)
School Information

Teachers:Students Diff 4 4
CCD,

NCES

Fulltime teachers and students ratio differ-

ence (20212019)
School Information

Total Schools Diff 4 5
CCD,

NCES
Number of schools difference (20212019) School Information

Total Students Diff 4 5
CCD,

NCES
Number of students difference (20212019) School Information

% Tested Math G4 Diff 4 6
STAAR,

TEA

Grade 4 students tested math exam differ-

ence (20212019)
Grade level

Locale_12City: Midsize 4 3
CCD,

NCES
School locale City: Midsize School Information

% Age 04 Pop 10 3 2
Census

Bureau
Age 04 Population (%) (2010) Census demographics

% Age 2024 Pop 10 3 5
Census

Bureau
Age 2024 Population (%) (2010) Census demographics

% Age 3544 Pop 10 3 4
Census

Bureau
Age 3544 Population (%) (2010) Census demographics

% Age 6574 Pop 10 3 2
Census

Bureau
Age 6574 Population (%) (2010) Census demographics

% Female Pop 10 3 4
Census

Bureau
Female Population (%) (2010) Census demographics

% HH MaleChild 10 3 4
Census

Bureau

Maleheaded households with children (%)

(2010)
Census demographics

% Hispanic Pop 10 3 2
Census

Bureau
Hispanic Population (%) (2010) Census demographics

% Male Pop 10 3 4
Census

Bureau
Male Population (%) (2010) Census demographics

% White Pop 10 3 4
Census

Bureau
White Population (%) (2010) Census demographics

% County Infected 01/29/21 3 2
Covid,

USAFacts
Covid infection cases (%) on 01/29/21 COVID cases

ESSERSUPP 23 3 6
ESSER,

TEA
ESSERSUPP amount($) (2023) Lowincome

% Free Lunch Diff 3 5
CCD,

NCES

Free lunch eligible students difference (%)

(20212019)
Lowincome
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% Operational Schools Diff 3 3
CCD,

NCES

Operational schools difference (%) (2021-

2019)
School Information

% Title 1 Eligible Diff 3 3
CCD,

NCES

Title 1 targeted assistance eligible schools

difference (%) (20212019)
Lowincome

% Title 1 Schoolwide Diff 3 4
CCD,

NCES

Title 1 schoolwide eligible schools difference

(%) (20212019)
Lowincome

Locale_21Suburb: Large 3 3
CCD,

NCES
School locale Suburb: Large School Information

Locale_22Suburb: Midsize 3 3
CCD,

NCES
School locale Suburb: Midsize School Information

Locale_23Suburb: Small 3 3
CCD,

NCES
School locale Suburb: Small School Information

Locale_32Town: Distant 3 4
CCD,

NCES
School locale Town: Distant School Information

Locale_33Town: Remote 3 3
CCD,

NCES
School locale Town: Remote School Information

% Age 1014 Pop 10 2 2
Census

Bureau
Age 1014 Population (%) (2010) Census demographics

% Age 4554 Pop 10 2 1
Census

Bureau
Age 4554 Population (%) (2010) Census demographics

% Age 5564 Pop 10 2 2
Census

Bureau
Age 5564 Population (%) (2010) Census demographics

% Age 85Up Pop 10 2 4
Census

Bureau
Age 85Up Population (%) (2010) Census demographics

% HH 1 Female 10 2 0
Census

Bureau
1person female households (%) (2010) Census demographics

% HH 1 Male 10 2 2
Census

Bureau
1person male households (%) (2010) Census demographics

% County Deaths 09/28/20 2 2
Covid,

USAFacts
Covid death cases (%) on 09/28/20 COVID cases

% County Deaths 10/30/20 2 1
Covid,

USAFacts
Covid death cases (%) on 10/30/20 COVID cases

Employed Diff 2 5
LAUS,

BLS
Employed difference (20212019) Unemployment

Unemployed Rate Diff 2 4
LAUS,

BLS
Unemployment rate difference (20212019) Unemployment

Locale_11City: Large 2 3
CCD,

NCES
School locale City: Large School Information

Locale_13City: Small 2 4
CCD,

NCES
School locale City: Small School Information

Locale_31Town: Fringe 2 4
CCD,

NCES
School locale Town: Fringe School Information

Locale_41Rural: Fringe 2 3
CCD,

NCES
School locale Rural: Fringe School Information

% HH MarriedChild 10 1 2
Census

Bureau

Married couple households with children (%)

(2010)
Census demographics

% Housing Owner Occup 10 1 3
Census

Bureau
Owner Occupied Housing (%) (2010) Census demographics

56



% Housing Vacant 10 1 3
Census

Bureau
Vacant housing units (%) (2010) Census demographics

% County Deaths 01/29/21 1 1
Covid,

USAFacts
Covid death cases (%) on 01/29/21 COVID cases

Locale_43Rural: Remote 1 4
CCD,

NCES
School locale Rural: Remote School Information
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