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Abstract. We study the blow-up of the solution to a quasilinear viscoelastic

wave system coupled by nonlinear sources. The system is of homogeneous
Dirichlet boundary condition. The nonlinear damping and source are added

to the equations. We assume that the relaxation functions are non-negative

non-increasing functions and the initial energy is negative. The competition
relations among the nonlinear principal parts are not constant functions, the

viscoelasticity terms, dampings and sources are analyzed by using perturbed

energy method. The blow-up result is proved under some conditions on the
nonlinear principal parts, viscoelasticity terms, dampings and sources by a

contradiction argument.

1. Introduction

Let Ω be a bounded domain of Rn(n ≥ 1) with a smooth boundary ∂Ω. Consider
the following nonlinear viscoelastic system

|ut|ρutt − div(ρ1(|∇u|2)∇u) +
∫ t

0

g(t− τ)∆u(x, τ)dτ + ut + |ut|m−1ut

= f1(u, v), Ω× (0, T ),

|vt|ρvtt − div(ρ2(|∇v|2)∇v) +
∫ t

0

h(t− τ)∆v(x, τ)dτ + vt + |vt|r−1vt

= f2(u, v), Ω× (0, T ),

u(x, t) = v(x, t) = 0, x ∈ ∂Ω× [0, T ],

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

v(x, 0) = v0(x), ut(x, 0) = v1(x), x ∈ Ω,

(1.1)

where ρ > 0, m, r > 1 and ρ1, ρ2, f1, f2, g, h are functions satisfying the following
assumptions:

(A1) ρi(s) = b1 + b2s
qi with qi ≥ 0 and b1, b2 > 0; ρi(s) > 0, for s > 0.
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(A2) The relaxation functions g and h are of class C1 and satisfy, for s ≥ 0,

g(s) ≥ 0, b1 −
∫ ∞

0

g(s)ds = l > 0, g′(s) ≤ 0,

h(s) ≥ 0, b1 −
∫ ∞

0

h(s)ds = k > 0, h′(s) ≤ 0.

(A3) Let F (u, v) = a|u+ v|p+1 + 2b|uv|
p+1
2 with a, b > 0, 1 < p < ∞ if n = 1, 2

and 1 < p < n
n−2 if n ≥ 3. Assume that

f1(u, v) =
∂F

∂u
, f2(u, v) =

∂F

∂v
,

and that there are positive constants c0, c1 such that

c0(|u|p+1 + |v|p+1) ≤ F (u, v) ≤ c1(|u|p+1 + |v|p+1).

Many studies concerning existence of global solutions or their blow-up to system
(1.1) with ρi ≡ 1 are available in the literature. Georgiev and Todorova [5] consid-
ered the single equation

utt −∆u+ ut|ut|m−1 = |u|p−1u, in Ω× (0,∞), (1.2)

and the interaction between the nonlinear damping and nonlinear source term. The
authors showed that the solutions of the system with sufficient large initial data
blow up in finite time if p > m. Messaoudi [8] extended the results of [5] to the case
that the initial energy is negative. Agre and Rammaha [1] extended the results of
[5] by considering an initial-boundary value problem to the coupled wave equations.

In the presence of the viscoelastic term, Messaoudi [9] considered the nonlinear
viscoelastic equation

utt −∆u+
∫ t

0

g(t− τ)∆u(τ)dτ + aut|ut|m−1 = b|u|p−1u, Ω× (0,∞), (1.3)

with initial conditions and Dirichlet boundary conditions. He proved that the
weak solution with negative initial energy blew up if p > m when g satisfied some
conditions. Messaoudi [10] considered the blow-up solution of (1.3) with a = 1,
b = 1 and with small positive initial energy. Song [12] extended the results of [10]
to the case that the initial energy is arbitrarily positive. For other related works
on the viscoelastic wave equation, we refer the reader to [2, 4, 16].

Problem (1.1) with ρ > 0 has also been extensively studied. Song [13] investi-
gated the nonexistence of global solutions to the initial-boundary value problem of
the following equation with positive initial energy

|ut|ρutt −∆u+
∫ t

0

g(t− τ)∆u(τ)dτ + ut|ut|m−2 = |u|p−2u, Ω× (0,∞). (1.4)

Liu [7] studied the general decay for the global solution and blow-up of solution to
the equation

|ut|ρutt −∆u+
∫ t

0

g(t− τ)∆u(τ)dτ −∆utt = |u|p−2u, Ω× (0,∞). (1.5)

Cavalcanti et al. [3] studied the energy decay for the nonlinear viscoelastic problem

|ut|ρutt −∆u+
∫ t

0

g(t− τ)∆u(τ)dτ −∆utt − γ∆ut = 0, Ω× (0,∞). (1.6)
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A global existence result for γ ≥ 0 as well as an exponential decay for γ > 0 was
established in [3]. When the source term b|u|p−2u appeared on the right side of
system (1.6), Messaoudi et al. [11] proved that the viscoelastic term was enough
to ensure existence and uniform decay of global solutions provided that the initial
data were in some stable set.

For ρi(s) = b1+b2sqi with qi ≥ 0 and b1, b2 > 0, Wu et al. [14] and [15] considered
the blow-up of the initial boundary value problem (spatial dimension n = 1, 2, 3)
for the system

utt − div(ρ1(|∇u|2)∇u) + ut + |ut|m−1ut = f(u, v), Ω× (0, T ),

vtt − div(ρ2(|∇v|2)∇v) + vt + |vt|r−1vt = g(u, v), Ω× (0, T ).
(1.7)

For a single wave equation with ρi(s) ≥ b1 + b2s
qi , qi ≥ 0, b1, b2 > 0, Hao et al. [6]

studied the global existence and blow up of the solutions.
We note that, in the literature mentioned above, only viscoelastic term was

included in the equation or only nonlinear principal part (i.e. ρi, i = 1, 2, are
not constant functions) was included. To the best of our knowledge, there are
no papers considering the blow-up of the equation with both viscoelastic term
and nonlinear principal part. The main goal of our paper is to prove that for
ρi(s) = b1 + b2s

qi the nonlinear coupled source terms still leads to blow-up of the
solutions though there are viscoelastic terms in the equations. To be more precise,
we prove that when p > max{2q1 + 1, 2q2 + 1} and the relaxation functions satisfy
that max{

∫∞
0
g(s)ds,

∫∞
0
h(s)ds} < q

q+1b1, the solutions of the system will blow up.
Our method is borrowed partly from [7, 14], but we must overcome some additional
difficulty caused by the complex interaction among the nonlinear viscoelastic terms,
the nonlinear principal parts, the coupled source terms and the nonlinear damping.

2. Preliminaries

In this section, we present some other assumptions and existence result of local
solution. We use the following assumptions:

(A4) ρ > 0 if n = 1, 2 and 0 < ρ < 2
n−2 if n ≥ 3.

(A5) m < p, r < p and ρ+ 2 < p.
Define the energy function of the system (1.1) by

E(t) =
1

ρ+ 2

(
‖ut‖ρ+2

ρ+2 + ‖vt‖ρ+2
ρ+2

)
+

1
2

(
b1 −

∫ t

0

g(s)ds
)
‖∇u‖2

+
1
2

(
b1 −

∫ t

0

h(s)ds
)
‖∇v‖2 +

1
2

(g ◦ ∇u)(t) +
1
2

(h ◦ ∇v)(t)

+
b2

2(q1 + 1)
‖∇u‖2(q1+1)

2(q1+1) +
b2

2(q2 + 1)
‖∇u‖2(q2+1)

2(q2+1) −
∫

Ω

F (u, v) dx.

(2.1)

Combining the arguments in [5] and [3], and making some slight modification,
we have the following existence of local weak solutions.

Theorem 2.1. Let (A1)–(A4) hold. Then for any initial data u0 ∈W 1,2q1+2
0 (Ω)∩

Lp+1(Ω), v0 ∈ W 1,2q2+2
0 (Ω) ∩ Lp+1(Ω), there exists a unique local weak solution

(u, v) to the system (1.1) defined on [0, T ) for some T > 0, and

u ∈ L∞([0, T );W 1,2q1+2
0 (Ω) ∩ Lp+1(Ω)),

v ∈ L∞([0, T ];W 1,2q2+2
0 (Ω) ∩ Lp+1(Ω)),
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ut ∈ L∞([0, T );W 1,2q1+2
0 (Ω) ∩ Lp+1(Ω)),

vt ∈ L∞([0, T ];W 1,2q2+2
0 (Ω) ∩ Lp+1(Ω))

utt ∈ L∞([0, T );L2(Ω)), vtt ∈ L∞([0, T );L2(Ω))

Combining the arguments of [5, 10], the following lemma can be proved easily.

Lemma 2.2. Let (A1)–(A4) hold. And let (u, v) be a solution of (1.1). Then E(t)
satisfies the inequality

E′(t) = −‖ut‖2 − ‖ut‖m+1
m+1 − ‖vt‖2 − ‖vt‖

r+1
r+1 +

1
2

(g′ ◦ ∇u)(t)

+
1
2

(h′ ◦ ∇v)(t)− 1
2
g(t)‖∇u‖2 − 1

2
h(t)‖∇v‖2 ≤ 0.

(2.2)

Lemma 2.3 ([8]). Suppose p satisfies (A3). Then there exists a positive constant
C(|Ω|, p) such that

‖u‖sp+1 ≤ C(|Ω|, p)
(
‖∇u‖2 + ‖u‖p+1

p+1

)
, ∀u ∈ H1

0 (Ω),

where 2 ≤ s ≤ p+ 1.

In this article, we use ‖·‖ and ‖·‖p denote the usual L2(Ω) norm and Lp(Ω) norm,
respectively. B1 is the optimal constant of the Sobolev embedding H1

0 (Ω) ↪→ L2(Ω).

3. Blow-up results

In this section, we state and prove our main result.

Theorem 3.1. Let (A1)–(A5) hold. q = max{q1, q2}. Assume the initial energy
E(0) < 0 and

max
{∫ ∞

0

g(s)ds,
∫ ∞

0

h(s)ds
}
<

q

q + 1
b1, p > max{2q1 + 1, 2q2 + 1}.

Then the solution of (1.1) blows up at finite time.

Proof. We use the contradiction method. Suppose that the solution (u, v) of (1.1)
is global. Then

‖ut‖ρ+2
ρ+2 + ‖∇u‖2 + ‖u‖p+1

p+1 + ‖vt‖ρ+2
ρ+2 + ‖∇v‖2 + ‖v‖p+1

p+1 ≤ C, ∀t ≥ 0. (3.1)

Set M1 = maxt∈[0,T ] ‖u‖p+1
p+1, M2 = maxt∈[0,T ] ‖v‖p+1

p+1, M = M1 +M2. Let H(t) =
−E(t). Then by Lemma 2.2, the function H(t) is increasing. Moreover, from
E(0) < 0 and (A3), we obtain

0 < H(0) ≤ H(t) ≤
∫

Ω

F (u, v) dx

≤ c1
∫

Ω

(|u|p+1 + |v|p+1) dx

≤ c1 max
t∈[0,T ]

∫
Ω

|u|p+1 + |v|p+1 dx = c1M.

(3.2)

Let us introduce the auxiliary function

L(t) = H1−σ(t) +
ε

ρ+ 1

(∫
Ω

|ut|ρutu dx+
∫

Ω

|vt|ρvtv dx
)
, (3.3)



EJDE-2017/78 BLOW-UP OF SOLUTIONS 5

where 0 < ε� 1 and

0 < σ < min
{ 1
ρ+ 2

− 1
p
,
p−m
m(p+ 1)

,
p− r
r(p+ 1)

}
. (3.4)

By differentiating L(t), we obtain

L′(t)

= (1− σ)Hσ(t)H ′(t) +
ε

ρ+ 1

(∫
Ω

|ut|ρ+2 dx+
∫

Ω

|vt|ρ+2 dx
)

+ ε
(∫

Ω

|ut|ρuttu dx+
∫

Ω

|vt|ρvttv dx
)

= (1− σ)Hσ(t)H ′(t) +
ε

ρ+ 1

(
‖ut‖ρ+2

ρ+2 + ‖ut‖ρ+2
ρ+2

)
− ε

∫
Ω

(ρ1(|∇u|2)|∇u|2 + ρ2(|∇v|2)|∇v|2) dx

+ ε

∫
Ω

∫ t

0

g(t− s)∇u(s) · ∇u(t)ds dx+ ε

∫
Ω

∫ t

0

h(t− s)∇v(s) · ∇v(t)ds dx

− ε
∫

Ω

(uut + vvt + |ut|m−1utu+ |vt|r−1vtv) dx+ ε(p+ 1)
∫

Ω

F (u, v) dx

= (1− σ)Hσ(t)H ′(t) +
ε

ρ+ 1

(
‖ut‖ρ+2

ρ+2 + ‖vt‖ρ+2
ρ+2

)
− εb1(‖∇u‖2 + ‖∇v‖2)

− εb2
(
‖∇u‖2(q1+1)

2(q1+1) + ‖∇v‖2(q2+1)
2(q2+1)

)
+ ε

∫
Ω

∫ t

0

g(t− s)∇u(s) · ∇u(t)ds dx+ ε

∫
Ω

∫ t

0

h(t− s)∇v(s) · ∇v(t)ds dx

− ε
∫

Ω

(uut + vvt + |ut|m−1utu+ |vt|r−1vtv) dx+ ε(p+ 1)
∫

Ω

F (u, v) dx.

(3.5)
Now, we estimate the fourth term on the right hand of (3.5). Let µ = min{l, k}.
From the the definition of H(t), it follows that

− b2‖∇u‖2(q1+1)
2(q1+1) − b2‖∇v‖

2(q2+1)
2(q2+1)

≥ −b2
(q + 1)
q1 + 1

‖∇u‖2(q1+1)
2(q1+1) − b2

(q + 1)
q2 + 1

‖∇v‖2(q2+1)
2(q2+1)

= (q + 1)
(

2H(t)− 2
∫

Ω

F (u, v) dx+
2

ρ+ 2

(∫
Ω

|ut|ρ+2 dx+
∫

Ω

|vt|ρ+2 dx
)

+
(
b1 −

∫ t

0

g(s)ds
)
‖∇u‖2 +

(
b1 −

∫ t

0

h(s)ds
)
‖∇v‖2

+ (g ◦ ∇u)(t) + (h ◦ ∇v)(t)
)

≥ 2(q + 1)H(t) +
2(q + 1)
ρ+ 2

(
‖ut‖ρ+2

ρ+2 + ‖vt‖ρ+2
ρ+2

)
− 2(q + 1)

∫
Ω

F (u, v) dx+ (q + 1)µ(‖∇u‖2 + ‖∇v‖2)

+ (q + 1)
(

(g ◦ ∇u)(t) + (h ◦ ∇v)(t)
)
.

(3.6)
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By Hölder’s and Young’s inequalities, we estimate the fifth term on the right hand
of (3.5). It yields

∫
Ω

∫ t

0

g(t− s)∇u(s) · ∇u(t)ds dx

=
∫

Ω

∫ t

0

g(t− s)∇u(t) · (∇u(s)−∇u(t))ds dx+
∫ t

0

g(t− s)‖∇u(t)‖2

≥ −(g ◦ ∇u)(t) +
3
4

∫ t

0

g(t− s)‖∇u(t)‖2.

(3.7)

Similarly, we obtain∫
Ω

∫ t

0

h(t− s)∇v(s) · ∇v(t)ds dx ≥ −(h ◦ ∇v)(t) +
3
4

∫ t

0

h(t− s)‖∇v(t)‖2. (3.8)

Therefore, based on (3.6), (3.7) and (3.8), we conclude that

L′(t)

≥ (1− σ)Hσ(t)H ′(t) +
ε

ρ+ 1

(
‖ut‖ρ+2

ρ+2 + ‖vt‖ρ+2
ρ+2

)
− εb1(‖∇u‖2 + ‖∇v‖2) + 2ε(q + 1)H(t) +

2ε(q + 1)
ρ+ 1

(
‖ut‖ρ+2

ρ+2 + ‖vt‖ρ+2
ρ+2

)
+ µε(q + 1)(‖∇u‖2 + ‖∇v‖2) + ε(q + 1)

(
(g ◦ ∇u)(t) + (h ◦ ∇v)(t)

)
+ ε(p− 2q − 1)

∫
Ω

F (u, v) dx− ε(g ◦ ∇u)(t)

+
3
4
ε

∫ t

0

g(s)ds‖∇u(t)‖2 − ε(h ◦ ∇v)(t) +
3
4
ε

∫ t

0

h(s)ds‖∇v(t)‖2

− ε
∫

Ω

(uut + vvt + |ut|m−1utu+ |vt|r−1vtv) dx.

(3.9)
Now we use Young’s inequality and (2.2) to obtain the inequality∫

Ω

|u||ut| dx ≤
ε2

1

2
‖u‖2 +

1
2ε2

1

‖ut‖2 ≤
ε2

1B1

2
‖∇u‖2 +

1
2ε2

1

H ′(t), (3.10)∫
Ω

|v||vt| dx ≤
ε2

1

2
‖v‖2 +

1
2ε2

1

‖vt‖2 ≤
ε2

1B1

2
‖∇v‖2 +

1
2ε2

1

H ′(t), (3.11)

∫
Ω

|ut|m−1utu dx ≤
δm+1
1

m+ 1
‖u‖m+1

m+1 +
mδ
−m+1

m
1

m+ 1
‖ut‖m+1

m+1

≤ δm+1
1

m+ 1
‖u‖m+1

m+1 +
mδ
−m+1

m
1

m+ 1
H ′(t),

(3.12)

∫
Ω

|vt|r−1vtv dx ≤
δr+1
2

r + 1
‖v‖r+1

r+1 +
rδ
− r+1

r
2

r + 1
‖vt‖r+1

r+1

≤ δr+1
2

r + 1
‖v‖r+1

r+1 +
rδ
− r+1

r
2

r + 1
H ′(t),

(3.13)

where ε1, δ1, δ2 are constants depending on the time t and are specified later.
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Since g and h are positive, we have, for any t > t0 > 0,

∫ t

0

g(s)ds ≥
∫ t0

0

g(s)ds =: g0 > 0,
∫ t

0

h(s)ds ≥
∫ t0

0

h(s)ds =: h0 > 0.

Let χ = min
{

3
4g0,

3
4h0

}
. Then χ > 0. By (3.10)–(3.13), we obtain

L′(t) ≥
(

(1− σ)Hσ(t)− εmδ
−m+1

m
1

m+ 1
− εrδ

− r+1
r

2

r + 1
− ε

ε2
1

)
H ′(t)

+ 2ε(q + 1)H(t) + ε
( 1
ρ+ 1

+
2(q + 1)
ρ+ 2

)(
‖ut‖ρ+2

ρ+2 + ‖vt‖ρ+2
ρ+2

)
+ ε
(
µ(q + 1)− b1 −

B1ε
2
1

2
+ χ

)
(‖∇u‖2 + ‖∇v‖2)

+ ε(p− 2q − 1)
∫

Ω

F (u, v) dx− ε
( δm+1

1

m+ 1
‖u‖m+1

m+1 +
δr+1
2

r + 1
‖v‖r+1

r+1

)
+ εq

(
(g ◦ ∇u)(t) + (h ◦ ∇v)(t)

)
.

(3.14)

Let ε−2
1 = K1H

−σ, δ−
m+1
m

1 = K2H
−σ, δ−

r+1
r

2 = K3H
−σ, where K1,K2,K3 > 0 will

be chosen later. Then, by (3.2), we obtain

δm+1
1 = K−m2 Hσm(t) ≤ K−m2 cσm1 (‖u‖p+1

p+1 + ‖v‖p+1
p+1)σm, (3.15)

δr+1
2 = K−r3 Hσr(t) ≤ K−r3 cσr1 (‖u‖p+1

p+1 + ‖v‖p+1
p+1)σr. (3.16)

Hence,

L′(t) ≥
(

(1− σ)Hσ(t)− εmK2H
−σ

m+ 1
− εrK3H

−σ

r + 1
− εK1H

−σ
)
H ′(t)

+ 2ε(q + 1)H(t) + ε
( 1
ρ+ 1

+
2(q + 1)
ρ+ 2

)(
‖ut‖ρ+2

ρ+2 + ‖vt‖ρ+2
ρ+2

)
+ ε
(
µ(q + 1)− b1 −

B1ε
2
1

2
+ χ

)
(‖∇u‖2 + ‖∇v‖2)

+ ε(p− 2q − 1)
∫

Ω

F (u, v) dx− ε
(K−m2 cσm1

m+ 1
(
‖u‖p+1

p+1

+ ‖v‖p+1
p+1

)σm‖u‖m+1
m+1 +

K−r3 cσr1

r + 1
(‖u‖p+1

p+1 + ‖v‖p+1
p+1)σr‖v‖r+1

r+1

)
+ εq

(
(g ◦ ∇u)(t) + (h ◦ ∇v)(t)

)
.

(3.17)

By (A5) and the Sobolev embedding theorem, we have

‖u‖m+1
m+1 ≤ B2‖u‖m+1

p+1 ≤ B2(‖u‖p+1 + ‖v‖p+1)m+1, (3.18)

‖v‖r+1
r+1 ≤ B3‖v‖r+1

p+1 ≤ B3(‖u‖p+1 + ‖v‖p+1)r+1. (3.19)
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Using the inequality (a+ b)λ ≤ B4(aλ + bλ), we have

L′(t) ≥
(

(1− σ)Hσ(t)− εmK2H
−σ

m+ 1
− εrK3H

−σ

r + 1
− εK1H

−σ
)
H ′(t)

+ 2ε(q + 1)H(t) + ε
( 1
ρ+ 1

+
2(q + 1)
ρ+ 2

)(
‖ut‖ρ+2

ρ+2 + ‖vt‖ρ+2
ρ+2

)
+ ε
(
µ(q + 1)− b1 −

B1ε
2
1

2
+ χ

)
(‖∇u‖2 + ‖∇v‖2)

+ ε(p− 2q − 1)
∫

Ω

F (u, v) dx

− ε
(K−m2 B5c

σm
1

m+ 1
(‖u‖p+1 + ‖v‖p+1)σm(p+1)+m+1

+
K−r3 B6c

σr
1

r + 1
(‖u‖p+1 + ‖v‖p+1)σr(p+1)+r+1

)
+ εq

(
(g ◦ ∇u)(t) + (h ◦ ∇v)(t)

)

(3.20)

where B5 = B2B4, B6 = B3B4.
If we set s = σm(p+ 1) +m+ 1 and σr(p+ 1) + r+ 1, then by Lemma 2.3, there

exist two positive constants B7, B8 depending on |Ω|,m, r such that

‖u‖σm(p+1)+m+1
p+1 ≤ B7(‖∇u‖2 + ‖u‖p+1

p+1), (3.21)

‖v‖σr(p+1)+r+1
p+1 ≤ B8(‖∇v‖2 + ‖v‖p+1

p+1). (3.22)

Thus
L′(t)

≥
(

(1− σ)Hσ(t)− εmK2H
−σ

m+ 1
− εrK3H

−σ

r + 1
− εK1H

−σ
)
H ′(t)

+ 2ε(q + 1)H(t) + ε
( 1
ρ+ 1

+
2(q + 1)
ρ+ 2

)(
‖ut‖ρ+2

ρ+2 + ‖vt‖ρ+2
ρ+2

)
+ ε
(
µ(q + 1)− b1 −

B1ε
2
1

2
+ χ− K−m2 B5B7c

σm
1

m+ 1
− K−r3 B6B8c

σr
1

r + 1

)
×
(
‖∇u‖2 + ‖∇v‖2

)
+ ε
(

(p− 2q − 1)c0 −
K−m2 B5B7c

σm
1

m+ 1

− K−r3 B6B8c
σr
1

r + 1

)
(‖u‖p+1

p+1 + ‖v‖p+1
p+1) + εq

(
(g ◦ ∇u)(t) + (h ◦ ∇v)(t)

)
.

(3.23)

Using the condition of Theorem 3.1, we obtain µ(q + 1)− b1 > 0. Now, we can
choose K1,K2,K3 large enough so that the following inequalities hold:

µ(q + 1)− b1 + χ− B1ε
2
1

2
− K−m2 B5B7c

σm
1

m+ 1
− K−r3 B6B8c

σr
1

r + 1

≥ µ(q + 1)− b1 + χ− B1M
σ

2K1
− K−m2 B5B7c

σm
1

m+ 1
− K−r3 B6B8c

σr
1

r + 1

≥ µ(q + 1)− b1
2

(3.24)

and

(p− 2q − 1)c0 −
K−m2 B5B7c

σm
1

m+ 1
− K−r3 B6B8c

σr
1

r + 1
≥ (p− 2q − 1)c0

2
. (3.25)
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Furthermore, for fixed K1,K2,K3, T0 ≥ t0, we choose ε small enough such that

(1− σ)− εmK2

m+ 1
− εrK3

r + 1
− εK1 ≥ 0, (3.26)

L(T0) = H1−σ(T0) +
ε

ρ+ 1

(∫
Ω

|ut(T0)|ρut(T0)u(T0) dx

+
∫

Ω

|vt(T0)|ρvt(T0)v(T0) dx
)
> 0.

(3.27)

From the condition of Theorem 3.1, for t > T0, we have

L′(t) ≥ εγ
[
H(t) + ‖ut‖ρ+2

ρ+2 + ‖∇u‖2 + ‖u‖p+1
p+1

+ ‖vt‖ρ+2
ρ+2 + ‖∇v‖2 + ‖v‖p+1

p+1

]
,

(3.28)

L(t) ≥ L(T0) > 0, (3.29)

where

γ = min
{

2(q + 1),
( 1
ρ+ 1

+
2(q + 1)
ρ+ 2

)
,
µ(q + 1)− b1

2
,

(p− 2q − 1)c0
2

}
. (3.30)

We now estimate L(t)
1

1−σ . By Hölder’s inequality and the condition (A5), we
obtain ∣∣ ∫

Ω
|ut|ρutu dx

∣∣ ≤ ‖ut‖ρ+1
ρ+2‖u‖ρ+2 ≤ B9‖ut‖ρ+1

ρ+2‖u‖p+1. (3.31)

Therefore,∣∣∣ ∫
Ω

|ut|ρutu dx
∣∣∣ 1
1−σ ≤ B9‖ut‖

ρ+1
1−σ
ρ+2 ‖u‖

1
1−σ
p+1 ≤ B10(‖ut‖

ρ+1
1−σµ

ρ+2 + ‖u‖
θ

1−σ
p+1 ), (3.32)

where 1
µ + 1

θ = 1. Choosing µ = (1−σ)(ρ+2)
ρ+1 > 1, we have

2 <
θ

1− σ
=

ρ+ 2
(1− σ)(ρ+ 2)− (ρ+ 1)

< p+ 1. (3.33)

By Lemma 2.3, taking s = θ
1−σ , it follows that

‖u‖
θ

1−σ
p+1 ≤ B11(‖∇u‖2 + ‖u‖p+1

p+1). (3.34)

Hence ∣∣ ∫
Ω

|ut|ρutu dx
∣∣ 1
1−σ ≤ B12

[
‖ut‖ρ+2

ρ+2 + ‖∇u‖2 + ‖u‖p+1
p+1

]
. (3.35)

Similarly,

∣∣ ∫
Ω

|vt|ρvtv dx
∣∣ 1
1−σ ≤ B13

[
‖vt‖ρ+2

ρ+2 + ‖∇v‖2 + ‖v‖p+1
p+1

]
. (3.36)
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Hence, combining (3.2), (3.35) and (3.36), we easily get

L(t)
1

1−σ =
(
H1−σ(t) +

ε

ρ+ 1

(∫
Ω

|ut|ρutu dx+
∫

Ω

|vt|ρvtv dx
)) 1

1−σ

≤ 2
1

1−σ

(
H(t) +

ε

ρ+ 1

(∣∣ ∫
Ω

|ut|ρutu dx
∣∣+
∣∣ ∫

Ω

|vt|ρvtv dx
∣∣) 1

1−σ
)

≤ 2
1

1−σB14

[
H(t) + ‖ut‖ρ+2

ρ+2 + ‖∇u‖2 + ‖u‖p+1
p+1

+ ‖vt‖ρ+2
ρ+2 + ‖∇v‖2 + ‖v‖p+1

p+1

]
≤ C̃

[
‖ut‖ρ+2

ρ+2 + ‖∇u‖2 + ‖u‖p+1
p+1 + ‖vt‖ρ+2

ρ+2 + ‖∇v‖2 + ‖v‖p+1
p+1

]
,

(3.37)

where C̃ depends on c1, B9—B14.
Combining (3.28) and (3.37), we have

L′(t) >
εγ

C̃
L

1
1−σ (t), for t ≥ T0. (3.38)

The inequality above implies that L(t) blows up at a finite time T ∗ and

T ∗ ≤ C̃(1− σ)
εγLσ/(1−σ)(T0)

. (3.39)

Furthermore, from (3.37) we obtain

lim
t→T∗−

[
‖ut‖ρ+2

ρ+2 + ‖∇u‖2 + ‖u‖p+1
p+1 + ‖vt‖ρ+2

ρ+2 + ‖∇v‖2 + ‖v‖p+1
p+1

]
= +∞. (3.40)

If we choose the T >
eC(1−σ)

εγLσ/(1−σ)(T0)
, obviously, (3.40) contradicts (3.1). Thus, the

solution of problem (1.1) blows up in finite time. �

Concluding remarks. In this paper, we considered the blow-up of solutions to
a coupled quasilinear system with the nonlinear viscoelastic terms, the nonlinear
principal parts, the coupled source terms and the nonlinear dampings. A sufficient
condition under which the solutions of the system will blow up at finite time is
given. We show that the coupled sources are enough to lead to the blow-up when
the relaxation functions and the nonlinear principle parts satisfy some conditions.
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