
Portability Analysis of Java Source Code

THESIS

Submitted to the Graduate Council of

Southwest Texas State University

in Partial Fulfillment of

the Requirements

For the Degree

Master of SCIENCE

By

Tanvir Rahman, B.E.E.E.

San Marcos, Texas

August 2000

To

Leema

Acknowledgements

All praise is due to Allah.

I would like to thank Dr. Greg Hall for his valuable guidance and advice during

the entire thesis work. I also would like to thank my dear wife, Leema for her

extreme patience, encouragement and support during the research work.

Tanvir Rahman

Southwest Texas State University

August 2000

V

TABLE OF CONTENTS

CHAPTERl

1.1 INTRODUCTION .. l

1.2 ELABORATION OF THESIS STATEMENT ~2

1.3 DEFINE "PORTABILITY" .. 3

1.4 JAVAANDPORTABILITY ... 4

1.5 THE IMPORTANCE OF PORTABLE SOFTWARE 8

1.6 JAVA'S PORTABILITY FEATURE IN

BUSINESS APPLICATION ... 9

1.7 SOFTWARE PORTABILITY ISSUES 11

1.8 MEASURING SOFTWARE PORTABILITY 14

CHAPTER2

2.1 JAVA'S ARCHITECTURE FROM PLATFORM

INDEPENDENCE PERSPECTIVE ... 16

2.2 JAVA PROGRAMMING LANGUAGE ~ 17

2.3 JAVA CLASS FILE AND APL. · .. 18

2.4 JAVA VIRTUAL MACHINE .. 20

2.5 ALTERNATE APPROACH OF THE JAVA

VIRTUAL MACHINE .. 21

2.6 PORTABILITY AT THE COST OF

EFFICIENCY ... 23

vi

2.7 RESEARCH PROJECTS .. 25

CHAPTER3

3.1 INTRODUCTION OF RESEARCH METHODOLOGY28

3.2 DESCRIPTION OF RESEARCH METHODOLOGY 31

3.3 ANALYSIS OF PRELIMINARY TEST DATA32

3.4 FINAL TEST METHODS .. 34

3.5 JAVA TEST CODE .. 36

3.6 TYPES OF SYSTEMS, OPERATING SYSTEMS

AND VERSIONS OF JDK / JRE USED 37

3.7 TEST RESULT OVERVIEW .. 38

3.8 ANALYSIS OF TEST RESULT ... 44

CHAPTER4

4.1 INFLEUNCINGFACTORS ON JAVA'S

PLATFORM INDEPENDENCE ~ 61

4.2 RESEARCH LIMITATIONS .. 66

4.3 FUTURE RESEARCH ...•........... 66

4.4 CONCLUSION .. 66

APPENDIX A 70

APPENDIX B 93

APPENDIX C 128

WORKS CITED 129

VITA .. 131

vii

LIST OF TABLES

Table 1. Java data types .. ~ 30

Table 2. Result abbreviation39

· Table 3. Result abbreviation .. 70

Table 4. Result overview oftest 1 ... 71

Table 5. Test configuration 1- Compiled on Intel system

under Win95 OS .. 75

Table 6. Test configuration 2: Compiled on Intel system

.under Win98 OS.: .. 78

Table 7. Test configuration 3 - Compiled on Intel system

under WinN"T OS ... 81

Table 8. Test Configuration 4: Compiled on Apple system

under Mac OS ... 84

Table 9. Test Configuration 5: Compiled on Intel system

under Linux OS ... 87

Table 10. Test configuration 7: Compiled on Sun Workstation

under Solaris OS ... 90

Table 11. List of vendors that support Java portal work 128

viii

LIST OF FIGURES

Figure 1. Java on different platforms .. 16

Figure 2. Diagram of Java virtual machine ... 21

Figure 3. First method: compile .j ava files,

and run .class files on all platforms .. 34

Figure 4. Second method: compile .java file on a

platform, and run the outputted .class files on

all platforms .. 3 5

Figure 5. Compilation and execution results overview39

Figure 6. Execution results of the test programs that were

compiled under Win95 platform .. .40

Figure 7. Execution results of the test programs that were

compiled under Win98 platform .. .41

Figure 8. Execution results of the test programs that were

compiled under WinNT platform .. .42

Figure 9. Execution results of the test programs that were

compiled under Macintosh platform42

Figure 10. Execution results of the test programs that were

compiled under Linux platform .. .43

Figure 11. Execution results of the test programs that were

compiled under Solaris platform43

ix

Figure 12. Snapshot of Hello2.java under Win95

Platform (correct output)48

Figure 13. SnapshotofHello2.java under Macintosh

platform (wrong output)48

Figure 14. Snapshot ofHello2.java under Linux platfrom

(wrong output) .. 49

Figure 15. Snapshot ofFrameSize.java program under Linux

platform (correct output) .. 57

Figure 16. Snapshot ofFrameSize.java program under Win95

platform (wrong output) ... 58

Figure 17. Snapshot of GetSourceBug.java program under Win95

(left - correct output) and Win98 (right - wrong

output) platforms ... 59

Figure 18. Snapshot oflabelbug.java program under Win95

(left - wrong output) and Linux (right -right

output) platforms ... 60

Figure 19. Snapshot of EmptyMenubarBug.java program under

Win95 platform (wrong output) .. 94

Figure 20. Snapshot of EmptyMenubarBug.java porgram under

Linux platform (correct output) '. 95

Figure 21. Snapshot of EmptyMenubarBug.java porgram under

Macintosh platform (wrong output) ; 96

X

Figure 22. Snapshot of TrivialApplication.java program under

Macintosh platform (wrong output) .. 99

Figure 23. Snapshot of HelpMenu.java program under Linux

Platform (correct output) ... 102

Figure 24. Snapshot ofHelpMenu.java program under Win95

platform (wrong output) .. 102

Figure 25. Snapshot of SetSizeBug.j ava program under

Win95 platform (wrong output) ... 108

Figure 26. Snapshot of SetSizeBug.java program under

Linux platform (correct output) ... 108

Figure 27. Snapshot of test2.java program under Win95

platform (wrong output) .. 109

Figure 28. Snapshot oftest2.java program under Macintosh

platform (correct output) ... 110

Figure 29. Snapshot ofTestCase.java program under Win95

platform (wrong output) .. 111

Figure 30. Snapshot of TestCase.java program under

Macintosh platform (correct output) 112

Figure 31. Snapshot of testPopup.java program under Win95

(left - wrong output) and Linux

(right - correct output) platforms .. 114

Figure 32. Snapshot ofWindowTest.java program under

Win95 platform (wrong output) ... 120

xi

Figure 33. Snapshot ofFactors42.java program under Win95

platform (wrong output)- 122

Figure 34. Snapshot of ColorTest.java program under Win95

platform (wrong output) .. 124

xii

CHAPTERl

1.1 INTRODUCTION

One of the biggest challenges presented to software developers by today's

network-centric hardware environment is the wide range of devices that are

connected to a network. A typical network usually has many different kinds of

attached devices having diverse hardware architectures and operating systems.

Java addresses this challenge by providing platform-independent programs. Sun

Microsystems, the originator of the Java language, claims that a single Java

program can run, unchanged, on a wide range of computers and devices.

According to Sun, the "write once run anywhere" (WORA) capability is inherent

to Java architecture. It is this WORA capability that brings· the burgeoning

popularity of Java in today's information technology (IT) industry. According to

Hudgins-Bonafield,

Java development already is mainstream in the top 20% to 30% of IT
organizations and is on the verge of becoming mainstream in the rest, says
Gartner Group Inc. analyst David Smith. Similarly, Forrester Research
Inc. finds that almost half of Fortune 1,000 companies already use Java-
and that nearly 20% consider it important or critical. By year 2000,
Forrester predicts, nearly half of the Fortune 1,000 will consider Java
important or critical, with 80% of those companies relying on it as their
dominant application development language. (1998)

Many of the organizations are. writing or are considering writing

applications in Java to meet their business needs. What they do not know is how

well their applications will run on different platforms. For example, how well

does an application written on NT run on a Macintosh? The main purpose of this

research is to find the answer to this question.

1.2 ELABORATION OF THESIS STATEMENT

The notion of software portability is not new. Platform independent code

can be written using the C or C++ language by strictly following a portability

guideline. But Java adds a new dimension to the definition of portability. A Java

program does not require recompilation to run on different platforms. According·

to Sun Microsystems, it is possible to write complex multithreaded Java

applications with complex user interfaces that run immediately and without

recompilation or modification on all platforms. The general consensus is the Java

language is platform independent by nature, and no portability standard needs to

be adhered to achieve this goal.

Although there is great enthusiasm about Sun's WORA claim regarding

Java, in reality, there has been little research performed, outside of Sun

Microsystems, to support the claim. Therefore, this research will play an

important role in validating the WORA capability of Java. The main goal of this

research is to gather and analyze empirical data to find out how well Java lives up

to its promise in offering WORA capability. The questions this research attempts

to answer are:

• Does Java version 1.1.8 provide full WORA capability?

2

• Can code written to a particular Java language standard be portable

(without following additional development guidelines)?

• Does Java version 1.1.8 provide graphical user interface (GUI)

portability?

To answer the above questions, a wide variety of Java source code is compiled

and run on different system configurations. The source codes are written such

that they address a wide range of generic portability issues.

Six different operating systems (Win95, Win98, WinNT, Macintosh, Solaris,

Linux) running on four different hardware platforms (Pentium processor based

systems of Hewlett Packard and IBM, AMD K-6 processor based system of Dell

. Computers, G3 Macintosh system of Apple Computers, and E450 Spare system of

Sun Microsystems) are used to test the source codes.

1.3 DEFINE "PORTABILITY"

"Portability" is defined (Warr 197 4) as the ability to economically move a

program from one computer to another. "Economically" means that it is an order

of magnitude cheaper to move the program than to rewrite the entire program.

According to The Prentice-Hall Standard Glossary of Computer Terminology by

Robert A. Edmunds, portability is defined as follows:

Portability: A term related to compatibility. Portability determines the
degree to which a program or other software can be moved from one
computer system to another. (1984)

3

Portability can be discussed from two points of view: generic and specific.

Generically, portability simply means running a program in a host environment

that is somehow different from the one for which fr was designed. Since the cost

of producing and maintaining software far outweighs the production cost of

hardware, it is desirable to reuse the sam~ software in newer hardware models.

Specific portability involves identifying the individual target environments

in which a given program must run and clearly stating how the environments

differ. This research concentrates on finding the generic portability issues of the

Java language.

1.4 JAVA AND PORTABILITY

From the above definitions we can conclude that portability refers to the

ability to run a program on different machines. Running a given program on

different machines can require different amounts of work. For example, it may

require recompilation, or making small changes to the source code, or no work at

all. When people refer to Java applications and applets· as portable, they usually

mean the applications and applets run on different types of machines without any

change. This notion came from Sun Microsystems' claim of Java's WORA

capability.

Java technology brings with it three distinct types of portability - source

code portability, central processing unit (CPU) portability, and operating

system/graphical user interface (OS/GUI) portability. Each is independent of the

4

others, but the combination of the three provides Java with much of its power and

promise.

Java as a programming language - Source code portability

A given Java program should produce identical results_ regardless of the

underlying hardware, operating system, and Java compiler. This idea is not new;

languages such as C and C++ have provided the opportunity for this level of

portability for many years. But, unless programs written in C and C++ are

designed to be portable from the beginning, the ability to move them from one

machine to another is more theoretical than practical. This is mostly because of

the semantic variations of C and C++ programs. The semantic looseness allows a

single block of C or C++ source code to compile to programs that give different

results when run on different processors, operating systems, and compilers. Sun

claims that Java is different from this since it provides much more rigorous

semantics and leaves less up to the programmer.

Additionally, Java defines more behaviors than C and C++. Different

features of Java that are discussed later in this thesis also help to understand how

Java narrows down the variation in the behavior of a program from platform to

platform and implementation to implementation. Even without the Java virtual

Machine (NM), programs written in the Java language are expected to port (after

recompiling) to different processors and operating systems much better than

equivalent C or C++ programs.

5

Java as a virtual machine - CPU portability:

Most compilers produce object code that runs on one family of processors

(for example, the Intel x86 family). Even compilers that produce object code for

several different processor families (for example, x86, MIPS, SPARC), produce

object code for one specific processor type at a time. The source code has to be

recompiled multiple times, each time producing object code for a specific

processor family.

Again, Sun claims that Java does not have this drawback. Instead of

producing output for a specific processor family, Java compilers produce an

intermediate code called byte code. For each real processor the Java virtual

machine executes the byte code. Thus the Java virtual machine allows the same

byte code to run on any processor for which a Java interpreter exists. The NM,

being essentially an imaginary processor, is independent of the source code

language.

Java as a virtual operating system - OS/GUI portability:

Most Microsoft Windows programs written in C or C++ do not port easily

to the Macintosh or Unix environments, even after a recompilation. Even when

the programmers take extra care to deal with the semantic weaknesses in C or

C++, the port is difficult. This difficulty arises as windows programs make

various calls to the operating system that are very different from those of

Macintosh and Unix programs. These native calls are critical in writing non

trivial windows programs.

6

Java solves this problem by providing a set of libraries that talk to a virtual

OS and a virtual GUI. Just as the NM presents a virtual processor, the Java

libraries present a virtual OS/GUI. Java provides a least-common-denominator

functionality in its OS/GUI libraries. The advantage to this approach is that

mapping the common functionality to the native OS/GUI is fairly easy and, with

care, can provide applications that work as expected on most operating systems.

In 100% Pure Java Cookbook for Developers - Rules and Hints for

Maximizing Portability, Sun Microsystems states that there is a common

misconception about Java's portability in people's minds. People like to believe

that a given Java program should produce identical results regardless of

underlying hardware and operating systems. But in reality, a graphical user

interface based program written in Java shouldn't generate "identical results" on

different platforms. According to Sun, the platforms may exhibit cosmetic user

interface and "look and feel" differences, but as long as a program generates the

common behavior, it is a portable program. Common behavior does not mean

identical behavior, but functional behavior conformant with the underlying

platform. Sun Microsystems thus defines a portable program as "one that fulfills

its function on any platform." (Sun Microsystems Press, 1999)

7

1.5 THE IMPORTANCE OF PORTABLE SOFTWARE

The importance of portable software is manifold.

• According to Warren, J.C, portable software appeals to a wider market

niche. It is economic in the long run since it reduces the effort to generate

multiple versions of the same software for various platforms and environments.

Besides, the overall cost of developing a portable program once is bound to be

advantageous compared with rewriting the same program for different

environments several times. (1974)

• Portable software bridges varieties of hardware and system software

with a common language, and thus opens up new markets.

• According to Henry Rabinowitz and Chaim Schaap, since generating

and maintaining software is more expensive than hardware, its life cycle must be

made longer so that it survives multiple hardware evolutions.(1989)

• In today's network-centric world, portable software presents a positive

sales argument.

• Portable software brings new freedom to users to choose and change

hardware at will.

• Indirectly, by making it easier to switch operating systems, portable

software puts pressure on OS vendors to provide better products, and respond to ·

customer feedback.

8

• Maintaining different types of software that run on different types of

systems is always troublesome for information system (IS) departments. Portable

software allows them to reduce the number of software they have to maintain.

This section presents the importance of portable software in general. The next

section discusses how Java as a portable language is useful in real world

applications.

1.6 JAVA'S PORTABILITY FEATURE IN BUSINESS APPLICATION

Robert W. Atherton, in his article, Moving Java To The Factory (1998),

presents Java's potential in manufacturing facilities. The Java programming

language, the runtime environment, and the Java based microprocessors are the

main three components of Java technology that provide platform independence

and an internet integration facility. The security, portability and embedded

application creation facility are some of the major attributes of Java that make it a

powerful platform for industrial control and control system development. Java is

a portable language that can deploy applications over the World Wide Web. It is

object-oriented in nature and its design process avoided most of the shortcomings

of other object-oriented languages. For example, it does not allow pointer

manipulation, multiple inheritance, or operator overloading. It has no direct

access to memory and no extended constructors. On the contrary, it has some

very important features such as exception handling which makes it easy to change

the flow of a program when some unexpected event occurs. It also has an

9

automatic garbage collection r facility, a strong security model, and built-in

features for web access. Java achieved its ~ross-platform independence through

its platform neutral architecture.

Java has many technical advantages over conventional client/server

implementation. Because of its platform independent nature,' any Java application

can run on any Java-enabled computer; thus it reduces the different versions of

applications that may otherwise be needed. This is a significant help in industrial

automation as many different types of platforms are usually found in industrial

environments. Moreover, its security and safety features are two of the major

. requirements to build industrial applications.

Java technology can also be widely used in embedded control system

design. Because embedded systems use a variety of microprocessors, they can be

well served by Java technology's platform independent feature. Additionally,

Java's garbage collection feature prevents memory leaks that are costly to fix in an

embedded device once it is deployed.

The software technology demands of enterprise control systems are very

complex and challenging. Currently such an enterprise is controlled through

various large software applications along with an enterprise resource planning

system. Some of these applications are electronic design document (EDA),

computer-aided design and manufacturing (CAD and CAM), product data

management (PDM), supply-chain management (SCM), various database

applications and so forth. Each of these software applications usually requires a

network of desktop computers, application servers, and database servers.

Furthermore, to · effectively control the enterprise, these software applications

need to interact with each other. The poor performance of today's ERP and SCM

systems stem from their inability to access data from process control layers.

These problems become more complicated in case of a heterogeneous hardware

environment. The author believes that the Java architecture is able to resolve

most of these issues. Since Java is network-ready, the development and

deployment of distributed applications is very simple using Java. The native

database connectivity support is a core feature of the Java environment.

Furthermore, Java's cross-platform nature helps in automation among various

platforms. Finally, Java's intelligent agents can function at any layer of enterprise

control from the manufacturing floor to enterprise planning.

Enterprise-control-applications for large manufacturing companies were a

big challenge until the emergence of Java technology. The author believes that

Java technology combined with good system engineering is the answer to true

enterprise integration and control.

1. 7 SOFTWARE PORT ABILITY ISSUES

There are some major problems that need to be addressed to produce

portable software. In this section, some of the major issues that hinder software

portability are discussed from P.J. Brown's book Software Portability (1977). In

this research, various test codes have been written to explore· how Java handles

the following portability issues.

11

• Internal representation of data

One of the governing characteristics of a system is the length of a word.

-
The length varies from 8 to 64 bits. It affects the method of representing values in

integers and other numbers, the method of addressing data, the number of

characters permissible in a word etc. Besides, the size of internal data such as

char, integer, floating-point etc. differs across platforms. Furthermore, the

ordering of bytes within words and words within long words also differs on

various platforms. Such encoding schemes are referred to as big-endian and little

endian.

• Numeric types

Integers: Integers present problems in computational operations, such as

division, that do not have integer results. Depending on the .machine, such

computation can result in truncation or rounding.
__/

Real numbers: Real numbers can only be approximately represented,

more or less accurately. Therefore, every operation on a real number yields an

approximate result. When it is repeated several times, it may cause major errors

on different platforms. The result thus depends on the representation of the real

number and the precision with which it is obtained.

• Character sets

In environments where the target is not the system on which the software

is being developed, differences in character sets becomes an important issue.

There are several types of character sets, such as:

12

- 7 bit: ASCII (American Standard Characters for Information

Interchange)

8 bit: EBCDIC (Extended Binary Coded Decimal Interchange Code)

- 16 bit: Unicode

Hence, there may be problems with the character set to be used as each

manufacturer supports only a single set.

• CPUspeed

When an execution of a process or thread depends on CPU speed, it poses

a threat to portability. This may result in an unexpected behavior of a given

program on different platforms.

• Operating system

The principal issues· here are single versus multitasking, and fixed versus

virtual memory organization in operating systems. The difference of any· of those

on different platforms may cause programs to be non-portable. Furthermore,

thread synchronization or prioritization is also a major concern in creating

portable software. Besides, accessing system resources often requires invoking

native methods and that breaks platform independence.

• File system:

File systems are also a major concern in software portability. Whether

. multiple versions of the same file can coexist, or whether the date and time of

creation or last modification are stored is platform dependent. Furthermore,

number of characters permitted in file naming, and whether or not such names are

case sensitive, are also major concerns in software portability .

. 13

1.8 MEASURING SOFTWARE PORTABILITY

How would one know whether software portability has been achieved? Is

it when the code compiles and links without_ error? Or, is it when all target

machines produced the same output?

Before the emergence of Java, one group of scholars believed that a true

sense of portability is achieved when a program is compiled and linked without

error. But because of implementation-defined behavior it may be possible to get

different results in different target machines. The legitimate results may even be

sufficiently different as to render them useless. For example, floating-point range

and precision may vary considerably from one target to the next such that results

produced by the most limited floating-point environment are not precise enough.

· The look and feel of the graphical user interface of a portable program may also

vary from platform to platform because of the underlying operating systems.· Yet

another group considered a software product to be portable if the data is ported

correctly. In fact, until the introduction of Java, one could not tell whether or not

software has achieved true portability without adequately defining the specific

portability scenarios.

Java helps in providing a true standard in measuring software portability.

It takes the definition of portability a step · further. According to Sun

Microsystems, recompilation should not be needed for a portable software to run

on multiple platforms. Furthermore, the graphical user interface of portable

14

software may not produce the same look and feel across different platforms but

the output and data representation should be identical on all platforms.

15

CHAPTER2

2.1 JAVA'S ARCHITECTURE FROM PLATFORM INDEPENDENCE

PERSPECTIVE

Bill Venners in his book Inside The Java Virtual Machine presents Java

architecture from three interrelated layers (1999):

• Java programming language

• Java class file format and application program interface (API)

• Java virtual machine (NM)

Java Applets and Applications
Programming Language

Java Core API Java Standard Extension API

JVM JVM JVM JVM JVM

Win32 Macintosh Solaris Linux Dec Alpha

Fig. 1. Java on different platforms.

This section briefly describes Java architecture layers from a portability

standpoint. Java's architecture and feature set has been the subject of various

research efforts. This chapter reviews some of the technical articles written based

16

on previous research. In addition, this chapter introduces two Java related

projects that are currently in progress.

A Java source file is written using the programming language. The source

file is then compiled into class files, and the class files are finally run on a virtual

machine. The combination of Java virtual machine and Java API is called the

Java Platform. Since the Java platform itself is implemented in software, it acts

as a buffer between a running Java program and the underlying hardware and

operating system. Java programs are compiled to run on a virtual machine, with

the assumption that the class files of the Java API will be available at run time.

The virtual machine runs the program, while the API gives the program access to

the underlying computer resources. Hence no matter where a Java program runs,

it only needs to interact with the Java platform. As a result, the application can

run on any computer that hosts a Java platform.

2.2 JAVA PROGRAMMING LANGUAGE

In Java and the Shift to Net-Centric Computing (1996), Marc A. Hamilton

describes various features, strengths, and built-in security mechanisms of Java.

Although Java is widely used, the author believes that its potential is still less

understood.

Java was originated in early 1990 by James Gosling, a software developer

at Sun Microsystems. It is an object-oriented language with a much simpler

syntax than C or C++. It has a robust memory management and security scheme

17

and it supports multithreading. But according to the author, Java's platform

independence feature far exceeds the other features and makes it more attractive.

Unlike C, Java data types are independent of the underlying hardware and

operating systems. For example, an integer is always 32 bit in Java regardless of

underlying 32 bit or 64 bit processors. Besides, Java uses a 16 bit Unicode

character set. Contrary to C, Java arrays are true objects with length and bounds

checks that happen both at compile time and run time. By enforcing strong type

checking and eliminating the pointer, Java helps in reducing program errors and

security flaws, and thus provides better platform independence.

2.3 JAVA CLASS FILE AND API

Java class files have a binary format that gets translated into byte codes for

a virtual machine. Therefore, Java class files can run on any hardware platform

and operating system that hosts· a Java virtual machine. This breaks the traditional

approach of C or C++ programs as programs written in these languages are

compiled and linked into binary executable files that are specific to a particular

hardware platform and operating system. C, C++ executables contain machine

languages that are specific to a target processor.

In addition to processor-specific machine language, another platform

dependent attribute of a traditional binary executable file is the byte order of

integers. The byte orders of binary executable files for Intel X86 family

processors is little-endian or lower order byte first. The byte order for . the

PowerPC chips, on the other hand, is big-endian or higher order byte first. In Java

class files, byte order is big-endian regardless of the platform. that generated the

file and independent of the platform that may eventually use the file.

The Java API is a set of run-time libraries that gives a standard way to

access system resources of a host computer. The class files of the Java API are

inherently specific to the host platform. To access the native resources of the

host, the Java API calls native methods. Thus the top user program does not do

this directly. The Java API class files thus provide a standard, platform

independent interface to the underlying host.

The inherent design of Java API 1s also geared towards platform

independence. For example, the graphical user interface libraries of Java API, the

Abstract Windows Toolkit (A WT), and Swing are designed to facilitate the

creation of user interfaces that work on all platforms. The A WT implementation

relies on and uses the underlying native window system. This encourages the

adaptation of the look and feel of the underlying platform. The swing library, on

the other hand, makes no use of native window system semantics. It is a full set

of GUI components such as scrollbar, button, menus, etc., that are all written in

Java. At the lowest level, Swing uses a drawing surface (e.g., a canvas, window

etc.) from the native window to render these components. Since all the Swing

components are written in Java, they work the same way on all platforms.·

19

2.4 JAVA VIRTUAL MACHINE

The Java virtual .machine is an abstract operating system that supports the

three major characteristics of Java language: platform independence, security arid

network mobility. The flexible nature of its specification enables third party

vendors to implement it on a wide variety of computers and devices.

The NM is a stack machine. The instructions in this machine are encoded

in a compact form of variable length, with the shortest instructions occupying l

byte and most instructions being 1 to 3 bytes long. This form of encoding is

known as byte code. The NM has two main components: a class loader and an

execution engine. The main task of a virtual machine is to load class files and

execute the byte codes they contain.

The execution engine in the virtual machine is implementation dependent.

Currently, there are three different kinds of execution engines:

• The simplest kind of execution engine just interprets the byte codes

one at a time.

• The second one is called Just-In-Time (JIT) compiler that is faster than

the first one but requires more memory. In this scheme, the byte codes of a

method are compiled to native machine code the first time the method is invoked.

The native machine code is then cached, so the code can be reused the next time

when that same method is invoked.

• The third type of execution engine is called Adaptive optimizer. In this

scheme the virtual machine simultaneously interprets the byte codes~ and

monitors the activity of the running program and identifies the most heavily used

20

area of the code. As the program runs, the virtual machine compiles to native

machine code and optimizes the heavily used areas. The rest of the code remains

as byte code - which the virtual machine continues to interpret.

Program class files

0

Java class files

r---,
Java virtual machine

, ... , r

Java class loader

Byte codes

Java execution engine

....

Invoking native methods

Underlying operating system

Fig. 2. Diagram of Java virtual machine.

2.5 ALTERNATE APPROACH OF THE JAVA VIRTUAL MACHINE

Mike O'Connor in his article, PicoJava: A Direct Execution Engine For

Java Byte code (1998), presents an alternate solution of the Java virtual machine.

Java program runs on a virtual machine that insulates it from any contact with the

21

underlying hardware. This article introduces a small, flexible byte code execution

engine called "PicoJava" that directly executes Java byte code instructions, and

provides hardware support for other essential functions of the Java virtual

machine.

The primary advantage of byte code is its ability to create a single image

of a program that executes identically on any system that has a Java virtual

machine. The performance of a Java program depends not only on the speed of

the underlying platform, but also on the effectiveness of the dynamic translation

technology that converts byte code instructions into native machine code

instructions. Java processors were developed to address this performance issue.

Java processors are microprocessor devices that execute byte code instructions

directly in hardware, bypassing dynamic translation. The intention was to provide

the same high performance that sophisticated dynamic compilers provide in a

small-footprint device, and thus extend platform independence in embedded

environments.

The PicoJava core is the byte code execution engine of Java processors.

The major blocks of in this core are the integer execution unit and the compact

floating-point unit to support the floating-point specification of the Java virtual

machine. The target for this engine is the class file generated by the Java

compiler.

By eliminating the need for dynamic translation, picoJava core provides a

substantial performance boost for byte code programs. This article presents an

efficient way of achieving software portability by replacing the software-based

22

virtual machine with a hardware device. This approach eliminates the efficiency

drawback of the Java programs. The implementation variations of the software

based NM causes a lot of portability concerns. The hardware· based NM

presented in this article should eliminate most of the portability issues that stem

from different third party vendors' implementations of the NM.

2.6 PORTABILITY AT THE COST OF EFFICIENCY

Java is known to be a highly portable and safe language, but it lacks

efficiency. Several solutions including just-in-time (JIT) and offline byte code

compilers have been proposed to overcome this tradeoff, but unfortunately most

of the solutions cause Java to loose either its portability feature or its ability to

· dynamically load byte code. In the article, Harissa: A Hybrid Approach to Java

Execution (1999), Gilles Muller and Ulrik Pagh Schultz present a hybrid solution

that can resolve all these issues.

Harissa is an efficient offline compilation system that fully supports

dynamic byte code loading. It consists of an optimizing byte code to C compiler

and an interpreter that is integrated into the runtime library. The Harissa compiler

replaces stack management with variables and virtual method calls. It generates

faster, optimized code for single threaded programs, and produces C code that

executes more efficiently than other alternate approaches.

The authors provide some background information on several strategies

that have been proposed to optimize Java execution time. One of those strategies

23

\

1s compiling source code into native code. But smce Java programs are

distributed in byte code format, it is not possible for the end users to compile such

programs for a specific platform. Another strategy is to use the byte code

compilers that take byte code as input. But the Java byte code contains the same

amount of information as source code. The third approach is the just-in-time

compiler that compiles code on an as needed basis at runtime. The drawback in

this approach is that optimization becomes an overhead during execution.

Furthermore, the availability of the JIT compilers is platform dependent.

There are two types of offline byte code compilers: native and non-native.

Native compiles directly produce executable code and hence speed is an

advantage of this type of compiler. Non-native compilers, on the contrary,

produce code in an intermediate language. These compilers are more flexible and

generate portable code by offering competitive performance. For the Harissa

project, a non-native offline byte code compiler that generates C programs has

been chosen. Using C as an intermediate language in non-native compilers has

some advantages. C makes compiler development safer and quicker, and C

compilers are available for all machines.

A Java program contains a set of classes with static reference to each

other. The Harissa system loads the entire set of classes at compile time. Its

compiler takes the class containing the main method and generates a makefile, a

main C file and a C source file for each program class. To generate the C code

for different methods, the compiler transforms byte code instructions into C

24

statements. Thus in summary, Java source code is first compiled into byte code

using javac compiler, then Harissa translates the byte code into C code.

In Harissa: A Hybrid Approach to Java Execution (1999), the authors

provide some benchmark test results of Harissa's aggressive optimizations and its

performance relative to JIT compilers. The test result shows that Harissa

generated code was faster than JDK 1.2b4, and more efficient than JIT compilers

on certain platforms.

Although Java is known to be a portable language, its efficiency is a major

concern for application programmers. This article presents a compiler that

improves Java's efficiency by keeping the portability factor in tact. Although

there is no direct relation between this article and the thesis, it enlightens a new

idea of a future research on Java - the efficiency analysis of Java source code in

real time business applications.

2.7 RESEARCH PROJECTS

The importance of platform independence directed various research

organizations to carry out different research projects on software portability.

Some of those projects are directly related to this thesis. This section briefly

describes two of the most important ones.

• "100% Pure Java" certification program from Sun Microsystems

The "100% Pure Java" certification program is part of Sun Microsystems'

initiative to promote the development of portable applications, applets, beans, and

25

class libraries written using the Java programming language. There is a. subtle

distinction between portability and purity. In 100% Pure Java Cookbook for

Developers - Rules and Hints for Maximizing Portability, Sun Microsystems

defines "purity" in the following way:

Because portability is so dependent on the functionality of a particular
program, we define the concept of"purity." Purity is the aspect of
portability that we can measure by looking at the mechanics of how the
program uses the platform interface, rather than looking at the program's
functionality ... Purity is intended to be a measure of only one of the many
virtues required of a program. It is not even a perfect measure of that one
virtue, portability. It is nonetheless a useful measure; we have found that
the purity measures do detect some common portability problems. The
purity process does result in better portability; that is our goal, to increase
the portability of programs. (1999)

The "100% Pure Java" certification process consists of code analysis and testing

by an independent test facility to identify compiled code that meets the "100%

Pure Java" requirements. All the certification processes and procedures are

explained in a certification guide (http://java.sun.com/1 00percent/pjcg.pdf).

When a program or application carries the "100% Pure Java" logo, potential users

know it's been thoroughly tested for cross-platform compatibility and portability.

This program ensures compliance with the Java specifications and reference

implementation by providing a detailed test suite that is known as the "Java

Conformance Kit" (JCK). The testing portion of the program is necessarily large

and complex because of the nature of ~he implementations that ne~d to be tested.

JCK supports the test part of this project; but unfortunately it is not freely

available .. According to the project manager Carla Schroer, "We have found that

people are not successful with this program without support, and we do not make

the JCK available for free." There are approximately 11,000 tests on the current·

26

test suite, and Sun is still not sure that the suite covers the entire language

spectrum for portability testing. Sun Microsystems' reluctance in making JCK

freely available to independent deanroom implementers introduced a new project

called "Mauve" (http://sourceware.cygnus.com/mauve) from Cygnus Corporation.

"Mauve" is a collaborative project whose goal is to create a free suite of

functional, black box tests for the core Java libraries.

• IBM's Jikes-project

"Jikes" (http://oss.software.ibm.com/ developerworks/opensource/jikes/) is

an IBM project. It is a compiler that translates Java source files as defined in the

Java language specification (http://java.sun.com/docs/books/jls/) into the byte

coded instruction set and binary format defined in the Java virtual machine

specification (http://java.sun.com/docs/books/vmspec/). The Jikes compiler

strictly adheres to the Java language specification. It is extremely fast, and it has

a built-in dependency analysis tool that allows incremental compilation. It also

generates makefile automatically. Anyone can freely acquire the source code of

Jikes project and redistribute it. Jikes has already been ported to several

platforms. The compiler can find out the basic portability issues of a Java

application if the Java language specification is not followed.

27

CHAPTER3

3.1 INTRODUCTION OF RESEARCH METHODOLOGY

This section describes the methodology that has been used to perform this

research. The research methodology was primarily based on Java's architecture.

The test _cases were formulated based on generic software portability issues, . as

well as issues that are specific to the Java language and its class libraries. The

goal of· the research methodology was to explore how Java faces different

portability issues, and to identify where it fails to provide platform independence.

Sun Microsystems claims that Java can overcome any of the issues described in

chapter 1 that can hinder software portability. The following sections provide

reasons for this claim from Cay Horstmann and Gary Cornell of Sun

Microsystems.

• Architecture Neutrality

The binary code format that the Java system adopts is independent of

hardware architectures, operating system interfaces, and window systems. The

format of this system-independent binary code is architecture neutral. If the Java

run-time platform is made available for a given hardware and software

environment, an application written in Java can then execute in that environment

without the need to perform any special porting work for that application. The

Java compiler does not generate "machine code" for a specific hardware/operating

system platform, rather, it generates high level, machine independent byte codes

28

for a hypothetical machine. The Java virtual machine is a strictly defined

machine for which an interpreter is available for each hardware architecture and

operating system. The interpreter interprets the byte codes for the virtual

machine.

• Strict Language Definition

Architecture neutrality is just one part of software portability. Java

technology takes portability a stage further by being strict in its definition of the

basic language. Java specifies the sizes of its basic data types and the behavior of

its arithmetic operators. Therefore, Java programs are the same on every

platform; there are no data type incompatibilities across hardware and software

architectures. C and C++ both suffer from the , defect of designating many

fundamental data types as "implementation dependent". Programmers labor to

ensure that programs are portable across architectures by programming to a

lowest common denominator.

Java eliminates this issue by defining a standard behavior for its data types

across all platforms. Java specifies the sizes of all its primitive data types and the

arithmetic behaviors on them. Following are the defined data types of the Java

language:

29

Table 1. Java data types

Byte 8-bit two's complement

Short 16-bit two's complement

Integer 32-bit two's complement

Long 64-bit two's complement

Float 32-bit IEEE 754 floating point

Double 64-bit IEEE 754 floating point

Char 16-bit Unicode character

Thus an integer in Java is always a 32 bit integer. In CIC++, integer can

mean a 16 bit integer, a 32 bit integer or any other size that the compiler vendor

likes. Furthermore, in Java, binary data is stored in a fixed format, eliminating the

big-endian/little-endian confusion. Strings are saved in a standard Unicode

format. Unicode is a code set like ASCII, but because it allows 65,536 different

characters rather than the 128 of 7 bit ASCII, Unicode supports essentially all

characters of all languages of the world. Seven bit ASCII is only a subset of

Unicode.

• Java Virtual Machine

The architecture-neutral and portable language platform of Java

technology is known as the Java virtual machine. It is the specification of an

abstract machine· for which Java programming language compilers can generate

code. The Java virtual machine is primarily based on the portable operating

system interface (POSIX) specification. POSIX is an industry-standard definition

30

of a portable system interface. The Java compiler is also written in Java. The

Java run-time system is written in ANSI C with a clean portability boundary that

is essentially POSIX-compliant. And finally, there are no "implementation

dependent" notes in the Java language specification ..

3.2 DESCRIPTION OF RESEARCH METHODOLOGY

Since Sun Microsystems is the only one that claims Java's WORA

capability, this research focussed on the Java language, virtual machine, and

runtime environment provided by Sun. At the early stage of the research, a wide

variety of Java programs (84) were randomly picked from different sources.

Those programs were then compiled and executed on different

hardware/operating system.configurations. The purpose of that approach was to

analyze how those programs behave on different system configurations. The test

programs generated many compile and runtime errors. Preliminary test data thus

helped in finding various Java-specific issues that broke platform independence.

Furthermore, it helped in narrowing down different versions of the Java

development kit (JDK) and Java runtime environment (JRE) to a specific version

for the final test. The next section analyzes the preliminary test data.

31

3.3 ANALYSIS OF PRELIMINARY TEST DATA

• Sun Microsystems has . different editions of Java platforms, such . as:

standard edition, micro edition and enterprise edition. Apart from different

editions, Sun also has three different major versions of JDK/JRE sets: 1.0, 1.1 and

1.2. These versions have many sub-versions: for example, . the JDK/JRE 1.1

release has sub releases of:· 1.1.1 through L l .8. . These different versions of

JDK/JRE are neither downward nor upward compatible. In many cases, a

program written in one JDK/JRE combination does not even run .on a machine

that has a different version of JDK/JRE installed on it.

- Programs written in a newer version of JDK are not downward compatible

with older versions of JRE because of the introduction of newer methods in

newer JDK/JRE sets. For example, JDK/JRE version 1.1.8 is not downward

compatible with JDK/JRE version 1.0.2. Additional information can be found

at the following web site:

http://java.sun.com/products/j dk/1.1 / docs/relnotes/ classlist.html

- Programs written in an older version of JDK are not upward c01ppatible

with newer versions of JRE since different API and/ or methods from different

API sets have been removed on newer versions of the JDK/JRE set. For

example, JDK/JRE version 1.1.8 is not upward compatible with version 1.2.

Additional information can be found at the following web site:

http://java.sun.com/products/jdk/1.2/compatibility.html#language·

32

- The event model has also changed from JDK/JRE version 1.0.2 to 1.1.8.

It also lacks backward/upward compatibility and breaks Java's portability

feature. ·

- Furthermore, many methods have been deprecated in · newer versions of

the JDK/JRE set. Although the newer JRE supports the deprecated methods,

warning messages appear at compile time when using those deprecated

methods and thus they pose concerns in portability.

• Other than the Win32 and Solaris platforms, most of the JDK/JRE portal

work on other operating systems is done by third party vendors; for · example a

software organization called Blackdown Organization (www.blackdown.org) did

the portal of JDK/JRE version 1.1 for Linux; Apple Computers did their portal

work for Macintosh systems. Unfortunately, these third party vendors failed to

keep up in their portal work with Sun's newer versions of the JD K/JRE set. For

example, the last portal work that has been done on both Linux and Macintosh

system were based on JDK/JRE version 1.1 as of December 1999.

• Although a specific Java language specification was followed, the portal

works vary from platform to platform due to the variations in the internal

architecture of hardware and operating systems.

Based on the preliminary data, the final research was narrowed down to a

specific version of the JDK/JRE set. Since on most platforms the last portal work

was done on JDK/JRE version 1.1.8, that was the version selected for use on this

33

project. The goal was to prove how well a specific version of the JDK/JRE

withstands the portability issues on various platforms.

3.4 . . FINAL TEST METHODS

The following two methods were used to gather data and analyze re~mlts.

• Before the emergence of Java, portability referred to a successful compilation

and execution of a program on different platforms. The first method was derived

to verify Java's platform independence from this traditional software portability

standpoint. Although Java's WORA claim indicates that recompilation is not

necessary for a Java program to run on any platform, the first method compiled

and executed different Java programs· on each of the test platforms. The purpose

of this test was to analyze the functionality and look and feel of the . same source

code on multiple platforms. Figure 3 illustrates the first method.

------- I

Win32 :
I

I

Compiler :

I

1.class ri1e
I

I
Runtime· I

I

I

I
I ________ _!

---------, .jai f:e ___ ----
1

Solaris : Linux :
I I
I I

Compiler : Compiler :

I - I

!class fi~e ! ,class file
I I
I I

Runtime I Runtime I
I I

________ J I ________ J
Result

,---- I

1 Macintosh 1
I I
1----1
I I
I Compiler I
I I 1-....,. -1
I I
1 .class file 1 ____ 1

I I
I I
I Runtime 1
I I
1----1
I I

I_ - - - - - - - _!

Fig. 3. First method: compile .java files and run .class files on all platforms.

34

• The second method was used to verify Sun Microsystems' claim of Java's

WORA capability. In this method, Java test programs were compiled on a single

platform and the resultant class files were then executed on different platforms.

The purpose of this test was to verify whether the class files generated on one

platform were executable on other platforms. This method also compared the

behavior of the same compiled files on different platforms. Figure 4. Illustrates

the second method.

I --------1

1 Win32 1
I I
I------.. I
I I
I Java virtual I
I machine I
I..._ ___ _. I

I I
t ________ J

.java file

___ J ___ _
I

I

I

I

I

I

I

I

Solaris

B
I I

l ~:: :[c~a;~lfilel --------I

1 Linux 1 1 Macintosh 1
I I I I

I ------.. I I ------.. I
I I I I
I Java virtual I I Java virtual 1
I machine I I machine I
I ..._ ___ _. I I ..._ ___ _. I

I I I I
l ___ l ____ J 1--------J

Result

Fig. 4. Second method: compile .java file on a platform, and run the resultant

.class files on different platforms.

35

3.5 JAVA TEST CODE

The first task of the final stage of the research was to find enough source

code written using JDK version 1.1.8. To achieve this goal, the following steps

were performed:

- thorough web search

- thorough research in libraries and bookstores

- contacting several individuals who are actively involved with the Java

language. Among them are developers from JavaSoft group of Sun

Microsystems; writers who wrote articles on Java, and others involved in

different Java porting projects.

Once enough source code was gathered, a tool called JavaPureCheck was

used to verify that the code was written using JDK version 1.1.8. This tool

originated from Sun Microsystems, and is primarily. used to inspect the portability

problems of a Java program on different implementations of the Java platform.

At the final stage, source codes for 73 programs were collected and

modified to test each of the portability issues. Later another 21 programs were

written without following any portability guidelines to further explore some Java

specific portability issues. Forty-two of the 94 programs failed at compile or

runtime, or showed functionally wrong output on different platforms.·

36

3.6 TYPES OF SYSTEMS, OPERATING SYSTEMS AND VERSIONS

OF JDK / JRE USED

The following platforms and op~rating systems are used to perform the

preliminary and final test:

Systems

• Hewlett Packard system, 400 MHz Intel Pentium processor, 64 Meg RAM

• Dell system, 233 MHz AMD K-6 processor, 32 Meg RAM

• IBM system, 133 MHz Intel Pentium processor, 32 Meg RAM

• Sun E450, Dual Processor, 128 Meg RAM

• Apple G3, Macintosh system, 96 Meg RAM

Operating Systems

• Win95c

• Win98

• WinNT, Version 4.0 (Service pack 3)

• Solaris, Spare Version 2.5.7

• Linux, Version 6.1

• · Macintosh, Version 8.6

37

JDK I JRE versions

JDK/JRE version 1.1.8 was used on all platforms. MRJ 2.4, which is the

equivalent of JRE 1.1.8, was used on the Macintosh system. Only the Macintosh

system used an integrated development environment (IDE) called Code Warrior,

version 3 .1, to compile and execute the programs. This version of Code Warrior

supports JDK version Ll.8. The console windows were used to compile and

execute programs on all other platforms.

3.7 TEST RESULT OVERVIEW

The following section summarizes the test results. The complete overview

can be found in Appendix A in tabular format. The first research method required

that each test program be compiled on each of the platforms before being

executed. Table 2 provides a list of the types ofresults that were obtained from

performing these te,sts.

38

Table 2. Result abbreviation

Successful Compilation

Successful Execution
SC

Functionally Correct Output

Unsuccessful Compilation USC

Compiler Warning cw

Unsuccessful Execution USE

Functionally Wrong Output FWO

Comments in section 3.8 (c)

The summary of the first test results is depicted in the figure below:

"' 30 E
~ 25
C') e 20
a. - 15
0
'- 10 Q)
.c

5 E
::::s

0 z

Compilation and Execution Result Overview

l ■ sc ■ use □cw □ usE ■ Fwo I

-

-

-

-

-
_[_r Lr _f u--- I

Win95 Win98 WinNT Mac Linux

Platforms

Fig. 5. Compilation and execution results overview.

u-
Solaris

According to figure 5, the best Java portal work was done under the Linux

platform as the highest success rate was attained on this platform. Besides, Linux

produced the least number of functionally wrong outputs. Solaris followed Linux

39

in producing portable code, followed by Macintosh, Win95, Win98 and WinNT.

Among the test platforms, WinNT showed the worst portability performance as

the highest number of unsuccessful executions occurred on this platform.

Besides, the WinNT platform generated the highest number of functionally wrong

output from executing the test programs.

The second test method required the test programs to be compiled on a

specific platform, and then that compiled code was executed on different

platforms. For example, all the test programs were first compiled on an Intel

based Windows 95 system. Then the compiled programs were executed on the

rest of the test platforms. The following figures show the execution results of the

test programs that were compiled on the Intel platform and then run on each of the

test platforms.

UI
E
ctS
0)
0
0.. -0 ...
Cl)
~

E
:J
z

Execution Resu It Overview of Com piled Test Code

30
25
20
15
10

5
0

I sc □cw □ usE ■ Fwo I

Win98 WinNT Mac

Platforms

Linux Solaris

Fig. 6. Execution results of the test programs that were compiled under Win95.

40

Figure 6 also indicates that the best virtual machine portal work was done

for the Linux platform as the highest number of successful executions occurred on

this platform. Besides, Linux produced the least number of functionally wrong

outputs. Solaris followed Linux in generating portable code, next were the

Macintosh and Win32 platforms. This result coincides with the result obtained

using the first test method. The rest of the charts also show similar results.

ti)

E
n,
'-en
0
'-a. -0
'-
Q>
.c
E
::,
z

Execution Result Overview of Compiled Test Code

30

25

20

15

10

5

0

Win95

sc □cw □ usE ■ Fwo I

WinNT Mac

Platforms

Linux Solaris

Fig. 7. Execution results of the test programs that were compiled under Win98.

41

Execution Result Overview of Compiled Test Code

l ■ sc □cw □ usE ■ Fwo I

e 30 -.--------------------------.

f 25
C)

e 20
a.
0 15

cii 10
.c
E 5
:::,
z 0

Win95 Win98 Mac

Platforms

Linux Solaris

Fig. 8. Execution results of the test programs that were compiled under WinNT.

Cf)
30 E

~
C')

25
0 20 ...
C. - 15 0 ... 10 Q)
.c
E 5
:::,
z 0

Execution Result Overview of Com piled Test
Code

Win95

l ■ sc □ cw □ usE ■ Fwo I

Win98 WinNT

Platforms

Linux Sola ris

Fig. 9. Execution results of the test programs that were compiled under Mac.

42

II) 30 E
ns 25 C,
0 20 ...
a. - 15 0 ... 10 Q)
.c
E 5
:::,
z 0

Execution Result Overview of Compiled Test
Code

l ■ sc □cw □ usE ■ Fwo I

Win95 Win98 WinNT Mac

Platforms

Solaris

Fig. 10. Execution results of the test programs that were compiled under Linux.

Execution Result Overview of Compiled Test Code

SC Dew □ USE ■ Fwo I

II) 30 E
ns 25 ...
C)
0 20 ...
a. - 15 0 ... 10 Q)
.c
E 5
:::,
z 0

Win95 Win98 WinNT Mac Linux

Platforms

Fig. 11. Execution results of the test programs that were compiled under Solaris.

43

3.8 ANALYSIS OF TEST RESULT

The following section presents the major portability concerns of Java

source code by analyzing the test results. The complete list of the test results, and

test descriptions can be found in appendix A and B, respectively.

Java Specific issues

• Mixing different versions of JDK I JRE

Different versions (1.0, 1.1 and 1.2) of JDK/JRE are not downward or

upward compatible. Hence mixing different versions of JDK/JRE causes compile

and runtime errors. For example, the Calculator program was used to verify

Java's downward compatibility. This test program used a method named

parseDoubleGava.lang.String) that was newly added in JDK 1.2, and not present

in JDK version 1.1.8. This program failed to compile under all platforms where

JRE 1.1.8 was installed. The following error message was generated at compile

time:

"Method parseDoubleGava.lang.String) not found in class Java.lang'.Double

Double.parseDouble(display.getText());

1 error"

• Mixing Event Models

The event model of JD K 1.1 is different than the event model of 1. 0;

therefore, mixing these two different event models hinders portability. For

44

example, in the EventDemo program, a method named

handleEventGava.awt.Event) was used which was available in event model 1.0,

and had been removed from event model 1.1. The purpose of this test was to

either prove or disprove downward compatibility of Java's eventmodel. The

program generated two warning messages at compile time identifying two

deprecated methods, and crashed at run time on all platforms.

Compile time warning message:

"EventDemo.java: 18: Note: The method boolean actionGava.awt.Event,

java.lang.Object) in class java.awt.Component has been deprecated, and class

EventDemo (which is not deprecated) overrides it.

public boolean action(Event event, Object object)EventDemo.java:24: Note: The

method boolean handleEventGava.awt.Event) in class java.awt.Component has

been deprecated.return super .handleEvent(event)"

Runtime error message:

"Exception occurred during event dispatching:

j ava.lang. StackOverflowError

at j ava.awt. Component.handleEvent(Compiled Code)

at EventDemo.action(Compiled Code)"

• Variance in third party portal work

The implementations of the Java portal works vary from platform to

platform. For example, the AltTest program was used to verify how well Java

tracks the state of any control key in different platforms. This program prints the

45

"Up" and "Down" states of the "Alt" key when it is pressed and released

respectively inside a window. The result showed that in Win32 platforms, the

program lost event notifications at the transition phase of pressing and releasing

the "Alt!' key. It worked fine in all other test platforms.

Another example was the ButtonTest program that showed that

MouseEvents generated by clicking a mouse inside a scroll bar were inconsistent

across platforms. This program brings up a window with a scrollbar in it.

Clicking inside the scrollbar displays the mouse click events in a console window.

Under Win32 platforms, the program generated the MOUSE_PRESSED message

for a left button click, and MOUSE_PRESSED, MOUSE_RELEASED, and.

MOUSE_CLICKED messages for the right button click. In Macintosh, it

produced MOUSE _PRESSED, MOUSE_ RELEASED and MOUSE_ CLICKED

messages for a mouse click (note that Macintosh system has a single buttoned

mouse). Solaris and Linux platforms on the other hand, did not generate any

MouseEvents for a left or a right click.

• Wrong implementation of certain methods:

Certain methods do not function according to the Java specification on

some platforms. For example, in the TextFieldTest program, a method called

KeyEvent.setKeyChar(char) was used. This method should change lower case

characters to upper case. The test showed that the lower case characters did not

get converted into upper case on any of the Win32 platforms. The method

functioned properly in Linux, Solaris and Macintosh platforms.

46

• Using native methods in the program

The following two instances break the platform independence of Java:

- dependencies other than the core Java AP Is

- dependencies on platform dependent dynamic link libraries

• Using certain command line programs

- Command-line programs that use System.in, System.out, or System.err

are not portable since not all the Java platforms have the concept of

standard input or output streams.

- The Java platforms leave command line processing up to the

programmer. However, the syntax and conventions vary from platform to

platform, hindering software portability.

For example, the hello2 program was used to verify the command line processing

done by Java on different platforms. When an argument (*) was used while

executing the program, it generated different results on different platforms. Some

of the captured results are shown below.

47

Fig. 12. Snapshot ofHello2.java under Win95 platform (correct output).

Hello *
Hello *
Hello*
Hello*
Hello*
Hello*
Hello *
Hello*
Hello *
Hello *

Fig. 13. Snapshot ofHello2.java under Macintosh (wrong output).

48

Fig. 14. Snapshot ofHello2.java under Linux platfrom (wrong output).

• Using java.Iang.Runtime.exec methods

The java.lang.Runtime.exec method is not always portable because:

- not all platforms have applications that can be run,

- not all platforms have the notion of standard input or standard output

For example, in the ExecTest program, the "start" command was used

inside the exec(String[], String[]) method to open a file named "Hello.txt" in a

text editor. The program worked fine on Win95 and Win98 systems. The

program hanged at run time without displaying any error message on the WinNT

platform although the "start" command is available on the WinNT operating

system. Although Linux, Solaris and Macintosh operating systems do not support

49

the "start" command, the program compiled successfully on all of those platforms.

On Linux and Macintosh systems, the program hanged at execution time without

any erro_r message. On Solaris, the program properly terminated without

displaying any error message.

• Unicode characters

Different versions of Java platforms do not render all Unicode characters.

For example, the UnicodeTest program hard-codes some Unicode numbers, and

displays the equivalent Unicode characters on the console window. The purpose

of this test was to verify how Java's Unicode character set is handled by different

platforms. Different platforms showed different results for Unicode numbers

201C (left quotation mark) and 201D (right quotation mark).

• Java binary file format

In Java binary file format, everything is stored as big-endian - most

significant byte first. IBM 360, Motorola 68K, Mac PowerPC and most

mainframes use big-endian whereas Intel 8080, 8086, 80286, and Pentium use the

little-endian convention. This is a major portability issue. The Readdata program

was used to evaluate this portability concern. This program used a binary file

(test.exe) that was generated by compiling C source code under a Pentium based

Win32 system. The Readdata program reads the binary executable and writes the

data back to an output file (output.dat). · As the Pentium processor supports the

little-endian scheme, the binary file was in little-endian format. The purpose of

50

this test was to verify how the Java virtual machine handles little-endian format as

it supports big-endian.

Although the same executable file was used in all test systems, the output

files generated from different platforms varied. Some platforms did not print

"EOF"(End Of File). In general, the output.dat files generated by all the Win32

systems differed from the output.dat files generated by Linux, Solaris and

Macintosh systems.

• Java Epoch Date

Java's internal clock calculates dates as the time since.January 1, 1970. If

the system clock is set to an earlier date, Java applications hang or exhibit other

unusual behavior on some platforms.

• Time Zone

In Java, the list of possible time zones is incomplete, and ambiguously

defined. For example, if a programmer wants to express date in the MET

timezone (continental European timezone), it gives different results on.different

platforms. For example, the MsgLog program retrieves the current date and time

by using MET timezone. The program gave GMT+3h30: Teheran time on all the

test platforms.

51

• UsingPLAF

The Pluggable Look And Feel (PLAF) architecture built into the Swing

classes of the Java 1.2 JDK and the JFC standard extension for JDK 1.1 allows

windows, dialogs and other GUI components to take on a distinctive visual

identity· called a LookAndFeel. But not all PLAFs are available on every

platform, and some may only be supported on the operating system the PLAF

emulates. For example, the GUI based PlajTest application has three buttons to

switch among metal, motif and windows look and feel. The purpose of this test

was to verify how PLAF is handled on different platforms. Although the

swingall.jar file was used in the CLASSPATH environment variable, the program

window did not switch to Window's look and feel under Linux, Solaris and

Macintosh platforms when the "Windows" button was selected.

• Implementation of Just In Time (JIT) Compiler

The Win32 Just In Time (llT) byte code compiler converts virtual

machine byte codes to native instructions before execution. This can cause some

delay in program startup and class file loading, but it reduces the overall program

execution time by a factor often. A IlT byte code compiler is included in the

Windows version and is used by. default. The Macintosh also has its own version

of the nT compiler. But an implementation defect of the JIT compiler often

causes errors at runtime. For example, the execution of Example5 test code

generated the following error message at runtime on Win32 and Macintosh

52.

platforms. Since the IlT compiler was not present under Solaris and Linux

platforms, the error message did not show up on those platforms.

Error message from IlT compiler:

"nonfatal internal JIT (3.00.078(x)) error 'BinaryNonCommunitive' has occurred.

in: 'Example5 .main (L java/lang/String;) V: Interpreting method."

General portability issues:

• Filename length

The legal length of a filename varies across platforms. The FileCopy

program was used to validate this issue. This program copies an existing file into

another file. To verify how Java handles long filenames, a file was given a nine

character long name. The test program then selected this file and copied it to a

new file. All the test platforms copied the file properly.

*Note: The research failed to validate this issue due to limited numbers oftest

systems. This could tum out to be a problem in other systems. Lack of varieties

of system resources was a major deficiency of this research.

• Text Case

Some platforms ignore case when comparing filenames. In Java, if a

program has classes or a class and a package whose names differ only by case, the

program becomes non-portable to some platforms. The FileCopy program was

used to prove this concern. The program was successful on all the test platforms,

but this issue may turn out to be a real concern on other platforms.

53

• Unicode characters as file name

Using a Unicode character as a file name is not allowable on all platforms.

• Reserved names

Some platforms assign special meaning to certain filenames, such as

"LPT" or "con." Use of these filenames as part of a package name for classes that

are to be installed as files on those systems becomes a portability issue for Java.

• File path

Hard-coded file pathnames are not portable. Hard-coded strings and

characters in the source_ code are also non-portable. The FileCopy program was

used to copy a text file into another text file. The purpose of this program was to

verify how Java handles the hard-coded file path. To verify the issue, a text file

named 11Hello.txt11 was put under a subdirectory, andthe path was hard-coded in

the Java test code. The program used 11
\\

11 as the path separator in the file path.

The program succeeded on .all Win32 platforms. Since Linux, Solaris and

Macintosh use different types of path separators, they failed to copy the file. For

example Linux and Solaris use 11
//

11 and Macintosh uses 11
:

11 as path separators.

• Path separators and command operators

Path separator characters are different on different platforms. Unix system

uses"/", Windows system uses"\" and Macintosh uses":". Macintosh uses"::"

as an operator for the up command instead of"/ . ./" used by Unix. This is also a

54

portability concern. The FindDirectory program moves up a directory and then

displays the name of all the subdirectories underneath it. The purpose of this test

was to verify how Java handles hard-coded directory move operators. This

program used " . " to move up one directory. Macintosh failed in this portability

test. The program functioned properly on all other platforms.

• Fonts

All platforms do not support all the fonts. Hard-coded font names are also

not portable. The FontPicker program has a list of fonts such as "Times New

Roman," "Courier," "Arial," "Dialog," "Kaufmann," etc. The program displays a

string using one of those fonts that the user-selects. As "Kaufmann" was not

available on Win95, WinNT, Linux, Macintosh, and Solaris, the program did not

switch to "Kaufmann" whenever it was selected .

. • Line Termination

Different platforms have different conventions for line termination in a

text file. Different machines have different internal representations of text.

Although Java uses Unicode internally which is the solution to this problem, there

are programs that need to get text to and from files. Problems arise from reading

and writing plain ASCII files since the ASCII standard is not specific about the

line termination character. Win32 machines use the "\r\n" sequence, Unix uses

"\n", whereas Macintosh uses"\r" as line termination character.

55

The LineTerminationTest program was used to verify how line termination

characters are handled on different platforms by the Java virtual machine. This

program used a string that was terminated using "\n". The program behaved

correctly on Win32, Linux and Solaris systems and failed on Macintosh.

• Relying on Priorities or Luck

Relying on priorities or luck in case of multi-threaded programming

causes problems since thread scheduling may differ on different platforms. If the

program relies on priorities or luck to prevent two threads from accessing the

same object at the same time, then it may be non-portable on some platforms.

The ClassLoaderSyncProblem test code showed that if an instance of a subclass is

constructed from its superclass's static initializer, and then classloader loads the

superclass and subclass from different threads at the same time, the virtual

machine causes deadlock permanently on some platforms. The deadlock occurred

on Win95 and WinNT platforms. The code worked correctly on the rest of the

test platforms although the successful completion of the two threads varied across

platforms.

• GUI behavior:

- The physical layout of a program's GUI depends on the sizes of the

components that make it up. Any hard-coded positions or sizes of GUI

components cause look and feel differences. For example, the FrameSize

program used a method called setSize(int,int) that did not resize its content in a

56

frame on some platforms. A GridLayout layout was used in the test program.

The frame window had two buttons in it, covering the entire area. Using the

setSize(int, int) m~thod, the test program changed the size of a frame window

from 270x200 to 300x300. On Linux and Solaris, the buttons were resized with

the expansion of the frame window. The button sizes remained the same on the

rest of the platforms. Two snapshot views of the right and wrong outputs are

presented below.

Fig. 15. Snapshot of FrameSize.java program under Linux platform

(correct output).

57

Fig. 16. Snapshot ofFrameSize.java program under Win95 platform

(wrong output).

- The size of the screen and the number of available colors may also vary

from platform to platform. This makes a display illegible on some platforms. For

example, on true-color windows, ImageFilter or PixelGrabber generates gray

scaled color. The GetSourceBug test code displays the upper half of a Frame as

original image and the lower half as filtered image. The purpose of this test was

to verify how the output looks on different platforms. The ImageProducer()

method produces grayscale colors in true-color environments. Both red and green

are replaced with blue. This phenomenon seems to be restricted to the 32-bit true

color setting only. Any lower color depth worked fine. 32-bit is the default on

most of the Win98 machines. Other than Win98 systems, the image was

58

displayed properly on all other platforms. The snapshots of right and wrong

images are given below.

~ GetSourceBug , l!!llil 13

Blue
Green
Cyan
Red
Magenta
Yellow
White

Blue
Green
Cyan
Red
Magenta
Yellow
White

Yellow
White

Yellow
White

Fig. 17. Snapshot of GetSourceBug.java program under Win95 (Left -

correct output) and Win98 (Right - wrong output) platforms.

- The size and availability of fonts vary from display to display. In some

platforms a specific type and size of font display gets distorted. The lablebug test

program displayed a string -"Workgroup," using 11 point "SansSerif" font. The

result showed that the front of character 'W' got clipped on all the Win32

59

platforms. The string was displayed properly on the other platforms. The

snapshots are provided below to show the distinction

Fig. 18. Snapshot of labelbug.java program under Win95(left - wrong output) and

Linux (right - correct output) platform.

- It is non-portable to hard-code a line termination character or.text display

size.

There are different adornments around different components on different

platforms. For example: on WinNT platform, a TextField object has a single

pixel wide box around it, whereas on Win95, the same component is enclosed in a

3D box.

60

CHAPTER4

4el INFLUENCING FACTORS ON JAVA'S PLATFORM

INDEPENDENCE

According to this research, the degree of platform independence of any

Java program depends on several factors. Some of these factors are beyond the

control of a developer, but most are within his or her control. The Java

architecture facilitates the creation of platform-independent software as well as

platform specific software. Despite Java's design, the programmer still needs to

take some care while writing platform independent code. Many problems are

easy to avoid, but some are less obvious. Hence the degree of platform

independence depends on how a program is written in Java.

• Java platform deployment

The most basic factor of the platform independence of Java programs is

the extent to which the Java platform has been deployed on multiple machine

architectures. . Two things need to happen before running a Java program on a

specific computer. First, a port of the Java platform needs to be available for that

particular type of hardware and operating system. Secondly, the Java platform

vendor must provide an install program to install the platform on a specific

computer. Fortunately, along with Sun Microsystems, other third party vendors

are also working on Java platform portal work on different machine architectures.

61

Appendix C contains a list of third party vendors that are involved on Java portal

work.

• Different editions of the Java platform

The deployment of the Java platform is complicated since not every

standard run-time library is guaranteed to be available on every Java platform.

The basic set of libraries that are guaranteed to be available on a Java platform is

called the Standard AP!. The Java virtual machine accompanied by the Standard

AP/ (JDKIJRE version 1.2) is called the Java 2 Platform, Standard Edition. This

edition has the minimum set of Java API libraries that is available for desktop

computers (Win32 operating systems) and workstations (Solaris operating

systems). Sun also defines API sets for the micro and enterprise editions of the

Java 2 platform. The Micro Edition (J2ME) of the Java 2 Platform is the subset

of the Standard AP I set for consumer and embedded devices. Java 2 Enterprise

Edition (J2EE) on the other hand, is a superset that includes a set of APis that are

useful in enterprise server environments in addition to the Standard AP I set.

Furthermore, there are some standard run-time libraries that Sun considers

optional for the standard edition. These optional Sun libraries are called Standard

Extension AP Is. These libraries include services such as telephony, commerce

and media such as audio, video and 3D graphics. If a Java program uses libraries

from the Standard Extension AP I, it will run anywhere those standard extension

libraries are available. But the program will not run on a computer that

imp lenients only the basic Standard AP I platform. Given the variety of API

editions, the Java 2 Platform hardly represents a ,single, homogenous execution

62

environment, and thus breaks Java's WORA capability. The variations in Java

platforms also affect JDK/JRE version 1.0 and 1.1.

Java's evolving phase also influences its platform independent nature.

Although the Java virtual machine is evolving slowly, the Java API set is

changing more frequently. Over time, features are getting added and removed

from both the Standard AP I and Standard Extension AP Is. Furthermore, parts of

the Standard Extension AP Is are also migrating into the Standard AP I. Although

the intention was to keep the Java platforms backward compatible, so that they

don't break existing Java programs, some changes turned out not to be backward

compatible. As features are removed from new versions of the Java platform,

programs that depend upon those features do liot run any longer. Also some

changes are not forward compatible, meaning programs that are compiled for a

new version of the Java platform may not necessarily work on an old version

because of the added features in the newer version.

• Native Methods

The platform independence of a Java program is highly dependent on

whether or not a program calls native methods. The most important rule in

writing platform-independent Java programs is not to directly or indirectly invoke

any native methods that are not part . of the core Java APL If it is absolutely

necessary to call native methods and . at the same time to maintain platform

independence, then the required native methods need to be ported to all required

. platforms and a new API set needs to be defined.

63

• Non-standard runtime libraries

Java platform implementations come from a variety of vendors, and

although those vendors must supply the standard run-time libraries, some vendors

also supply extra libraries. Those non-standard libraries may call native methods,

and thus hinder platform independence.

• Virtual machine dependencies .

There are two places where variations are allowed in the specification of

the Java virtual machines: garbage collection and threading. Since different

vendors can implement these two features in different ways, two rules should be

. followed in order to write platform independent code:

Do not depend upon timely finalization for program correctness

Do not depend upon thread prioritization for program correctness

Different vendors use different garbage collection techniques. This flexibility in

the Java virtual machine specification means that objects of a particular Java

program can · be released at completely different times on different virtual

machines. Consequently, finalizers that are run by the garbage collector before an

object is freed can run at different times on different ,virtual machines. Therefore,

if a finalizer is used to free finite memory resources, such as file handles, the

program may run on some virtual machine implementation but may not run on

others. On some implementations, the program could run out of the finite

resource before the garbage collector gets around to invoking the finalizers that

free the resource.

64

Thread prioritization is another place where variation is allowed in virtual

machine implementations. The Java virtual machine specification guarantees that

all runnable threads that are at the highest priority will get some CPU time.

Furthermore, it also specifies that lower-priority threads will run when higher

priority threads are blocked. However, the specification does not prohibit the

lower-priority threads from running when t~e higher priority threads are not

blocked. In some virtual machine implementations, lower-priority threads get

some CPU time when the higher-priority threads are not blocked. This often

causes problems in program behavior on different platforms. Therefore, to keep

the multi-threaded Java programs platform independent, the program should rely

on synchronization rather than prioritization.

• User interface dependencies

Graphical user interface based programs are most fragile when it comes to

portability. The A WT user interface library provides a set of basic user-interface

components that map to native components of each platform. The Swing library

gives advanced components that do not map directly to native components.

Although the A WT and Swing libraries make it fajrly easy to create a user

interface that runs on multiple platforms, they do not necessarily behave correctly

on different platforms.

• Implementation errors

The implementation errors in the Java language and on the Java portal

work are one of the major portability concerns. The vast majority of the problems

identified in this thesis are of this nature.

65

4.2 RESEARCH LIMITATIONS

The success of this research was heavily dependent upon the availability

of a wide variety of system environments. Unfortunately, there were not a large

number of available system environments. Hence due to lack of systems, various

portability issues could not be verified with certainty.

4.3 FUTURE RESEARCH

This research investigated one aspect of Java's WORA claim. Additional

research could be performed in the following areas

• Explore Sun Microsystems' JCK test suite to find out how well it

identifies portability issues on Java source and binary code.

• Analyze the efficiency of Java source code compared to traditional C

or C++ programs.

4.4 CONCLUSION

This research indicates that Java does not live up to its promise in most

cases. It is better than traditional C or C++ in terms of portability, but it is not yet

all things to all platforms. To generate a portable program using Java, one needs

to know what problems to watch out for. Sometimes it is the implementation of

the virtual machine and the API that causes difficulty. Sometimes it is the version

66

incompatibilities of JDK/JRE set that should receive special attention. Sun

Microsystems' "100% Pure Java" certification program was initiated with a vision

to flawlessly run any Java program on any Java-compatible platform or device.

But the developers need to keep in mind that "100% Pure Java" is not an end-all

or cure-all for developing cross-platform Java applications. This research thus

concludes that

• Java version 1.1.8 does not provide full WORA capability. Although the

strict language definition and the virtual machine of Java helps in generating more

portable programs than that of C or C++, still a perfect WORA world for Java

developers is not here yet. Forty-two of the first 94 test programs. disproved Sun

Microsystems' claim of Java's WORA capability.

• Without following additional development guidelines, it is not possible to

write portable Java programs. Again, the Java architecture, especially, it's class

file format and the Java platform layer (virtual machine and API) handle several

traditional portability concerns, but still there are some platform specific issues

for which a development guideline needs to be followed to generate portable

programs. Of the first 94 programs that were used on the final stage, 9 were

written without following any portability guidelines. These programs are both IO

and graphical user interface based. Five of the 9 programs failed in portability

testing.

• Java version 1.1.8 does not provide full GUI portability. Especially the

· A WT libraries of the Java language pose a threat to generating potable programs.

Of the 42 final test programs, 27 were solely used to test the portability concerns

67

of graphical user interfaces. These programs generated functionally wrong

outputs on at least one of the test platforms. The rest of the 15 programs were

used to test the portability concerns of IO functionality of Java. In a few cases,

these programs caused compile and runtime errors, and mostly generated

functionally wrong outputs on at least one of the test platforms.

This thesis explored some of the portability issues that affect Java

programs. Following some basic guidelines to address those issues, in most cases,

will resolve most of the portability concerns. · Since different versions of the

JDK/JRE set are not downward or upward compatible, a Java program should be

written for a particular version of JDK/JRE. The event model of JDK/JRE

version 1.0 differs from the event model of 1.1, and they are also incompatible

with each other. Hence, event models should not be mixed in the implementation

of a Java program. Invoking native methods or depending upon anything other

than the core Java API set also hinders cross platform independence. If it is

imperative to use a native method then it should be rewritten using the Java

programming language and should be ported to the platforms where the program

is intended to run. Variance in third party portal work also poses a threat to Java's

portability. Furthermore, there are some methods in core API set that are not

portable by nature. For example, java.lang.Runtime.exec(String[],String[])

method. This method is used to execute an application from a Java program.

Since not all platforms support all the applications, it often hinders portability. In

case of a multi-threaded program relying on priorities or luck should be avoided.

In order to generate platform independent code, platform specific constants also

68

need to be avoided. Hard-coded strings, characters, file path names and font

names make a program non-portable. In case of a GUI application, a layout

manager should be used instead of hard-coding element or screen size, position,

and color. Since the Unicode character set is not supported by all platforms, it is

wise to use ASCII as default text on GUI components. It is not possible to

generate WORA capable software by merely following these guidelines, but

adherence to these guidelines will reduce the difficulty involved in porting the

software.

69

APPENDIX A

TEST RESULT OVERVIEW

Table 3. Result abbreviation

Successful Compilation

Successful Execution
SC

Functionally Correct Output

Unsuccessful Compilation USC

Compiler Warning cw

Unsuccessful Execution USE

Functionally Wrong Output FWO

Comments in section 3. 8 (c)

The following metrics gives an overview of the test result.

[a] Test Description: Take a specific type of source code, then compile and run it
on different types of system configuration.

70

Table 4. Result overview oftest 1

Source Code Win95 Win98 WinNT Macintosh Linux Solaris

Calculator USC USC USC USC USC USC

EventDemo CW/USE CW/USE CW/USE CW/USE CW/USE CW/USE

Readdata SC SC SC FWO FWO SC

Hello SC SC SC FWO FWO FWO

ExecTest SC SC USE USE USE USE

Line Termination Test SC SC SC FWO SC SC
-.....J
1--' FileCopy SC SC SC USE USE USE

FindDirectory SC SC SC USE SC SC

FontPicker FWO SC FWO FWO FWO FWO

Plaffest SC SC SC FWO FWO FWO

MsgLog FWO FWO FWO FWO FWO FWO

Unicode Test FWO FWO FWO FWO FWO FWO

AltTest FWO FWO FWO SC SC FWO

BugSetLocation FWO SC FWO SC FWO FWO

Button Test SC SC SC SC FWO FWO

ClassLoaderSyncProblem USE SC USE SC SC SC

ColorTest FWO FWO FWO FWO USE USE

-....:i
N

Source Code

EmptyMenubarBug

EventTest

Examples

Factors42

FrameSize

GetSourceBug

HelpMenu

Jitbug

Labelbug

ListAction

ModalDialogTest

ModifiersTest

ScrollPaneTest

SetSizeBug

Test2

TestCase

TestKeyListener

Win95

FWO

.FWO

USE

USE

FWO

SC

FWO

USE

FWO

FWO

FWO

SC

SC

FWO

FWO

FWO

SC

Table 4. Result overview oftest 1

Win98 WinNT Macintosh Linux Solaris

FWO FWO FWO SC SC

FWO FWO SC FWO FWO

USE USE USE SC SC

USE USE SC USE USE

FWO FWO FWO SC SC

FWO SC SC SC SC

FWO FWO SC(c) SC SC

USE USE USE SC SC

FWO FWO SC SC SC

FWO FWO FWO SC SC

FWO FWO FWO SC FWO

SC FWO SC SC SC

SC FWO SC FWO FWO

FWO FWO SC SC SC

FWO FWO SC SC SC

FWO FWO SC SC SC

SC SC FWO SC(c) SC(c)

-.l
w

Source Code

TestPopup

TestScrollBar

TestTextField

TextFieldTest

TFBehavior

TrivialApplication

Type Ahead

WinDiaFocus

WindowTest

WndTest

Win95

FWO

FWO

FWO

FWO

FWO

SC

FWO

SC

FWO

FWO

Table 4. Result overview oftest 1

Win98 WinNT Macintosh Linux Solaris

FWO FWO SC SC SC

FWO FWO SC SC SC

FWO FWO SC SC FWO

FWO FWO SC SC SC

FWO FWO SC FWO SC

SC SC FWO FWO SC

FWO FWO SC SC FWO

SC SC FWO SC FWO

FWO FWO SC SC SC

FWO FWO SC SC SC

[b] Test Description: Compile source codes in a specific type of system

configuration; then run the byte codes on different systems configuration.

74

-....l
Vl

Table 5. Test configuration 1- Compiled in Intel system under Windows '95 OS

Source Code Win95 Win98 WinNT Macintosh Linux
-

Calculator USC USC USC USC USC

EventDemo CW/USE CW/USE CW/USE CW/USE CW/USE

Readdata SC SC SC FWO FWO

Hello SC SC SC FWO SC

ExecTest SC SC USE USE USE

Line Termination Test SC SC SC FWO SC

FileCopy SC SC SC FWO SC

FindDirectory SC SC SC USE SC

FontPicker FWO SC FWO FWO FWO

Plaffest SC SC SC FWO FWO

MsgLog FWO FWO FWO FWO FWO

Unicode Test FWO FWO FWO FWO FWO

AltTest FWO FWO SC FWO SC

BugSetLocation FWO SC FWO SC FWO

Button Test SC SC SC SC FWO

ClassLoaderSyncProblem USE SC SC SC SC

ColorTest FWO FWO FWO FWO USE

Solaris

USC

CW/USE

FWO

FWO

USE

SC

SC

SC

FWO

FWO

FWO

FWO

FWO

FWO

FWO

SC

USE

--..,1
O"I

Table 5. Test configuration 1- Compiled in Intel system under Windows '95 OS

Source Code Win95 Win98 WinNT Macintosh Linux

EmptyMenubarBug FWO FWO FWO FWO SC

EventTest FWO FWO FWO SC FWO

Examples USE USE USE USE SC

Factors42 USE USE USE SC USE

FrameSize FWO FWO FWO FWO SC

GetSourceBug SC FWO SC SC SC

HelpMenu FWO FWO FWO SC(c) SC

Jitbug USE USE USE USE SC

Labelbug FWO FWO FWO SC SC

ListAction FWO FWO FWO FWO SC

ModalDialogTest FWO FWO FWO FWO SC

ModifiersTest SC SC FWO SC SC

ScrollPaneTest SC SC FWO SC FWO

SetSizeBug FWO FWO FWO SC SC

Test2 FWO FWO FWO SC SC

TestCase FWO FWO FWO SC SC

TestKeyListener SC SC SC FWO SC(c)

Solaris

SC

FWO

SC

USE

SC

SC

SC

SC

SC

SC

FWO

SC

FWO

SC

SC

SC

SC(c)

Table 5. Test configuration 1- Compiled in Intel system under Windows '95 OS

Source Code Win95 Win98 WinNT Macintosh Linux Solaris

TestPopup FWO FWO FWO SC SC SC

TestScrollBar FWO FWO FWO SC SC SC

TestTextField FWO FWO FWO SC SC FWO

TextFieldTest FWO FWO FWO SC SC SC

TFBehavior FWO FWO FWO SC(c) SC SC

TrivialApplication SC SC SC SC SC SC
-:i
-:i Type Ahead FWO FWO FWO SC(c) FWO FWO

WinDiaF ocus SC SC SC FWO FWO FWO

WindowTest FWO FWO FWO SC SC SC

WndTest FWO FWO FWO SC SC SC

-....J
00

Table 6. Test configuration 2: Compiled in Intel system under Windows '98 OS

Source Code Win95 Win98 WinNT Macintosh Linux

Calculator USC USC USC USC USC

EventDemo CW/USE CW/USE CW/USE CW/USE CW/USE

Readdata SC SC SC FWO FWO

Hello SC SC SC FWO FWO

ExecTest SC SC USE USE USE

Line Termination Test SC SC SC FWO SC

FileCopy SC SC SC FWO SC

F indDirectory SC SC SC USE SC

FontPicker FWO SC FWO FWO FWO

Plaffest SC SC SC FWO FWO

MsgLog FWO FWO FWO FWO FWO

Unicode Test FWO FWO FWO FWO FWO

AltTest FWO FWO SC FWO SC

BugSetLocation SC SC FWO SC FWO

Button Test SC SC SC FWO FWO

ClassLoaderSyncProblem USE SC SC SC SC

ColorTest FWO FWO FWO FWO USE

Solaris

USC

CW/USE

FWO

FWO

USE

SC

SC

SC

FWO

FWO

FWO

FWO

FWO

FWO

FWO

SC

USE

Table 6. Test configuration 2: Compiled in Intel system under Windows '98 OS

Source Code Win95 Win98 WinNT Macintosh Linux Solaris

EmptyMenubarBug FWO FWO FWO FWO SC SC

EventTest FWO FWO FWO SC FWO FWO

Examples USE USE USE USE SC SC

Factors42 USE USE USE USE USE USE

FrameSize FWO FWO FWO FWO SC SC

GetSourceBug SC FWO SC SC SC SC

HelpMenu FWO FWO FWO FWO SC SC

Jitbug USE USE USE USE SC SC

Labelbug FWO FWO FWO SC SC SC

ListAction FWO FWO FWO FWO SC SC

ModalDialogTest FWO FWO FWO FWO SC FWO

Modifiers Test SC SC FWO SC SC SC

ScrollPaneTest SC SC FWO SC FWO FWO

SetSizeBug FWO FWO FWO SC SC SC

Test2 FWO FWO FWO SC SC SC

TestCase FWO FWO FWO SC SC SC

TestKeyListener SC SC SC FWO SC(c) SC(c)

00
0

Source Code

TestPopup

TestScrollBar

TestTextField

TextFieldTest

TFBehavior

TrivialApplication

TypeAhead

WinDiaFocus

WindowTest

WndTest

Table 6. Test configuration 2: Compiled in Intel system under Windows '98 OS

Win95 Win98 WinNT Macintosh Linux Solaris

FW0 FW0 FW0 SC SC SC

FW0 FW0 FW0 SC SC SC

FW0 FW0 FW0 SC FW0 FW0

FW0 FW0 FW0 SC SC SC

FW0 FW0 FW0 SC SC SC

SC SC SC SC SC SC

FW0 FW0 FW0 SC FW0 FW0

SC SC SC FW0 FW0 FW0

FW0 FW0 FW0 SC SC SC

FWO FW0 FW0 SC SC SC

00 -

Table 7. Test configuration 3 - Compiled in Intel system under Windows NT OS

Source Code Win95 Win98 WinNT Macintosh Linux

Calculator USC USC USC USC USC

EventDemo CW/USE CW/USE CW/USE CW/USE CW/USE

Readdata SC SC SC FWO SC

Hello SC SC SC FWO FWO

ExecTest SC SC USE USE USE

LineTerminationTest SC SC SC FWO SC

FileCopy SC SC SC FWO SC

F indDirectory SC SC SC USE SC

FontPicker FWO SC FWO FWO FWO

Plaffest SC SC SC FWO FWO

MsgLog FWO FWO FWO FWO FWO

Unicode Test FWO FWO FWO FWO FWO

AltTest FWO FWO FWO FWO SC

BugSetLocation FWO SC FWO SC FWO

Button Test SC SC SC FWO FWO

ClassLoaderSyncProblem FWO SC SC(c) SC SC

ColorTest FWO FWO FWO FWO USE

Solaris

USC

CW/USE

FWO

FWO

USE

SC

SC

SC

FWO

FWO

FWO

FWO

FWO

FWO

FWO

SC

USE

00
N

Table 7. Test configuration 3 - Compiled in Intel system under Windows NT OS

Source Code Win95 Win98 WinNT Macintosh Linux

EmptyMenubarBug FWO FWO FWO FWO SC

EventTest FWO FWO FWO SC FWO

Examples USE USE USE USE SC

Factors42 USE USE USE USE USE

FrameSize FWO FWO FWO FWO SC

GetSourceBug SC FWO SC SC SC

HelpMenu FWO FWO FWO FWO SC

Jitbug USE USE USE USE SC

Labelbug FWO FWO FWO SC SC

ListAction FWO FWO FWO FWO SC

ModalDialogTest FWO FWO FWO FWO SC

ModifiersTest SC FWO FWO SC SC

ScrollPaneTest SC SC FWO SC FWO

SetSizeBug FWO FWO FWO SC SC

Test2 FWO FWO FWO SC SC

TestCase SC FWO FWO SC SC

TestKey Listener FWO SC SC FWO SC(c)

Solaris

SC

FWO

SC

USE

SC

SC

SC

SC

SC

SC

FWO

SC

FWO

SC

SC

SC

SC(c)

00
v.)

Source Code

TestPopup

TestScrollBar

TestTextField

TextFieldTest

TFBehavior

TrivialApplication

Type Ahead

WinDiaFocus

WindowTest

WndTest

Table 7. Test configuration 3 - Compiled in Intel system under Windows NT OS

Win95 Win98 WinNT Macintosh · Linux Solaris

FWO FWO FWO SC SC SC

FWO FWO FWO SC SC SC

FWO FWO FWO SC FWO FWO

FWO FWO FWO SC SC SC

FWO FWO FWO SC SC SC

SC SC SC SC SC SC

FWO FWO FWO SC FWO FWO

SC SC SC FWO FWO FWO

FWO FWO FWO SC SC SC

FWO FWO FWO SC SC SC

00
.J::,.

Source Code

Calculator

EventDemo

Readdata

Hello

ExecTest

Line Termination Test

FileCopy

FindDirectory

FontPicker

Plaffest

MsgLog

Unicode Test

AltTest

BugSetLocation

Button Test

ClassLoaderSyncProblem

ColorTest

Table 8. Test Configuration 4: Compiled in Apple system using Mac OS

Win95 Win98 WinNT Macintosh Linux Solaris

USC USC USC USC USC USC

CW/USE CW/USE CW/USE CW/USE CW/USE CW/USE

SC SC SC FWO FWO FWO

SC SC SC FWO FWO FWO

SC SC USE USE USE USE

SC SC SC FWO SC SC

SC SC SC FWO SC SC

SC SC SC SC SC SC

FWO SC FWO FWO FWO FWO

SC SC SC FWO FWO FWO

FWO FWO FWO FWO FWO FWO

FWO FWO FWO FWO FWO FWO

FWO FWO SC FWO SC FWO

FWO SC FWO FWO SC FWO

SC SC(c) SC SC(c) FWO FWO

FWO FWO SC SC SC(c) SC

FWO FWO FWO FWO USE USE

00
Ul

Source Code

EmptyMenubarBug

EventTest

Examples

Factors42

Frame Size

GetSourceBug

HelpMenu

Jitbug

Labelbug

ListAction

ModalDialogTest

Modifiers Test

ScrollPaneTest

SetSizeBug

Test2

TestCase

TestKeyListener

Table 8. Test Configuration 4: Compiled in Apple system using Mac OS

Win95 Win98 WinNT· Macintosh Linux Solaris

FWO FWO FWO FWO SC SC

FWO FWO FWO SC FWO FWO

USE USE USE USE SC SC

USE USE USE SC USE USE

FWO FWO FWO FWO SC SC

SC FWO SC SC SC SC

FWO FWO FWO FWO SC SC

USE USE USE USE SC SC

FWO FWO FWO SC SC SC

FWO FWO FWO FWO SC SC

FWO FWO FWO FWO SC FWO

SC SC FWO SC SC SC

SC SC FWO SC FWO FWO

FWO FWO FWO SC SC SC

FWO FWO FWO SC SC SC

FWO FWO FWO SC SC SC

SC SC SC FWO SC(c) SC(c)

00
O"I

Source Code

TestPopup

TestScrollBar

TestTextField

· TextFieldTest

TFBehavior

TrivialApplication

Type Ahead

WinDiaFocus

WindowTest

WndTest

Table 8. Test Configuration 4: Compiled in Apple system using Mac OS

Win95 Win98 WinNT Macintosh Linux Solaris

FWO FWO FWO SC SC SC

SC FWO FWO SC SC SC

FWO FWO FWO SC FWO FWO

FWO FWO FWO SC SC SC

FWO FWO FWO SC(c) SC SC

SC SC SC FWO SC SC

FWO FWO FWO SC FWO FWO

SC SC SC FWO FWO FWO

FWO FWO FWO SC SC SC

FWO FWO FWO SC SC SC

00
-:i

Source Code

Calculator

EventDemo

Readdata

Hello

ExecTest

Line Termination Test

FileCopy

FindDirectory

FontPicker

PlaITest

MsgLog

Unicode Test

AltTest

BugSetLocation

Button Test

ClassLoaderSyncProblem

ColorTest

Table 9. Test Configuration 5: Compiled in Intel system under Linux OS

Win95 Win98 WinNT Macintosh Linux Solaris

USC USC USC USC USC USC

CW/USE CW/USE CW/USE CW/USE CW/USE CW/USE

SC SC SC FWO FWO FWO

SC SC SC FWO FWO FWO

USE SC USE USE USE USE

SC(c) SC SC FWO SC SC

SC SC SC SC SC SC

SC SC SC USE SC SC

SC SC SC SC SC SC

SC SC SC FWO FWO FWO

FWO FWO FWO FWO FWO FWO

FWO FWO FWO FWO FWO FWO

FWO FWO FWO FWO SC FWO

SC SC FWO FWO FWO FWO

SC SC(c) SC FWO SC(c) FWO

FWO FWO FWO SC SC SC

FWO FWO FWO FWO USE USE

00
00

Source Code

EmptyMenubarBug

EventTest

Examples

Factors42

FrameSize

GetSourceBug

HelpMenu

Jitbug

Labelbug

ListAction

ModalDialogTest

ModifiersTest

ScrollPaneTest

· SetSizeBug

Test2

TestCase

TestKeyListener

Table 9. Test Configuration 5: Compiled in Intel system under Linux OS

Win95 Win98 WinNT Macintosh Linux Solaris

FWO FWO FWO FWO SC SC

FWO FWO FWO SC FWO FWO

USE USE USE USE SC SC

USE USE USE USE USE USE

FWO FWO FWO FWO SC SC

SC FWO SC SC SC SC

FWO FWO FWO SC(c) SC SC

USE USE USE USE SC SC

FWO FWO FWO SC SC SC

FWO FWO FWO• FWO SC SC

FWO FWO FWO FWO SC FWO

FWO FWO FWO SC SC SC

SC SC FWO SC FWO SC

FWO FWO FWO SC SC SC

FWO FWO SC SC SC SC

FWO FWO FWO SC SC' SC

SC SC SC FWO SC(c) SC(c)

00
\0

Source Code

TestPopup

TestScrollBar

TestTextField

TextFieldTest

TFBehavior

TrivialApplication

TypeAhead

WinDiaFocus

WindowTest

WndTest

Table 9. Test Configuration 5: Compiled in Intel system under Linux OS

Win95 Win98 WinNT Macintosh Linux Solaris

FWO FWO FWO SC SC SC

FWO FWO FWO SC SC SC

SC FWO FWO SC SC FWO

FWO FWO FWO SC SC SC

FWO FWO FWO FWO SC(c) SC

SC SC SC SC SC SC

FWO FWO FWO SC(c) FWO FWO

FWO SC SC FWO FWO FWO

FWO FWO FWO SC SC SC

FWO FWO FWO SC SC SC

l,,C)
0

Table 10. Test configuration 7: Compil_ed in Sun Workstation under Solaris OS

Source Code Win95 Win98 WinNT Macintosh Linux

Calculator USC USC USC USC USC

EventDemo CW/USE CW/USE CW/USE CW/USE CW/USE

Readdata SC SC SC FWO FWO

Hello SC SC SC FWO FWO

ExecTest SC SC USE USE USE

Line Termination Test SC SC SC FWO SC

FileCopy SC SC SC FWO SC

FindDirectory SC SC SC SC SC

FontPicker FWO SC FWO FWO FWO

Plaffest SC SC SC FWO FWO

MsgLog FWO FWO FWO FWO FWO

Unicode Test FWO FWO FWO FWO FWO

AltTest FWO FWO FWO SC SC

BugSetLocation SC SC FWO SC FWO

Button Test SC SC SC SC FWO

ClassLoaderSyncProblem FWO SC SC SC SC

ColorTest SC SC FWO FWO USE

Solaris

USC

CW/USE

SC

FWO

USE

SC

SC

SC

FWO

FWO

FWO

FWO

FWO

FWO

FWO

SC

USE

Table 10. Test configuration 7: Compiled in Sun Workstation under Solaris OS

Source Code Win95 Win98 WinNT Macintosh Linux Solaris

EmptyMenubarBug FWO FWO FWO FWO SC SC

EventTest ··pwo FWO FWO SC FWO FWO

Examples USE USE USE USE SC SC

Factors42 USE USE USE SC USE USE

FrameSize FWO FWO FWO FWO SC SC

GetSourceBug SC FWO SC SC SC SC

HelpMenu FWO FWO FWO SC(c) SC SC

Jitbug FWO FWO USE USE SC SC

Labelbug FWO FWO FWO SC SC SC

ListAction FWO FWO FWO FWO SC SC

ModalDialogTest FWO FWO FWO FWO SC FWO

Modifiers Test SC SC SC SC SC SC

ScrollPaneTest SC SC FWO SC FWO FWO

SetSizeBug FWO FWO FWO SC SC SC

Test2 FWO FWO FWO SC SC SC

TestCase FWO FWO FWO SC SC SC

TestKeyListener SC SC SC FWO SC(c) SC(c)

I.O
N

Table 10. Test configuration 7: Compiled in Sun Workstation under Solaris OS

Source Code Win95 Win98 WinNT Macintosh Linux

TestPopup FWO FWO FWO SC SC

TestScrollBar FWO FWO FWO SC SC

TestTextField FWO FWO FWO SC FWO

TextFieldTest FWO FWO FWO SC SC

TFBehavior FWO FWO FWO SC SC

TrivialApplication SC SC SC FWO SC

Type Ahead FWO. FWO FWO SC FWO

WinDiaFocus SC SC SC FWO FWO

· WindowTest · FWO FWO FWO SC SC

WndTest FWO FWO FWO SC SC

Solaris

SC

SC

FWO

SC

SC

'SC

FWO

FWO

SC

SC

APPENDIXB

A COMPLETE TEST ANALYSIS

The following section describes the test codes and analyzes the result for different

platforms.

A WT / Swing Based Programs

1. EmptyMenubarBug

Type AWT

Description The Menubar without any menus become invisibk in some

platforms. The purpose of this test was to verify this behavior under all platforms.

The test code brings up a frame with a menu bar that initially has 2 menus in it.

After a few seconds, the program removes the menus from the menubar.

Analyze Result

WIN95

WIN98

WINNT

LINUX

SOLARIS

MAC

Menu bar disappeared with the menus.

Menu bar disappeared with the menus.

Menu bar disappeared with the menus.

The menu bar did not disappear.

The menu bar did not disappear.

Exhibited a different problem. No menu bar showed on the actual

program window, and the menus got added to Apple menu bar.

93

The menus disappeared from the apple menu bar after the given

time.

Fig. 19. Snapshot ofEmptyMenubarBug.java program under Win95 platform

(wrong output).

94

Fig. 20. Snapshot of EmptyMenubarBug.java porgram under Linux platform

(correct output).

95

Fig. 21. Snapshot ofEmptyMenubarBug.java porgram under Macintosh platform

(wrong output).

2. EventTest

Type AWT

Description The e.getModifiers() method a~ways returns O when ActionEvents

are generated on Buttons or on TextFields on some platforms. The purpose of

this test program was to verify the behavior across all platforms. This program

brings a window with a text field and a button in it. Typing in the text field and

pressing "enter" key returns a modifier value. Pressing the button also returns a

modifier value.

96

Analyze The ActionEvents are being created with the wrong constructors

that do not pass the modifiers.

Constructor methods:

• ActionEvent(Object, int, String)

Constructs an ActionEvent object with the specified source object.

• ActionEvent(Object, int, String, int)

Constructs an ActionEvent object with the specified source object.

Workaround of this problem is to use MouseListener.

Result

WIN95

WIN98

WINNT

LINUX

SOLARIS

MAC

Returned Oas a modifier value.

Returned 0 as a modifier value.

Returned 0 as a modifier value.

Returned 0 as a modifier value.

Returned 0 as a modifier value.

Returned right modifier value.

3. Bug_setLocation

Type: AWT

Description The getLocationOnScreen() method often reports stale

information when it is invoked immediately after setLocation(int, int) call on a

window object. The purpose of this test was to verify this behavior on different

97

platforms. The test program brings up a window with a button in it. When the

button is pressed the window moves to a different location onthe screen.

Analyze The problem was reproduced on multiple platforms; It seems like

. the setLocation(int, int) method should not return until the windowhas actually

· moved . A PostMessage to SendMessage conversion in setLocation(int,int)

method may fix the problem.

Result

WIN95

WIN98

WINNT

LINUX

SOLARIS

MAC

Behaved as described. But the occurrence is very infrequent.

Worked fine.

Behaved as described.

Behaved as described.

Behaved as described.

Worked fine.

4. TrivialApplication

Type IO/ AWT

Description In some platform, the file system doesn't handle illegal characters

in text encoding. This test application uses a FileDialog to select a file. A test

file'is created using illegal characters. When that file is selected from the Java

test code, it tries to opens the file with a FileReader which fails on a platoform

with a FileNotFoundException.

Analyze If the file system encounters a file with illegal characters (eg, \ I

etc) it converts the illegal chars to 0xF0xx. Somewhere in the Java encoding,

98

these special characters get converted to '?' (0x3F). This makes it impossible to

open the file with an InputStream or Reader object.

Result

WIN95 Worked fine.

WIN98 Worked fine.

WINNT Worked fine.

LINUX Worked fine.

SOLARIS Worked fine.

MAC Behaved as described.

Hel Lo.doc:
java.io.Fi LeNotFoundExc:eption: Hello.doc:

I

at java.io.Fi LelnputStream.<init>(Fi LelnputStream.java)
at java.io.Fi LeReader.<init>(Fi LeReader.java)
at TriviaLApplic:ation.main(TriviaLApplic:ation.java:89)
at c:om.apple.mrj .JManager.JMAWTContextlmpl$7.run(JMAWTContextlmpL.java)
at java.Lang.Thread.run(Thread.java)

Fig. 22. Snapshot of TrivialApplication.java program under Macintosh platform

(wrong output).

99

5. HelpMenu

Type AWT

Description The SetHelpMenu() method does not work consistently on

different platforms. The test program brings up a window which has a button

called "TestCode" in it. The window has a menubar with two menus: "File" and

!!Help." Pressing the "TestButton" adds a new menu called "Java" on the

menubar, and then sets the "Help" menu. In some platforms an extra blank space

gets added in between "File" and "Help" menu, every time a new menu gets added

and SetHelpMenu(Menu) is called.

Analyze Workaround may be to remove the "Help" menu prior to adding

the new menu; and then call setHelpMenu(Memi) method.

remove(helpMenu);

Result

WIN95

WIN98

add(newMenu);

setHelpMenu(helpMenu);

"Help" menu appeared close to "File" menu. Pressing the "Test"

button added "Java" menu by shifting "Help" menu to the right.

The newly added menu gets placed in between "File" and "Help"

menus. A blank space got added in between "File" and newly

added menu.

"Help" menu appeared close to "File" menu. Pressing the "Test"

button added "Java" menu by shifting "Help" menu to the right.

The newly added menu gets placed in between "File'; and "Help"

100

WINNT

LINUX

SOLARIS

MAC

menus. A blank space got added in between '·'File" and newly

added menu.

"Help" menu appeared close to "File" menu. Pressing the "Test"

button added "Java" menu by shifting "Help" menu to the right.

The newly added menu gets placed in between "File" and "Help"

menus. A blank space got added in between "File" and newly

added menu.

"Help" menu showed up at the farthest right of the menu bar.

Pressing the "Test" button added "Java" menu by shifting "Help"

menu to the right. The newly added "Java" menu got placed in

between "File!' and "Help" menu leaving no empty space between

"File" and newly added menu.

"Help" menu showed up close to the "File" menu. Pressing the

"Test" button added "Java" menu by shifting "Help" menu to the

right. The newly added "Java" menu got placed in between "File"

and "Help" menu leaving no empty space between "File" and

newly added menu.

Exhibited a different problem. The menus got appended in Apple

menu bar. No menu bar showed on the actual program window.

Pressing the "Test" button added "Java" menu by shifting "Help"

menu to the right. The newly added "Java" menu got placed in

between "File'; and "Help" menu leaving no empty space between

"File" and newly added menu.

101

Fig. 23. Snapshot ofHelpMenu.java program under Linux platform

(correct output).

Fig. 24. Snapshot of HelpMenu.java program under Win95 platform

(wrong output).

102

6. ListAction

Type AWT

Description In some platforms, pressing "Enter" or "Return" key after selecting

an item from a list doesn't generate "actionPerformed" notification as specified in .

the Java language specification. This program brings up a window with a list that

has multiple items in it. Selecting an item and then pressing "Return" key does not

generate similar event notification on all platforms.

Analyze The JDK documentation for java.awt.List states that the "AWT

also generates an action event when the user presses the return key while an item

in the list is selected." The test program showed that the.actual implementation

varied from the specification.

Result

WIN95

WIN98

WINNT

[a] Single click generated "itemStateCha1,1ged" notification event.

[b] Double click generated "itemStateChanged" followed by

"actionPerformed" notification event.
. .

[c] Pressing "Return" key after selecting an item did not generate

any event message.

[a] Single click generated "itemStateChanged" notification event.

[b] Double click generated "itemStateChanged" followed by

"actionPerformed" notification event.

[c] Pressing "Return" key after selecting an item did not generate

any event message.

[a] Single click generated "itemStateChanged" notification event.

103

LINUX

SOLARIS

MAC

[b] Double click generated '"itemStateChanged" followed by

"actionPerformed11 notification events.

[c] Pressing "Return" key after selecting an item did not generate

any event message.

[a] Single click ·generated "itemStateChanged11 notification event.

[b] Double click generated 11itemSfateChanged" followed by

"actionPerformed11 notification events~

[c] Pressing "Return" after selecting an item generated

"actionPerformed II message.

[a] Single click generated "itemStateChanged" -notification event.

[b] Double click generated 11itemStateChanged" followed by

"actionPerformed" notification events.

[c] Pressing "Return" after selecting an item generated

11 actionPerformed" message.

[a] Single click generates 11 itemStateChanged11 message twice.

[b] Double click generates "itemState.Changed" message twice

followed by a single "actionPerformed11 message.

[c] Pressing "Return" key after selecting an item doesn't generate

any message.

104

7. ModalDialogTest

Type AWT

Description In some platforms, modal dialog box blocks input not only to its

parent window, but also to all frame windows. The test case creates two frame

windows. Both of the frame windows have a sing~e button in them. Clicking the

button of one of the frame windows causes a message to appear on the console

window. Clicking the button of the other frame window creates a modal dialog

box. As it appears, all frame windows get blocked when the modal dialog box

gets created. Clicking on the button of the other frame window does not generate

any message.

Analyze Result

WIN95 Caused a global block.

WIN98

WINNT

LINUX

SOLARIS

MAC

Caused a global block.

Caused a global block.

Did not cause a global block. The other frame could still receive

inputs even after the modal dialog was up.

Caused a global block.

Caused a global block.

. 8. ModifiersTest

Type Swing

Description Modifiers occasionally behaves improperly with events on some

platforms. This test code brings up a window with a text field in it. The code

105

requires the user to click in the text field, hold down the Shift key, and quickly hit

the F 1 key at least twenty times. For each keystroke, it should print whether the

Shift key modifier was present or not. The expected behavior is that the printout

should display "Shift= true" for each keystroke. But after some number of

iterations the printout starts to incorrectly display "shift = false" on some

platforms.

Analyze Result

WIN95 Worked fine.

WIN98 Worked.fine.

WINNT Behaved as described.

LINUX Worked fine.

SOLARIS Worked fine.

MAC Worked fine.

9. ScrollPaneTest

Type AWT

Description Single click inside a scrollpane generates different numbers of

events on different platforms. The test code brings up a window that has a

scrollpane and four buttons in it. The scrollpane is ,created using the argument

SCROLLBARS_ NEVER. The buttons are used to move the scrollbar up, down,

left and right inside the scroll pane. A single click on any of those four buttons

should generate a single event notification. For each of the. events, a " Painting "

message gets printed on the console window.

106

Result

WIN95

WIN98

WINNT

LINUX

SOLARIS

MAC

A single " Painting " message got displayed from a single click.

A single " Painting " message got displayed from a single click.

Double "Painting" messages appeared from a single click.

Double "Painting" messages appeared from a single click.

Double "Painting" messages appeared from a single click.

A single '.' Painting " message got displayed from a single click

10. SetSizeBug

Type AWT

Description The SetSize(int, int) method extends a frame from its normal size

when a menu bar is attached to it. The test code displayed a frame with a button

named "do". When start as "SetSizeBug 200 200", the application sets the size of

the frame to 200x200. When the menubar is present, and the button named "do"

is pressed it displays the size of the frame as 200x219 -- 19 pixels more.

Analyze Result

WIN95 Behaved as described.

WIN98 Behaved as described.

WINNT Behaved as described.

LINUX Worked fine.

SOLARIS Worked fine.

·MAC Worked fine.

107

Size should be (200, 200). Size should be (200, 200).

Size is (200, 219).

Fig. 25. Snapshot of SetSizeBug.j ava program under Win95 platform

(wrong output).

Fig. 26. Snapshot of SetSizeBug.java program under Linux platform

(correct output).

108

11 Test2

Type AWT

Description The minimum size of a dialog box is often incorrect on some

platforms. The test code shows a frame with a button named "A". When the

button "A" is pushed a modal dialog box with another button named 11B" gets

created. When 11B II is pushed, it hides itself. Now pushing "A" should show

dialog 11B 11 again by packing it back to the original size. But in the second case

the "B II button in the dialog does not resize correctly on some platforms.

Analyze The problem appears to be in the preferred size area. Either the

minimum size should be based on the minimum physical window size, or the

components should be sized to the actual size of the container. Otherwise it

produces incorrect sized components.

Result

WIN95 Behaved as described.

WIN98 Behaved as described.

WINNT Behaved as described.

LINUX Worked fine

SOLARIS Worked fine.

MAC· Worked fine.

Fig. 27. Snapshot oftest2.java program under Win95 platform (wrong output).

109

Fig. 28. Snapshot oftest2.java program under Macintosh platform

(correct output).

12 TestCase

Type AWT

Description The ScrollPane.getlnsets() method does not return right inset value

on some platforms. This test code brings up a window with two scrollpanes. If

the ScrollPane's size or the ScrollPane's child component's size is changed, the

java.awt.ScrollPane class's getlnsets() method returns insets for previous state of

the ScrollPane and the ScrollPane's child component.

Analyze Result

WIN95 Behaved as described.

WIN98 Behaved as described.

WINNT Behaved as described.

LINUX Worked fine.

SOLARIS Worked fine.

MAC Worked fine.

110

Fig. 29. Snapshot ofTestCase.java program under Win95 platform

(wrong output).

111

Fig. 30. Snapshot ofTestCase.java program under Macintosh platform

(correct output).

13 TestkeyListener

Type AWT

Description In some platforms "Ctrl" Key generates multiple KeyPressed

events whereas in others it generates a single KeyPressed event. The test program

brings up a window. When "Ctrl" key is pressed, it keeps on printing the

generated events as print messages. It also prints a message when "Ctrl" key is

released.

112

Analyze Result

WIN95

WIN98

WINNT

LINUX

SOLARIS

MAC

Received multiple key pressed events when II Ctrl II key pressed and

held down.

Received multiple key pressed events when 11 Ctrl 11 key pressed and

held down.

Received multiple key pressed events when 11 Ctrl 11 key pressed and

held down.

Received a single key pressed event when 11 Ctrl 11 key is pressed

and held down.

Received a single key pressed event when 11 Ctrl 11 keyis pressed

and held down.

Did not generate any key press event when II Ctrl II key is pressed

and held down.

14 Testpopup

Type AWT

Description On some platforms labels, as Menultems of a PopupMenu are not

displayed when added to a list. The test program brings up a window with a

popup menu with a list of menu items. In some platforms the labels do not get

displayed.

Analyze Result

WIN95

WIN98

Empty popup menu was displayed.

Empty popup menu was displayed.

113

WINNT

LINUX

SOLARIS

MAC

Empty popup menu was displayed.

Labels were displayed inside popup menu.

Labels were displayed inside popup menu.

Labels were displayed inside popup menu.

a testing popups for lists ~[!I f3

Fig. 31. Snapshot of testPopup.j ava program under Win95

(left- wrong output) and Linux (right - correct output) platforms.

15 Testscrollbar

Type AWT

Description The bubble on the A WT scrollbar continuously blinks on some

platforms. The behavior is not consistent across platforms.

Analyze Result

WIN95

WIN98

WINNT

Scrollbar button consistently blinked.

Scrollbar button consistently blinked.

Scrollbar button consistently blinked.

114

LINUX

SOLARIS

MAC

Scrollbar button did not blink.

Scrollbar button did not blink.

Scrollbar button did not blink.

16 Testtextfield

Type AWT

Description The setBackground(Color) method does not function correctly on

TextField on some platforms. The test program uses lightgray as background

color that does not turn out right on all platforms.

Analyze Calling TextField.setEditable(false) prior to setting the background

color does allow to set the background to lightGray (or orange, or other colors

which use a bit combination other than all off or all on (or gray)).

Result:

WIN95

WIN98

WINNT

LINUX

SOLARIS

Text field came up as white instead of lightgray when

setEditable(false) is not used.

Text field came up as white instead of lightgray when

setEditable(false) is not used.

Text field came up as white instead of lightgray when

setEditable(false) is not used.

Text field came up as white instead of lightgray when

setEditable(false) is not used.

Text field came up as white instead of lightgray when

setEditable(false) is not used.

115

MAC Text field came up as lightgray without using setEditable(false).

17 TFBehavior

Type AWT

Description The TextField.select(int) method leaves the caretPosition in

different position depending on operating systems, and provides wrong caret

position on some platforms. The test program brings up a window with a text

field in it. There is a button in the window which when pressed highlights a text

displayed on the window from the tenth position onward and prints the caret

position.

Analyze On some platforms if the TextField.select(int) is called before the

getCaretPosition() method, it returns the index of the end of the selection.

However on others, getCaretPosition() returns the index of the beginning of the

selection. This is in direct contradiction to what is seen on the screen; the insert

cursor can be seen flashing at the end of the selection rather than the beginning.

Result

WIN95

WIN98

[a] Sets the caret at the front after something was typed and

"Enter" key was pressed.

[b] When the button was pressed, it sets the caret at the end but

returned the index number of the beginning of the highlighted text

as the caret position.

[a] Sets the cursor at the front after something was typed and

"Enter" key was pressed.

116

WINNT

LINUX

SOLARIS

MAC

[b] When the button was pressed, it sets the caret at the end but

returned the index number of the beginning of the highlighted text

as the caret position.

[a] Sets the cursor at the front after something was typed and

"Enter" key was pressed.

[b] When the button was pressed, it sets the caret at the end but

returned the index number of the beginning of the highlighted text

as the caret position.

[a] Sets the caret at the end after something was typed and "Enter"

key was pressed.

[b] When the button was pressed, it sets the caret at the end and

returned the right caret position.

[a] Sets the caret at the end after something was typed and "Enter"

key was pressed.

[b] When the button was pressed, it sets the caret at the end and

returned the right caret position.

[a] Sets the cursor at the front after something was typed and

"Enter" key was pressed.

[b] Did not show the caret Only highlighted the region, and

returned the front position as caret position when the button was

pressed.

117

18 TypeAhead

Type AWT

Description While a new window is being shown or activated, key events do

not go to a predicable place and are often lost. This means users cannot type

ahead of the application - that is, they cannot enter input for windows that have

not yet fully come up yet. This test program brings up a window that has a single

button in it.• The button gets activated when space bar is pressed, and it op~ns up

another window with a text field. If the user presses a space bar and starts typing

before the second window gets visible the typed characters do not appear in the

. text field of the second window, in some platforms.

Analyze Probably the problem is that there is a gap between the time a

window is shown or activated and the time at which focus gets set to a component

in that Window. Any key events that come in during this gap will go to an

undefined location. On windows, the focus will stay in the old window, then shift

to the frame of the new window, then·shift to the component which should get

focus in the new window. So type-ahead keys will go to either the component

that had focus in the old window or the frame of the new window .. Neither of

these is what the user expects. .

Result

WIN95

WIN98

WINNT

LINUX

Behaved as described.

Behaved as described.

· Behaved as described.

Behaved as described.

118

SOLARIS

MAC

Behaved as described.

Worked fine.

19 WinDiaFocus

Type AWT

Description On some platforms, windows and dialogs often do not get focus.

The test program creates a dialog, a window and a frame window to verify this

issue.

Analyze Result

WIN95

WIN98

WINNT

LINUX

SOLARIS

MAC

Focus gained and lost event occurred from all three components.

Focus gained and lost event occurred from all three components.

Focus gained and lost event occurred from all three components.

Focus gained and lost event occurred only from frame window.

Focus gained and lost event occurred only from frame window.

Focus gained and lost event occurred only from frame window.

20 WindowTest

Type AWT

Description In some platforms non-resizable frames often become a transparent

window; and clicking on it passed through to any object behind the window.

Analyze Result

WIN95

WIN98

Behaved as described.

Behaved as described.

119

WINNT

LINUX

SOLARIS

MAC

Behaved as described.

Worked fine.

Worked fine.

Worked fine.

Fig. 32. Snapshot of WindowTest.java program under Win95 platform

(wrong output).

21 WndTest

Type AWT

Description If the setLocation(int, int) method moves a frame or a window, the

frames and the windows inside the parent frame or window redraw. The test

program creates a canvas window with multiple child windows inside it with solid

120

circles of different colors. Pressing the "Enter" key causes the parent window to

shift its position. With every shift the child windows repaint themselves along

with the parent window.

Analyze Result

WIN95 Behaved as described.

WIN98 Behaved as described.

WINNT Behaved as described.

LINUX · Did not redraw.

SOLARIS Did not redraw.

MAC Did not redraw ..

IO Based Programs .·

22 Factors42

Type IO

Description Biglnteger's modPow(Biglnteger, Biglnteger) method failed on

most platforms when an input that is powers of 2 is used. This test program

prompts the user to input a number and returns a Biglnteger whose value is (this

** exponent) mod m. (If exponent== 1, the returned value is (this mod m). If

exponent< 0, the returned value is the modular multiplicative inverse of (this** -

exponent).). The program throws an ArithmeticException if m <= 0.

Analyze Result

WIN95

WIN98

Crashed at runtime when 4 was inputted. ·

Crashed at runtime when 4 was inputted.

121

WINNT

LINUX

SOLARIS

MAC

Crashed at runtime when 4 was inputted.

Crashed at runtime when 4 was inputted. It provided a full thread

dump, monitor cache dump, and registered monitor dump before

termination.

Crashed at runtime when 4 was inputted.

Worked fine.

Fig. 33. Snapshot of Factors42.java program under Win95 platform

(wrong output)

23 Jitbug

Type IO

Description On most platforms this program generates the following "JIT

error" message.

122

"A nonfatal internal JIT (3.00.055(x)) error 'BinaryNonCommunitive' has

occurred."

Purpose of the test was to verify the problem in all platforms.

Analyze Result

WIN95

WIN98

WINNT

LINUX

SOLARIS

MAC

JIT error message occurred although the program presented the

correct output.

JIT error message occurred although the program presented the

correct output.

JIT error message occurred although the program presented the

correct output.

Worked fine without JIT error.

JIT error message occurred although the program presented the

correct output.

JIT error message occurred although the program presented the

correct output.

24 ColorTest

Type IO

Description The system colors are incorrectly initialized under some platforms.

The purpose of this test was to verify the behavior on other platforms.

Analyze In some platforms, high byte is initialized to 0x00 while spec says:

getRGB() method "Gets the "current" RGB value representing the symbolic color.

(Bits 24-31 are 0xff, 16-23 are red, 8-15 are green, 0-7 are blue)."

123

Result

WIN95

WIN98

WINNT

LINUX

SOLARIS

MAC

All system colors are initialized as O.

All system colors are initialized as 0.

All system colors are initialized as 0.

The program hanged without printing any value.

The program hanged without printing any value.

Macintosh printed fewer attributes; and all of those are wrongly

initialized as 0.

Fig. 34. Snapshot of ColorTest.java program in Win95 platform

(wrong output).

124

The following test programs are described and analyzed in the body of the

research.

25 Calculator

Type A WT/ Swing

26 EventDemo

Type AWT

27 FontPicker

Type A WT/Swing

28 PlafTest

Type . AWT

29 AltTest

Type A WT/Swing

30 Button Test

Type AWT

31 FrameSize

Type AWT

125

32 GetSourceBug

Type AWT

33 Labelbug

Type A WT/Swing

34 Examples

Type IO

35 ClassLoaderSyncProblem

Type IO

36 MsgLog

Type IO

37 ExecTest

Type IO

38 FileCopy

Type IO

39 FindDirectories

Type IO

126

40 Readdata .

Type IO

41 Hello2

Type IO

42 LineTerminationTest

Type IO

127

APPENDIXC

Table 11. List of vendors that support Java portal work

Operating System Vendors
AIX IBM

DG/UX4.2 Data General
Corporation

DYNIX/ptx 4.4.2 forward Sequent Computer
Systems

HP-UX Hewlett Packard
IRIX Silicon Graphics
Linux Blackdown.org

MacOS Apple Computer
Netware Novell

OS/2 IBM
Os/390 IBM
OS/400 IBM

OpenVMS Compaq Computer
Corporation

Tru64 UNIX Compaq Computer
Corporation

sco sco
UnixWare sco

128

WORKS CITED

Cramer, T., Friedman, R., Miller, T., Seberger, D., Wilson, R., Wolczko, M.
"Compiling Java Just in Time," IEEE Micro, Vol. 17, No. 3, (May/June 1997).

Edmunds, A. R. The Prentice-Hall Standard Glossary of Computer Terminology.
New Jersey: Simon & Schuster, 1984.

Edwards, M. "Let's Talk About Java Portability", Microsoft Technologies for
Java, (May 1997).

Rabinowitz H.,Schaap C., Portable C, Prentice Hall, Englewood Cliffs, New
Jersey, 1989.

Horsmann, C. S. Cornell, G. Core Java Volume I-Fundamentals,
California: Sun Microsystems Press, 1999.

Hudgins-Bonafield, C. Java's Future, Information Week,
URL: http://iweek.com/705/05iujav.htm, 1998.

Linden, V. P. Not Just Java A Technology Briefing, 2d ed. California: Sun
Microsystems Press, 1999.

Morrey, B. "Java in the enterprise," Info World, Vol. 19, issue 37 (15 September
1997).

Nilsen, K. "Issues in the Design and Implementation of Real-Time Java," Java
Developer's Journal, Vol. 1, Issue 1 (1997).

Rofrano, J. "Java Portability by Design -An effective way to encapsulate the
system differences," Dr. Dobb's Journal, June 1999.

Scott, B. "Anonymous Deployment vs Portability," Java World, Vol. 4, Issue 10
(October 1999).

Sun Microsystems, Inc. J 00% Pure Java Cookbook for Developers - Rules and
Hints for Maximizing Portability, 1999, URL: http://java.sun.com/100percent/

Venners, B. Inside The Java Virtual Machine, 2d ed. New York(???): McGraw
Hill Professional Publishing, 1999.

129

Warren, J.C., "Software Portability. A Summary of Related Concepts and Survey
of Problems and Approaches", Technical Note No. 48, Stanford University,
Stanford, California (September 1974).

130

VITA

Tanvir Rahman was born in Dhaka, Bangladesh, on February 12, 1972,

the son of Lutfur Rahman and Laila Rahman. He completed his high school in

Dhaka, Bangladesh, and received his Bachelor of Science in Electrical

Engineering in December 1995 from the University of Texas at Austin. Since

January 1996, he has been working at VTEL Corporation as a software engineer.

He is currently pursuing for his Master's degree in Software engineering at the

Southwest Texas State University, San Marcos, Texas.

Permanent Address: 1305 Merchants Tale bane

Austin, Texas 78748

This thesis was typed by Tanvir Rahman.

131

	Rahman_Tanvir_2000_0001
	Rahman_Tanvir_2000_0002
	Rahman_Tanvir_2000_0003
	Rahman_Tanvir_2000_0004
	Rahman_Tanvir_2000_0005
	Rahman_Tanvir_2000_0006
	Rahman_Tanvir_2000_0007
	Rahman_Tanvir_2000_0008
	Rahman_Tanvir_2000_0009
	Rahman_Tanvir_2000_0010
	Rahman_Tanvir_2000_0011
	Rahman_Tanvir_2000_0012
	Rahman_Tanvir_2000_0013
	Rahman_Tanvir_2000_0014
	Rahman_Tanvir_2000_0015
	Rahman_Tanvir_2000_0016
	Rahman_Tanvir_2000_0017
	Rahman_Tanvir_2000_0018
	Rahman_Tanvir_2000_0019
	Rahman_Tanvir_2000_0020
	Rahman_Tanvir_2000_0021
	Rahman_Tanvir_2000_0022
	Rahman_Tanvir_2000_0023
	Rahman_Tanvir_2000_0024
	Rahman_Tanvir_2000_0025
	Rahman_Tanvir_2000_0026
	Rahman_Tanvir_2000_0027
	Rahman_Tanvir_2000_0028
	Rahman_Tanvir_2000_0029
	Rahman_Tanvir_2000_0030
	Rahman_Tanvir_2000_0031
	Rahman_Tanvir_2000_0032
	Rahman_Tanvir_2000_0033
	Rahman_Tanvir_2000_0034
	Rahman_Tanvir_2000_0035
	Rahman_Tanvir_2000_0036
	Rahman_Tanvir_2000_0037
	Rahman_Tanvir_2000_0038
	Rahman_Tanvir_2000_0039
	Rahman_Tanvir_2000_0040
	Rahman_Tanvir_2000_0041
	Rahman_Tanvir_2000_0042
	Rahman_Tanvir_2000_0043
	Rahman_Tanvir_2000_0044
	Rahman_Tanvir_2000_0045
	Rahman_Tanvir_2000_0046
	Rahman_Tanvir_2000_0047
	Rahman_Tanvir_2000_0048
	Rahman_Tanvir_2000_0049
	Rahman_Tanvir_2000_0050
	Rahman_Tanvir_2000_0051
	Rahman_Tanvir_2000_0052
	Rahman_Tanvir_2000_0053
	Rahman_Tanvir_2000_0054
	Rahman_Tanvir_2000_0055
	Rahman_Tanvir_2000_0056
	Rahman_Tanvir_2000_0057
	Rahman_Tanvir_2000_0058
	Rahman_Tanvir_2000_0059
	Rahman_Tanvir_2000_0060
	Rahman_Tanvir_2000_0061
	Rahman_Tanvir_2000_0062
	Rahman_Tanvir_2000_0063
	Rahman_Tanvir_2000_0064
	Rahman_Tanvir_2000_0065
	Rahman_Tanvir_2000_0066
	Rahman_Tanvir_2000_0067
	Rahman_Tanvir_2000_0068
	Rahman_Tanvir_2000_0069
	Rahman_Tanvir_2000_0070
	Rahman_Tanvir_2000_0071
	Rahman_Tanvir_2000_0072
	Rahman_Tanvir_2000_0073
	Rahman_Tanvir_2000_0074
	Rahman_Tanvir_2000_0075
	Rahman_Tanvir_2000_0076
	Rahman_Tanvir_2000_0077
	Rahman_Tanvir_2000_0078
	Rahman_Tanvir_2000_0079
	Rahman_Tanvir_2000_0080
	Rahman_Tanvir_2000_0081
	Rahman_Tanvir_2000_0082
	Rahman_Tanvir_2000_0083
	Rahman_Tanvir_2000_0084
	Rahman_Tanvir_2000_0085
	Rahman_Tanvir_2000_0086
	Rahman_Tanvir_2000_0087
	Rahman_Tanvir_2000_0088
	Rahman_Tanvir_2000_0089
	Rahman_Tanvir_2000_0090
	Rahman_Tanvir_2000_0091
	Rahman_Tanvir_2000_0092
	Rahman_Tanvir_2000_0093
	Rahman_Tanvir_2000_0094
	Rahman_Tanvir_2000_0095
	Rahman_Tanvir_2000_0096
	Rahman_Tanvir_2000_0097
	Rahman_Tanvir_2000_0098
	Rahman_Tanvir_2000_0099
	Rahman_Tanvir_2000_0100
	Rahman_Tanvir_2000_0101
	Rahman_Tanvir_2000_0102
	Rahman_Tanvir_2000_0103
	Rahman_Tanvir_2000_0104
	Rahman_Tanvir_2000_0105
	Rahman_Tanvir_2000_0106
	Rahman_Tanvir_2000_0107
	Rahman_Tanvir_2000_0108
	Rahman_Tanvir_2000_0109
	Rahman_Tanvir_2000_0110
	Rahman_Tanvir_2000_0111
	Rahman_Tanvir_2000_0112
	Rahman_Tanvir_2000_0113
	Rahman_Tanvir_2000_0114
	Rahman_Tanvir_2000_0115
	Rahman_Tanvir_2000_0116
	Rahman_Tanvir_2000_0117
	Rahman_Tanvir_2000_0118
	Rahman_Tanvir_2000_0119
	Rahman_Tanvir_2000_0120
	Rahman_Tanvir_2000_0121
	Rahman_Tanvir_2000_0122
	Rahman_Tanvir_2000_0123
	Rahman_Tanvir_2000_0124
	Rahman_Tanvir_2000_0125
	Rahman_Tanvir_2000_0126
	Rahman_Tanvir_2000_0127
	Rahman_Tanvir_2000_0128
	Rahman_Tanvir_2000_0129
	Rahman_Tanvir_2000_0130
	Rahman_Tanvir_2000_0131
	Rahman_Tanvir_2000_0132
	Rahman_Tanvir_2000_0133
	Rahman_Tanvir_2000_0134
	Rahman_Tanvir_2000_0135
	Rahman_Tanvir_2000_0136
	Rahman_Tanvir_2000_0137
	Rahman_Tanvir_2000_0138
	Rahman_Tanvir_2000_0139
	Rahman_Tanvir_2000_0140
	Rahman_Tanvir_2000_0141

