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PERIODICITY IN A DELAYED RATIO-DEPENDENT
PREDATOR-PREY SYSTEM WITH EXPLOITED TERM

ZHIJUN ZENG, LI ZHAI

Abstract. With the help of the coincidence degree and the related continu-

ation theorem, we explore the existence of at least two periodic solutions of
a delayed ratio-dependent predator-prey system with exploited term. Some

easily verifiable sufficient criteria are established for the existence of at least
two positive periodic solutions.

1. Introduction

As is well-known, the traditional Lotka-Volterra type predator-prey model with
prey-dependent functional response fails to model the interference among predators.
To overcome the shortcoming, Arditi and Ginzburg [1] proposed the following ratio-
dependent predator-prey model

x′(t) = x(a− bx)− cxy

my + x
,

y′(t) = −dy +
fxy

my + x
,

(1.1)

which incorporates mutual interference by the predatorss. For a detailed justifica-
tion of (1.1) and its merits versus the prey-dependent functional response model, we
refer to [1]. In addition, system (1.1) and its non-autonomous variation have been
studied by many authors and seen great progress, see, for example, [5, 6, 10, 15]
and the references therein. Beretta and Kuang [2] introduced a single discrete time
delay into the predator equation in system (1.1), namely

x′(t) = x(a− bx)− cxy

my + x
,

y′(t) = y
[
− d +

fx(t− τ)
my(t− τ) + x(t− τ)

]
,

(1.2)

and carried out systematic work on the global qualitative analysis of (1.2). In paper
[4], Fan and Wang studied a more general delayed ratio-dependent predator-prey

2000 Mathematics Subject Classification. 34K45, 34K13, 92D25.
Key words and phrases. Ratio-dependent predator-prey system; periodic solutions;

coincidence degree.
c©2007 Texas State University - San Marcos.
Submitted December 2, 2006. Published December 3, 2007.
Supported by grant SWUQ 2006032 from the Youth Foundation of Southwest University.

1



2 Z. ZENG, L. ZHAI EJDE-2007/168

model

x′(t) = x
[
a(t)− b(t)

∫ t

−∞
k(t− s)x(s)ds

]
− c(t)xy

my + x
,

y′(t) = y
[
− d(t) +

f(t)x(t− τ(t))
my(t− τ(t)) + x(t− τ(t))

]
,

(1.3)

where x, y denote prey and predator density, respectively. m is a constant that
denotes the half capturing saturation constant, a ∈ C(R, R), b, c, d, f, τ in C(R, R+),
R+ = [0,+∞), k(s) : R+ → R+ is a measurable, normalized function such that∫ +∞
0

k(s)ds = 1. For a detailed discussion of the biological significance of the
parameters in (1.3), refer to [3, 4, 9, 12, 13].

A very basic and important ecological problem associated with the study of
multi-species population interactions is the existence of positive periodic solutions
due to various seasonal effects present in real life situations. Although much
progress has been seen in the study of such problems, there are relatively fewer
results on the models with exploited term. Therefore, the major objective of this
paper is to investigate the existence of periodic solutions of the following system

x′(t) = x
[
a(t)− b(t)

∫ t

−∞
k(t− s)x(s)ds

]
− c(t)xy

m(t)y + x
− h(t),

y′(t) = y
[
− d(t) +

f(t)x(t− τ(t))
m(t)y(t− τ(t)) + x(t− τ(t))

]
,

(1.4)

where h is an exploitation term standing for harvesting or hunting.
An outline of this paper is given as follows. In section 2, we present some

preliminaries including the famous coincidence degree theory and a basic lemma.
In section 3, by using the coincidence degree theory, we will establish some sufficient
conditions for the existence of positive periodic solutions of system (1.4). At last,
an example is given to verify and support our theoretical result.

2. Preliminaries

Let us begin by introducing some terminology and results.
If g is a real continuously bounded function defined on R, we set

ḡ =
1
ω

∫ ω

0

g(t)dt, gL = min
t∈[0,ω]

g(t), gM = max
t∈[0,ω]

g(t).

In system (1.4), we always assume that a, d : R → R and b, c, m, f, h, τ : R →
R+ are ω-periodic and ā > 0, d̄ > 0, where ω, a fixed positive integer, denotes
the prescribed common period of the parameters in system (1.4). Moreover, for
biological reasons, we only consider solutions (x(t), y(t)) with x(0) > 0, y(0) > 0.

For the reader’s convenience, we now recall Mawhin’s coincidence degree which
our study is based upon. Let X, Z be normed vector spaces, L : DomL ⊂ X → Z
a linear mapping, N : X → Z is a continuous mapping. The mapping L will
be called a Fredholm mapping of index zero if dim kerL = codim Im L < +∞ and
Im L is closed in Z. If L is a Fredholm mapping of index zero there exist continuous
projectors P : X → X and Q : Z → Z such that ImP = kerL, Im L = kerQ =
Im(I − Q). It follows that L|Dom L ∩ ker P : (I − P )X → Im L is invertible.
We denote the inverse of that map by KP . If Ω be an open bounded subset
of X, the mapping N will be called L-compact on Ω̄ if QN(Ω̄) is bounded and



EJDE-2007/168 PERIODICITY IN A DELAYED SYSTEM 3

KP (I −Q)N : Ω̄ → X is compact. Since Im Q is isomorphic to ker L, there exists
an isomorphism J : Im Q → ker L.

Lemma 2.1 (Continuation Theorem [8). ] Let L be a Fredholm mapping of index
zero and let N be L-compact on Ω̄. Suppose

(i) For each λ ∈ (0, 1), every solution x of Lx = λNx is such that x 6∈ ∂Ω;
(ii) QNx 6= 0 for each x ∈ ∂Ω ∩ ker L and

deg{JQN, Ω ∩ ker L, 0} 6= 0.

Then the equation Lx = Nx has at least one solution lying in Dom L ∩ Ω̄.

Lemma 2.2. If f̄ > d̄ and ā− (c/m) > 2
√

b̄h̄, then the following algebraic equa-
tions

ā− b̄ exp{u} − 1
ω

∫ ω

0

c(t) exp{v}
m(t) exp{v}+ exp{u}

dt− h̄

exp{u}
= 0

−d̄ +
1
ω

∫ ω

0

f(t) exp{u}
m(t) exp{v}+ exp{u}

dt = 0
(2.1)

have two solutions.

Proof. Consider the function

f(z) = −d̄ +
1
ω

∫ ω

0

f(t)
m(t)z + 1

dt.

It is easily seen that f(z) is decreasing with z and

f(0) = f̄ − d̄ > 0, lim
z→+∞

f(z) = −d̄ < 0,

then it follows that there exists a unique z∗ such that f(z∗) = 0. Substituting
z∗ = exp{v − u} into the first equation in (2.1), we have

ā− b̄ exp{u} − 1
ω

∫ ω

0

c(t)z∗

m(t)z∗ + 1
dt− h̄

exp{u}
= 0. (2.2)

Obviously, it is a quadratic equation with respect to exp{u}, then it has two solu-
tions, denoted by u1 and u2 with u1 < u2. Moreover, one can easily see that

ā− b̄ exp{u} − (
c

m
− h̄

exp{u}
< 0.

Solving the inequality, produces

exp{u1} <
ā− (c/m)−

√
[ā− (c/m)]2 − 4b̄ū

2b̄
,

exp{u2} >
ā− (c/m) +

√
[ā− (c/m)]2 − 4b̄ū

2b̄
,

which implies (2.1) has two solutions and this completes the proof. �
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3. Main results

In this section, we devote ourselves to establishing easily verifiable sufficiency
criteria for the existence of at least two positive periodic solutions of system (2.1) by
employing the coincidence degree and the related continuation theorem introduced
in the previous section.

Theorem 3.1. If f̄ > d̄ and (a − c/m)L > 2
√

bMhM , then system (1.4) has at
least two positive ω-periodic solutions.

Proof. Let x(t) = exp{u(t)}, y(t) = exp{v(t)}. Then system (1.4) can be written
as

u′(t) = a(t)− b(t)
∫ t

−∞
k(t− s) exp{u(s)}ds

− c(t) exp{v(t)}
m(t) exp{v(t)}+ exp{u(t)}

− h(t)
exp{u(t)}

,

v′(t) = −d(t) +
f(t) exp{u(t− τ(t))}

m(t) exp{v(t− τ(t))}+ exp{u(t− τ(t))}
.

(3.1)

It is easy to see that if system (3.1) has an ω-periodic solution (u∗, v∗)T , then
(x∗, y∗)T = (exp{u∗}, exp{v∗})T is a positive ω-periodic solution of system (1.4).
To this end, it suffices to prove that system (3.1) has at least two ω-periodic solu-
tions.

For λ ∈ (0, 1), we consider the following system

u′(t) = λ
[
a(t)− b(t)

∫ t

−∞
k(t− s) exp{u(s)}ds

− c(t) exp{v(t)}
m(t) exp{v(t)}+ exp{u(t)}

− h(t)
exp{u(t)}

]
,

v′(t) = λ
[
− d(t) +

f(t) exp{u(t− τ(t))}
m(t) exp{v(t− τ(t))}+ exp{u(t− τ(t))}

]
.

(3.2)

Suppose that (u(t), v(t))T is an arbitrary ω-periodic solution of system (3.2) for a
certain λ ∈ (0, 1). Integrating on both sides of (3.2) over the interval [0, ω], leads
to

āω =
∫ ω

0

[
b(t)

∫ t

−∞
k(t− s) exp{u(s)}ds

+
c(t) exp{v(t)}

m(t) exp{v(t)}+ exp{u(t)}
+

h(t)
exp{u(t)}

]
dt,

(3.3)

d̄ω =
∫ ω

0

[ f(t) exp{u(t− τ(t))}
m(t) exp{v(t− τ(t))}+ exp{u(t− τ(t))}

]
dt. (3.4)

From these two equations, it follows that∫ ω

0

|u′(t)|dt ≤
∫ ω

0

|a(t)|dt +
∫ ω

0

[
b(t)

∫ t

−∞
k(t− s) exp{u(s)}ds

+
c(t) exp{v(t)}

m(t) exp{v(t)}+ exp{u(t)}
+

h(t)
exp{u(t)}

]
dt

=: (Ā + ā)ω,

(3.5)
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and∫ ω

0

|v′(t)|dt

≤
∫ ω

0

|d(t)|dt +
∫ ω

0

[ f(t) exp{u(t− τ(t))}
m(t) exp{v(t− τ(t))}+ exp{u(t− τ(t))}

]
dt := (D̄ + d̄)ω.

(3.6)
Choose ξi, ηi ∈ Iω, i = 1, 2, such that

u(ξ1) = min
t∈[0,ω]

{u(t)}, u(η1) = max
t∈[0,ω]

{u(t)}, (3.7)

v(ξ2) = min
t∈[0,ω]

{v(t)}, v(η2) = max
t∈[0,ω]

{v(t)}. (3.8)

By (3.3) and (3.7), we obtain

āω >

∫ ω

0

b(t) exp{u(ξ1)}dt = exp{u(ξ1)}b̄ω,

which reduces to u(ξ1) < ln{ ā
b̄
}. This inequality and (3.5) give

u(t) ≤ u(ξ1) +
∫ ω

0

|u′(t)|dt < ln{ ā

b̄
}+ (Ā + ā)ω := ρ1. (3.9)

Multiplying the first equality of (3.2) by exp{u(t)}, and integrating over [0, ω], we
have ∫ ω

0

a(t) exp{u(t)}dt =
∫ ω

0

[
b(t) exp{u(t)}

∫ t

−∞
k(t− s) exp{u(s)}ds

+
c(t) exp{v(t)}

m(t) exp{v(t)}+ exp{u(t)}
+ h(t)

]
dt

Again from (3.3) and (3.7), it follows that

exp{u(η1)}āω ≥
∫ ω

0

a(t) exp{u(t)}dt >

∫ ω

0

h(t)dt = h̄ω,

which implies u(η1) > ln{ h̄
ā}. Therefore, by (3.5) and (3.7), we obtain

u(t) ≥ u(η1)−
∫ ω

0

|u′(t)|dt > ln{ h̄

ā
} − (Ā + ā)ω := ρ2. (3.10)

Similarly, from (3.4) and (3.8), we derive that

d̄ω <

∫ ω

0

f(t) exp{u(η1)}
m(t) exp{v(ξ2)}

dt =
1

exp{v(ξ2)}
( f

m

)
exp{u(η1)}ω .

Then by (3.9), we have v(ξ2) < ln{ ā
b̄d̄

( f
m )} + (Ā + ā)ω. This, together with (3.6),

gives

v(t) ≤ v(ξ2) +
∫ ω

0

|v′(t)|dt < ln{ ā

b̄d̄

( f

m

)
}+ (Ā + ā)ω. (3.11)

Moreover, from (3.4), (3.7) and (3.8), we get

d̄ω >

∫ ω

0

f(t) exp{u(ξ1)}
m(t) exp{v(η2)}+ exp{u(ξ1)}

dt >
exp{u(ξ1)}f̄ω

mM exp{v(η2)}+ exp{u(ξ1)}
.

Then, by (3.10), we obtain

v(η2) > ln
{ (f̄ − d̄)ū

mM ād̄

}
− (Ā + ā)ω,
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which, together with (3.6), produces

v(t) ≥ v(η2)−
∫ ω

0

|v′(t)|dt > ln
{ (f̄ − d̄)ū

mM ād̄

}
− (Ā + ā + D̄ + d̄)ω := ρ4. (3.12)

It follows from (3.11) and (3.12) that

|v(t)| < |ρ3|+ |ρ4|+ 1 := B1. (3.13)

From (3.7) and the first equality of (3.1), we also have

a(η1)− b(η1)
∫ η1

−∞
k(η1 − s) exp{u(s)}ds

− c(η1) exp{v(η1)}
m(η1) exp{v(η1)}+ exp{u(η1)}

− h(η1)
exp{u(η1)}

= 0,

which implies

b(η1) exp{2u(η1)} − (a(η1)−
c(η1)
m(η1)

) exp{u(η1)}+ h(η1) > 0.

Solving the inequality, we have

exp{u(η1)} <
(a− c/m)L −

√
[(a− c/m)L]2 − 4bMuM

2bM
=: δ−,

or

exp{u(η1)} >
(a− c/m)L +

√
[(a− c/m)L]2 − 4bMuM

2bM
=: δ+.

That is, u(η1) < ln δ− or u(η1) > ln δ+. Similarly, we can obtain u(ξ1) < ln δ− or
u(ξ1) > ln δ+. These, together with (3.9) and (3.10), we obtain

ρ2 < u(t) < ln δ−, or ln δ+ < u(t) < ρ1. (3.14)

By Lemma 2.2, the following algebraic equations

ā− b̄ exp{u} − 1
ω

∫ ω

0

c(t) exp{v}
m(t) exp{v}+ exp{u}

dt− h̄

exp{u}
= 0

− d̄ +
1
ω

∫ ω

0

f(t) exp{u}
m(t) exp{v}+ exp{u}

dt = 0

have two solutions, denoted by (u1, v1)T and (u2, v2)T (v1 < v2) and satisfying

ρ2 < u1 < ln δ−, or ln δ+ < u2 < ρ1. (3.15)

Clearly, ρ1, ρ2, B1, δ−, δ+ are independent of λ.
Now let us take X = Y = {(u(t), v(t))T ∈ C(R, R2)|u(t + ω) = u(t), v(t + ω) =

v(t)} and ‖(u(t), v(t))T ‖ = maxt∈[0,ω] |u(t)|+maxt∈[0,ω] |v(t)|. Then X is a Banach
space equipped with the norm ‖ · ‖.

Let L(u(t), v(t))T = (u′(t), v′(t))T and N : X → X, where

N

(
u(t)
v(t)

)
=

[
a(t)− b(t)

∫ t

−∞ k(t− s) exp{u(s)}ds− c(t) exp{v(t)}
m(t) exp{v(t)}+exp{u(t)} −

h(t)
exp{u(t)}

−d(t) + f(t) exp{u(t−τ(t))}
m(t) exp{v(t−τ(t))}+exp{u(t−τ(t))}

]
.

Define projectors P and Q by

P

(
u(t)
v(t)

)
= Q

(
u(t)
v(t)

)
=
(

1
ω

∫ ω

0
u(t)dt

1
ω

∫ ω

0
v(t)dt

)
,

(
u(t)
v(t)

)
∈ X.
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Obviously, Im P = kerL and Im L = kerQ = {(u(t), v(t))T ∈ X : ū = v̄ = 0} is
closed in X, and dim ker L = 2 = codim Im L. Thus, L is a Fredholm operator of
index zero. Furthermore, the generalized inverse (to L) is as follows

KP : Im L → Dom L ∩ ker P, KP

(
u(t)
v(t)

)
=

(∫ t

0
u(s)ds− 1

ω

∫ ω

0

∫ t

0
u(s)dsdt∫ t

0
v(s)ds− 1

ω

∫ ω

0

∫ t

0
v(s)dsdt

)
.

Now, we reach the point where we search for appropriate open bounded subsets
Ωi, i = 1, 2 for the application of the continuation theorem. To this end, we take
B2 = |v1|+ |v2|, and define

Ω1 = {(u(t), v(t))T ∈ X : ρ2 < u(t) < ln δ−, max
t∈[0,ω]

|v(t)| < B1 + B2},

Ω2 = {(u(t), v(t))T ∈ X : ln δ+ < u(t) < ρ1, max
t∈[0,ω]

|v(t)| < B1 + B2}.

Clearly, both Ω1 and Ω2 are open subsets of X and Ω̄1∩ Ω̄2 = φ in view of δ− < δ+.
From (3.15), we see that (u1, v1)T ∈ Ω1, (u2, v2)T ∈ Ω2.

By using the Arzela-Ascoli theorem, it is not difficult to show that QN(Ωi) and
KP (I −Q)N(Ωi), i = 1, 2, are compact. Therefore, N is L-compact on Ωi, i = 1, 2.

Since we are concerned with periodic solutions (u(t), v(t))T confined in Dom L,
system (3.2) can be regarded as the following operator equation L(u(t), v(t))T =
λN(u(t), v(t))T , which is system (3.1) when λ = 1. According to the previous
estimation of periodic solution of (3.2), we have proved requirement (i) of Lemma
2.1.

When (u, v)T ∈ ∂Ωi∩ker L, i = 1, 2, and (u, v)T is a constant vector in R2. From
(3.13) and (3.15) and Lemma 2.2, it follows that

QN

(
u
v

)
=

ā− b̄ exp{u} − 1
ω

∫ ω

0
c(t) exp{v}

m(t) exp{v}+exp{u}dt− h̄
exp{u}

−d̄ + 1
ω

∫ ω

0
f(t) exp{u}

m(t) exp{v}+exp{u}dt

 6= 0.

Moreover, direct calculation shows that

deg(JQN,Ωi ∩ ker L, 0) 6= 0, i = 1, 2,

where deg(·) is the Brouwer degree and the J is the identity mapping since Im Q =
ker L.

By now, we have proved that each Ωi(i = 1, 2) satisfies all the requirements of
Lemma 2.2. Hence, system (3.1) has at least one ω-periodic solution in each of Ω1

and Ω2. The proof is completed. �

Next, we consider the ratio-dependence predator-prey system with distributed
delays

x′(t) = x
[
a(t)− b(t)

∫ 0

−τ

x(t + s)dµ(s)
]
− c(t)xy

m(t)y + x
− h(t),

y′(t) = y
[
− d(t) +

f(t)
∫ 0

−σ
x(t + s)dν(s)

m(t)
∫ 0

−σ
y(t + s)dν(s) +

∫ 0

−σ
x(t + s)dν(s)

]
,

(3.16)

where τ, σ are positive constants and µ, ν are nondecreasing functions such that

µ(0+)− µ(−τ−) = 1, ν(0+)− ν(−σ−) = 1.
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Theorem 3.2. If f̄ > d̄ and (a − c/m)L > 2
√

bMhM , then system (3.16) has at
least two positive ω-periodic solutions.

The proof of the above theorem is similar to that of Theorem 3.1 and hence is
omitted here.

Remark 3.3. From the proofs of Theorem 3.1 and 3.2, it is seen that the conclusion
of Theorem 3.2 remains valid if some or all of the τ ′s and σ′s are ∞.

In system (1.4), when the distributed delay in the prey equation is replaced by
the periodic delay, that is, system (1.4) is rewritten as

x′(t) = x
[
a(t)− b(t)x(t− τ(t))

]
− c(t)xy

m(t)y + x
− h(t),

y′(t) = y
[
− d(t) +

f(t)x(t− τ(t))
m(t)y(t− τ(t)) + x(t− τ(t))

]
,

(3.17)

the result remains valid.

Theorem 3.4. If f̄ > d̄ and (a − c/m)L > 2
√

bMhM , then system (3.17) has at
least two positive ω-periodic solutions.

Observing system (3.17), we can see that the delay is a function of t. In real life,
delay is not only depends on time, but also on states. Therefore, we now propose
the predator-prey model

x′(t) = x
[
a(t)− b(t)x(t− τ(t, x(t), y(t)))

]
− c(t)xy

m(t)y + x
− h(t),

y′(t) = y
[
− d(t) +

f(t)x(t− τ(t))
m(t)y(t− τ(t, x(t), y(t))) + x(t− τ(t, x(t), y(t)))

]
.

(3.18)

By a similar discussion, we can obtain the following result.

Theorem 3.5. If f̄ > d̄ and (a − c/m)L > 2
√

bMhM , then system (3.18) has at
least two positive ω-periodic solutions.

Especially, when there is no exploited term, that is h(t) ≡ 0, the system (1.4)
reduces to

x′(t) = x
[
a(t)− b(t)

∫ t

−∞
k(t− s)x(s)ds

]
− c(t)xy

m(t)y + x
,

y′(t) = y
[
− d(t) +

f(t)x(t− τ(t))
m(t)y(t− τ(t)) + x(t− τ(t))

]
.

(3.19)

Employing the powerful and effective coincidence degree method, we can obtain
the following theorem.

Theorem 3.6. If f̄ > d̄ and ā > (c/m), then system (3.19) has at least one positive
ω-periodic solutions.

Remark 3.7. In system (3.19), when m(t)=m is constant, system (3.19) reduces
to the system which is studied by Fan and Wang [4] and Theorem 3.5 reduces to
the corresponding result in [4].

At last, When h(t) ≡ 0, systems (3.16)- (3.18) can be reduced to corresponding
simpler systems and we have the following conclusion.

Theorem 3.8. If f̄ > d̄ and ā > (c/m), then systems (3.16)-(3.18) have at least
one positive ω-periodic solutions, respectively.
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4. Numerical example

In this section, an example is given to illustrate our result.

0 5 10 15 20 25 30
0
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16

Time t

x,
y

predator−prey system with exploited term

 

 
prey
predator

Take a(t) = 6+sin(πt), b(t) = 3
2+cos(πt), c(t) = 2+cos(πt), m(t) = 1+ 1

2 cos(πt),
h(t) = 1

2 + 1
4 sin(πt), d(t) = 1 + cos(πt), f(t) = 3 + sin(πt). Moreover, the delay

kernel k(t) is chosen as a delta function in the form of k(t) = δ(t) and τ(t) ≡ 0.2,
then system (1.4) becomes

x′(t) = x(t)
[
6 + sin(πt)− (

3
2

+ cos(πt))x(t)
]

− (2 + cos(πt))x(t)y(t)
(1 + 1

2 cos(πt))y(t) + x(t)
− (

1
2

+
1
4

sin(πt)),

y′(t) = y(t)
[
− (1 + cos(πt)) +

(3 + sin(πt))x(t− 0.2)
(1 + 1

2 cos(πt))y(t− 0.2) + x(t− 0.2)

]
.

(4.1)

In this case, all the parameters are 2-periodic functions. By simple calculations, we
have

f̄ = 3, d̄ = 1, (a− c

m
)L = 3, bM =

5
2
, hM =

3
4
. (4.2)

Therefore, (4.2) shows that conditions of Theorem 3.1 hold and so system (4.2) has
at least two positive 2-periodic solutions. With initial values x(0) = 10, y(0) = 5
and t ∈ [0, 30], the above figure shows that the existence of periodic solutions.
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