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POISSON MEASURES ON SEMI-DIRECT PRODUCTS OF

INFINITE-DIMENSIONAL HILBERT SPACES

RICHARD C. PENNEY, ROMAN URBAN

Abstract. Let G = X o A where X and A are Hilbert spaces considered as
additive groups and the A-action on G is diagonal in some orthonormal basis.

We consider a particular second order left-invariant differential operator L on

G which is analogous to the Laplacian on Rn. We prove the existence of “heat
kernel” for L and give a probabilistic formula for it. We then prove that X is

a “Poisson boundary” in a sense of Furstenberg for L with a (not necessarily)

probabilistic measure ν on X called the “Poisson measure” for the operator L.

1. Introduction

In recent years, there has been considerable interest in the study of second order
differential equations on infinite dimensional Hilbert spaces and their generaliza-
tions. See for example Da Prato [3, 7] and the references contained therein. In
this work we study a specific class of second order linear differential equations, the
“Laplacians”, on a very specific set of Hilbert spaces, the meta-abelian solvmani-
folds. (See (1.1) below.)

The form of the differential operator that we are considering in this work, as well
as the form of the algebraic structure of the space on which this operator acts has its
origin in the analysis on Lie groups [18, 21]. In a sense, the context considered here
can be treated as a generalisation of the (finite dimensional) setting considered in
a series of papers on estimates of Poisson kernels for the second-order left-invariant
differential operators on NA Lie groups, i.e. on the semi-direct products of nilpotent
and Abelian Lie groups A = RD, D ≥ 1 (see [4, 5, 6, 10, 11, 12, 13, 14, 15, 16]).

All these analytical problems have their source in probabilistic considerations
(see e.g. [2, 8, 17]) of harmonic (with respect to a probability measure) functions
on groups.

Our techniques are probabilistic and are generalizations of known results in the
finite dimensional Lie group case. The fact that these techniques are useful in
this context is in itself an interesting result. More specifically, for p > 0, and
d ∈ N ∪ {∞}, let

`dp =

{
`p({1, . . . , d}) if d <∞,
`p(N) if d =∞
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with respect to the counting measure. We identify `dp with the subspace of `∞p
of elements supported in {1, . . . , d}. We often omit d in our notation so that `p
denotes `dp for some fixed d. We let `+p be the set of elements of `p with positive

entries and `
+

p the set of elements with non-negative entries.

For u ∈ Rd, d ∈ N∪{∞}, we let [u] = diag u be the corresponding d×d diagonal
matrix.

Let A = X = `2 considered as Abelian groups. The general element of A and X
are denoted respectively by

a = (a1, a2, . . . ),

x = (x1, x2, . . . ).

We define an action of A on X by

xa = Ada x = ead(a)(x) = (eλ1(a)x1, . . . , e
λd(a)xn, . . . ),

where λi : A→ R is given by
λi(a) = ai.

Recall that `2 ⊂ `∞, so that for a ∈ `2, both a and ea are bounded. Then for a
and x in `2, the xa defined above is also in `2.

We consider the corresponding semi-direct product G = X o A which is X × A
with the product

(x, a)(y, b) = (x+ ya, a+ b). (1.1)

For g ∈ G we let x(g) = x ∈ X and a(g) = a ∈ A denote the components of g in
this product so that g = (x, a).

Let q, β ∈ `+2 ∩ `1 and let α ∈ `+2 . We consider the differential operators

L = ∆α + Laβ , (1.2)

where

Laβ =
∑
j

e2λj(a)βj∂
2
xj and ∆α = ∆q

α =
∑
j

qj∂
2
aj −

∑
j

2αj∂aj .

We do not typically carry q in our notation as we consider it fixed. However, when
necessary, we will indicate the dependence with a superscript q.

Following Da Prato and Zabczyk [7], we consider our operators as densely defined
operators on the respective spaces UCb(G), UCb(A), and UCb(X) of uniformly
continuous, bounded functions on the given space, depending on context. We also
let Cb(·) denote the space of bounded continuous functions on the given space.

We require some technical assumptions on the growth rates of the coefficients.
Explicitly, we assume that there is a constant c > 0 such that, for all j ≥ 1,

2αj
βj

> c. (1.3)

We assume additionally that there is a γ ∈ `2 such that

[q]γ = α. (1.4)

Recall that [q] is a matrix whose diagonal entries are equal to q.
For d ∈ N we let the superscript d denote the corresponding sequences obtained

by considering only elements of `dp ⊂ `p.
Our main results are in Theorem 5.1, which firstly proves the existence of a

heat semigroup PLt for L, and secondly provides a probabilistic formula for the
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semigroup. This formula is based on the existence of a diffusion kernel for Lσtβ
(σt is a continuous trajectory of the process generated by ∆α) which provides the
unique solution to system (4.1) below, which is our second main result.

Finally, we prove that X is a “Poisson boundary” for L in the sense that there
is a “Poisson measure” ν on X for L. That is to say, there exists a probability
measure ν on X such that

µLt ∗ ν = ν,

where µLt is a semi-group of probability measures generated by L and the convolu-
tion is defined by the action of A on X, i.e. if λ is a probability measure on G and
ρ is a probability measure on X, then∫

X

f(x)(λ ∗ ρ)(dx) =

∫
X

∫
G

f(x+ ya)λ(dyda)ρ(dx).

To prove existence of the “Poisson measure” ν we give its construction. The
outline of the paper is as follows. In Section 2 we recall the basic properties of
Gaussian measure in the Hilbert space `2 which is the basic component in our
results. In Section 3 we define a vertical component, i.e. a stochastic process on
A generated by ∆α. The vertical component is one of the two components of
the skew-product formula (proved in Section 5) for the heat semigroup PLt . The
second component, called a horizontal component, is a diffusion on X generated by
a time-dependent operator Lσtβ . The horizontal component is considered in Section
4. Finally, in Section 6 we construct the Poisson measure ν on X for L.

2. Gaussian measures on `2

The concept of Gaussian measures is fundamental to our results. A detailed and
extensive discussion of Gaussian measures in the infinite-dimensional Hilbert and
Banach spaces can be found e.g. in [3, 7, 1].

We restrict to the mean 0 case since this is what we require. For λ ≥ 0, the
corresponding Gaussian measure on R is then

Nλ(dx) =

{
(2πλ)−1/2e−

x2

2λ dx, λ > 0,

δ0(dx), λ = 0.

Let λ ∈ Rd with λj ≥ 0, where 1 ≤ d ≤ ∞. Let [λ] denote the corresponding d× d
diagonal matrix. The corresponding Gaussian measure on Rd is by definition

N[λ](dx) =

d∏
j=1

Nλj (dxj). (2.1)

The product measure exists as a measure on (Rd,B(Rd)) since each of the compo-
nents is a probability measure [9, p. 157, Theorem B]. Let |A| denote the cardinality
of a set A, and let

Rm =
∏

{j:λj 6=0}

R, where m = |{j : λj 6= 0}|,

Rk =
∏

{j:λj=0}

R, where k = |{j : λj = 0}|.

Then we may write Rd = Rm⊕Rk. For x ∈ Rd let x = xm+xk in this decomposition.
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Lemma 2.1. Let notation be as above. Then∫
Rd
f(x)N[λ](dx) =

∫
Rm

f(xm, 0)N[λm](dx
m)

=

∫
Rm

f
∣∣
Rm(x)N[λm](dx

m)

=

∫
Rd
f(x)χRm(x)N[λ](dx),

where dxm =
∏m
j=1 dxj.

Proof. By definition

N[λ](dx) =
∏

{j:λj 6=0}

Nλj (dxj)×
∏

{j:λj=0}

Nλj (dxj)

which is equivalent to the statement in the lemma. �

We say that two sequences λ1 and λ2 in Rd are disjoint if λ1iλ
2
i = 0 for all i.

Equivalently, λ1 and λ2 are disjoint if the sets {i : λ1i 6= 0} and {i : λ2i 6= 0} are
disjoint. The following lemma is clear.

Lemma 2.2. Assume that λ ∈ Rd where λj > 0 for all j. Suppose that λ1 and λ2

are disjoint elements of Rd and λ = λ1 + λ2. Then

Rd = Rd1 × Rd2 ,
N[λ] = N[λ1] ⊗N[λ2],

where N[λi] are measures on Rdi and di = |{j : λij 6= 0}|.

The statement in [7, Theorem 1.2.1] implies that if [λ] is trace class, i.e. λ ∈ `1,
then N[λ](dx) restricts uniquely to a measure on `2. In our case, trace class will
always be assumed, so we consider N[λ](dx) as a measure on `2. The following
lemma is simple and it is left to the reader to prove it.

Lemma 2.3. Let P be a bounded, symmetric, positive operator on `2 which is
diagonal in the standard basis {ej} of `2 with eigenvalues pj. Then∫

`2

f(x)NP [λ](dx) =

∫
`2

f(P 1/2x)N[λ]dx.

3. Vertical component

By definition, the vertical component is the diffusion on A generated by ∆α. This
is the Markov process with transition kernel Pαt,s(a, db) which gives the solution to
the following initial problem on A:

∂tf(t, a) = ∆αf(t, a), t > s ≥ 0,

f(s, a) = fo(a).
(3.1)

In the α = 0 case, from [7, (3.1.9)], the solution for fo ∈ UCb(A) is

f(t, x) =

∫
A

fo(x+ y)N(t−s)[q](dy) =

∫
A

fo(y)R(−x)N(t−s)[q](dy),

P 0
t,s(x, dy) = R(−x)N(t−s)[q](dy).

(3.2)
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Furthermore as an operator on UCb(A), t 7→ P 0
t,0 defines a continuous semi-group.

In the α 6= 0 case, by hypothesis (1.4) there is a γ ∈ `2 such that [q]γ = α. Note
also that from [7, Proposition 1.2.5], the measure in the second equation in (3.3)
below is finite.

Corollary 3.1. In the case α ∈ `2 (arbitrary case), the solution to (3.1) for fo ∈
UCb(A) is

f(x, t) = e−t(γ,α)
∫
`2

fo(x+ y)e−(γ,y)N(t−s)[q](dy),

Pαs,t(x, dy) = e−t(γ,α)R(−x)
(
e−(γ,y)N(t−s)[q](dy)

)
.

(3.3)

Furthermore as an operator on UCb(A), t 7→ Pα0,t defines a continuous semi-group.

Proof. A simple computation shows that

∆q
α = e(γ,x)∆q

0e
−(γ,x) + (α, γ).

This suggests that as operators on UCb(A)

Pαs,t = Pα,qs,t = e(t−s)(α,γ)e(γ,x)P 0,q
s,t e

−(γ,x)

which is equivalent with the stated identity. A rigorous proof can be constructed
either using finite rank approximations as in [7] or using the stated formula for ∆q

α.
We omit the details. �

4. Horizontal component

Let σ ∈ C([0,∞)), X) and fo ∈ UCb(X). For k ∈ N, let UCkb (X) denote the set
of elements of UCb(X), all of whose derivatives up to order k belong to UCb(X).
Consider the initial value problem on R+ ×X,

∂tf(t, b) = Lσtβ f(t, b), t > s,

f(s, b) = fo(b).
(4.1)

For s < t, let

Aσ(s, t) =

∫ t

s

e2σ(u)du :=
(∫ t

s

e2σ(u)1du, . . . ,

∫ t

s

e2σ(u)ddu
)T
∈ Rd,

that is we consider Aσ(s, t) as a column vector, and

Aσj (s, t) =

∫ t

s

e2σ(u)jdu.

Note that for a ∈ A,

(AdaA
σ(s, t))j = eajAσj (s, t) =

∫ t

s

e2σ(u)j+ajdu = Aσ+a/2(s, t)j . (4.2)

Theorem 4.1 below is one of our main results. We prove it in a series of propo-
sitions. Assume first that d <∞. Under the Fourier transform in x, (4.1) implies

∂tf̂(t, ξ) =
(
−

d∑
j=1

e2λj(σt)βjξ
2
j

)
f̂(ξ, t),

f̂(0, ξ) = f̂o(ξ).
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This ODE is easily solved,

f̂(t, ξ) = exp
(
−

d∑
j=1

Aσj (s, t)βjξ
2
j

)
f̂o(ξ)

= e−
1
2 (2[A

σ(s,t)][β]ξ,ξ)f̂o(ξ).

If d < ∞, the next follows immediately from [7, Theorem 1.2.1]. The general
case is Proposition 4.3 below.

Theorem 4.1. Assume that [β] is trace class. Let

Pσ,βs,t (dy) = N2[β]Aσ(s,t)(dy). (4.3)

Then for fo ∈ Cb(X) (UCb(X), resp.) the unique solution to (4.1) in Cb(X)
(UCb(X), resp.) is

Uσ(s, t)fo(x) =

∫
X

fo(x+ y)Pσ,βs,t (dy) =

∫
X

fo(x+ [Aσ(s, t)]1/2y)N2[β](dy). (4.4)

In the finite dimensional case, the following properties follow from Theorem 4.1
and are well known (see [10, 19, 20]). The process corresponding to the transition
kernel (4.3) is called the horizontal component.

Corollary 4.2. Assume d <∞. Then

(i) Uσ(s, r)Uσ(r, t) = Uσ(s, t), 0 ≤ s ≤ r ≤ t,
(ii) ∂tU

σ(s, t)f = Uσ(t, s)Lσ(t)f ,
(iii) ∂sU

σ(s, t)f = −Lσ(s)Uσ(s, t)f ,
(iv) Uσ(s, t) : C2

b (Rd)→ C2
b (Rd), s ≤ t.

Assume now that d =∞. For m ∈ N and β as in (1.2) let

βm = (β1, . . . , βm, 0, 0, . . . ) ∈ R∞, Pσ,ms,t (dy) = N2[βm]Aσ,m(s,t)(dy),

where

Aσ,m(s, t) = (Aσ1(s, t), . . . , Aσm(s, t), 0, 0, . . . )T .

Then m 7→ Pσ,ms,t (dy) is referred to as the finite rank approximation to Pσs,t(dy).

We apply Lemma 2.2 with λ = 2β, λ1 = 2βm, λ2 = 2β − 2βm. Then in this
lemma d1 = m and d2 =∞. Restricting to `2, this lemma implies that

`2 = Rm × `2,
N2[β]Aσ(s,t) = N2[βm]Aσ(s,t) ⊗N[λ2]Aσ(s,t).

For x ∈ `2, let xm and x∞ be the components of x with respect to the above
decomposition. Let

uσm(s, t) =

∫
`2

fo(x+ y)χRm(y)N2[β]Aσ(s,t)(dy)

=

∫
Rm×`2

fo(x
m + ym, x− xm + y∞)χRm(ym, y∞)

×N2[βm]A
σ(s, t)(dym)N[λ2]Aσ(s,t)(dy

∞)

=

∫
Rm×`2

fo(x
m + ym, x− xm + 0)N2[βm]Aσ(s,t)(dy

m)
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=

∫
Rm×`2

fo(x+ ym)N[βm]Aσ(s,t)2(dym)

=

∫
Rm

fo(x+ ym)Pσ,ms,t (dym).

Recall that for a set B, χB is the indicator function of B, i.e. χB(x) = 1 if x ∈ B
and χB(x) = 0 if x 6∈ B. From the dominated convergence theorem it follows that

lim
m→∞

Pσ,ms,t (fo) = Pσ,βs,t (fo).

In particular from Corollary 4.2, for 0 ≤ s ≤ r ≤ t,
Pσ,βs,r P

σ,β
r,t = Pσ,βs,t . (4.5)

Theorem 4.1 (for d =∞) now follows from the next proposition.

Proposition 4.3. For fo ∈ UC2
b (X), u(s, t) = Uσ(s, t)fo is the unique solution to

the initial value problem (4.1).

Proof. We use the second formula in (4.4). Let

B = 2[β], C = [Aσ(s, t)]1/2, S = C2(D2fo)(x).

From the mean value theorem for integrals applied in each variable

C2 =
[( ∫ t

s

e2σ(u)1du,

∫ t

s

e2σ(u)2du, . . .
)T ]

= (t− s)[(e2σ(u1), e2σ(u2), . . . )T ]

= (t− s)e2σ(u), u ∈ Rd,

(4.6)

where ui ∈ (s, t) for all i.
From Taylor’s Theorem applied to the function t 7→ fo(x+ ty) at t = 1,

fo(x+ y) = fo(x) + (Dfo(x), y) +
1

2

(
D2fo(x+ ξy)y, y

)
where differentiation is with respect to x and ξ = ξ(x, y) ∈ [0, 1]. Then

fo(x+ Cy) = fo(x) + (Dfo(x), Cy) +
1

2
(C2D2fo(x+ ξCy)y, y). (4.7)

From [7, Proposition 1.2.4], ∫
(fo(x), Cy)NB(dy) = 0,∫
SijyiyjNB(dy) = 2Sijβij ,∫

(Sy, y)NB(dy) =
∑
ij

2Sijβij

= 2(t− s) Tr([β](e2σ(u))D2)(fo)

= 2(t− s)
∑
i

βie
2σ(ui)∂2i fo(x).

We integrate (4.7) with ξ = 0 against N2[β](dy) using (4.6) and rearrange to find
that

Uσ(s, t)(x)− fo(x)− (t− s)
∑
i

βie
2σ(ui)∂2i fo(x)
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=
t− s

2

∫
[eσ(ui)]

(
(D2fo(x+ (t− s)1/2[e2σ(ui)]ξy)−D2fo(x))y, y

)
N2[β](dy).

Hence, as t→ s+,

Uσ(s, t)(x)− fo(x)

t− s
−
∑
i

βie
2σ(ui)∂2i fo(x)→ 0,

that is,
∂tU

σ(s, t)
∣∣
t=s+

= Lσsβ fo(x).

This proposition now follows as in the proof of [7, Theorem 3.2.3] using Corollary 4.2
(i). The uniqueness follows from the uniqueness in the finite dimensional case. �

4.1. Ad-invariance. For f a C∞ function on either G or X and a ∈ A let

ada f = f ◦ ada .

For X in the Lie algebra G of G we have

ad−a ◦X ◦ ada = Ada(X ).

Consequently, as an operator on X,

Lσtβ =

∞∑
j=1

e2λj(σt)βj∂
2
xj = Adσt

( ∞∑
j=1

βjX 2
j

)
,

Lσt+aβ = Ada(Lσtβ ) = Ad−a ◦(Lσtβ ) ◦Ada .

Corollary 4.4. As operators on Cb(X), for a ∈ A,

Uσ+a(s, t) = Ad−a ◦Uσ(s, t) ◦Ada .

Proof. From Corollary 4.2, integration against the quantity on the right solves the
initial value problem (4.1) with σ replaced by σ + a. �

Corollary 4.5. For fo ∈ Cb(X),

Uσ+a(s, t)fo(x) =

∫
X

N2[β]Aσ+a(s,t)fo(x+ y)dy.

Proof. From (4.4) and (2.3),

Uσ(s, t)(Ada(fo))(x) =

∫
X

(fo ◦Ada)(y)Pσs,t(x, dy)

=

∫
X

N2[β]Aσ(s,t)fo(Ada(x+ y))(dy)

Hence,

Ad−a ◦Uσ(s, t) ◦Ada(fo)(x) =

∫
X

N2[β]Aσ(s,t)fo(x+ Ada y)dy

=

∫
X

N2[β] Ad2
a A

σ(s,t)fo(x+ y)dy

=

∫
X

N2[β]Aσ+a(s,t)fo(x+ y)dy.

�
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5. A skew-product formula

Here we present our second main result. Let Pσs,t be the measure defined in (4.3).
We refer to the formula given by the next theorem as to a skew-product formula.
It gives both the existence of and a disintegration of the heat semigroup TLt of L
into a “horizontal” diffusion τ(t) defined on X = `2 and a “vertical” one on A = `2
generated by ∆α. In finite dimensions, this is a special case of [6, Theorem 3.1],
see also [12].

Theorem 5.1. For f ∈ UC2
b (G) and t ≥ 0 we have

TLt f(x, a) = Ea

∫
f(x+ y, σt)N2[β]Aσ(0,t)(dy) ≡ v(t, x, a), (5.1)

where the expectation is taken with respect to the distribution of the process σ in `2
generated by ∆α, and starting from a, i.e., σ0 = a.

Proof. We claim first that for f ∈ UC2
b (G), v(t, x, a) defined in(5.1) is a solution of

the integral equation

v(t, x, a) = Eaf(x, σt) + Ea

∫ t

0

Lσt−sβ

∣∣
x
v(s, x, σt−s)d s (5.2)

We claim first that the only question is the second term. Let f ∈ UC2
b (G). Then

from (4.1) for 0 < s < t,∫ t

0

EaLσt−sβ v(s, x, σt−s) = Ea

∫ t

0

Lσt−sβ Uσ(0, s)f(x, σt−s)

=

∫ t

0

Ea

∫
`2

∞∑
j=1

e2λj(σt−s)βj∂
2
xjv(x+ y)N2[β]Aσ(s,0)(dy) ds.

Since ∣∣Ea ∫ t

0

e2λj(σt−s) ds
∣∣ =

∣∣Ea ∫ t

0

e2λj(σu) du
∣∣

=
∣∣Ea ∫ t

0

e2(σu)j du
∣∣

=
∣∣Ea ∫ t

0

e2(bu)j−αjt du
∣∣

≤
∣∣∣∣Ea ∫ t

0

e2(bu)j du

∣∣∣∣ = Ct

we obtain (since β ∈ `1) that

|Laβv(s, x, a)| ≤
∣∣∣‖v‖2∞ ∞∑

j=1

βjEa

∫ t

0

e2λj(σt−s) ds
∣∣∣

≤ ‖v‖2∞Ct
∣∣ ∞∑
j=1

βj
∣∣

≤ Ct‖v‖∞‖β‖`1 .

Let dWa(b) be a “Wiener measure”, i.e. probability measure one C([0,∞), A) such
that, for every a ∈ A, Wa(b : b(0) = a) = 1.
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We calculate

EaLbt−sβ v(s, x, bt−s)

=

∫
Lbt−sβ v(s, x, bt−s) dWa(b)

=

∫
Lbt−sβ

∫
Uσ(0, s)f(x, σs)dWbt−s(σ)dWa(b)

=

∫ ∫
Lbt−sβ Uσ(0, s)f(x, σs)dWbt−s(σ)dWa(b)

=

∫
Lbt−sβ Uσ(t− s, t)f(x, bt)dWa(b),

(5.3)

where in the last equality we have used the Markov property of the process.
We apply Fubini’s theorem to obtain∫ t

0

EaLbt−sβ u(s, x, bt−s)d s =

∫ ∫ t

0

Lbt−sβ U b(t− s, t)f(x, bt)d sdWa(b),

but ∫ t

0

Lbt−sβ U bt−s(t− s, t)f(x, bt)d s = U b(0, t)f(x, bt)− f(x, bt).

Indeed by property (iii) of U b we obtain

d

d s
U b(t− s, t)f(x, bt) = − d

d s
U b(·, t)f(x, bt)

∣∣∣∣
t−s

= −
(
−Lbt−sβ U b(t− s, t)f(x, bt)

)
= Lbt−sβ U b(t− s, t)f(x, bt).

Therefore, ∫ t

0

EaLbt−sβ u(s, x, bt−s)d s

=

∫
U b(0, t)f(x, bt)dWa(b)−

∫
f(x, bt)dWa(b)

= u(t, x, a)−Eaf(x, bt).

Thus

TLt f(x, a) = Ea

(∫
f(x+ y, σt)N2[β]Aσ(0,t)(dy)

)
(5.4)

as claimed. �

6. Construction of the Poisson measure

Let operators be defined as in (1.2) and TLt be defined by (5.1). For b ∈ A we

let TL,bt be defined by replacing σt with σt + b in the initial value problem (4.1).
For a measure µ on G we define

µ̌(ϕ) =

∫
G

ϕ(g−1)µ(dg).

We fix t > 0 and consider a Markov chain Rn with the starting point R0 = e = (0, 0)
and the transition kernel p(·, ·) = p̌t(·, ·). We have

Rn = (0, 0)(X1, A1) . . . (Xn, An)
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= (X1 +XA1
2 + · · ·+XA1+···+An−1

n , A1 + · · ·+An).

The distribution of Rn is equal to p(n)(e, dg) - the n-folded composition of kernel
p.

For i = 1, 2, let
πi : X oA = `2 o `2 → `2

be the projection on the i-th variable, i.e.

π1(x, a) = x, π2(x, a) = a.

Then
π1(Rn) = X1 +XA1

2 + · · ·+XA1+···+An−1
n .

For i = 1, 2, . . . , we denote

Xi = (Xi,1, Xi,2, . . . ) ∈ `2, Ai = (Ai,1, Ai,2, . . . ) ∈ `2.

Theorem 6.1. The limit
lim
n→∞

π1(Rn) = Z (6.1)

exists a.e., and the distribution ν(0, dy) of the random variable Z is the Poisson
kernel for L.

Proof. The proof is based on ideas from [17, 8]. First we prove the existence of (6.1)
and then we show the claim about the Poisson measure. To show the existence of
(6.1) it is sufficient to show that

lim sup
n→∞

‖XA1+···+An−1
n ‖1/n`2

< 1 a.e.

We have,

‖XA1+···+An−1
n ‖`2 = ‖(eλ1(A1···+An−1)Xn,1, e

λ2(A1···+An−1)Xn,2, . . . )‖`2
= ‖(eA1,1···+An−1,1Xn,1, e

A1,2···+An−1,2Xn,2, . . . )‖`2
= ‖AdA1+···+An−1

Xn‖`2
≤ ‖AdA1+···+An−1 ‖`2→`2‖Xn‖`2 .

Thus it suffices to show that

lim
n→∞

‖AdA1+···+An ‖
1/n
`2→`2 < 1 a.e. (6.2)

and
lim sup
n→∞

‖Xn+1‖1/n`2
≤ 1 a.e. (6.3)

First we prove (6.2). Clearly,

‖Ada x‖`2 ≤ sup
j≥1

eλj(a)‖x‖`2 .

Therefore
‖Ada ‖`2→`2 ≤ sup

j≥1
eλj(a) = sup

j≥1
eaj

and consequently

‖AdA1+···+An ‖
1/n
`2→`2 ≤ sup

j≥1
e

1
n (A1,j+···+An,j).

Thus to prove (6.2) we have to show that

0 < sup
j≥1

lim
n→∞

e
1
nλj(A1+···+An) = sup

j≥1
lim
n→∞

e
1
n (A1,j+···+An,j) < 1, a.e.
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Equivalently we have to show that

−∞ < sup
j≥1

lim
n→∞

1

n
(A1,j + · · ·+An,j) < 0.

Let

π2,j(x, a) = aj .

Then π2,jµt is a gaussian semigroup of measures with the generator

qj∂
2
aj − 2αj∂aj = qj

(
∂2aj −

2αj
qj

∂aj

)
;

that is,

π2,jµt(daj) =
1√

4πqjt
exp

(
− (aj − 2αjqjt/qj)

2

4qjt

)
daj .

Thus by the assumption (1.3), there is a constant c > 0 such that∫
`2

∫
`2

π2,j(x, a)µ(dx da) =

∫
R
ajπ2,jµt(da) = −2αj

qj
< −c.

Notice that for every j ≥ 1, A1,j , A2,j , . . . is a sequence of i.i.d. random variables
with values in R and with gaussian distribution π2,jµt(daj). By the strong law of
large numbers

lim
n→∞

1

n
(A1,j + · · ·+An,j) =

∫
R
ajπ2,jµt(daj) = −2αj

qj
< −c, a.e.

Hence we obtain (6.2).
To prove (6.3) we proceed as follows. Let

f(x, a) = log(1 + ‖x‖).
We will prove that TLt f is finite. By the skew-product formula (5.1),

TLt f(x, a) = E0

(∫
log(1 + ‖x+ y‖)NAσ+a(0,t)(dy)

)
,

(σ is involved in the Gaussian measure NAσ(0,t)(dy)). Clearly there is C > 0 such
that

E0

∫
log(1 + ‖x+ y‖)NAσ+a(0,t)(dy)

≤ E0

∫
(log(1 + ‖x‖) + log(1 + ‖y‖))NAσ+a(0,t)(dy)

≤ E0 log(1 + ‖x‖) + CE0

∫
(1 + ‖y‖2)NAσ+a(0,t)(dy) < +∞.

Hence from [7, Proposition 1.2.4],∫
`2o`2

log(1 + ‖π1(g)‖`2)p(e, dg)

=

∫
`2o`2

log(1 + ‖x‖`2)p(e, dg) < +∞, g = (x, a).

(6.4)

Notice that the real random variable Y is integrable if and only if
∞∑
n=1

P(|Y | ≥ n) < +∞.
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It follows from (6.4), that for every r > 0 the random variable

1

r
‖π1(g)‖`2 =

1

r
‖Xn‖`2

is integrable. Therefore,
∞∑
n=1

p (e, {g ∈ G : log(1 + ‖Xn‖`2) ≥ nr})

=

∞∑
n=1

p(e, {g ∈ G : log(1 + ‖X1‖`2) ≥ nr}) < +∞ ∀r > 0.

Let

An = {log(1 + ‖Xn‖`2) ≥ nr}.
By Borel-Cantelli lemma

lim sup
n≥1

An := ∩∞n=1

(
∪∞m=n Am

)
= ∅ a.e.

Thus,

lim sup
n≥1

(1 + ‖Xn‖`2)1/n ≤ er a.e.

and consequently

lim sup
n≥1

‖Xn‖1/n`2
≤ er, a.e.

Now taking r → 0 inequality (6.3) is proved.
Now we prove that the object we have defined is the Poisson kernel. The argu-

ment is standard and is taken from [17, 4, 8]. The operator L generates semigroup
of probability measures µt. Consider probability measure νn(dy) = νn(0, dy). That
is νn is the distribution of Rn with R0 = (0, 0). Recall that the transition kernel
for Rn was defined as µt for some fixed t. Therefore, for the random walk Rn we
have

µ ∗ νn = νn+1.

Obviously for every bounded continuous function f defined on X we have

lim
n→∞

(f, νn) = (f, ν).

Consequently µ ∗ ν = ν and the proof is complete. �

Remark 6.2. Using methods of [4, 5] it is possible to prove that in fact νn(x, dy)
and ν(x, dy) do not depend on x.

Now we recall a version of Doob’s theorem [5, p. 17].

Theorem 6.3. Let Xt be an almost surely continuous stochastic process. Suppose
that for every sequence 0 < tn →∞ such that

lim
n→∞

tn
n

= 1

there exists a limit

lim
tn→∞

Xtn = Z a.e.

which does not depend on {tn}. Then

lim
t→∞

Xt = Z a.e.
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By Doob’s theorem we obtain the following corollary from Theorem 6.1.

Corollary 6.4. Let µt = PLt (dy) be the semigroup of probability measures on
G = X oA = `2 o `2 generated by L. Then for f ∈ Cb(X),

lim
t→∞

(π1(µ̌t), f) = (ν(·), f),

where (µ̌, h) = (µ, ȟ), ȟ(g) = h(g−1).
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