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ABSTRACT

This thesis work presents a two-stage stochastic aggregate production planning

model to determine the optimum renewable energy capacity, production plan,

machine and workforce levels that minimize the operational cost of a production

system consisting of multiple facilities operating in different geographic locations.

The model considers uncertainty on the demand of products, machine and labor

capacities, and on the renewable energy supply under a horizon of twelve months.

The goal of this work is to evaluate the feasibility of decarbonizing the

manufacturing, transportation and warehouse operations by adopting wind turbine

and solar photovoltaics coupled with battery storage (BS) assuming the facilities

are energy prosumers. In the model, the first-stage decisions are the sitting and

sizing of the renewable generation technologies, the capacity of the BS, amount of

product to produce, hours of labor to keep, hire or layoff, and regular, overtime, and

idle machine hours to use for the entire planning horizon. Second-stage recourse

actions include storing product in inventory, subcontracting or backorder it, buying

energy, selling renewable energy to the main grid, and using BS to respond to

variations in wind profile and weather conditions. Climate analytics performed in

six U.S. cities permits to estimate the capacity factors of the renewables and test

their feasibility of adoption. Numerical experiments performed on three model

instances: island microgrid (IM), energy prosumer with and without time-of-use

(TOU) tariffs, show favorable levelized costs of energy in $50-$100 per MWh. The

instances are relevant to manufacturing companies and the society since they

replace the usage of fossil fuels and accelerate eco-friendly operations to achieve

net-zero carbon manufacturing operations.
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1. INTRODUCTION AND LITERATURE REVIEW

The global energy market consists of industrial, transportation, residential, and

commercial sectors. The industrial and transportation sectors consumed 80% of the

energy globally whereas the consumption of the industrial sector is as high as 54.9%

(Carlton, 2018). Hence, these huge energy consumption make industrial and

transportation sectors an important target for a switch to renewable energy (RE).

The unprecedented growth in RE purchasing, development and commitments

occurring in 2018 made evident the clean energy revolution happening across the

country. U.S. corporations have stimulated a global movement towards purchasing

RE over the last decade (Kaldjian and Barua, 2019). Companies in the United

States purchased a record 6.43 GW of renewable power, which is more than double

the previous record of 3.22 GW in 2015. Now, a growing number of large buyers are

committing to source 100% of their electricity from renewables.

Roberts (2018) performed a survey which showed that in 2018 there were 53

Fortune 500 companies with 100% RE goals and in January 2017 there were only 23

companies with the same target. In 2018, more than 300 U.S. cities, towns or

counties have made commitments to 100% RE, up from just 50 cities in 2017.

Roberts (2018) also shows that six U.S. cities (Greensburg, KS; Georgetown, TX;

Aspen, CO; Burlington, VT; Kodiak Island, AK; and Rockport, MO) have already

met their 100% RE goals through a variety of approaches, including on-site

renewables installations, off-site purchases from grid renewables, etc. Roberts (2018)

shows that renewables provide only 17% of total electricity generation. Thus, fossil

fuels are still the dominant energy source in the United States. It is projected that

renewables (wind, solar, and energy storage systems) will shift approximately 80%

conventional energy that is used to run manufacturing process by 2050. Intel,
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Apple, Honda, Tesla, Nike, Walmart, and Vestas are successful examples of large

RE projects pioneered by the industrial sector. The two-stage stochastic aggregate

production planning (APP) model presented in this thesis work aims to help more

industries in the transition from conventional energy to RE use.

The remainder of this introductory chapter is organized as follows. Section 1.1

provides details about large RE projects undertaken by manufacturing and service

industries and a couple of examples related to recent research in wind and solar

energy technology. Subsections 1.2.1 and 1.2.2 present a literature review on

considering conventional energy in production planning (PP) and APP, respectively.

Subsection 1.2.3 review works incorporating RE in production planning. Subsection

1.2.4 review contributions in aggregate production planning that do not incorporate

RE because at the best of the thesis author’s knowledge there are no previous

contributions of this kind. Subsection 1.2.5 reviews literature on RE models

considering energy prosumers. Sections 1.3 and 1.4 review previous work on

estimation of wind turbine (WT) and solar photovoltaic (PV) capacity factors (CF)

or utilization because they are the theoretical base for the computation of CF input

to the APP models developed in this thesis. Section 1.5 provides the goals and

contributions of this thesis. Section 1.6 goes over the organization of the remainder

of this thesis document.

1.1 Renewable energy projects in the industrial sector

Intel′s 360-acre Leixlip campus is home to one of the world′s most advanced

manufacturing processes (John, 2017). It makes Intel one of the largest voluntaries,

private purchasers of RE in Ireland. It also helps Intel reduce its impact on the

environment and keep its commitment as a global energy sustainability champion.

Simultaneously, Intel has also greened its energy supply in over a dozen major

European facilities to 100%. According to EPA data, in the United States Intel also
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has been the largest voluntary green power purchaser for the past nine years. Intel′s

decision to go green will help to stimulate the RE market further and encourage

other businesses to follow suit. More participation in the green power market will

ultimately further help the environment and lower costs.

Apple is committed to leaving the world better than it found it. The company

announced that its global facilities are powered with 100% clean energy (Apple,

2018). Apple will keep pushing the boundaries of what is possible with the materials

in their products, the way they recycle them, their facilities, and their work with

suppliers to establish new creative and forward-looking RE sources because they

know the future depends on it. Their achievement includes clean energy in retail

stores, offices, data centers, and co-located facilities in 43 countries, including the

United States, the United Kingdom, China, and India.

Honda has entered into long-term virtual power purchase agreements (VPPAs)

for renewable wind and solar power to slash CO2 emissions from its North American

manufacturing operations (Honda, 2019). In Fall 2021, from a 200 MW Texas solar

power facility, Honda secured an additional 482,000 MWh/year. These agreements

help Honda cover more than 60% of the electricity it uses in North America and

enable the company to fully offset the remaining carbon-intensive grid-supplied

electricity used in its Ohio, Indiana, and Alabama automobile manufacturing

operations. Because of the deal, Honda is one of the top automakers globally in the

adoption of RE to power its operations.

Tesla currently makes battery packs and electric motors for their products in

Sparks, Nevada, and will eventually have the world’s largest rooftop solar array

(Tesla, 2019). It will consist of 200,000 solar panels. Tesla will be the first

large-scale battery factory to run on 100% RE. The company redesigned its

manufacturing processes to adopt RE, avoid fossil fuels, and maximize energy

efficiency. Tesla created the net-zero initiative for the entire facility and the
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gigafactory could be a blueprint for more sustainable industries.

Nike opens a new distribution center that runs on 100% clean energy sourced

from five local sources: wind, solar, geothermal, hydroelectric, and biomass (Forde,

2019). It can recycle 95% of the waste generated on-site. The company also aims to

achieve zero carbon operations by 2025 and eliminate waste from its supply chain.

Walmart has taken some business strategies which will drive the biggest, fastest,

and most sustainable acceleration of new RE projects globally (Walmart, 2020).

Walmart drives new RE projects through onsite generation such as solar, wind, and

fuel cells. Large projects off-take agreements such as wind farms, wholesale energy

purchases in deregulated markets coupled with RE supplies, and utility green power

purchases. Pivoting from fossil fuels to RE is the wave of the future (Northwester,

2020). Thus, RE is part of the future of the manufacturing and service industry.

Vestas has taken initiatives to increase its sustainability performance to become

a carbon-neutral company by no later than 2030 (Vestas, 2020). The company

stated that it would reduce its global carbon footprint through a 55% CO2 by 2025,

reaching 100% by 2030. The company already took some step by transitioning to

electric vehicles and replacing its global service vehicle fleet with renewable fuel

vehicles. Vesta’s factories and offices are powered by 100% renewable electricity

since 2013. The company also aims to reduce the CO2 emissions from its supply

chain by 45% per MWh generated by 2030. The successful application of RE by

world′s leading manufacturing and service organizations makes it possible to switch

from conventional energy to RE. It will reduce companies’ reliance on fossil fuels,

produce green quality products, and help to keep a greener environment.

The Northwester 2 offshore wind farm located in Belgium is a 219 MW project

comprised of 23 MHI Vestas 164-9.5 MW turbines. These are the most powerful

turbines to enter commercial operation to date. The wind farm that started

producing green energy to the Belgian grid was expected to become fully
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operational before the summer, 2020. RE Researchers also investigate on improving

solar to electricity conversion efficiency (Geisz et al., 2020). The authors stated that

single-junction, flat-plate terrestrial solar cells are fundamentally limited to about

30% solar-to-electricity conversion efficiency. Geisz et al. (2020) used a monolithic,

series-connected, six-junction inverted metamorphic structure operated under the

direct spectrum at 143 suns concentration which demonstrates 47.1% solar

conversion efficiency. The authors also concluded that over 50% efficiency is highly

achievable. However, 100% efficiency is not possible due to the fundamental limits

imposed by thermodynamics. Meanwhile, authors are also working on reducing the

cost of III-V solar cells, which enables new markets for these highly efficient devices.

1.2 Literature review

1.2.1 PP considering conventional energy

Choi and Xirouchakis (2015) proposed a deterministic and linear production

planning (PP) model that minimizes the weighted sum of energy consumption,

backorder cost, and inventory holding cost on a flexible manufacturing system

(FMS) considering multiple processing plans. Relative weights in the objective

function for energy consumption, backorder cost and inventory holding cost are 0.01,

500, and 500, respectively. The authors proposed a methodology to estimate energy

consumption from material flows of multiple process plans for each part type in a

product family. They considered the consumption of energy from machining, chip

and tool transportation, and material handling. The authors tested the proposed

model using an industrial case study. Experimental result shows that the proposed

model requires minimum energy consumption for satisfying the customer demands.

Furthermore, environmental effects, such as volume of chips removal and cutting

fluid consumption, can also be estimated from the proposed model. Future works

5



include capacity planning for diverse production system configurations characterized

by random changes in demand. Authors address that stochastic programming would

be an option to deal with the randomness of the demand of different part families.

Furthermore, authors mention that another future extension would be an integrated

production planning and scheduling model to minimize energy consumption.

Zhao et al. (2016) presented a multi-period mixed-integer nonlinear

programming (MINLP) model to attain the scheduling of parallel furnaces and the

energy distribution of an ethylene plant. The authors investigated coke formation

and product yields as a function of varying coil outlet temperature to enhance the

profitability of the ethylene plant. They formulated an MINLP model with a

discrete-time expression for the short-term production planning by considering the

scheduling of parallel cracking furnaces. The objective is to maximize the overall

profit of an ethylene plant by incorporating energy utilization in the process

operation. The authors investigated an industrial ethylene plant with 15 parallel

cracking furnaces, 2 cooling towers, 6 turbines, 6 compressors, and one burning

boiler. Experimental results show that the proposed method obtained 13.86%

improvement compared with traditional optimization. The proposed approach also

provides a better balance between production and energy utilization leading to more

steam generation and less fuel consumption than the original optimization

approach. The experimental analysis shows that better profit with higher product

yields results by considering energy consumption and optimizing operating

conditions. The authors concluded that the impact of feed property on energy

consumption and generation was not negligible in the parallel furnaces scheduling.

Furthermore, the authors indicated that future extensions would be an integration

of the long-term planning involving the cleaning operation and shutdown for the

furnace and the development of a more detailed kinetic model.

Su et al. (2017) presented an integrated approach that combines carbon
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footprint analysis and production planning. The objective of this research is to

reduce carbon emissions at the enterprise level. The authors addressed that majority

of the works in the literature focus on the macro or micro levels, and only a few

studies emphasize carbon footprint analysis and carbon emissions reduction at the

enterprise level. They constructed carbon emission analysis models to capture the

relationship between emissions and production plans. The authors then developed a

production planning model based on energy consumption to minimize carbon

emissions. They concluded that the proposed approach for production planning and

carbon footprint analysis applies to the entire company′s operational process. The

authors developed a hybrid discrete particle swarm optimization (PSO) algorithm to

determine the optimal solution and investigated an actual pharmaceutical enterprise

to test the effectiveness of the algorithm. The numerical analysis demonstrates that

the proposed approach reduces carbon emission by 6.77% or 610.2 tons per year at

the enterprise level. The authors did not consider production costs and concluded

that there must be an important trade-off made between emissions reduction and

production costs. As further research, the authors indicated that energy-oriented

production planning can be modeled as a multi-objective optimization problem with

conflicting objectives and that consideration of uncertain demand and supply risks

would make the proposed model more realistic.

Liang et al. (2019) presented a mixed-integer linear programming (MILP)

model of a capacitated production planning and scheduling problem considering

differences in processes energy consumption and sequence-dependent setup time.

The goal is to minimize the total costs, including inventory, backlog, changeover

costs, and energy costs in production. The authors address that most of the existing

papers investigated a similar problem without considering energy costs. In contrast,

the authors mainly focus on energy efficiency and propose a fix and optimize (F&O)

heuristic approach to the large-scale problem. Furthermore, the authors also extend
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the energy-oriented research into integrated production planning and scheduling

models. The authors presented a case study of tea drink production lines in digital

command control (DCC) Beijing to demonstrate the application of the model and

the proposed algorithm. The computational analysis shows that as the problem size

grows, the F&O algorithm tends to have better performance and the feasibility to

solve the model also improves. Also, the authors found that the proposed model

significantly reduces the total cost by an average of 34.74%, while energy costs

reduce by 55.52%. They conclude that the proposed model balances 3 goals:

production planning, scheduling, and energy saving. The model provides a better

solution that dominates any other decentralized solution considering only one or two

of these goals. The authors apply the proposed model to single-machine continuous

production problems. It could be extended to multi-stage production lines. In

addition, authors also suggest extending this research to a production line with

uncertain parameters, such as uncertain processing times.

1.2.2 APP considering conventional energy

Aggregate production planning (APP) looks to determine optimum production

and workforce levels for each period over a planning horizon to satisfy usually

varying customers demands while minimizing costs (Cheraghalikhani et al., 2019).

APP is worked as the baseline for further formulating the master production

scheduling and planning for other production resources, such as capacity, raw

material, etc. An efficient and successful APP can maintain the target lead times in

a supply chain. A large amount of contributions in APP have been published in the

last four decades mostly focusing on APP where the input parameters, such as

product demands, are assumed deterministic. Some literature review works in APP

such as the ones in (Lai and Hwang, 1992), (Nam and Logendran, 1992),

(Cheraghalikhani et al., 2019) mention that main problems with applying stochastic
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models are lack of computational efficiency and inflexible probabilistic doctrines

which might not be able to model the real scenarios. Importantly, Cheraghalikhani

et al. (2019) mentions that attention to stochastic models have recently increased

and that no paper have considered multi-objective stochastic APP model.

Chaturvedi and Bandyopadhyay (2015) proposed a methodology that is

applicable to both aggregate planning of input material and APP. The authors also

calculated the production levels that gave the least variations among different

periods while satisfying the demands. The methodology proposed is a graphical

methodology based on the principles of Pinch Analysis for energy supply chain

planning to manage a production strategy considering supply and demand. This

methodology is very effective in identifying production bottlenecks, and it provides

an in-depth understanding of the overall APP problem. The authors also

demonstrated the applicability of the methodology to supply chains considering

energy through illustrative examples. They mathematically demonstrated that the

graphical representation of the proposed APP problem is equivalent to the

Euclidean shortest path problem in computational geometry.

Modarres and Izadpanahi (2016) considered that in energy-intensive

manufacturing plants, energy savings would be an essential element to consider in

the production planning. After reviewing the literature in APP, the authors found

that energy savings have not been integrated into production planning models. This

research paper presented a multi-product, multi-period APP model considering

energy planning, demand, and production capacity simultaneously. The authors

stated three objective functions, which minimize operational cost, energy cost and

carbon emission. Then the multi-objective model was transformed into a

single-objective model by applying a goal attainment technique. The authors

applied robust optimization to deal with uncertainties such as demand, production

cost, inventory cost, backorder cost, and energy specifications. Experimental results
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show that when the level of uncertainty is 30%, the service level of the robust

optimization model is 96%, whereas in the deterministic model is 81%. Besides, the

standard deviation of the robust optimization model is 105,681, whereas in the

deterministic model it is 252,767. In the numerical analysis, the robust optimization

model always performs better than the deterministic model. The authors also

addressed the limitations of using robust optimization by saying that it is very

conservative and can lead to the worst results in some cases. They mentioned that

stochastic optimization would be an alternative for dealing with the uncertainty in

this APP model.

Nour et al. (2017) presented an energy-based APP model for a porcelain

tableware manufacturing. They developed a MILP model to maximize the profit

while explicitly including energy cost as one of the cost elements. They presented a

case study of a manufacturer that exports most of its production from Egypt to

other countries. The factory has four production lines depending on the forming

operations, but authors only consider the press production line for experimental

analysis as 30% of the production comes from it. Experimental analysis shows that

the proposed model outperforms the cost and demand fulfillment of current

management planning practices. The total costs reduced by 23.2%, and demand

fulfillment improved by 96.2%. The authors also found that energy cost was high, as

it constitutes 17% of the total production cost. The authors apply the proposed

model to a single-product problem. The model can be extended to a multi-product

environment. Further research mentioned in this paper includes considering the

uncertainty of demand, including RE technologies, such as solar PV , WT, and

energy storage system (ESS).
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1.2.3 PP considering renewable energy

Jin et al. (2015) developed a deterministic multi-plant, production-inventory

model by directly injecting onsite and grid RE into the manufacturing facilities to

achieve low-carbon operations. The authors addressed that this work takes an early

step down the path to achieve low-carbon production through integrating onsite and

grid RE. They measured the manufacturing sustainability performance by

introducing the green energy coefficient (GEC). This research paper aims to

minimize the total manufacturing cost, including energy, by optimizing the

production, inventory, backorders, and energy consumption, and achieving the GEC

target in each period. Numerical experiments look to verify and validate the

proposed planning model at a moderate renewables penetration level. Numerical

experiments show that achieving a desirable level of GEC is feasible if the

manufacturer can mix onsite generation with grid renewable energy. The authors

also conclude that equipment cost and power intermittency are the main obstacles

that constraint the broader implementation of eco-friendly energy technology.

Future work includes extending the deterministic model to a stochastic

programming framework that accommodates uncertainties ranging from power

intermittency, product demand, yield variation, real-time electricity pricing, and

machine failures.

Golari et al. (2017) developed a multi-period, multistage stochastic

production-inventory planning model in a multi-plant manufacturing system

powered with onsite and grid RE. The model aims to minimize the production cost,

including energy, while determining the production quantity, inventory level, and

RE supply in each period. The authors’ methodology consisted of three steps. First,

they developed a deterministic planning model to attain the desired green energy

penetration level. Then they extended the deterministic model to a multistage
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stochastic optimization model that considered RE uncertainty.The last step used a

modified Benders Decomposition algorithm to search for the optimal production

schedule using a scenario tree. The authors classified the electric power into onsite

renewable energy, grid renewable energy, and grid conventional energy based on the

generation sources. The first stage decisions are production quality, inventory level.

and backorders and they occur before realizing RE scenarios. The authors

considered three recourse decisions on the remaining stages of the problem. They

are the consumption of onsite RE, grid RE or grid conventional energy. First stage

decisions and recourse decisions are found considering the realizations for onsite RE,

grid RE, and grid conventional energy. The authors also assessed the value of the

multistage stochastic programming (VMS) model solved. Experimental results show

that when the number of stages increased, the VMS also increased. The VMS for

the multiple plant problem with 3, 4, and 5 stages is 3,762, 10,324, and 35,490,

respectively. Experimental results also show that computational time significantly

reduced when authors applied the Benders decomposition algorithm instead of

solving the extensive formulation. Further work is on developing a model considering

uncertainty of wind and solar energy and ESS availability. Because the model in

this research did not consider ESS these factors need to be jointly investigated.

Golpîra et al. (2018) introduced Smart Energy-Efficient Production-Planning

(SEEPP) for a job shop manufacturing system in the presence of grid-connected

microgrid powered with wind power generation. The authors developed a novel

risk-based Robust Mixed Integer Linear Programming (RMILP) model to deal with

the unpredictability of wind speed and the uncertainties of demands. The

scenario-based conditional value at risk (CVaR) approach is employed to deal with

wind speed fluctuations as the main driver of uncertain power generation. The

authors addressed a more comprehensive range of RE characteristics such as main

grid, WT, combined heat and power (CHP) generator, thermal storage system
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(TSS), ESS, boiler, setup costs, processing costs, holding costs, uncertain demand,

and decision manager’s (DM) risk aversion level. They integrate the SG energy

generation-distribution management system into a multi-item, multi-period,

multi-resource, lot-sizing (LS) and scheduling problem in a manufacturing system

with job shop (JS) configuration. The authors also analyzed the performance of the

proposed SEEPP concept in terms of robustness, accuracy, and computational

efficiency. Numerical experiments show that the proposed SEEPP framework

reduces costs to at least 0.55% compared to the conventional method. Furthermore,

the DM’s risk aversion level significantly improves the model’s performance in terms

of accuracy, robustness, and computational efficiency. Authors suggest extending

the single-objective problem to multi-objective or multi-level programming to

provide a decentralized framework. In the proposed framework, it is assumed that

the demand for the products should be completely met and, therefore, any lost sale

or backorder costs are not considered in the model formulation. The authors

suggested that including other RE technologies such as fuel cell, PV, and

microturbine could improve the model’s accuracy and robustness.

Pham et al. (2019) developed an optimization framework consisting of two

stages for determining the optimal production scheduling and microgrid sizing in a

multi-facility production-logistics system considering variation in energy supply over

the time horizon. In the first stage, the authors solved a model to minimize the

total non-energy costs associated with production, backorders, and inventory in each

period. In the second stage, the authors developed a model that decarbonizes the

manufacturing, transportation, and warehousing operations by considering onsite

wind and solar energy. This model tests the economic feasibility of achieving

net-zero energy operations. Capacity factors, defined as the ratio of power generated

by a generation technology over its nominal power, are input to account for the

daily variations of energy supply at the factory and warehouses. The authors
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performed extensive climate data analytics to compute capacity factors for wind and

solar generation at multiple regions in the world. Experimental results show that

net-zero energy operation is cost-effective in geographical areas where WT capacity

factor is above 0.25 or the PV capacity factor above 0.45, respectively. Sensitivity

analyses show that net-zero energy operation is not competitive in high wind profile

areas if the battery cost is high (0.1 to 0.5M/MWh). In this situation, PV coupled

with battery system is always preferable. Results also show that an island microgrid

yields a higher levelized cost of energy (LCOE) than a grid-connected microgrid

with net metering. Future work is developing a multistage stochastic program to

simultaneously find the optimal production plan and the size of the generation

technologies considering uncertainties in product demand and energy supply.

Yu et al. (2019) presented a stochastic optimization approach for designing and

operating hybrid renewable energy systems (HRESs). They addressed that HRESs

have been introduced globally with the increasing emphasis on sustainable energy

and the environment. However, the main challenge to implement HRESs is the

inherent uncertainty in energy supply and demand. ESS can be a promising

alternative to minimize the difference between varying supply and demand. The

authors mentioned that a deterministic approach for designing the ESS is limited

because it captures a fixed snapshot of the varying system. They also said that the

ESS should be designed and operated based on the explicit consideration of

uncertainty. Alternatively, a stochastic approach is used for designing the HRESs.

The objective of the authors’ proposed model is to compute the optimal size of the

ESS and the detailed hourly operation plan to minimize the expected daily cost.

The authors first developed a two-stage stochastic programming model to design

and plan the HRESs. Then they transformed the stochastic model into a

deterministic MILP. The authors compared the stochastic and deterministic

approaches. They found that the deterministic approach was more expensive than
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the stochastic one. Experimental results showed that the HRESs design and

operation cost for the stochastic model ($ 6981/day) was at least 9.1% more

economical than the one for the deterministic model ($ 7680/day).

1.2.4 APP without renewable energy

Leung et al. (2006) proposed a two-stage stochastic programming approach for

the multi-site APP problem with uncertain final product demand. The approach

lets to determine optimal medium-term production and workforce plans. The

authors considered production plant preference selection as an additional constraint.

Leung et al. (2006) also included the shortage costs associated with the loss of

goodwill from unsatisfied orders as a penalty cost. The probability distribution of

the product demand and the impact of unit shortage costs on the total cost are

analyzed. First stage decision variables are regular and overtime production,

subcontracting quantity, required workforce level, workers hiring, and layoff level.

Decision variables for the second stage of the problem are inventory and backorder

quantities. The model’s parameters are regular time production cost, overtime

production cost, subcontracting cost, backorder cost, and sales volume. The authors

considered three months of projected data for experimenting with the proposed

model. Leung et al. (2006) considered four possible scenarios− boom, good, fair,

and poor with associated probabilities of 0.40, 0.25, 0.20 and 0.15, respectively.

Numerical analysis used a set of data from a multinational lingerie company in

Hong Kong to demonstrate the robustness and effectiveness of the proposed model.

The authors addressed that the selection of probability distribution of economic

scenarios could be further investigated. It is an issue the author of this thesis also

wants to analyze using design of experiments (DOE). The authors of the reviewed

work also concluded that sensitivity analysis on the cost parameters needs further

study. The authors did not present the value of the stochastic solution (VSS) to

15



assess the benefits of the proposed stochastic model. The paper presents the

extensive formulation of the two-stage stochastic program and does not research any

decomposition algorithm for the solution approach. Leung et al. (2006) also did not

consider RE. Nowadays, the adoption of WT, PV, and BS is happening in

manufacturing setting. Thus the simultaneous integration of these RE technologies

needs to be further investigated.

Aliev et al. (2007) mentioned that on developing APP models, practitioners

usually face uncertain market demands and capacities, imprecise process times, and

other factors introducing inherent difficulty to find the optimal solution. The

authors said that some researchers used fuzzy models to deal with the drawbacks of

deterministic models. However, they said that most of the existing fuzzy models

deal with separate APP without considering the interrelated nature of production

and distribution systems, possibly leading to inaccurate results. In their paper, the

authors developed a fuzzy integrated multi-period and multi-product production

and distribution model for a supply chain considering the interrelation between

production and distribution systems. The model developed had the production

units connected to the distribution centers and the distribution centers connected to

the customer zones. The authors considered fuzzy production, fuzzy capacity

constraints and fuzzy forecasted demand. Computational experiments compared the

proposed fuzzy integrated production-distribution aggregate planning (PDAP) and

the disintegrated approaches. The computational experiments show that the

proposed fuzzy integrated PDAP model gives a profit higher by 5% to 10%) when

the actual demand declines from the forecasted values or the capacities decrease

over the planning horizon. The experimental result also shows that the average

profit would increase by 9% to 11% if the decision-makers use fuzzy integrated

PDAP rather than a disintegrated PDAP model, where the production and

distribution processes are described as separate models with separate objective
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functions. The authors also mentioned that the traditional methods are heavy on

the computational aspects and need more time to find the optimal solution. Finally,

the authors used an evolutionary optimization technique named fuzzy genetic

approach for solving the model. The experimental results show that there would be

significant risk of large profit losses if demand and capacity change. The author of

this thesis thinks that a stochastic programming model could consider a large

number of scenarios for the uncertain parameters effectively and be compared to the

methods used in Aliev et al. (2007).

Chakrabortty et al. (2015) proposed a possibilistic environment-based particle

swarm optimization (PE-PSO) for APP. They used the linear reduction of inertia

weight. It is an important PSO parameter that permits modification of the velocity

and movement of the particles. Chakrabortty et al. (2015) considered a large

number of decision variables, such as regular time production, overtime production,

subcontracting level, backorder level, inventory, workforce hiring, and layoff level.

The authors also considered escalating factors in each of the cost categories over the

planning horizon. The authors addressed that the availability of raw materials and

other production planning parameters are uncertain because of their inherent

impreciseness. A fuzzy triangular probability distribution function copes with the

uncertainties in operating costs, demands, and capacity data. A case study is

performed to demonstrate the applicability of PE-PSO for solving APP problems.

In the computational study, the performance of PE-PSO is contrasted to the one of

a standard genetic algorithm (GA) and a fuzzy based genetic algorithm (FBGA).

Computational results showed that PE-PSO performs well in the comparison. The

proposed linear reduction of inertia weight approach PSO under a possibilistic

environment shows better results than the traditional PSO, standard GA and fuzzy

based GA. Moreover, the authors also addressed that if the objective function is

linear, then the linear programming approach would be better than the GA, FBGA,
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and PE-PSO.

Gholamian et al. (2016) presented a fuzzy multi-objective APP model for a

supply chain. Authors proposed an APP model for this situation considering

uncertain cost parameters and product demands. The proposed APP model is a

multi-objective, mixed-integer, nonlinear program with three conflicting objective

functions. The first one minimizes total costs, including those related to production,

purchased raw material, raw material inventory, labor, training, hiring, firing, final

inventory, shortages, and transportation. The second one considers customer

satisfaction by minimizing the sum of the maximum shortages among the customers

in all periods. This objective function is nonlinear, and authors linearize it with the

help of an auxiliary variable. The third one is to minimize the rate of changes in

human resources. The authors carried out a case study for testing the effectiveness

and validity of the presented model and used GAMS software to obtain the results.

Future works include the integration of strategic decisions and tactical or

operational decisions in the APP model. Furthermore, minimizing greenhouse gas

emissions and industrial waste would be another relevant objective function in the

multi-objective APP problem.

Djordjevic et al. (2019) proposed a fuzzy APP model considering the cycle time

of different production and warehousing operations as primary indicators of

performance. They considered uncertain parameters such as customer demand,

production output, production time, time safety stock stays in the warehouse, and

time spent preparing orders to deliver to the customers. The authors introduced

fuzzy sets using historical data recorded by the supplier and the experience of a

logistics management team. They found that most of the previous models minimize

operational costs in manufacturing, dealing with production, inventory, or delivery

costs. The authors addressed that some of the vital factors have been assumed or

theoretically defined and that most APP models have been validated theoretically
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without testing them in realistic environments. The authors stated that the existing

APP models do not consider the material flow time and that in some industrial

sectors, it has a substantial impact on manufacturer performance. They estimated

customer demand could be 10% higher or lower than the forecasted demand, based

on the subjective supplier′s management team experience. They used a fuzzy

triangular distribution for the total time required for production. They carried out

several experiments using real-world data collected by the supplier to analyze the

impact of uncertainty on APP. The novelty of this work is the introduction of a

fuzzy-based APP model to deal with the uncertainty in material flow time. The

authors also found that the developed fuzzy APP model can shorten the time

required to perform the production and warehouse operations and improve the

supplier’s performance.

The literature review presented in this sub-section showed that to deal with the

uncertainty in the parameters of APP problems one author developed a two-stage

stochastic programming model (Leung et al., 2006). The other authors develop

fuzzy models that in some occasions were solved heuristically. Though there are

many APP studies, there is still a research gap on addressing APP models with RE

and energy prosumers using stochastic programming. Factories can install onsite

RE to meet their energy demands and sell the surplus energy to main grid. Then, a

factory can act as a prosumer instead of just a consumer. A two-stage APP model

also can help the decision-maker to evaluate the supply chain more effectively.

Furthermore, considering re-manufacturing, emission of CO2, waste management,

and other environment-friendly factors can help to build a green APP model.

1.2.5 RE models considering energy prosumers

An energy prosumer is someone who can produce and consume energy.

Nowadays, prosumers are growing in the energy market as more people and
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organizations generate their power from distributed energy resources. The rise of

prosumers helps preserve the natural environment, drive economic development, and

sustain net-zero carbon manufacturing operations where all energy consumed or

demanded over the year offsets the RE generated. Zero-carbon manufacturing spans

a plethora of issues ranging from material and energy inputs, to the efficiency of

manufacturing facilities and supply chains (Ball et al., 2009).

Azar et al. (2018) presented a scalable framework to coordinate the net load

scheduling, sharing, and matching in a neighborhood of residential prosumers

connected to the grid. The authors addressed that prosumers and aggregator’s

objectives conflict with each other and that they need to be optimized

simultaneously. The aggregator intends to maximize the profit and minimize the

grid purchase while prosumers’ objective is to maximize the comfort level and

minimize the electricity cost. The authors model an efficient negotiation approach

in which the aggregator and the prosumers objectives are satisfied. They proposed a

framework for prosumers and the aggregator, which encompasses two separate

multi-objective mixed-integer optimization models. They employed GA to generate

a set of feasible non-dominated solutions to the optimization problem of each

prosumer and the aggregator. The authors addressed that the integration of RE

sources (RESs), such as PV and BS systems, to the smart grid would lead to

efficient and optimal management of peak demand reduction of the power grid.

They concluded that integrating RE to the smart grid would benefit prosumers by

achieving flexible utilization and electricity bill reduction. The authors presented an

automated negotiation approach embedded in the framework, enabling negotiators

to reactively transact on concurrent power and price using private utility functions

and preferences. To assess the performance of the framework, authors define the

following metrics: peak demand reduction (PDR), peak-to-average ratio (PAR),

average appliance operation delay (AOD), average flexibility usage rate (FUR),

20



average prosumer cost-benefit (PCB), average self-load-satisfaction rate (SLR), and

average self-sufficiency rate (SSR). The authors evaluated the framework’s

effectiveness by collecting economic and environmental assessment metrics through

various numerical simulations. Future work will focus on incorporating industrial

and commercial prosumers, and adding a negotiation level between various

aggregators.

Cui et al. (2018) proposed a two-stage energy sharing framework for a

prosumers microgrid by considering RE generation, load shifting, and multiple

storage units. In the first sage, to overcome the impact of uncertainties of market

prices and RE and consider the worst-case scenarios, the authors developed a robust

bilevel energy sharing model to get a robust energy sharing schedule for prosumers

and the retailer. They addressed that the bilevel optimization structure introduces

difficulties such as nonconvexity and disconnectedness. The robust optimization

model turned out to be surprisingly difficult to handle mathematically, Then it was

transformed into a single-level mixed-integer linear programming problem by using

proper linearization techniques. In the second stage, the authors developed an

online optimization model to optimize the hourly energy schedule. Simulation

results showed that the proposed mixed-integer linear programming model solves

quickly to implement it in real life. The authors also mentioned that stochastic

optimization would be an alternative method for dealing with uncertainties rather

than robust optimization.

Van Der Stelt et al. (2018) contributes to the topic of assessing the impact of

energy prosumers. The authors compared the technical and economic feasibility of

Household Energy Storage (HES) and Community Energy Storage (CES) from the

perspective of the end-consumer because they are two promising storage scenarios

for residential electricity prosumers. They addressed that the LCOE is used globally

as an index of battery systems’ economic performance and assumed that the feed-in
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pricing tariff will disappear in the long run. They developed mathematical

optimization models for both scenarios (HES and CES) that schedule the allocation

of energy from the PV system, battery, and main grid to satisfy the demands of the

households and minimize the amount of power taken from the grid over time. Then

authors formulated the proposed problem as a mixed-integer linear program (MILP)

to minimize the costs of power received from the grid. Numerical analysis was

performed by using real demand data and PV generation profiles of 39 households

in a pilot project initiated by the Distribution System Operator (DSO) Enexis in

Breda, Netherland. Numerical analysis showed that implementation of different ESS

reduces annual costs by 22% to 30% and increases the self-consumption of PV

power by 23% to 29%. The authors also performed sensitivity analysis which shows

how investment costs of ESS per kWh play an essential role in determining the

economic feasibility of HES and CES. They concluded that CES units might

perform better than HES on environmental indicators such as material usage and

CO2 production. Furthermore, CES systems are more reliable than HES systems if

considering the safety issues related to lithium-ion batteries.

Iria et al. (2018) addressed the issues of an inflexible strategy of an aggregator

of small prosumers participating in the energy market. To overcome the limitations

of inflexible strategy, the authors developed two optimization models. The first one

is a two-stage stochastic optimization model that minimizes aggregator’s net cost of

buying and selling energy at day-ahead and real-time market stages. Furthermore,

the authors also used scenario-based stochastic programming to deal with the

uncertainty of electricity demand, renewable generation, outdoor temperature, and

end-user behavior. Subsequently, the second optimization model addresses a

predictive control method to set the operation of flexible loads in real-time. The

authors performed a case study of 1000 small prosumers from the Iberian market.

They compared four day-ahead bidding strategies, two real-time control strategies,
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and combined day-ahead and real-time strategies. Numerical analysis showed that

the proposed strategies reduce the aggregator’s net cost by 14% compared to the

inflexible strategy. The authors also compare the smart strategy adopted by the

stochastic optimization model to a deterministic one. Numerical results show that

the deterministic strategy places higher demand and supply bids than the smart

strategy almost all days. In a nutshell, under uncertainty conditions, the smart

strategy outperforms all other strategies, such as deterministic, flexible, and

inflexible strategies.

Hussain et al. (2019) proposed a stochastic wind energy management model

with bi-directional energy flows between smart grid and wind energy prosumers

(WEPs). Furthermore, the authors also employed a non-linear stochastic price

model to tackle market price uncertainty by using effective service level agreement

(SLA). The authors also used wind energy estimation model within energy district

for prosumer energy generation. The model consists of several sub-models that

maximize the smart grid revenue (GR), prosumers energy surplus (PES) and

minimize the prosumers energy costs (PEC). The sub-models tackle the

uncertainties faced by fluctuations on the market price and the wind profile. To test

the effectiveness of the model authors performed a case study in Capano Bay,

Texas. The model is dealt with hourly parameters and solved by using two heuristic

algorithms: GA and PSO. In all three aspects: GR, PES and PEC GA performed

better than PSO. In this paper, the authors incorporated a wind estimation model

and a probabilistic price model into their non-linear stochastic optimization model.

This model is more versatile for modeling stochastic energy for the smart grid and

the wind energy district prosumers than prior works. The authors also suggested

investigating solar, biogas and hydel based WEPs in the near future. Finally, this

research work paves the way for developing an optimization model considering hydel

based WEPs in the broad area of smart grid (SG).
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Based on the energy prosumers literature review, most of the existing research

papers model RE projects for multiple residential customers. None of these papers

optimizes the production and the siting and sizing of the RE systems in

manufacturing facilities that become energy prosumers. This thesis looks for an

effective way to solve such optimization problem.

Table 1.1: Comparison of several key previous works and the proposed research

Problem & RE BS Energy Source Model Solution
author prosumers of uncertainty type method

APP in
Leung et al.
(2006)

N N N
Product
demand

Two stage
stochastic
program

Exact
solution
of the LP
extensive
formula-
tion

PP in
Golari et al.
(2017)

Y N N
RE supply
from WT and
PV

Multistage
stochastic
program

Modified
Benders
decom-
position

Lot-sizing &
scheduling
PP in
Golpîra
et al. (2018)

Y Y N
Product
demand and
wind profile

Robust
mixed-
integer
linear
program
(RMILP)

Exact
solution
of the
RMILP

APP in this
thesis work Y Y Y

Product
demand,
machine and
labor hours
capacity, and
RE supply
from WT and
PV with
varying CF

Two stage
stochastic
program

Exact
solution
of the LP
extensive
formula-
tion

Table 1.1 contrasts the previous works most closely related to this thesis
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considering the relevant aspects this research work contributes (i.e., problem type,

RE technologies studied, battery, energy prosumers, source of uncertainty modeled,

model type, and solution method). The abbreviations PP and APP are used for

production planning and aggregate production planning problems, respectively.

1.3 Estimation of a WT capacity factor

Typically, automated surface observing systems are installed at a height

hg = 10m above the ground. Using equation 1.1 below, the estimated wind speed

at any height h, notated as vh, can be computed as a function of the observed wind

speed (vg), the height (h), the typical height of the observing system (hg), and the

Hellman exponent (k), which considers seaside location, air stability and terrain

shape (Bañuelos-Ruedas et al., 2011). The range for this exponent is between

0.27-0.34 as stated by (Blackadar and Tennekes, 1968).

vh = vg

( h
hg

)k
, h ≥ hg (1.1)

Figure 1.1: A wind turbine power curve

The wind turbine (WT) power curve shown in Figure 1.1 shows the relation

between the wind speed, v, and the WT power output, P (Thiringer and Linders,

1993). The turbine power curve has four phases. The first one is the standby phase.
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In this phase the power is not generated because the wind speed is below the

minimum needed to operate the turbine (v < vc). The next phase is the nonlinear

production phase where (vc ≤ v ≤ vr). In this phase, power is directly proportional

to the rated power, Pm, and the cube of the wind speed, and inversely proportional

to the cube of the rated wind speed. In the rated power phase (vr ≤ v ≤ vs), the

power output is equal to the rated power. In the cut-off phase (v > vs), no power is

generated since the turbine needs to be shut down for protection purposes.

Equation 1.2 presents a cubic model used to determine a WT electric power Pw(v)

as a function of the wind speed.

Pw(v) =



0, if v < vc, v > vs

Pm(
v
vr
)3, if vc ≤ v ≤ vr

Pm, if vr ≤ v ≤ vs

(1.2)

The capacity factor (CF) of a WT, notated as λ, is the ratio of the power generated

by the WT and the rated peak power Pm. The CF assesses the utilization of the

WT. It is a fraction between zero and one that can be estimated using equation 1.3

when the wind speed is in the range vc ≤ v ≤ vr. If the wind speed is less than vc,

the capacity factor will be 0, and if the wind speed is higher than vr, the capacity

factor will be 1.

λ =
Pm(

v
vr
)3

Pm
(1.3)

1.4 Estimation of a solar PV capacity factor

The output energy of a PV system is a direct-current (DC) power. Under a

clear sky condition, the PV output in W/m2 can be precisely predicted using
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Hottel’s equation (Hottel, 1976). This equation uses multiple factors for DC power

output estimation, including panel orientation, tilt angle, date and local hour,

latitude, and weather conditions. According to Hottel’s equation, the total solar

irradiance at time t, denoted as Itotal(t), reaching the Earth’s surface comprises

three components as follows,

Itotal(t) = Id(t) + If (t) + Ir(t) (1.4)

In equation 1.4, Id(t) represents the direct beam from the sun at time t and is also

the primary energy source, If (t) is the solar energy that is collected through

diffusion, and Ir(t) is the reflected solar energy. Experiments show that If (t) is

about 10% of Id(t) while Ir(t) can be ignored due to its small contribution to PV

generation. Thus equation 1.4 can be simplified as

Itotal(t) ∼= Id(t) + 0.1Id(t) = 1.1Id(t) (1.5)

The following procedure four-step procedure can be used to compute PV capacity

factors. The procedure is based on the studies in Tao et al. (2010),Taboada et al.

(2012), and Villarreal et al. (2012). The details of each step are described below and

the notation used is presented in Table 5.1 in Appendix A.

Step 1: Compute the daily sunrise ωrise and sunset hour ωset perceived by the PV

panel as follows,

cos(−ωrise) = cos(ωset) = −tan(φ− β)tanδ (1.6)

δ = 0.40928sin

(
2π(d+ 284)

365

)
, d = 1, 2, ..., 365 (1.7)
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Note that φ and β are input parameters that represent the latitude and the PV tilt

angle, respectively. The solar declination angle for day d (d ∈ {1, 2, ..., 365}),

notated as δ, results from using equation 1.7.

Step 2: Compute the amount of solar irradiance incident on the PV surface. Under

the clear sky condition, the direct solar beam incident on the ground at time t in

day d can be estimated as follows,

Id(t) = 1370×
(
0.7(cosγ)−0.678

)(
1 + 0.034cos

(
2π(d− 4)

365

))
(1.8)

where

cosγ = cosδ(cosφ× cosω) + sinδsinφ (1.9)

Here γ represents the solar zenith angle. It depends on the solar declination angle δ,

the latitude φ, and solar hour ω. Since the PV tilt angle may not be equal to the

latitude, the actual solar irradiance incident on PV at time t in day d, denoted as

Ipv(t), is given as

Ipv(t) = Id(t)×
(
cosθ + 0.1×

(
1− β

φ

))
(1.10)

where,

cosθ = sinδsin(φ− β) + cosδcos(φ− β)cosω (1.11)

Note that θ is the PV incident angle that is dependent on δ, φ, β, α (i.e., surface

azimuth angle), and ω. Equation 1.11 has a term that depends on α dropped

because energy yield is maximum if this term becomes equal to zero. In the

Northern Hemisphere energy yield is maximum for a PV strictly oriented towards
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the South.

Step 3: Due to the weather uncertainty, the actual output of a PV system, denoted

as Ppv(t) at time t in day d is given as follows

Ppv(t) = WtηAIpv(t) [1− 0.005(T0 − 25)] (1.12)

Where,

Wt= random variable varying between zero and one representing the stochastic

weather at time t in day d. Thus, a snowy day has values for Wt equal to zero while

a clear sky day has Wt equal to 1.

η = PV efficiency.

A= PV size or area (m2).

T0= PV operating temperature (◦C)

Step 4: Compute the capacity factor using the following formula:

λPV =
1

PMax
pv T

T∑
t=1

Ppv(t) (1.13)

where PMax
pv and T are the rated or nominal PV system capacity and the total

number of generation hours, respectively. Equation 1.12 shows that it is preferable

to operate a PV at a low temperature because it can generate more power than at

any higher temperature given the same weather and solar irradiance. The four-step

procedure to compute the PV capacity factor presented above assumes that the PV

is located in the Northern hemisphere. The model is also applicable to the Southern

Hemisphere by replacing the latitude φ with −φ in all corresponding equations 1.6,

1.9, 1.10 and 1.11.
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1.5 Thesis goal and contributions

Onsite generation, which is also known as distributed generation (DG),

produces electricity by locally installing distributed energy resources (DER), such as

wind turbine (WT), solar photovoltaics (PV), diesel generator, biogas fuel cell,

combined heat and power, and battery storage system (BSS). A microgrid is a type

of DG system. It typically consists of WT, PV, fuel cells, micro-turbines, and diesel

engines (Jin et al., 2015). Onsite wind and solar generation reduce carbon emissions

by providing partial or full power to a factory or a warehouse for their daily

operations. Currently, large manufacturers are focused on developing onsite RE

generation to produce their own power and achieve net-zero carbon manufacturing

operations. Such trend soon will grow to include also medium-size manufacturers.

However, the literature review in (Cheraghalikhani et al., 2019) mentioned relevant

issues that research in APP has included but didn’t mention about using energy

from RE sources, a current critical issue manufacturing companies need to address

due to climate change.

The goal of this thesis is to solve a multi-period aggregate production planning

(APP) problem having four stochastic (i.e., uncertain) parameters: product

demand, labor and machine hours capacity, and RE supply, and demonstrate that is

is cost efficient to decarbonize manufacture, transportation and warehouse

operations. The problem setting consists of an industry developing its yearly APP

and considering the installation of microgrids coupled with wind turbines(WT), and

photovoltaics (PV), and battery systems (BS) for its manufacturing and warehouse

facilities. These facilities also can connect to the main grid as energy prosumers (i.e.

buyers of energy and sellers of RE) and sign in time-varying tariffs schemes, such as

time of use (TOU). The methodology researched in this thesis is two-stage

stochastic programming, which also involves the use of probability and statistics for
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estimating the model parameters and analysing the model results. The two-stage

stochastic APP models developed determine the optimum RE portfolio, generation

capacity, production plan, and machine and workforce levels that minimize the

company total expected operational cost. It is assumed that the company strives to

become a net-zero carbon manufacturing production facility. The APP models

consider uncertainty on the RE supply due to the intermittent wind and uncertain

weather conditions under the yearly horizon and balance the energy requirements

under two types of time granularity: daily and hourly.

Bakir and Byrne (1998) mentioned that uncertainty is one of the main

characteristics of discrete manufacturing systems. They indicated that most of the

uncertainties arise mainly from four factors: demand, processing times, workstations

failures and maintenance times, and cost. Consequently, considering those

uncertainties can make the APP models more realistic, whereas integrating the RE

aspect would accelerate the use of RE in manufacturing systems looking to achieve

net-zero carbon manufacturing operations.

This thesis work contributes to the relatively scarce literature on using

stochastic programming to solve APP problems by: (1) incorporating two sources of

RE (WT, PV), (2) considering battery systems (BS), energy prosumers, and time of

use (TOU) tariffs (3) demonstrating that two-stage stochastic programming is

suitable to solve large-scale APP problems, (4) exemplifying the use of big-data

analytics to determine values for the model parameters that reflect the actual

hour-to-hour variability on weather conditions at the cities studied, (5) assessing the

expected cost differences between solving deterministic vs stochastic models and (6)

measuring the benefit of modeling energy requirements under hourly time

granularity vs daily time granularity. Thus, this research work extends the ones in

Leung et al. (2006), Jin et al. (2015), Modarres and Izadpanahi (2016), Golari et al.

(2017), Golpîra et al. (2018), Pham et al. (2019) and Yu et al. (2019).
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1.6 Document organization

The remaining chapters in this thesis are organized as follows. Chapter 2

presents the two-stage stochastic APP model under daily granularity and the

numerical experimentation. Chapter 3 provides the model for the two-stage

stochastic APP model under hourly granularity and the numerical experimentation.

Chapter 4 presents a further extension of the developed two-stage APP model to

consider energy prosumers, time-of-use (TOU) energy tariffs, and hourly time

granularity. Chapter 5 contains the preliminary conclusions about this research, and

it mentions possible future work.
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2. APP CONSIDERING DAILY ENERGY REQUIREMENTS

Over the years researchers have increased the study of the effects of using

renewable energy (RE) sources, such as solar and wind power in manufacturing

industries. RE generation is more volatile than conventional sources because of its

dependence on weather. Active participation of energy prosumers adopting an

optimal portfolio of distributed energy resources in their microgrids can reduce the

volatility of RE generation and more importantly it guaranties that distributed

generation based on renewables is sustainable and mitigates energy shortage,

climate change, and poverty.

This chapter is organized as follows. Section 2.1 presents the aggregate

production planning (APP) problem researched and the research questions. Section

2.2 gives a background on the two-stage stochastic programming with recourse

method applied in this thesis work. Section 2.3 provides the mathematical

formulations for two APP model instances developed in this chapter. The model

instances are: (1) Island microgrid (IM) adopting battery storage (BS) and (2)

Prosumer microgrid adopting BS. The mathematical formulation presented for each

instance is the extensive formulation of the two-stage stochastic program with

recourse. Section 2.4 describes how uncertain product demand, labor hours capacity,

and machine hours capacity are represented in the models and it elaborates on the

procedures to compute the capacity factors (CF) for wind turbines (WT) and solar

photovoltaics (PV). Section 2.5 describes the numerical experiments. Sections 2.6

and 2.7 provide the computational results and the sensitivity analysis, respectively.
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2.1 Problem statement

The system researched resembles the one in Figure 2.1. The pictures in the

center of the figure show a manufacturing system consisting of a factory and a

warehouse. The factory use resources, such as raw materials, machines, labor, and

energy to produce different types of products. The finished goods are shipped from

factory to warehouse using electric vehicles (EV). The factory and the warehouse

will adopt onsite renewable energy (RE) through installing microgrids consisting of

wind turbines (WT) and solar photovoltaics (PV) to meet the energy demands and

become zero-carbon manufacturing facilities. Battery storage (BS) will be used for

Figure 2.1: Onsite microgrid install at factory and warehouse

storing RE on those days in which the total energy generated by the WT and PV is

greater than the needed one. The energy stored in BS can be used on days when the

onsite generation is insufficient for meeting the energy demand. Factories and

warehouses can be disconnected from the main grid (i.e., island) or connected to the

grid as energy prosumers able to buy energy or sell RE. The manufacturing system

could become net-zero carbon by having all energy consumed or demanded by the

facilities over the year offset with the RE generated.
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The problem this research work aims to solve is to simultaneously determine:

(1) the optimal sitting and sizing of the renewables, and (2) the minimum cost

production, machine and workforce schedules in the factory over multiple

production periods considering renewables volatility and the following parameters or

inputs as stochastic: final product demands, machine hours capacity, and labor

hours capacity. Because the manufacturing system also generates inventory, places

products in backorder, subcontracts, and transports product to the warehouse the

problem’s objective is to minimize the total cost incurred, which is comprised of the

following costs: energy, materials, regular time labor, labor hiring, labor layoff,

inventory, subcontracting, backorder, defective items, rectifying items, and

transportation costs. The product demands become stochastic due to changes in

economic conditions, customer preferences, innovation and competition among

others. The machine hours capacity in each period may be stochastic due to

machine breakdowns that lead to unplanned downtime. Machine failures halt

manufacturing operations and waste time, as well as money, due to a failure in

production (Radford, 2017). The labor hours capacity may vary due to learning

curve effect, labor skill, absenteeism, training, physical fatigue, disruption of work

rhythm etc.

This research work enhances the traditional scope of APP, which is mainly

concerned with finding optimum production and workforce levels to satisfy known

product demands without considering energy resources. Besides, this thesis work

mainly focuses on energy-intensive and labor-intensive manufacturing industries

(e.g., food, pulp and paper, iron and steel, nonmetallic minerals, nonferrous metals,

semiconductor, and garment industries).
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2.1.1 Research questions

The problem researched in this chapter assumes that the facilities balance the

energy required to operate or sell to the main grid with RE produced or stored and

energy purchased to the main grid on a daily basis. Keeping this assumption, the

research in this chapter aims to solve the following two questions:

• Is it possible to decarbonize the manufacturing operations and warehouse

facilities with RE integration?

• Is it feasible to integrate RE into manufacturing and warehouse operations

with affordable levelized cost of energy (LCOE)?

2.2 Methodology

The two-stage stochastic programming methodology is used to model APP

problem presented in the previous section. A stochastic program is a mathematical

program in which some of the parameters or input data are random, and this

uncertainty is explicitly included in the program through scenarios (Birge and

Louveaux, 2011; Gupta and Grossmann, 2011; Rardin, 1998). Thus, exact values for

some of the input data are unknown, but their probability distributions are known.

The inclusion of the probability distributions helps to choose the best values for the

decision variables in the mathematical program. Stochastic programs with recourse

model situations where decisions occur at the beginning of the planning horizon,

uncertain parameters reveal over time, and corrective actions happen as the

parameters’ uncertainty reveals. The pattern: decision, outcome, and corrective

action fits in the APP decision problem presented in the previous section. In

practice, most problems have some uncertain parameters at the time of decision

making. Tran and Smith (2019) mentioned that the uncertainty in energy loads and

power generation from renewable energy sources heavily affects the operating cost.
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2.2.1 APP modeled as a two-stage stochastic program

Figure 2.2 exemplifies in a graphical way the two-stage stochastic

programming approach for the APP problem researched in this thesis. The planning

horizon consists of 12 production periods (i.e., 12 months), and the first-stage

decisions occur before the first production period. These decisions include the size

of the WT, solar PV, and BS to install. Other first-stage decisions taken for the

entire period (i.e., 12 months) are the amount of product i to produce, subcontract,

have as defective, and get rectified. Also, the labor and machine hours required and

the hiring and layoff hours for the entire period are first-stage decision variables.

Figure 2.2 illustrates the manufacture of 2 products with random monthly

demands, low (L) or high (H), in each production period. The machine and labor

hours capacity in each production period are also stochastic and their outcomes may

be at any of 3 different settings, low (L), medium (M) and high (H). Besides, the

annual wind speed and weather conditions, given under a pre-specified time

granularity, vary and are represented through 3 different sets of data, labeled as 1,

2, 3. Each set has associated values for the WT and PV capacity factors. Thus the

exemplified problem has 5 stochastic parameters for each production period (i.e.,

month): demand of product 1, demand of product 2, machine hour capacity, labor

hour capacity, and vectors of WT and PV capacity factors. Once the first-stage

decisions are taken, outcomes for the 5 stochastic inputs will occur over the 12

months. In Figure 2.2, the possible outcomes defining a scenario are represented by

the vectors depicted above the arrows. For instance, (HHHH1)1, (HHHH1)2,

(HHHH1)3, ..., (HHHH1)12 represents the case in which the monthly demands for

both products are high over the 12 production periods, machine and labor hours

capacity are also high, and the WT and PV capacity factors correspond to the first

set of computed values. Similarly, (LLLL3)1, (LLLL3)2, (LLLL3)3, ..., (LLLL3)12
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represents the case in which monthly demands for both products are low over the 12

production periods, machine and labor hours capacity are also low, and the WT and

PV capacity factors correspond to the third set of computed values. It is assumed

that the way the outcomes realize for a particular production period replicates

exactly over the remaining periods. Thus, the exemplified APP has

(2× 2× 3× 3× 3) = 108 scenarios. If assuming the outcomes replicate in a different

way, the number of scenarios would be extremely large, (2× 2× 3× 3× 3)12 =

2.52×1024.

The second-stage starts as soon as a recourse action occurs. A recourse action would

be based only on the realized uncertainty. However, the final recourse action occurs

after the uncertainty of the last period (i.e., period twelve) is realized. In Figure

2.2, for each scenario, the last recourse actions defining the end of the second-stage

are represented by the ellipses occurring at the end of production period twelve.

Figure 2.2: Scenario tree for two-stage stochastic programming model

In the APP problem described in Section 2.1, some of the recourse actions after a

given scenario occurs are amount of each product to store in inventory, amount of
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each product to backorder and amount of energy to store daily in the BSS. Note

that a difference between two-stage stochastic programs and multi-stage stochastic

programs is that first-stage decisions (i.e. production, labor and machine hours in

all categories, siting and sizing of RE generation technologies, and BS capacity) are

not modified over the periods in the time horizon. This would be the case of a

manufacturing system in which it is costly to alter the production schedule or

undesirable to revisit the mentioned first-stage decisions several times during a year.

Furthermore, as mentioned in this section, the number of scenarios in the two-stage

stochastic APP approach may grow significantly. Thus, this research looks to

validate that the two-stage stochastic APP model is tractable with commercial

solvers and an efficient modeling approach to the researched problem.

2.3 Stochastic APP models

This section presents extensive formulations of the two-stage stochastic

programs that model two instances of the APP problem presented in Section 2.1.

Model 1 - Island microgrid with BS and daily granularity corresponds to the

instance in which the manufacturing system adopts RE, operates disconnected from

the main grid (i.e. island), uses battery system, and satisfies daily energy

requirements. Model 2 - Prosumer microgrid with BS and daily granularity

corresponds to the instance in which the manufacturing system works as a RE

prosumer and all the other problem characteristics are the same as listed in Model

1. Both models consider that the manufacturing system has a pre-specified

percentage of defective product and rework and it will be included in two

constraints of the models.

Table 2.1 provides the notation for the sets used in both models. Table 2.2 list the

decision variables and their units. Tables 2.3 to 2.4 provide the notation,

definition, and units for all the data or input parameter used in the models. The
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models are presented after the tables.

Table 2.1: Sets

Notation Description
I, T , J Set of products, production periods and days, respectively
G,S,K,N Set of generation technologies, scenarios, factories and warehouses

Table 2.2: Decision variables

Notation Description Unit
xikt Amount of product i produced at factory k in period t item
mikt Amount of product i defective at factory k in period t item
rikt Amount of product i rectified at factory k in period t item
lkt Labor hours kept at factory k in period t h/period
hkt,fkt Labor hours hired and layoff at factory k in period t h/period
wkt Regular machine hours at factory k in period t h/period
pkt,okt Idle and Overtime machine hour at factory k in period t h/period
P c
kg Capacity of generation technology g in factory k MW
P c
ng Capacity of generation technology g in warehouse n MW
Bc
k,Bc

n Battery capacity in factory k and warehouse n MWh/day

yints
Amount of inventory of product i stored at warehouse n
in period t under scenario s item

qikts, bikts
Amount of product i subcontracted and backordered at
factory k in period t under scenario s item

Bf
kjs,

Bf
njs

Energy stored daily in battery at factory k and warehouse
n at day j under scenario s MWh/day

Q−kjs,Q
−
njs,

Q+
kjs,Q

+
njs

Energy sold (spilled for Model 1) and bought from factory
k and warehouse n, at day j under scenario s MWh/day
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Table 2.3: Parameters

Notation Description Unit
cxit Materials cost for product i at period t $/item
cwit Transportation cost for product i at period t $/item
cqit Subcontracting cost for product i at period t $/item
cyit Inventory holding cost for product i at period t $/item
cbit Backorder cost for product i at period t $/item
cmit Defective cost for product i at period t $/item
crit Rectification cost for product i at period t $/item
clt Regular time labor hour cost at period t $/hour
cht Labor hiring hour cost at period t $/hour
cft Labor layoff hour cost at period t $/hour
φg Capital recovery factor of generation technology g N/A
φb Capital recovery factor of battery b N/A

cg
Penalty cost or tax incentive of generation technol-
ogy g $/MWh

bg
Operating and maintenance (O&M) cost of genera-
tion technology g $/MWh

ag Capacity cost for generation technology g $/MW
ab Capacity cost of battery b $/MWh

τgj
Number of generation hours in day j for generation
technology g h/day

τ ∗g
Total number of generation hours for generation
technology g over the entire production periods hour

exi
Energy consumed for producing one unit of product
i

MWh/item

efi Energy consumed for storing one unit of product i MWh/item
qv Electric vehicle energy intensity rate MWh/kg/km
p(s) Probability of scenario s N/A
dkn Distance between factory k and warehouse n km
β Number of daily trips trip/day
mv Vehicle self weight kg
wi Unit weight of product i kg/item
ai Unit labor hour required by product i hour/item
ui Unit machine hour required by product i hour/item
χ Number of hours in a day hour
δ Daily operating hours of warehouse or factory hour/day
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Table 2.4: Parameters continuation

Notation Description Unit
Lk Base electricity load of factory k MW
Ln Base electricity load of warehouse n MW
Bmax
k Maximum battery capacity at factory k MWh/day

Bmax
n Maximum battery capacity at warehouse n MWh/day
|Jt| Size of the set of days in period t day
|J | Number of days over the entire horizon day
u− Profit from selling spilled energy $/MWh
u+ Cost of buying energy $/MWh
α Percentage of allowable workforce variation %
ν Allowable defective percentage from production %

η
Allowable rectification percentage from defective
items produced %

mv Vehicle self weight kg
wi Unit weight of product i kg/item
ab Capacity cost of battery b $/MWh

Dikts
Demand of product i in factory k in period t under
scenario s item/period

Pmax
kg

Maximum capacity of generation technology g at
factory k MW

Pmax
ng

Maximum capacity of generation technology g at
warehouse n MW

λgkjs
Capacity factor for generation technology g in fac-
tory k in day j under scenario s N/A

λgnjs
Capacity factor for generation technology g in ware-
house n, in day j under scenario s N/A

δ Daily operating hours of warehouse or factory hour/day

Qmax
kjs

Maximum energy selling amount daily from factory
k at day j under scenario s MWh/day

Qmax
njs

Maximum energy selling amount daily from ware-
house n, at day j under scenario s MWh/day

MHmax
ts

Maximum machine capacity in period t under sce-
nario s hour/period

LHmax
ts

Maximum labor capacity in period t under scenario
s

hour/period

mmax
it Maximum defective amount of product i in period t item/period

WHmax
t Maximum inventory capacity in period t item/period
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2.3.1 Island microgrid with BS

Model 1 - Island microgrid with BS and daily granularity:

min z =
∑
i∈I

∑
k∈K

∑
t∈T

(cxit + cwit)xikt +
∑
i∈I

∑
k∈K

∑
t∈T

(cmitmikt + critrikt)+

∑
k∈K

∑
t∈T

(cllkt + chhkt + cffkt) +
T∑
t=1

∑
i∈I

∑
k∈K

∑
s∈S

p(s)(cbitbikts + cqitqikts)+

T∑
t=1

∑
i∈I

∑
n∈N

∑
s∈S

p(s)cyityints +
∑
k∈K

∑
g∈G

φgagP
c
kg +

∑
n∈N

∑
g∈G

φgagP
c
ng+

∑
k∈K

φbabB
c
k

χ
+
∑
n∈N

φbabB
c
n

χ
+
∑
k∈K

∑
g∈G

∑
s∈S

p(s)(bg − cg)τ ∗g (
∑
j∈J

λgkjs
|J |

)P c
kg+

∑
n∈N

∑
g∈G

∑
s∈S

p(s)(bg − cg)τ ∗g (
∑
j∈J

λgnjs
|J |

)P c
ng (2.1)

s.t.

yint−1 − yints + xikt + qikts − bikt−1 + bikts −mikt + rikt = Dikts

∀i ∈ I, t = 1,∀k ∈ K, ∀n ∈ N, ∀s ∈ S (2.2)

yint−1s − yints + xikt + qikts − bikt−1s + bikts −mikt + rikt = Dikts

∀i ∈ I,∀t ∈ T\{1},∀k ∈ K, ∀n ∈ N, ∀s ∈ S (2.3)∑
i∈I

(exi + qvdknwi)
xikt
|Jt|

+ δLk + qvβdknm
v +Bf

kjs −B
f
kj−1 +Q−kjs

=
∑
g∈G

τgjλgkjsP
c
kg

j = 1, t = 1,∀k ∈ K, ∀n ∈ N, ∀s ∈ S (2.4)∑
i∈I

(exi + qvdknwi)
xikt
|Jt|

+ δLk + qvβdknm
v +Bf

kjs −B
f
kj−1s +Q−kjs

=
∑
g∈G

τgjλgkjsP
c
kg

∀t ∈ T,∀j ∈ J\{1},∀k ∈ K, ∀n ∈ N, ∀s ∈ S (2.5)
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Model 1 - Island microgrid with BS and daily granularity continue

∑
i∈I

efi yints(

j −
t−1∑
v=1

|Jv|

|Jt|
) + δLn + qvβdnkm

v +Bf
njs −B

f
nj−1 +Q−njs

=
∑
g∈G

τgjλgnjsP
c
ng

j = 1, t = 1,∀k ∈ K, ∀n ∈ N,∀s ∈ S (2.6)

∑
i∈I

efi yints(

j −
t−1∑
v=1

|Jv|

|Jt|
) + δLn + qvβdnkm

v +Bf
njs −B

f
nj−1s +Q−njs

=
∑
g∈G

τgjλgnjsP
c
ng

∀t ∈ T,∀j ∈ J\{1},∀k ∈ K, ∀n ∈ N,∀s ∈ S (2.7)∑
i∈I

aixikt = lkt

∀k ∈ K, ∀t ∈ T, (2.8)

lkt ≤ LHmax
kts

∀k ∈ K, ∀s ∈ S,∀t ∈ T (2.9)

lkt = lkt−1 + hkt − fkt

∀k ∈ K, ∀t ∈ T (2.10)

hkt + fkt ≤ αlkt−1

∀k ∈ K, ∀t ∈ T (2.11)∑
i∈I

uixikt = wkt

∀k ∈ K, ∀t ∈ T (2.12)

wkt ≤MHmax
kts

∀k ∈ K, ∀s ∈ S,∀t ∈ T (2.13)
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Model 1 - Island microgrid with BS and daily granularity continue

wkt = wkt−1 + okt − pkt ∀k ∈ K, ∀t ∈ T (2.14)

νxikt = mikt ∀k ∈ K, ∀i ∈ I,∀t ∈ T (2.15)

ηmikt = rikt ∀k ∈ K, ∀i ∈ I,∀t ∈ T (2.16)

0 ≤ mikt − rikt ≤ mmax
ikt ∀i ∈ I,∀k ∈ K, ∀t ∈ T (2.17)∑

i∈I

yints ≤ WHmax
t ∀n ∈ N,∀s ∈ S,∀t ∈ T (2.18)

0 ≤ P c
kg ≤ Pmax

kg ∀k ∈ K, ∀g ∈ G (2.19)

0 ≤ P c
ng ≤ Pmax

ng ∀n ∈ N,∀g ∈ G (2.20)

Bc
k ≤ Bmax

k ∀k ∈ K (2.21)

Bc
n ≤ Bmax

n ∀n ∈ N (2.22)

0 ≤ Bf
kjs ≤ Bc

k ∀k ∈ K, ∀s ∈ S, j ∈ Jt (2.23)

0 ≤ Bf
njs ≤ Bc

n ∀n ∈ N,∀s ∈ S, j ∈ Jt (2.24)

Bf
k0 = Bc

k ∀k ∈ K, j = 0 (2.25)

Bf
n0 = Bc

n ∀n ∈ N, j = 0 (2.26)

xikt,mikt, rikt ≥ 0 ∀i ∈ I,∀k ∈ K, ∀t ∈ T (2.27)

hkt, fkt, lkt, wkt, pkt, okt ≥ 0 ∀k ∈ K, ∀t ∈ T (2.28)

bikts, qikts ≥ 0 ∀i ∈ I,∀k ∈ K, ∀t ∈ T,∀s ∈ S (2.29)

yints ≥ 0 ∀i ∈ I,∀n ∈ N,∀t ∈ T,∀s ∈ S (2.30)

Model 1 - IM with BS and daily granularity, the first-stage strategic decisions are

the size of the generation technologies at the factories and warehouses, (P c
kg and

P c
ng), and the BS to install at each factory and warehouse, (Bc

k and Bc
n). The

first-stage also has operational decisions to take for the twelve months time horizon.

They are the amount of finished product to produce (xikt), number of labor hours
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(lkt), labor hiring hours (hkt), labor layoff hours (fkt), regular time machine hours

(wkt), machine overtime (okt), and machine idletime (pkt). Recourse actions for each

scenario are subcontracting (qikts), inventory (yints), backorder of final product

(bikts), and daily energy spills in the factory and warehouse, (Q−kjs and Q
−
njs). The

stochastic parameters in the model are the product demand (Dikts), maximum

machine hour capacity (MHmax
kts ), maximum labor hour capacity ( LHmax

kts ), and the

capacity factors (λgkjs and λgnjs). The capacity factors (CF) capture the wind speed

and weather conditions at the geographical locations selected for the microgrid’s

installation. These CF affect the power output of the wind turbine (WT) and solar

photovoltaic (PV) generation technologies at factories and warehouses (P c
kg and

P c
ng). The objective function in equation 2.1 is to minimize the total expected cost

comprised of production and energy related costs. Over the planning horizon given

by the size of the set T , there is a cost to produce and transport product between

the factory and warehouse, classify product as defective and rectify part of it,

backorder, subcontract, store inventory in the warehouse, pay labor wages, and hire

and fire labor. There is also an annualized cost to install, operate and maintain the

RE technologies. Constraints 2.2 to 2.3 are the production-demand balance

equations for the first period and the remaining ones, respectively. They ensure that

the sum of produced, subcontracted and rectified product, inventory left from

previous period, and current amount of product put in backorder equals to the sum

of product demand, defective items, current inventory and backorder for previous

period. In a nutshell, these equations balance the flow between the total amount of

product going in and out in each production period. Constraints 2.4 to 2.5

represent the daily energy balance equations for the factory in the first production

period and the remaining ones, respectively. They show that in each day and

scenario, the sum of energy: (a) consumed by the factory in production and electric

vehicle transportation, (b) needed to satisfy a base load, (c) stored in the battery,
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and (d) spilled, if needed, must be equal to the energy generation in conjunction

with the energy stored in the battery from the previous day. Constraints 2.6 to 2.7

represent the daily energy balance equations for the warehouse in the first

production period and the remaining ones, respectively. They show that, in each

day and scenario, energy needed to: (a) store product in the warehouse, (b) send

vehicles back to the factories, (c) satisfy the warehouse base load, and (d) spilled, if

needed, must be equal to the energy generation in conjunction with the energy

stored in the battery from the previous day. Constraints 2.8 to 2.9 indicate that

the labor hours consumed to produce the products must be equal to the labor hours

adopted for each production period, which must not exceed the maximum hours of

labor capacity in each scenario. Constraints 2.10 to 2.11 update the work force

level in each period considering hiring and firing , and satisfy criteria regarding the

maximum amount of labor hired and fired in each period. Constraint 2.12

guarantees that the total machine hours consumed to produce the products must be

equal to the machine hours adopted in each production period. Constraint 2.13

requires that the adopted machine hours not exceed the maximum hours of machine

capacity available in each scenario. Constraint 2.14 updates the machine hours in

each period by adding the overtime hours and subtracting the downtime hours.

Constraints 2.15 to 2.16 define the amount of defective production and rectified

items. Constraint 2.17 limits the amount of defective product. Constraint 2.18

represents the inventory capacity constraint. Constraints 2.19 to 2.20 are bounds

to the technology generation capacity installed in the factory and warehouse,

respectively. Constraints 2.21 to 2.22 are bounds to the battery capacity installed

in the factory and warehouse, respectively. Constraints 2.23 to 2.24 ensure that the

level of energy in the battery does not exceed the battery capacity. Constraints 2.25

to 2.26 define initial conditions for the battery in the factory and warehouse,

respectively. Constraints 2.27 to 2.30 represent the sign constraints.
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2.3.2 Prosumer model

Model 2 - Prosumer microgrid with BS and daily granularity

min z =
∑
i∈I

∑
k∈K

∑
t∈T

(cxit + cwit)xikt +
∑
i∈I

∑
k∈K

∑
t∈T

(cmitmikt + critrikt)+

∑
k∈K

∑
t∈T

(cllkt + chhkt + cffkt) +
T∑
t=1

∑
i∈I

∑
k∈K

∑
s∈S

p(s)(cbitbikts + cqitqikts)+

T∑
t=1

∑
i∈I

∑
n∈N

∑
s∈S

p(s)cyityints +
∑
k∈K

∑
g∈G

φgagP
c
kg +

∑
n∈N

∑
g∈G

φgagP
c
ng+

∑
k∈K

φbabB
c
k

χ
+
∑
n∈N

φbabB
c
n

χ
+
∑
k∈K

∑
g∈G

∑
s∈S

p(s)(bg − cg)τ ∗g (
∑
j∈J

λgkjs
|J |

)P c
kg+

∑
n∈N

∑
g∈G

∑
s∈S

p(s)(bg − cg)τ ∗g (
∑
j∈J

λgnjs
|J |

)P c
ng −

∑
k∈K

∑
j∈J

∑
s∈S

p(s)u−
Q−kjs
χ

+

∑
k∈K

∑
j∈J

∑
s∈S

p(s)u+
Q+
kjs

χ
−
∑
n∈N

∑
j∈J

∑
s∈S

p(s)u−
Q−njs
χ

+

∑
n∈N

∑
j∈J

∑
s∈S

p(s)u+
Q+
njs

χ
(2.31)

s.t.

yint−1 − yints + xikt + qikts − bikt−1 + bikts −mikt + rikt = Dikts

∀i ∈ I, t = 1,∀k ∈ K, ∀n ∈ N (2.32)

yint−1s − yints + xikt + qikts − bikt−1s + bikts −mikt + rikt = Dikts

∀i ∈ I, t ∈ T\{1},∀k ∈ K, ∀n ∈ N, ∀,∀s ∈ S (2.33)∑
i∈I

(exi + qvdknwi)
xikt
|Jt|

+ δLk + qvβdknm
v +Bf

kjs −B
f
kj−1 +Q−kjs

=
∑
g∈G

τgjλgkjsP
c
kg +Q+

kjs

j = 1, t = 1,∀k ∈ K, ∀n ∈ N, ∀s ∈ S (2.34)
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Model 2 - Prosumer microgrid with BS and daily granularity continue

∑
i∈I

(exi + qvdknwi)
xikt
|Jt|

+ δLk + qvβdknm
v +Bf

kjs −B
f
kj−1s +Q−kjs

=
∑
g∈G

τgjλgkjsP
c
kg +Q+

kjs

∀t ∈ T,∀j ∈ J\{1},∀k ∈ K, ∀n ∈ N,∀s ∈ S (2.35)

∑
i∈I

efi yints(

j −
t−1∑
v=1

|Jv|

|Jt|
) + δLn + qvβdnkm

v +Bf
njs −B

f
nj−1 +Q−njs

=
∑
g∈G

τgjλgnjsP
c
ng +Q+

njs

j = 1, t = 1,∀k ∈ K, ∀n ∈ N,∀s ∈ S (2.36)

∑
i∈I

efi yints(

j −
t−1∑
v=1

|Jv|

|Jt|
) + δLn + qvβdnkm

v +Bf
njs −B

f
nj−1s +Q−njs

=
∑
g∈G

τgjλgnjsP
c
ng +Q+

njs

∀t ∈ T,∀j ∈ J\{1},∀k ∈ K, ∀n ∈ N,∀s ∈ S (2.37)∑
i∈I

aixikt = lkt

∀k ∈ K, ∀t ∈ T (2.38)

lkt ≤ LHmax
kts

∀k ∈ K, ∀s ∈ S,∀t ∈ T (2.39)

lkt = lkt−1 + hkt − fkt

∀k ∈ K, ∀t ∈ T (2.40)

hkt + fkt ≤ αlkt−1

∀k ∈ K, ∀t ∈ T (2.41)
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Model 2 - Prosumer microgrid with BS and daily granularity continue

∑
i∈I

uixikt = wkt ∀k ∈ K, ∀t ∈ T (2.42)

wkt ≤MHmax
kts ∀k ∈ K, ∀s ∈ S,∀t ∈ T (2.43)

wkt = wkt−1 + okt − pkt ∀k ∈ K, ∀t ∈ T (2.44)

νxikt = mikt ∀k ∈ K, ∀i ∈ I,∀t ∈ T (2.45)

ηmikt = rikt ∀k ∈ K, ∀i ∈ I,∀t ∈ T (2.46)

0 ≤ mikt − rikt ≤ mmax
ikt ∀i ∈ I,∀k ∈ K, ∀t ∈ T (2.47)∑

i∈I

yints ≤ WHmax
t ∀n ∈ N, ∀s ∈ S,∀t ∈ T (2.48)

0 ≤ P c
kg ≤ Pmax

kg ∀k ∈ K, ∀g ∈ G (2.49)

0 ≤ P c
ng ≤ Pmax

ng ∀n ∈ N,∀g ∈ G (2.50)

Bc
k ≤ Bmax

k ∀k ∈ K (2.51)

Bc
n ≤ Bmax

n ∀n ∈ N (2.52)

0 ≤ Bf
kjs ≤ Bc

k ∀k ∈ K, ∀s ∈ S, j ∈ Jt (2.53)

0 ≤ Bf
njs ≤ Bc

n ∀n ∈ N,∀s ∈ S, j ∈ Jt (2.54)

Bf
k0 = Bc

k ∀k ∈ K, j = 0 (2.55)

Bf
n0 = Bc

n ∀n ∈ N, j = 0 (2.56)

Q−kjs ≤ Qmax
kjs ∀k ∈ K, j ∈ J, s ∈ S (2.57)

Q−njs ≤ Qmax
njs ∀n ∈ K, j ∈ J, s ∈ S (2.58)

xikt,mikt, rikt ≥ 0 ∀i ∈ I,∀k ∈ K, ∀t ∈ T (2.59)

hkt, fkt, lkt, wkt, pkt ≥ 0 ∀k ∈ K, ∀t ∈ T (2.60)

bikts, qikts ≥ 0 ∀i ∈ I,∀k ∈ K, ∀t ∈ T,∀s ∈ S (2.61)

yints ≥ 0 ∀i ∈ I,∀n ∈ N, ∀t ∈ T,∀s ∈ S (2.62)
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The two-stage stochastic model, Model 2 - Prosumer microgrid with BS and daily

granularity, presented in this section is quite similar to the model presented in

Section 2.3.1. The only difference is that the model presented in this section

assumes the factory and warehouse are energy prosumers and it affects the objective

function and the energy balance constraints. The objective function in equation

2.30 minimizes production and energy related expected costs. Production related

terms included costs incurred to produce and transport product between the factory

and warehouse, classify product as defective and rectify part of it, backorder,

subcontract, store inventory in the warehouse, pay labor wages, and hire and fire

labor. There is also an annualized cost to install, operate and maintain the RE

technologies, acquire the BS, and buy energy to the grid over the time horizon given

by the size of the set T . The RE sold by the factory and warehouse to the grid is a

revenue in the objective function. The daily energy balance constraints for the

factory and warehouse are updated to include energy buying and RE selling terms.

Constraints 2.34 to 2.35, represent the daily energy balance equations for the

factory in the first day of the first production period and the remaining ones,

respectively. They show that in each day and scenario, the sum of energy: (a)

consumed by the factory in production and electric vehicle transportation, (b)

needed to satisfy a base load, (c) stored in the battery, and (d) sold must be equal

to the energy generation, in conjunction with the energy stored in the battery from

the previous day and the energy bought to the main grid. Constraints 2.36 to 2.37

represent the daily energy balance equations for the warehouse in the first day of

the first production period and the remaining ones, respectively. They show that, in

each day and scenario, the sum of energy to: (a) store product in the warehouse, (b)

send vehicles back to the factories, (c) satisfy the warehouse base load, (d) store in

the battery, and (d) sell to the grid must be equal to sum of RE generated, energy

bought to the main grid, and energy stored in the battery from the previous day.
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Constraints 2.57 to 2.58 require that the amount of energy sold by the factory and

warehouse does not exceed a predefined maximum capacity. Constraints 2.32 to

2.33, 2.38 to 2.56, and 2.59 to 2.62 are exactly the same ones already explained

for Model 1.

2.3.3 Models’ assumptions

The two-stage stochastic APP model instances presented in this chapter have

the following assumptions:

• Demand of products, machine hour capacity, labor hour capacity, wind profile

and weather conditions are uncertain over the next production periods but

historical data will permit to construct probability distributions to incorporate

them in the models as different scenarios

• Labor hours and machine hours capacity are just for the factories

• The company adopting the microgrid system has no budget limitations

• Loss of energy in battery is negligible and thus not relevant to incorporate in

the model

• The company is willing to engage in a feed-in tariff plan with the local utility

company

• In the prosumers model instance, there are no imitations on the amount of RE

prosumers can sell to the main grid

• Set-up costs are negligible and thus not relevant to incorporate in the model

• Trucks have enough capacity to transport all the products produced daily to

the warehouse using a single trip
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• All costs behave strictly linear

• If the number of types of products produced is large they can be grouped into

families

• Products are simple to manufacture and thus constraints related to labor and

machine hours are stated as if the production process is single-step.

2.4 Estimation of uncertain parameters in the models

2.4.1 Estimation of product demands

Model 1 - Island microgrid with BS and daily granularity and Model 2 -

Prosumer microgrid with BS and daily granularity are implemented assuming two

types of probability distributions (i.e discrete uniform and triangular) for the

product demand. For the triangular distribution three different types are studied:

(1) a distribution with mode value closely equal to the mean of the discrete uniform

distribution assumed, (2) a distribution with mode 10% higher than the one in (1),

and (3) a distribution with mode 10% lower the one in (1).

Table 2.5: Probability distributions for generating the product demands

Type Distribution Product Demand Comments
name

1 Discrete A U [500, 800] Mean 650 for product A
uniform B U [600, 900] Mean 750 for product B

2 Triangular A [500, 657, 800] Mode closely equal mean
B [600, 770, 900] in Type 1

3 Triangular A [500, 723, 800] Mode 10% higher than in
B [600, 847, 900] Type 2

4 Triangular A [500, 591, 800] Mode 10% lower than in
B [600, 693, 900] Type 2

Table 2.5 summarizes the product demand distributions implemented in the

53



models. For the Triangular distribution the 3 demand values provided in the table

are minimum, mode, and maximum.

2.4.2 Estimation of machine hours capacity

Machine failure and maintenance are examples of factors mainly responsible for

fluctuations on the machine hours capacity over the production periods. In this

thesis work, it is assumed that machine hours capacity may follow any of the three

discrete uniform distributions listed in Table 2.6.

Table 2.6: Probability distributions for generating the machine hours capacity

Case Hours
Low U [150,633, 152,714 ]
Medium U [152,855, 155,716 ]
High U [155,997, 159,258 ]

The three possible cases for the machine hours are included in the scenarios of the

two-stage APP models. This thesis work mainly focuses on energy intensive and

labor intensive manufacturing companies such as wafer manufacturing, air

separation process, and aluminum refinery. The parameter values for the machine

hours capacity are chosen in a way that resembles the ones in these industries.

2.4.3 Estimation of labor hours capacity

Most of the existing research papers consider the labor hour capacity as a fixed

parameter, but in practice, training, absenteeism, physical fatigue, etc. make the

labor hours capacity uncertain over the production periods. In this research work, it

is assumed that labor hours capacity may follow any of the three discrete uniform

distributions listed in Table 2.7. The three possible cases for the labor hours are

included in the scenarios of the two-stage APP models.
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Table 2.7: Discrete uniform distribution for generating labor hours capacity

Case Hours
Low U [46,004, 46,101 ]
Medium U [46,102, 46,307 ]
High U [46,314, 46,492 ]

2.4.4 Estimation of WT capacity factor

This thesis uses the models presented in the literature review, Section 1.3, to

estimate WT capacity factors (CF). Hourly wind speed data collected from

(WeatherUnderground, 2019) at hg = 10m in years 2013, 2014, and 2015, and

equations 1.1 and 1.2 are used to estimate a WT electric power. First, vh is

computed as in equation 1.1 at h = 80m height, as it is the typical tower height of

a modern WT system. The assumed value for the Hellman exponent or k-value is

0.27. Once vh is computed, its value is used in equation 1.2 to compute Pw(vh). The

assumed value for vr and Pm are 12m/s and 1MW, respectively. Then the WT

capacity factors are computed using equation 1.3.

Real wind speed data collected hourly from (WeatherUnderground, 2019) in years

2013, 2014, and 2015 for the cities of Phoenix and San Francisco was used to

compute three different sets of daily WT capacity factors (CF) for a lapse of 365

days (i.e., the whole year). The daily CF result from averaging the hourly capacity

factors computed for the cities of Phoenix and San Francisco using equation 1.3.

The CF computed used 26,280 observations (365 days*24 hours/day*3 sets) for the

wind speed.

Table 2.8 presents the annual mean, standard deviation, and median of the WT

capacity factors for San Francisco. Similarly, Table 2.9 presents the annual mean,

standard deviation and median of the WT capacity factors computed for Phoenix.

These global statistics indicate that mean WT capacity factor of San Francisco is
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Figure 2.3: San Francisco average daily WT capacity factor

Table 2.8: San Francisco wind turbine capacity factor analysis

Year Mean St. Deviation Median
2012 0.4348 0.2429 0.4122
2013 0.4175 0.2531 0.4299
2014 0.3904 0.2145 0.3736

approximately 172.51% higher than the mean WT capacity factor of Phoenix. From

table 2.8 it is evident that San Francisco has a stronger wind profile than Phoenix.

Figure 2.3 and Figure 2.4 show that, for any given day, there is variability in the

capacity factor computed for the years 2013, 2014, and 2015. By including these 3

sets of CF in the APP models this variability is captured, and it may produce more

robust optimal solutions for the models.
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Figure 2.4: Phoenix average daily WT capacity factor

Table 2.9: Phoenix WT capacity factor analysis

Year Mean St. Deviation Median
2013 0.1494 0.1054 0.1142
2014 0.1470 0.0979 0.1181
2015 0.1660 0.1148 0.1363

2.4.5 Estimation of solar PV capacity factor

This thesis uses the four-step procedure presented in the literature review,

Section 1.4, to estimate PV capacity factors (CF). The definitions for the

parameters and variables used in the four-step procedure to estimate the PV

capacity factors are listed in Appendix A Table 5.1. All the equations used for the

estimation of the PV capacity factors were presented in Section 1.4. In the

computations of the CF for the cities of San Francisco and Phoenix, PMax
PV was
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assumed 160W, the efficiency, η, as 0.2, the PV size, A, equal to 1m2, and the solar

PV operating temperature, T0, as 45◦C. Table 5.2 in Appendix A lists twenty

weather condition or states along with the corresponding value for Wt. Note that

Wt varies between 0 and 1 to mimic, for instance, a clear, a partly cloudy, or an

overcasting day (Lave and Kleissl, 2011).

Figure 2.5: San Francisco average daily PV capacity factor

Table 2.10: San Francisco PV capacity factor analysis

Year Mean St. Deviation Median
2012 0.2880 0.1395 0.2867
2013 0.3089 0.1340 0.3099
2014 0.2909 0.1215 0.3024

In this thesis work, hourly weather conditions were collected by undergraduate

students for the cities of San Francisco and Phoenix. The author of this thesis used
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Figure 2.6: Phoenix average daily PV capacity factor

Table 2.11: Phoenix PV capacity factor analysis

Year Mean St. Deviation Median
2013 0.3818 0.1630 0.3539
2014 0.3760 0.1587 0.3538
2015 0.3631 0.1555 0.3554

the four-step procedure described in Section 1.4 to compute the solar PV output

and the CF for San Francisco and Phoenix. The hourly CF were averaged to

compute daily CF and input them into the two-stage stochastic APP models. Table

5.18 to 5.38 in appendix represent the daily capacity factor of WT and PV of

different cities. Table 2.10 presents the mean, standard deviation and median of the

PV capacity factors computed for San Francisco for the years 2012, 2013, and 2014,

respectively. Similarly, Table 2.11 presents the mean, standard deviation, and

median of the PV capacity factors of Phoenix for the years 2013, 2014, and 2015,
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respectively. From the statistical analysis, it is found that mean PV capacity factor

of Phoenix is approximately 26.27% higher than the mean PV capacity factor of

San Francisco. Figures 2.5 and Figure 2.6 also show variability in the daily PV

capacity factors computed in years 2013, 2014, and 2015. By including these 3

scenarios for the PV capacity factors in the APP models, this variability is

captured, and it may produce the more robust optimal solutions for the models.

2.5 Numerical experiments single factory and single warehouse

2.5.1 Values for input parameters

In the numerical experiments with Model 1 - Island microgrid with BS and

daily granularity and Model 2 - Prosumer microgrid with BS and daily granularity,

the number of production periods, |T |, is assumed equal to 12, and each period, t,

corresponds to a month. The factory is located in San Francisco and the warehouse

is located in Phoenix. Both factory and warehouse run 24 hours a day. The total

number of different products to produce, |I|, is assumed equal to 2. Demands for

each product can be at any of two possible settings (i.e. low or high) over the time

horizon. Machine and labor hour capacity can be at any of 3 settings each, and the

are 3 sets of estimated WT and PV capacity factors. Then the total number of

scenarios in the models is (2× 2× 3× 3× 3) = 108 scenarios. The reader is

encouraged to go back to subsection 2.2.1 where the scenario approach implemented

in the APP models was explained. The products are labeled as Product A and

Product B. The demand values for products A and B are generated from uniform

probability distribution Type 1 provided in Section 2.4.1. Table 5.3 in Appendix B,

lists the set of actual values used for the demands for products A and B at the high

and low levels. The values used for the machine and labor hour parameters are

presented in Appendix B Table 5.10 to 5.13. All the values for the production and
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energy related parameters are listed in appendix B table 5.14 to 5.15. The sources

for assuming the values for RE related parameters are: capital cost of WT (Stehly

et al., 2019), PV (NREL, 2021), tax incentive (WINDExchange, 2021), energy

selling price (EIA, 2021), energy buying price (EIA, 2021), M&O costs of the WT,

PV and the capital recovery factors for WT, PV and BS (Anderson et al., 2017).

2.6 Computational results - base case

If the terms related to BS are dropped from the objective function and

constraints in Model 1 - Island microgrid with BS and daily granularity, it converts

to an island microgrid without BS. The computational results in this chapter, are

for Model 1 without BS and with BS, labeled shortly as IM without BS and IM

with BS, and for Model 2 - Prosumer microgrid with BS and daily granularity

labeled shortly as Prosumer. Model 1 cases help to assess the impacts of BS on

achieving a zero-carbon manufacturing environment. All models were coded using

the AMPL mathematical programming language and solved through the CPLEX

solver. The numerical experiments were conducted using a Dell Inspiron 13 7000

(1.80 GHz Intel(R) Core(TM) i5-8265U processor (quad core), 8GB RAM, 500GB

hard drive with a 64-bit windows 10 operating system). Computation times are

presented in Table 2.12 for different APP models presented in this chapter.

Table 2.12: Computational time comparison

APP Model AMPL user time (sec) Total solve time (sec)
IM without BS 7.94 31.28
IM with BS 11.53 103.67
Prosumer 13.77 113.91

The AMPL user time is defined as the user CPU seconds used by the AMPL process

itself (Fourer et al., 1990). The solve system time is defined as the operating system
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CPU seconds used by the latest solve command, including reading and writing files.

The solve user is the time spend by the latest process outside the operating system.

The total solve time (solve system time plus solve user time) seems a comprehensive

way to appraise the models computational time as seen from the definitions.

The three two-stage stochastic APP models used in the computational results are

summarized in Table 2.13 and Figure 2.7.

Table 2.13: Comparison of decision variables and constraints

APP Model Decision variables Constraints
IM without BS 86,122 1,609,031
IM with BS 164,750 1,688,093
Prosumer 243,590 1,766,933

Figure 2.7: Comparison of decision variables and constraints

Besides the total expected annual costs of the models, the levelized cost of energy

(LCOE) is also computed as a performance measure to compare the models. The

next subsection explains the way the LCOE is computed for each model.
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2.6.1 Levelized cost of energy (LCOE)

The levelized cost of energy is defined as the cost of producing one MWh of

energy. It is considered as the main indicator to decide if a renewable energy project

is attractive or not compared to the conventional sources of energy. Since the range

for the actual cost of traditional sources of energy is $50-$100 per MWh, the goal is

to obtain an LCOE value within this range. In this thesis work, the LCOE for

islanded microgrid operation is calculated with the following equation (Shea and

Ramgolam, 2019)

LCOE =
Total cost of energy production ($)
Total energy produced (MWh)

The total cost of energy production is the sum of installation, operation and

maintenance costs, and carbon credits for the renewables over the entire production

period. The total energy production is the total energy generated in the same

period by the renewables in factory and warehouse. In this thesis work, the

following equation is used to calculate the LCOE for the prosumer model:

LCOE =
Total cost of energy production + Total cost of energy purchased
Total energy produced (MWh) + Total energy purchased (MWh)

Table 2.14: Levelized cost of energy

APP Model LCOE Unit
IM without BS 48.37 $/MWh
IM with BS 64.91 $/MWh
Prosumer 36.40 $/MWh

Table 2.14 and Figure 2.8 present the resulting LCOE’s for the 3 implemented

models. The table shows that all models have LCOE’s below the $50-$100 cost

range for non-renewable energy. The table also shows that the prosumer model has
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the lowest LCOE followed by the island without BS. These LCOE results show that

for all the cases it is cheaper to operate a facility and the warehouse with RE

installation rather than using conventional energy from a main grid.

Figure 2.8: Comparison of levelized cost of energy

2.6.2 Energy production comparison

The total energy production (MWh/year) over the whole planning horizon for

all the models is shown in Figure 2.9. Table 2.15 shows that the prosumer model

produced less energy than the islanded microgrid cases. The main reason behind

producing less energy is that the prosumer model now can buy energy from the

outside energy sources. The amount of energy bought by the prosumer model at the

factory and warehouse is 2,639 MWh and 2,225 MWh respectively and it totals to

4,864 MWh.

2.6.3 Technology installation at factory

The RE technology installation (MW) at the San Francisco factory over the

whole planning horizon is shown in Table 2.16 and Figure 2.10. Though San
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Figure 2.9: Energy production comparison

Table 2.15: Energy production

Model Factory Warehouse Total
IM without BS 158,083 256,999 415,082
IM with BS 32,105 101,830 133,935
Prosumer 22,864 93,864 116,729

Francisco has better WT capacity factors than PV capacity factors, all cases install

more PV than WT capacity. The main reasons for this result are that there is a PV

has carbon incentive of $25/MWh and that the PV installation cost is less than the

WT installation cost (i.e., $1.0M vs. $1.5M).

Table 2.16: Technology installation at factory

Model WT PV Total
IM without BS 13.23 84.91 98.14
IM with BS 0 24.77 24.77
Prosumer 2.93 9.45 12.37
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Figure 2.10: Technology installation at factory

2.6.4 Technology installation at warehouse

The technology installation at Phoenix warehouse (MW) over the whole

planning horizon for all the cases is shown in Table 2.17 and Figure 2.11. Phoenix

has better PV capacity factors than WT capacity factors. PV installation cost is

less than WT installation cost and PV has carbon incentive. It explains PV is

prefered over WT in all models.

Table 2.17: Technology installation at warehouse

Model WT PV Total
IM without BS 19.72 140.77 160.49
IM with BS 0 62.22 62.22
Prosumer 0 57.35 57.35

2.6.5 Cost comparison

The annual expected cost comparison shows that the prosumer model also

outperforms the IM models. Detailed results are in Table 2.18 and Figure 2.12.
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Figure 2.11: Technology installation at warehouse

The IM APP model without BS has an expected cost of $28, 591, 046, IM APP

model with BS has an expected cost of $17, 131, 084 and the prosumer model has an

expected cost of $12, 727, 622. The energy cost of the prosumer model is $4, 429, 559

which is 35% of the total cost.The energy cost of the IM without BS model is

$20, 076, 339, which is 70% of the total cost. For the IM with BS, such cost is

$8, 693, 140, which is 50.74%. These numbers evidence the benefits of selling RE to

the main grid in the prosumer model.

Table 2.18: Annual cost breakdown

Cost element IM without BS IM with BS Prosumer
Production Cost $ 6,764,885 $ 6,795,653 $ 6,770,626
Energy Cost $ 20,076,339 $ 8,693,140 $ 4,429,559
Backorder Cost $ 273,444 $ 210,945 $ 214,238
Transportation Cost $ 394,505 $ 396,236 $ 400,950
Subcontracting Cost $ 1,080,260 $ 1,035,110 $ 912,105
Inventory Cost $ 1,613 $ 0 $ 144
Total $ 28,591,046 $ 17,131,084 $ 12,727,622
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Figure 2.12: Energy cost and total cost comparison

2.7 Sensitivity analysis using DOE

Sensitivity analysis determines how changes in model parameters impacts the

output of a model. An efficient way to perform sensitivity analysis is through

statistical design of experiments (DOE). In this thesis work, the author

experimented with the Model 2 - Prosumer microgrid with BS and daily granularity

by performing a full four-factorial design to determine the critical factors affecting

different model results. The factors considered in the DOE are type of demand

distribution for the products, PV installation cost, carbon incentives for PV, and

probability distribution for the 108 scenarios included in the two-stage stochastic

model. The number of levels for each of these factors mentioned is 4, 3, 3, and 3,

respectively. One replication or run was performed in each experimental condition.

Hence, the DOE required to solve the prosumer model 4× 3× 3× 3 = 108 times

and each run will be named a case in the reminder of this chapter. Note that it is

just as a coincidence that the number of scenarios included in the prosumer

stochastic model is 108 and the number of experimental runs in the DOE is also
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108. The levels selected for each of the factors included in the DOE are explained as

follows. The DOE considers the four types of product demand distribution: discrete

uniform and three different types of triangular distribution presented in Table 2.5

(Type 1, Type2, Type3, Type 4), three PV cost values ($1,000,000; $750,000 and

$500,000), three types of carbon incentive ($30/MWh, $25/MWh and $15/MWh)

and three levels for the probability distribution of the model scenarios (level 1, level

2, level 3). The levels for the mentioned factors are summarized in Appendix C

Table 5.16, and the actual values chosen for product demands under each type of

distribution are in Tables 5.3 to 5.5 in appendix B. The levels used for the last

factor result after classifying each of the 108 scenarios in the two-stage stochastic

model into 3 categories, labeled as low, medium and high. The classification is

based on the total sum of the rankings given to product demands, machine and

labor hours available in the scenario. A total of 22 scenarios were classified in the

low category, 64 in the medium one, and 22 in the high one. Level 1 is a case where

the sum of the probabilities for the low and high scenarios in the model is about

equal to the probability for the medium scenarios (i.e., L(0.2037), M (0.5926),

H(0.2037). Level 2 corresponds to a pessimistic case where the 22 scenarios falling

under the low category have about 80% probability of occurrence and the

probabilities for the other two scenarios is the same. Level 3 is an optimistic case

where the 22 scenarios falling under the high category have about 80% probability

of occurrence and the probabilities for the other two scenarios is the same. Note

that the base case analyzed in the previous subsection (i.e., 2.6) is Case 1. It has

product demand distribution as uniform or Type 1, PV cost $1,000,000, carbon

incentive $25, and probability scenario as Level 1: L(0.2037), M(0.5926), H(0.2037).
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2.7.1 Total cost comparison

Figure 2.13 shows that case 71 (probability distribution for scenarios: L 0.7995,

M 0.1088, H 0.0917, probability distribution for product demands: Product A

Tri(500,591,800) and Product B Tri(600,693,900), PV cost $500,000/MW and PV

incentives $30/MWh has the lowest expected cost ($1,957,550). This case has high

probabilities for the scenarios categorized as low, product demand follows triangular

distribution where the mode is 10% lower than the base case, the PV cost is at the

lowest value assumed and the PV costs incentives are at the highest value assumed.

Since some of these, especially the last two, are favorable conditions, it explains the

resulting low expected cost. On the other hand, case 81 (probability distribution for

Figure 2.13: Total cost comparison

scenarios: L 0.0917, M 0.1088, H 0.7995, probability distribution for product

demands: Product A Tri(500,723,800), Product B Tri(600,847,900), PV installation

cost $1,000,000/MW and PV incentives $15/MWh has the highest cost of

$14,175,300. This case has high probability for scenarios classified as high, higher

probability of high product demand since the product demand follows triangular

distribution where the mode is 10% higher than the base case, PV cost at the
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highest level of $1000,000 and carbon incentive at the lowest level of $15/MWh.

Thus, such case has multiple unfavorable conditions and it explains the resulting

high total cost. The increase in cost vs. the base case is 111.37% and vs. the case

with the lowest cost is 724.13%.

2.7.2 WT and PV installation at factory

Cases 75 to 84 in Figure 2.14 are the only ones where the factory install more

WT than PV. This result is explained because in those cases, the PV cost is at the

highest or costlier level of $1,000,000/MW and the carbon incentive for PV is at the

lowest level of $15/MWh. Because in San Francisco the average wind capacity

factor is higher than the average PV capacity factor, WT is attractive and also cost

effective for those cases. Among the cases that installed the largest amount of PV

are cases 25-35, in which PV installation cost is at the lowest level of $500,000/MW

and the PV incentives at the level of $25/MWh. Also, cases 61-72, in which PV

installation cost was also at the lowest level and the incentives are at the highest

level of $30/MWh.

Figure 2.14: WT and PV installation at factory
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2.7.3 WT and PV installation at warehouse

The warehouse is located at Phoenix where the PV capacity factor is stronger

than the WT capacity factor. PV installation cost is lower than the WT installation

cost and for PV there is also a carbon incentive. For all these favorable reasons, as

shown in Figure 2.15 the warehouse in all cases installs PV and no WT. Cases 13-36

have PV cost in medium-low values such as $750,000/MW or $500,000/MW and

high level of incentives for PV ($25/MWh). Since the warehouse is an energy

prosumer, in those cases there is an incentive to adopt higher PV capacity to sell

extra energy generated. A similar PV installation capacity is observed for cases

49-70 where PV cost is also $750,000/MW or $500,000/MW and the incentives for

PV are even higher ($30/MWh). However, this result may suggest that incentives

higher than $25/MWh do not motivate the warehouse to adopt more PV even if it

is an energy prosumer.

Figure 2.15: WT and PV installation at warehouse
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2.7.4 Battery storage installation at factory

From case 25 to 36, 50 to 72 and 98 to 107 in figure 2.16, the prosumer model

does not install BSS. In these cases the PV installation cost is 500,000 or 750,000

and the carbon incentive is $30. The high adoption of PV that Figure 2.14 in

Section 2.7.1 shows for these cases, suggest that the factory prefers PV as a buffer

instead of acquiring BS because of the high battery cost, the low installation cost of

PV, and the high PV incentives.

Figure 2.16: BS installation at factory

2.7.5 Battery storage installation at warehouse

From case 13 to 36, 50 to 72 and 98 to 107 in Figure 2.17, the prosumer APP

model does not install BSS. From this behavior it is observed that when the PV

installation cost is $500,000 the model does not install BS. Similar situation happen,

when the carbon incentive is greater than or equal to $25 and the PV installation

cost is $750,000.
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Figure 2.17: BS installation at warehouse

2.7.6 Amount of energy bought at factory

In Figure 2.18, from case 25 to 36 and 61 to 72, the amount of energy the

prosumer model buys at the factory is very close to zero.

Figure 2.18: Energy buying amount at factory

In these cases, the PV installation cost is $500,000 and the carbon incentive is

$25/MWh or $30/MW motivating the energy prosumer to adopt large amount PV
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to consume or sell and avoid to purchase energy. On the contrary, in case 81 the

model buy the highest amount of energy at the factory. In this case, the PV

installation cost is $1,000,000, the carbon incentive is $15, the product demand

follows triangular distribution where the mode is 10% more than the base case, and

the probability distribution for the scenarios in the model is skewed to the high side

(i.e. Low 0.0917, M 0.1088, H 0.7995). Thus, the factory is facing a highly energy

demanding situation where buying larger amounts of energy ends preferable to

increase the PV installation.

2.7.7 Energy selling amount from factory

In Figure 2.19 cases such as 26, 62 and 98 the APP model sell the largest

amounts of energy at the factory. In these cases, the PV cost is $500,000. The

product demand follows discrete uniform distribution and the probability

distribution for the scenarios in the models indicates that there is higher probability

for low product demand. All these conditions are very favorable to the prosumer

facility for selling energy.

Figure 2.19: Energy selling amount from factory
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2.7.8 Energy buying amount at warehouse

In figure 2.20 cases 13 to 36, 50 to 72 and 98 to 107, the APP model buy the

least energy at warehouse. In these cases, the PV installation cost is $500,000 and

$750,000 respectively and the carbon incentive is $25 and $30 respectively. Then the

warehouse has high incentive to adopt enough energy to consume and sell avoiding

the need to buy energy. On the contrary, in cases 74 to 83 the warehouse buy high

amounts of energy, especially in case 81. In cases 74 to 83, the PV installation cost is

high, $1,000,000, and the carbon incentive is low, $15. Thus the warehouse made a

conservative adoption of RE capacity that at occasions required energy purchasing.

Figure 2.20: Energy buying amount at warehouse

2.7.9 Energy selling amount from warehouse

The behaviour of Figure 2.21 is opposite to the one in the previous subsection,

energy buying from warehouse. In Figure 2.21, from case 13 to 36, 50 to 72 and 98

to 107, the APP model sells the highest amounts of RE. In these cases, the PV

installation costs and incentives favour the selling energy option. The PV

installation cost is $500,000 and $750,000 respectively and the carbon incentive is
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$25 and $30 respectively. In case 81, the model sells the lowest amount of energy. In

case 74 to 83, the PV installation cost is $1,000,000 and the carbon incentive is $15.

The high cost and low incentives for adopting more PV than needed precludes the

warehouse to buy extra RE capacity to sell energy.

Figure 2.21: Energy selling amount from warehouse

The computational results presented in Section 2.6 with Model 1 - Island

microgrid (IM) with and without BS, Model 2 - Prosumer microgrid with BS

demonstrated that the it is possible to decarbonize the exemplified manufacturing

system consisting of a single factory and a single warehouse. For all APP models, it

was proven that the facilities can balance the energy required to operate or sell to

the main grid with RE produced, RE stored or energy purchased to the main grid

on a daily basis. The LCOE values computed make feasible an affordable

integration of RE into the manufacturing system, particularly in Model 2 -

Prosumer microgrid with BS. The sensitivity analysis performed in Section 2.7 with

Model 2 - Prosumer microgrid with BS, particularly the one for expected total cost

presented in Figure 2.13, showed that departures of the base case assumed values for

product demand distribution type, probability distribution for the scenarios in the
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model, PV cost and PV incentives contributed to identify a high number of

additional cases or experimental conditions (i.e. 87/107 cases or 81.31%) where the

total cost of the system remained the same or lower.
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3. APP CONSIDERING HOURLY ENERGY REQUIREMENTS

In this chapter, the author of this thesis researches the case in which the

company must satisfy the energy requirements in an hourly basis (i.e. hourly time

granularity). For the daily time granularity considered in the previous chapter, the

capacity factors for WT and solar PV were averaged over 24 hours of a day.

However, solar PV generates zero electricity at night. Therefore, average daily

capacity factors do not accurately reflect the real conditions. Also, wind profile and

weather conditions are highly dynamic and stochastic, changing frequently over the

hours. Thus, an average daily capacity factor may distort the real stochastic pattern

of wind profile and weather conditions. Because one of the research question’s in

this thesis is the one regarding the manufacturing system’s feasibility to achieve zero

carbon manufacturing operations, developing models that include hourly capacity

factors is crucial. Furthermore, the results in the previous chapter have shown that

capacity factors variability have enormous impact on decision making regarding

capacity of the renewables and BS. Thus, the direct inclusion of hourly capacity

factors in the two-stage stochastic APP models helps the decision maker to install

more appropriate WT, PV, and BS capacity avoiding extra costs.

In this chapter, the problem is also enlarged to consider the company as one

with multiple facilities or a supply chain. By considering more geographical

locations or cities in the United States, it is possible to perform a wider evaluation

of the feasibility to replace the usage of fossil fuels and accelerates eco-friendly

operations to achieve net-zero carbon manufacturing operations. This chapter is

organized as follows. Section 3.1 presents the aggregate production planning (APP)

problem researched in this chapter and the related research questions. Section 3.2

provides the mathematical formulations for two APP model instances developed in
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this chapter. The model instances are: (1) Island microgrid (IM) adopting battery

storage (BS) to satisfy hourly energy requirements and (2) Prosumer microgrid

adopting BS to satisfy hourly energy requirements. The mathematical formulation

presented for each instance is the extensive formulation of the two-stage stochastic

program with recourse. Section 3.3 describes how the uncertain parameters product

demand, machine and labor hours capacity are represented and it elaborates on the

procedures to compute the capacity factors (CF) for wind turbines (WT) and solar

photovoltaics (PV). Section 3.4 provides details about the numerical experiment

and computational results. This chapter does not have a methodology section

because the stochastic programming methodology explained in Section 2.2 also

applies in this chapter.

3.1 Problem statement and research questions

The system researched in this chapter resembles to the one presented in

Figure 2.1 in the previous chapter, but there are two differences.

Figure 3.1: Onsite microgrid install at multiple factories and warehouses
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The first difference between the problem stated in this chapter and the one in the

previous one is the number of factories and warehouses considered. In this chapter,

three factories are located at San Francisco, Austin and Boston. Furthermore, three

warehouses are located at Phoenix, Dallas and New York. A second difference is the

time granularity considered for the satisfaction of energy requirements at the

facilities. In this chapter, the facilities satisfy the energy requirements hourly

instead of daily.

The research in this chapter aims to solve the following two questions:

• Given that the facilities must satisfy energy requirements on an hourly basis,

is it still possible to decarbonize the manufacturing operations and warehouse

facilities with RE integration?

• Given that the facilities must satisfy energy requirements on an hourly basis,

is it still feasible to integrate RE into manufacturing and warehouse

operations with affordable levelized cost of energy (LCOE)?

3.2 Two stage stochastic APP models

In this chapter, the two models with daily time granularity to satisfy energy

requirements presented in Chapter 2 transform into models with hourly time

granularity regarding energy requirements. A new set labeled as H is included to

represent the hours of the year. Most of the decision variables and parameters in

the new models are same as the ones in the daily models. Additional notation or

modified descriptions for the decision variables and parameters are listed in Tables

3.1 and 3.2. The models are presented after the tables.
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3.2.1 Decision variables of the APP models

Table 3.1: Decision variables

Notation Description Unit

Q−kjhs
Energy sold (spilled for Model 1) from factory k at
day j in hour h under scenario s MWh/hour

Q−njhs
Energy sold (spilled for Model 1) from warehouse n
at day j in hour h under scenario s MWh/hour

Q+
kjhs

Energy bought from the grid at factory k at day j
in hour h under scenario s MWh/hour

Q+
njhs

Energy bought from the grid at warehouse n at day
j in hour h under scenario s MWh/hour

Bf
kjhs

Energy stored daily in battery at factory k at day j
in hour h under scenario s MWh/hour

Bf
njhs

Energy stored daily in battery at warehouse n at
day j in hour h under scenario s MWh/hour

3.2.2 Constraints of the APP models

Table 3.2: Parameters

Notation Description Unit

τgjh
Number of generation hours in day j in hour h for
generation technology g hour/day

λ−gjhks
Capacity factor for generation technology g in fac-
tory k in day j and hour h under scenario s N/A

λ−gjhns
Capacity factor for generation technology g in ware-
house n in day j and hour h under scenario s N/A

u− Profit from selling spilled energy $/MWh
u+ Cost of buying energy from main grid $/MWh
βh Number of trips in specific hour h trip/hour
ξ Daily operating hours of factory or warehouse hour/day
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3.2.3 Island microgrid with BS

Model 3 - Island microgrid with BS and hourly granularity:

min Z =
∑
i∈I

∑
k∈K

∑
t∈T

(cxit + cwit)xikt +
∑
i∈I

∑
k∈K

∑
t∈T

(cmitmikt + critrikt)+

∑
k∈K

∑
t∈T

(cllkt + chhkt + cffkt) +
T∑
t=1

∑
i∈I

∑
k∈K

∑
s∈S

p(s)(cbitbikts + cqitqikts)+

T∑
t=1

∑
i∈I

∑
n∈N

∑
s∈S

p(s)cyityints +
∑
k∈K

∑
g∈G

φgagP
c
kg +

∑
n∈N

∑
g∈G

φgagP
c
ng+

∑
k∈K

φbabB
c
k +

∑
n∈N

φbabB
c
n +

∑
k∈K

∑
g∈G

∑
s∈S

p(s)(bg − cg)(
∑
h∈H

λgjhks
|H|

)P c
kg+

∑
n∈N

∑
g∈G

∑
s∈S

p(s)(bg − cg)(
∑
h∈H

λgjhns
|H|

)P c
ng (3.1)

s.t.

yint−1 − yints + xikt + qikts − bikt−1 + bikts −mikt + rikt = Dikts

∀i ∈ I, t = 1,∀k ∈ K, ∀n ∈ N, ∀s ∈ S (3.2)

yint−1s − yints + xikt + qikts − bikt−1s + bikts −mikt + rikt = Dikts

∀i ∈ I,∀t ∈ T\{1},∀k ∈ K, ∀n ∈ N, ∀, ∀s ∈ S (3.3)∑
i∈I

(exi + qvdknwi)
xikt
ξ|Jt|

+ Lk + qvβhdknm
v +Bf

kjhs −B
f
kjh−1 +Q−kjhs

=
∑
g∈G

λgjhksP
c
kg

j = 1, h = 1, t = 1, ∀k ∈ K, ∀n ∈ N, ∀s ∈ S (3.4)∑
i∈I

(exi + qvdknwi)
xikt
ξ|Jt|

+ Lk + qvβhdknm
v +Bf

kjhs −B
f
kjh−1s +Q−kjhs

=
∑
g∈G

λgjhksP
c
kg

∀t ∈ T,∀j ∈ J,∀h ∈ H\{1},∀k ∈ K, ∀n ∈ N,∀s ∈ S (3.5)
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Model 3 - Island microgrid with BS and hourly granularity continue

∑
i∈I

efi yints(

h−
t−1∑
v=1

|Jvδ|

|Jt|δ
) + Ln + qvβhdnkm

v +Bf
njhs −B

f
njh−1 +Q−njhs

=
∑
g∈G

λgjhnsP
c
ng

j = 1, h = 1, t = 1,∀k ∈ K, ∀n ∈ N,∀s ∈ S (3.6)

∑
i∈I

efi yints(

h−
t−1∑
v=1

|Jvδ|

|Jt|δ
) + Ln + qvβhdnkm

v +Bf
njhs −B

f
njh−1s +Q−njhs

=
∑
g∈G

λgjhnsP
c
ng

∀t ∈ T,∀j ∈ J,∀h ∈ H\{1},∀k ∈ K, ∀n ∈ N,∀s ∈ S (3.7)∑
i∈I

aixikt = lkt

∀k ∈ K, ∀t ∈ T (3.8)

lkt ≤ LHmax
kts

∀k ∈ K, ∀t ∈ T,∀s ∈ S (3.9)

lkt = lkt−1 + hkt − fkt

∀k ∈ K, ∀t ∈ T (3.10)

hkt + fkt ≤ αlkt−1

∀k ∈ K, ∀t ∈ T (3.11)∑
i∈I

uixikt = wkt

∀k ∈ K, ∀t ∈ T (3.12)

wkt ≤MHmax
kts

∀k ∈ K, ∀t ∈ T,∀s ∈ S (3.13)
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Model 3 - Island microgrid with BS and hourly granularity continue

wkt = wkt−1 + okt − pkt ∀k ∈ K, ∀t ∈ T (3.14)

νxikt = mikt ∀k ∈ K, ∀i ∈ I,∀t ∈ T (3.15)

ηmikt = rikt ∀k ∈ K, ∀i ∈ I,∀t ∈ T (3.16)

0 ≤ mikt − rikt ≤ mmax
ikt ∀i ∈ I,∀k ∈ K, ∀t ∈ T (3.17)∑

i∈I

yints ≤ WHmax
t ∀n ∈ N, ∀t ∈ T,∀s ∈ S (3.18)

0 ≤ P c
kg ≤ Pmax

kg ∀k ∈ K, ∀g ∈ G (3.19)

0 ≤ P c
ng ≤ Pmax

ng ∀n ∈ N,∀g ∈ G (3.20)

Bc
k ≤ Bmax

k ∀k ∈ K (3.21)

Bc
n ≤ Bmax

n ∀n ∈ N (3.22)

0 ≤ Bf
kjhs ≤ Bc

k ∀k ∈ K, ∀s ∈ S, j ∈ Jt, h ∈ H (3.23)

0 ≤ Bf
njhs ≤ Bc

n ∀n ∈ N,∀s ∈ S, j ∈ Jt, h ∈ H (3.24)

Bf
k0 = Bc

k ∀k ∈ K, j = 0 (3.25)

Bf
n0 = Bc

n ∀n ∈ N, j = 0 (3.26)

Q−kjhs ≤ Qmax
kjhs ∀k ∈ K, j ∈ J, h ∈ H, s ∈ S (3.27)

Q−njhs ≤ Qmax
njhs ∀n ∈ K, j ∈ J, h ∈ H, s ∈ S (3.28)

xikt,mikt, rikt ≥ 0 ∀i ∈ I,∀k ∈ K, ∀t ∈ T (3.29)

hkt, fkt, lkt, wkt, pkt ≥ 0 ∀k ∈ K, ∀t ∈ T (3.30)

bikts, qikts ≥ 0 ∀i ∈ I,∀k ∈ K, ∀t ∈ T,∀s ∈ S (3.31)

yints ≥ 0 ∀i ∈ I,∀n ∈ N, ∀t ∈ T,∀s ∈ S (3.32)

The explanation of the objective function and constraints for the Model 3 - Island

microgrid with BS and hourly granularity presented above is exactly the same as the
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one provided for the IM Model 1 in the previous chapter. However, in the objective

function of Model 3, the subscript used in the sum involving the parameters λgjhks

and λgjhns changes because now the time granularity is hourly. Also, the subscript h

is added in the constraints that balance the energy requirements in the factory and

warehouse (i.e., constraints 3.4, 3.5, 3.6 and 3.7) to consider that the energy is

balanced at every hour of the entire time horizon (i.e., year).

3.2.4 Prosumer without TOU

Model 4 - Prosumer microgrid with BS, without TOU, and hourly

granularity:

min Z =
∑
i∈I

∑
k∈K

∑
t∈T

(cxit + cwit)xikt +
∑
i∈I

∑
k∈K

∑
t∈T

(cmitmikt + critrikt)+

∑
k∈K

∑
t∈T

(cllkt + chhkt + cffkt) +
T∑
t=1

∑
i∈I

∑
k∈K

∑
s∈S

p(s)(cbitbikts + cqitqikts)+

T∑
t=1

∑
i∈I

∑
n∈N

∑
s∈S

p(s)cyityints +
∑
k∈K

∑
g∈G

φgagP
c
kg +

∑
n∈N

∑
g∈G

φgagP
c
ng+

∑
k∈K

φbabB
c
k +

∑
n∈N

φbabB
c
n +

∑
k∈K

∑
g∈G

∑
s∈S

p(s)(bg − cg)(
∑
h∈H

λgjhks
|H|

)P c
kg+

∑
n∈N

∑
g∈G

∑
s∈S

p(s)(bg − cg)(
∑
h∈H

λgjhns
|H|

)P c
ng −

∑
k∈K

∑
j∈J

∑
h∈H

∑
s∈S

p(s)u−Q−kjhs+

∑
k∈K

∑
j∈J

∑
h∈H

∑
s∈S

p(s)u+Q+
kjhs −

∑
n∈N

∑
j∈J

∑
h∈H

∑
s∈S

p(s)u−Q−njhs+

∑
n∈N

∑
j∈J

∑
h∈H

∑
s∈S

p(s)u+Q+
njhs (3.33)

s.t.

yint−1 − yints + xikt + qikts − bikt−1 + bikts −mikt + rikt = Dikts

∀i ∈ I, t = 1, ∀k ∈ K, ∀n ∈ N, ∀s ∈ S (3.34)
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Model 4 - Prosumer microgrid with BS, without TOU, and hourly

granularity continue

yint−1s − yints + xikt + qikts − bikt−1s + bikts −mikt + rikt = Dikts

∀i ∈ I,∀t ∈ T\{1},∀k ∈ K, ∀n ∈ N,∀,∀s ∈ S (3.35)∑
i∈I

(exi + qvdknwi)
xikt
ξ|Jt|

+ Lk + qvβhdknm
v +Bf

kjhs −B
f
kjh−1 +Q−kjhs

=
∑
g∈G

λgjhksP
c
kg +Q+

kjhs

j = 1, h = 1, t = 1,∀k ∈ K, ∀n ∈ N,∀s ∈ S (3.36)∑
i∈I

(exi + qvdknwi)
xikt
ξ|Jt|

+ Lk + qvβhdknm
v +Bf

kjhs −B
f
kjh−1s +Q−kjhs

=
∑
g∈G

λgjhksP
c
kg +Q+

kjhs

∀t ∈ T,∀j ∈ J,∀h ∈ H\{1},∀k ∈ K, ∀n ∈ N,∀s ∈ S (3.37)

∑
i∈I

efi yints(

h−
t−1∑
v=1

|Jvδ|

|Jt|δ
) + Ln + qvβhdnkm

v +Bf
njhs −B

f
njh−1 +Q−njhs

=
∑
g∈G

λgjhnsP
c
ng +Q+

njhs

j = 1, h = 1, t = 1,∀k ∈ K, ∀n ∈ N,∀s ∈ S (3.38)

∑
i∈I

efi yints(

h−
t−1∑
v=1

|Jvδ|

|Jt|δ
) + Ln + qvβhdnkm

v +Bf
njhs −B

f
njh−1s +Q−njhs

=
∑
g∈G

λgjhnsP
c
ng +Q+

njhs

∀t ∈ T,∀j ∈ J,∀h ∈ H\{1},∀k ∈ K, ∀n ∈ N,∀s ∈ S (3.39)∑
i∈I

aixikt = lkt

∀k ∈ K, ∀t ∈ T (3.40)

87



Model 4 - Prosumer microgrid with BS, without TOU, and hourly

granularity continue

lkt ≤ LHmax
kts ∀k ∈ K, ∀t ∈ T,∀s ∈ S (3.41)

lkt = lkt−1 + hkt − fkt ∀k ∈ K, ∀t ∈ T (3.42)

hkt + fkt ≤ αlkt−1 ∀k ∈ K, ∀t ∈ T (3.43)∑
i∈I

uixikt = wkt ∀k ∈ K, ∀t ∈ T (3.44)

wkt ≤MHmax
kts ∀k ∈ K, ∀t ∈ T,∀s ∈ S (3.45)

wkt = wkt−1 + okt − pkt ∀k ∈ K, ∀t ∈ T (3.46)

νxikt = mikt ∀k ∈ K, ∀i ∈ I,∀t ∈ T (3.47)

ηmikt = rikt ∀k ∈ K, ∀i ∈ I,∀t ∈ T (3.48)

0 ≤ mikt − rikt ≤ mmax
ikt ∀i ∈ I,∀k ∈ K, ∀t ∈ T (3.49)∑

i∈I

yints ≤ WHmax
t ∀n ∈ N, ∀t ∈ T,∀s ∈ S (3.50)

0 ≤ P c
kg ≤ Pmax

kg ∀k ∈ K, ∀g ∈ G (3.51)

0 ≤ P c
ng ≤ Pmax

ng ∀n ∈ N, ∀g ∈ G (3.52)

Bc
k ≤ Bmax

k ∀k ∈ K (3.53)

Bc
n ≤ Bmax

n ∀n ∈ N (3.54)

0 ≤ Bf
kjhs ≤ Bc

k ∀k ∈ K, ∀s ∈ S, j ∈ Jt, h ∈ H (3.55)

0 ≤ Bf
njhs ≤ Bc

n ∀n ∈ N, ∀s ∈ S, j ∈ Jt, h ∈ H (3.56)

Bf
k0 = Bc

k ∀k ∈ K, j = 0 (3.57)

Bf
n0 = Bc

n ∀n ∈ N, j = 0 (3.58)

Q−kjhs ≤ Qmax
kjhs ∀k ∈ K, j ∈ J, h ∈ H, s ∈ S (3.59)

Q−njhs ≤ Qmax
njhs ∀n ∈ K, j ∈ J, h ∈ H, s ∈ S (3.60)
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Model 4 - Prosumer microgrid with BS, without TOU, and hourly

granularity continue

xikt,mikt, rikt ≥ 0 ∀i ∈ I,∀k ∈ K, ∀t ∈ T (3.61)

hkt, fkt, lkt, wkt, pkt ≥ 0 ∀k ∈ K, ∀t ∈ T (3.62)

bikts, qikts ≥ 0 ∀i ∈ I,∀k ∈ K, ∀t ∈ T,∀s ∈ S (3.63)

yints ≥ 0 ∀i ∈ I,∀n ∈ N, ∀t ∈ T,∀s ∈ S (3.64)

The explanation of the objective function and constraints for the Model 4 -

Prosumer microgrid with BS, whithout TOU, and hourly granularity presented

above is exactly the same as the one provided for Model 2 - Prosumer microgrid

with BS and daily granularity in the previous chapter. However, in the objective

function of Model 4, the subscript used in the sum involving the parameters λgjhks

and λgjhns changes because now the time granularity is hourly. Also, the subscript h

is added in the constraints that balance the energy requirements in the factory and

warehouse (i.e., constraints 3.36, 3.37, 3.38 and 3.39) to consider that the energy

is balanced at every hour of the entire time horizon (i.e., year).

3.2.5 Model assumptions

The two-stage stochastic APP models presented in this chapter share the same

assumptions provided in Section 2.3.3 in the previous chapter. Note that models in

Chapters 2 and 3 are assuming that the company adopting the microgrids is not

under a time of use (TOU) energy rate plan with the utility company. Besides, in

this chapter it is assumed that the assignment of factories to warehouses is

pre-determined. It means such transportation problem has been solved previously.
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3.3 Estimation of uncertain parameters

3.3.1 Estimation of product demands

For the implementation of the hourly models presented in this chapter, the

total number of factories, k, is assumed equal to 3. and the total number of

warehouses n, is assumed equal to 3. The total number of different products to

produce I, is assumed equal to 2. The number of production periods T , is assumed

equal to 12, and each period t corresponds to a month. Discrete uniform

distribution is assumed for the products’ demand as listed in table 3.3.

Table 3.3: Distribution of product demands for different factories

Product San Francisco Austin Boston
1 U [500, 800] U [450, 550] U [550, 650]
2 U [600, 900] U [695, 810] U [750, 850]

3.3.2 Estimation of machine hours capacity

In this chapter, it is assumed that machine hours capacity at the factories may

follow any of the three discrete uniform distributions listed in Table 3.4. These

three possible cases for the distribution of the machine hours capacity are included

in the scenarios of Models 3 and 4 presented in this chapter.

Table 3.4: Distribution of machine hours capacity for different factories

Case San Francisco Austin Dallas
Low U [150,633, 152,714 ] U [150,000, 152,700 ] U [151,000, 153,700 ]
Medium U [152,855, 155,716 ] U [150,250, 150,500 ] U [153,720, 155,800 ]
High U [155,997, 159,258 ] U [150,480, 151,000 ] U [156,270, 160,450 ]
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3.3.3 Estimation of labor hours capacity

In this chapter, it is assumed that labor hour capacity at the factories may

follow any of the three discrete uniform distributions listed in Table 3.5. The three

possible cases for the labor hour capacity are included in the scenarios of Models 3

and 4 presented in this chapter.

Table 3.5: Distribution of machine hours capacity for different factories

Case San Francisco Austin Dallas
Low U [46000, 46100 ] U [46100, 46275 ] U [46200, 46350 ]
Medium U [46102, 46308 ] U [46275, 46425 ] U [46375, 46555 ]
High U [46310, 46500 ] U [46450, 46600 ] U [46560, 46700 ]

3.3.4 Estimation of Austin WT capacity factor

The author of this thesis used the models presented in the literature review,

Section 1.3, to estimate WT capacity factors (CF) to input to the models in this

chapter. The estimation procedure is the same as explained in Section 2.4.4 in the

previous chapter.

Table 3.6: Austin WT capacity factor analysis

City Year Mean St. Deviation Median
Austin 2013 0.3196 0.2032 0.2581

2014 0.3525 0.1974 0.3047
2015 0.3007 0.1904 0.2387

Real wind speed data collected hourly in different years for Austin

(WeatherUnderground, 2019) was used to compute three different sets of hourly WT

capacity factors (CF) for a lapse of 8760 hours (i.e. the whole year). In the

computations, Equation 1.3 and 26,280 observations (365 days*24 hours/day*3
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Figure 3.2: Austin average daily WT capacity factor

sets) for the wind speed are used. Table 3.6 presents the annual statistics (i.e.,

mean, standard deviation, and median ) and Figure 3.2 represents the graphical

representation of the WT capacity factors of Austin.

3.3.5 Estimation of Boston WT capacity factor

Real wind speed data collected hourly in different years for Boston

(WeatherUnderground, 2019) was used to compute three different sets of hourly WT

capacity factors (CF) for a lapse of 8760 hours (i.e. the whole year). The CF

computed for Boston used equation 1.3 and 26,280 observations (365 days*24

hours/day*3 sets) for the wind speed. Table 3.7 presents the annual statistics (i.e.,

mean, standard deviation, and median) and Figure 3.3 represents the graphical

representation of the WT capacity factors of Boston.
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Table 3.7: Boston WT capacity factor analysis

City Year Mean St. Deviation Median
Boston 2013 0.4028 0.2444 0.3507

2014 0.3956 0.2333 0.3443
2015 0.4124 0.2260 0.3591

Figure 3.3: Boston average daily WT capacity factor

3.3.6 Estimation of Dallas WT capacity factor

Real wind speed data collected hourly in different years for Dallas

(WeatherUnderground, 2019) was used to compute three different sets of hourly WT

capacity factors (CF) for a lapse of 8760 hours (i.e. the whole year). The three sets

of CF computed for Dallas used equation 1.3 and 26,280 observations (365 days*24

hours/day*3 sets) for the wind speed. Table 3.8 presents the annual statistics (i.e.,

mean, standard deviation, and median) and Figure 3.4 represents the graphical
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representation of the WT capacity factor of Dallas.

Table 3.8: Dallas WT capacity factor analysis

City Year Mean St. Deviation Median
Dallas 2013 0.4297 0.2577 0.3805

2014 0.4632 0.2527 0.4263
2015 0.3869 0.2295 0.3323

Figure 3.4: Dallas average daily WT capacity factor

3.3.7 Estimation of New York WT capacity factor

Real wind speed data collected hourly in different years for New York

(WeatherUnderground, 2019) was used to compute three different sets of hourly WT

capacity factors (CF) for a lapse of 8760 hours (i.e. the whole year). For the

computations equation 1.3. and 26,280 observations (365 days*24 hours/day*3
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sets) for the wind speed were used. Table 3.9 presents the annual statistics (i.e.,

mean, standard deviation and median) and Figure 3.5 represents the graphical

representation of the WT capacity factors of New York.

Table 3.9: New York WT capacity factor analysis

City Year Mean St. Deviation Median
New York 2013 0.4777 0.2361 0.4407

2014 0.4530 0.2404 0.3964
2015 0.4515 0.2299 0.4195

Figure 3.5: New York average daily WT capacity factor

3.3.8 Estimation of Austin solar PV capacity factor

The author of this thesis used again the four-step procedure presented in the

literature review, Section 1.4, to estimate PV capacity factors (CF). The definitions
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for the parameters and variables used in the four-step procedure to estimate the PV

capacity factors are listed in Appendix A Table 5.1. All the equations used for the

estimation of the PV capacity factors were presented in Section 1.4. In the

computations of the CF, PMax
pv was assumed 160W, the efficiency, η, as 0.2, the PV

size, A, equal to 1m2, and the solar PV operating temperature, T0, as 45◦C. Table

5.2 in Appendix A lists twenty weather condition or states along with the

corresponding value for Wt. Note that Wt varies between 0 and 1 to mimic, for

instance, a clear, a partly cloudy, or an overcasting day (Lave and Kleissl, 2011).

Real weather conditions data collected hourly in different years for Austin

(WeatherUnderground, 2019) was used to compute three different sets of hourly

solar PV capacity factors (CF) for a lapse of 8760 hours (i.e. the whole year). The

three different sets CF for Austin were computed using equation 1.13 and 26,280

observations (365 days*24 hours/day*3 sets) for the weather conditions. Table 3.10

presents the yearly statistics (i.e., mean, standard deviation, and median) and

Figure 3.6 represents the graphical representation of the solar PV capacity factors

of Austin.

Table 3.10: Austin solar PV capacity factor analysis

City Year Mean St. Deviation Median
Austin 2013 0.3273 0.1606 0.3263

2014 0.2941 0.1534 0.2790
2015 0.2766 0.1450 0.2742

3.3.9 Estimation of Boston solar PV capacity factor

Real weather conditions data collected hourly in different years for Boston

(WeatherUnderground, 2019) was used to compute three different sets of hourly

solar PV capacity factors (CF) for a lapse of 8760 hours (i.e. the whole year). The
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Figure 3.6: Austin average daily PV capacity factor

CF were computed using equation 1.13 and 26,280 observations (365 days*24

hours/day*3 sets) for the weather conditions. Table 3.11 presents the yearly

statistics (i.e., mean, standard deviation, and median) and Figure 3.7 represents

the graphical representation of the solar PV capacity factors of Boston.

Table 3.11: Boston solar PV capacity factor analysis

City Year Mean St. Deviation Median
Boston 2013 0.2453 0.1398 0.2276

2014 0.2582 0.1578 0.2364
2015 0.2618 0.1586 0.2319
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Figure 3.7: Boston average daily PV capacity factor

3.3.10 Estimation of Dallas solar PV capacity factor

Real weather conditions data collected hourly in different years for Dallas was

used to compute three different sets of hourly solar PV capacity factors (CF) for a

lapse of 8760 hours (i.e. the whole year). The CF were computed using equation

1.13 and 26,280 observations (365 days*24 hours/day*3 sets) for the weather

conditions.

Table 3.12: Dallas solar PV capacity factor analysis

City Year Mean St. Deviation Median
Dallas 2013 0.2922 0.1503 0.2767

2014 0.2671 0.1414 0.2339
2015 0.2609 0.1264 0.2478

Table 3.12 presents the yearly statistics (i.e., mean, standard deviation, and
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median) and Figure 3.8 represents the graphical representation of the solar PV

capacity factors of Dallas.

Figure 3.8: Dallas average daily PV capacity factor

3.3.11 Estimation of New York solar PV capacity factor

Real weather conditions data collected hourly in different years for New York

(WeatherUnderground, 2019) was used to compute three different sets of hourly

solar PV capacity factors (CF) for a lapse of 8760 hours (i.e. the whole year). The

CF computed used equation 1.13 and 26,280 observations (365 days*24

hours/day*3 sets) for the weather conditions. Table 3.13 presents the yearly

statistics (i.e., mean, standard deviation, and median) and Figure 3.9 represents

the graphical representation of the solar PV capacity factors of New York.

All the figures presented in this section show that, for any given day, there is

variability in the CF computed for the years 2013, 2014, and 2015. By including
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Table 3.13: New York solar PV capacity factor analysis

City Year Mean St. Deviation Median
New York 2013 0.2277 0.1152 0.2105

2014 0.2309 0.1304 0.2009
2015 0.2328 0.1232 0.2077

Figure 3.9: New York average daily PV capacity factor

these 3 sets of CF in the APP models, this variability is captured and it may

produce more robust optimal solutions for the models.

Wind and solar generation can be classified into three categories: low if CF < 0.20,

medium if 0.2 ≤ CF < 0.40, and high if CF ≥ 0.40. Table 3.14 summarizes the

climate statistics of the six cities selected for the research presented in this chapter.

The statistics used all the CF computed for the years 2013 to 2015. The table

indicates that all cities selected in this research, except Phoenix, have WT average

capacity factors in the medium or high category. Besides, all cities have average PV
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Table 3.14: Average capacity factor of WT and PV of six US cities

City WT CF CF category PV CF CF category
San Francisco 0.41 High 0.29 Medium
Austin 0.32 Medium 0.30 Medium
Boston 0.40 High 0.25 Medium
Phoenix 0.15 Low 0.37 Medium
Dallas 0.43 High 0.27 Medium
New York 0.46 High 0.23 Medium

Table 3.15: Median and standard deviation of WT and PV CF of six US cities

City WT CF PV CF
Median St. Dev Median St. Dev

San Francisco 0.405 0.237 0.300 0.132
Austin 0.267 0.197 0.293 0.153
Boston 0.351 0.235 0.232 0.152
Phoenix 0.123 0.106 0.354 0.159
Dallas 0.380 0.247 0.253 0.139
New York 0.419 0.235 0.206 0.123

capacity factors in the medium category. Capacity factors for can be found in

Appendix B. New York city hourly WT capacity factor figure can be found in

Appendix B Figure 5.1.

3.4 Computational results - base case

The information provided in Section 2.5.1 in previous chapter regarding values

for input parameters is also valid for this chapter. In the numerical experiments

performed with the models in this chapter, demands for each of the two products

(i.e., A and B) can be at any of two possible settings (i.e. low or high) over the time

horizon. Machine and labor hour capacity can be at any of 3 settings each, and the

are 3 sets of WT and PV capacity factors. Then the total number of scenarios in
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the models is (2× 2× 3× 3× 3) = 108 scenarios. The demand values for products

A and B are generated from the probability distributions provided in Section 3.3.1.

Tables 5.3 and 5.4 in Appendix B, list the set of actual values used for the demands

for products A and B at the high and low levels. The values used for the machine

and labor hour capacities in the model’s scenarios are presented in Appendix B

Table 5.10 to 5.13. All the values for the production and energy related parameters

are listed in Appendix B table 5.14 to 5.15. The sources for assuming the values for

RE related parameters are: capital cost of WT (Stehly et al., 2019), PV (NREL,

2021), tax incentive (WINDExchange, 2021), energy selling price (EIA, 2021),

energy buying price (EIA, 2021), M&O costs of the WT, PV and the capital

recovery factors for WT, PV and BS (Anderson et al., 2017).

The computational results in this chapter, are for Model 3 Island microgrid

(IM) with BS and hourly granularity , labeled shortly as IM with BS, and for Model

4 - Prosumer microgrid with BS and hourly granularity, labeled shortly as

Prosumer. The models were coded using the AMPL mathematical programming

language and solved through the CPLEX solver. Table 3.16 presents the number of

decision variables and constraints in each model. Because the models have a large

number of decision variables and constraints it was necessary to run them in the

Texas State University large memory nodes (1.5TB) in the LEAP cluster (LEAP,

2021). The LEAP Dell PowerEdge C6320 Cluster is configured with 120 compute

nodes, each with 28 CPU cores via two (14-core) 2.4 GHz E5-2680v4 Intel Xeon

(Broadwell) processors having 128 GB of memory and 400 GB of SSD storage per

node (LEAP, 2021). Additionally, LEAP features two large memory (1.5 TB) nodes

with 72 CPU cores via four(18-core) 2.4 GHz E7-8867 v4 Intel Xeon (Broadwell)

processors. (LEAP, 2021). It was also necessary to follow the procedure for dealing

with insufficient memory to run the CPLEX solver in AMPL available in "AMPL

software website" (AMPL, 2021). The procedure decouples the three following
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steps: (1) generation of .nl file by AMPL, (2) solution of the model in .nl format by

CPLEX, and (3) translation of the solution file generated by CPLEX using AMPL.

Table 3.16: Comparison of decision variables and constraints

Model - Decision Constraints
hourly granularity variables
IM with BS 11,376,738 120,956,094
Prosumer 17,053,218 126,632,574

Figure 3.10: Decision variables and constraints

Besides the total expected annual costs of the models, the levelized cost of energy

(LCOE) is also computed as a performance measure to compare the models. The

way the LCOE is computed for Models 3 and 4 in this chapter is the same as for the

island model and prosumer models in the previous chapter. It was explained in the

numerical results, section 2.6 in previous chapter and thus this explanation is

dropped from this chapter.

103



3.4.1 Levelized cost of energy (LCOE)

The levelized cost of energy is defined as the cost of producing one MWh of

energy. It is considered as the main indicator to decide if a renewable energy project

is attractive or not compared to the conventional sources of energy. Since the range

for the actual cost of traditional sources of energy is $50-$100 per MWh, the goal is

to obtain LCOE within this range. Table 3.17 presents the resulting LCOE’s for

the 2 implemented models.

Table 3.17: Levelized cost of energy

Model - hourly granularity LCOE Unit
IM with BS 80.86 $/MWh
Prosumer 38.73 $/MWh

Figure 3.11: Levelized cost of energy

Table 3.17 shows that all models have LCOE’s below the $50-$100 cost range for

non-renewable energy. It also shows that the prosumer model has the lowest LCOE

and that the magnitude of this value is much lower than the one for the IM with BS

model. These LCOE results reveal that for both cases it is cheaper to operate the
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facilities with RE installation rather than purchasing energy from a main grid.

3.4.2 Energy production comparison

The total energy production (MWh/year) over the whole planning horizon for

all the models is shown in table 3.18. The prosumer model produced less energy

than the island microgrid one. The main reason behind producing less energy is

that the prosumer model now can buy energy from the outside energy sources.

Table 3.18: Energy production

Model - hourly granularity Factory Warehouse Total
IM with BS 337,573 594,187 931,760
Prosumer 75,273 329,411 404,684

Figure 3.12: Energy production comparison

The amount of energy bought by the prosumer model at the factories and

warehouses is 17,897 MWh and 63,824 MWh, respectively and it totals to 81,722

MWh. Furthermore, the amount of energy sold by the prosumer model at the

factories and warehouses is 38,770 MWh and 213,966 MWh, respectively and it
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totals to 252,736 MWh.

3.4.3 Cost comparison

In the annual expected cost comparison, the prosumer model outperforms the

island microgrid model. Detailed results are in Table 3.19 . Model IM with BS has

higher annual expected total cost than the prosumer model. The cost of the

prosumer model is 57.42% lower than the IM with BS.

Table 3.19: Annual cost breakdown

Cost element IM with BS Prosumer
Materials Cost $ 19,897,032 $ 19,937,944
Energy Cost $ 75,339,170 $ 18,840,457
Backorder Cost $ 486,545 $ 459,496
Transportation Cost $ 1,152,740 $ 1,186,850
Subcontracting Cost $ 2,910,350 $ 2,065,430
Inventory Cost $ 0 $ 0
Total $ 99,785,837 $ 42,490,176

Figure 3.13: Energy cost and total cost comparison

The energy costs of the IM with BS and prosumer model are $75, 339, 170 and
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$18, 840, 457 which is 75.5% and 44.34%, respectively of the total cost. This result

show that it is very significant to chose a prosumer model over an IM model.

3.4.4 Technology installation at factory

The technology installation at San Francisco, Austin and Boston over the whole

planning horizon is shown in Table 3.20.

Table 3.20: Technology installation at factory

City Model- hourly WT PV Total
granularity

San Francisco IM with BS 26.26 41.29 67.55
Prosumer 4.93 5.68 10.61

Austin IM with BS 11.58 8.36 19.94
Prosumer 5.17 5.78 10.94

Boston IM with BS 17.96 71.65 89.61
Prosumer 6.83 2.73 9.56

Figure 3.14: Technology installation at factory

The IM with BS model always installs overall more RE capacity than the prosumer

model. It is because the IM with BS model needs to meet the energy demand by
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itself whereas the prosumer model can buy energy from main grid. Though San

Francisco has better WT capacity factors than PV capacity factors, all models

install more PV than WT capacity. The main reason for this result is that the PV

has carbon incentive of $25/MWh and the PV installation cost is less than the WT

installation cost. These differences significantly influence the selection of PV over

WT. For Boston, the prosumer model prefers to install more WT than PV because

of the strong wind speed in this city favours the high production of RE to be sold.

However, IM prefers to install more PV than WT because of the PV installation

cost and PV carbon incentive of $25/MWh.

3.4.5 Technology installation at warehouse

The technology installation at Phoenix, Dallas and New York over the whole

planning horizon is shown in Table 3.21.

Table 3.21: Technology installation at warehouse

City Model - hourly WT PV Total
granularity

Phoenix IM with BS 21.52 121.85 143.37
Prosumer 0 80.46 80.46

Dallas IM with BS 27.49 68.40 95.89
Prosumer 22.36 9.52 31.89

New York IM with BS 31.07 51.56 82.63
Prosumer 24.39 1.70 26.09

The IM with BS model always installs overall more RE capacity than the the

prosumer model. It is because the IM with BS model needs to meet the energy

demand by itself whereas the prosumer model can buy energy from main grid. For

New York, the prosumer model prefers to install more WT than PV because of

strong wind speed. However, the IM with BS model prefers to install more PV than

WT because of lower PV installation cost and PV carbon incentive of $25/MWh.
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Figure 3.15: Technology installation at warehouse

3.4.6 BS installation at Factory

The BS installation at San Francisco, Austin and Boston over the whole

planning horizon is shown in Table 3.22. The IM with BS model always installs BS

whereas the prosumer model does not install BS. It is because the IM with BS

model needs to meet the energy demand by itself whereas the prosumer model can

buy energy from main grid and installing BS is not cost effective in this scheme (i.e.,

WT cost 1.5M $/MW, PV cost 1.0M $/MW, BS cost 0.5M $/MWh, Carbon

incentive 25 $/MWh).

Table 3.22: BS installation at factory

City Model- hourly granularity BS
San Francisco IM with BS 57.3

Prosumer 0
Austin IM with BS 57.3

Prosumer 0
Boston IM with BS 57.3

Prosumer 0
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3.4.7 BS installation at warehouse

The BS installation at Phoenix, Dallas and New York over the whole planning

horizon is shown in Table 3.23. The IM with BS model always installs BS whereas

the prosumer model does not install BS. It is because the IM with BS model needs

to meet the energy demand by itself whereas the prosumer model can buy energy

from main grid and installing BS is not cost effective in this scheme (i.e., WT cost

1.5M $/MW, PV cost 1.0M $/MW, BS cost 0.5M $/MWh, Carbon incentive 25

$/MWh).

Table 3.23: BS installation at warehouse

City Model- hourly granularity BS
San Francisco IM with BS 91.7

Prosumer 0
Austin IM with BS 91.7

Prosumer 0
Boston IM with BS 91.7

Prosumer 0

This chapter presented two-stage stochastic APP models that integrate RE

(i.e., WT, PV, and BS) and consider hourly granularity to satisfy the energy

requirements. The models were scaled up to consider that the company or supply

chain operates multiple factories and multiple warehouses in different geographical

locations. Two instances, island model (IM) with BS and prosumer are contrasted.

The computational results show that the models proposed are tractable. The

LCOE’s for both models are affordable (i.e., $80.86/MWh for the IM with BS model

and $38.73/MWh for the prosumer model). The LCOE of the prosumer model is

47.88% lower that the LCOE of the IM with BS model. The results in this chapter

confirm the ones obtained in Ch. 2 regarding the cost advantages of the prosumer

model if compated to an island model.
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4. APP CONSIDERING HOURLY TOU

The problem researched in the first four sections of this chapter is an

enhancement to the one researched in Chapter 3 and depicted in Figure 3.1. The

enhancement is that in this chapter it is assumed that the company adopting the

microgrid systems will operate under a time of use (TOU) energy rate plan under

an agreement with the utility company. Then, the Model 4 - Prosumer microgrid

with BS, without TOU, and daily granularity presented in the previous chapter is

slightly modified. It will permit to assess the economical effect of a TOU plan for

the manufacturing company installing the WT, PV, and BS microgrid system. In

recent years, energy-intensive manufacturing industries are highly impacted by

rising electricity costs. To handle this challenge, many energy suppliers have begun

to implement the TOU strategy. TOU represents a huge opportunity to reduce

electricity costs by shifting electricity usage from on-peak hours to off-peak or

mid-peak hours. Time-of-use (TOU) electricity pricing has been implemented in

many countries around the globe to encourage manufacturers to shift their

electricity usage from peak periods to off-peak periods and ultimately alleviate the

grid’s burden during peak hours (Ding et al., 2015). Wang and Li (2013) study

TOU in a production scheduling problem to minimize electricity consumption and

costs under the constraint of meeting the production target during peak periods.

Zhang et al. (2014) propose a time indexed integer programming formulation for an

energy-conscious flow shop scheduling problem that looks to minimize electricity

cost and the carbon footprint under TOU tariffs and without compromising

production throughput. Fang et al. (2016) consider the time-of-use tariffs for solving

the single machine scheduling problem while minimizing total electricity cost. Che

et al. (2016) develop an efficient greedy insertion heuristic method for solving a
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continuous time mixed-integer linear programming (MILP) model under time-of-use

tariffs. Che et al. (2017) consider an unrelated parallel machine scheduling problem

under the TOU tariffs to minimize the total electricity cost. After reviewing the

time-of-use tariffs literature the author of this thesis found that most of the TOU

tariffs application is in the field of scheduling problem. At the best of the author’s

knowledge, this thesis will be the first endeavour to implement TOU tariffs in an

aggregate production planning problem that integrates onsite renewable microgrid

to reduce carbon emissions in manufacturing and supply chain settings.

The research in this chapter aims to solve the following questions:

• Given that the facilities must satisfy energy requirements on an hourly basis,

what is the effect brought to the manufacturing company if it engages in a

time of use (TOU) energy rate? Is it still feasible to decarbonize the

manufacturing operations and warehouse facilities with RE integration?

• If the facilities must satisfy energy requirements on an hourly basis and

operate under TOU, is it still feasible to integrate microgrids coupled with

WT, PV, and BS into the manufacturing and warehouse operations with

affordable levelized cost of energy (LCOE)?

• What is the value of solving the APP with RE problem using two-stage

stochastic programming instead of a deterministic modeling approach?

• What are differences in expected cost and LCOE values for all the models

studied in this thesis work?

This chapter is organized as follows. Section 4.1 presents the mathematical

formulation of Model 5 - Prosumer microgrid with BS and TOU - hourly

granularity. The formulation is a extensive formulation of a two-stage stochastic

program with recourse. Section 4.2 provides Model 5 computational results for the
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base case. Section 4.3 presents the sensitivity analysis performed on some of Model

5 parameters through design of experiments (DOE). Section 4.4 presents the

statistical analysis of the DOE. Section 4.5 presents the computations of the value

of the stochastic solution (VSS) for the prosumer models with BS and hourly

granularity with and without TOU (i.e., Model 4 presented in previous chapter and

Model 5 presented in this chapter) . Finally, Section 4.6 compares all the models

researched in this thesis. Because the stochastic programming methodology

explained in Section 2.2 also applies to the model presented Section 4.1 no

methodology section is included in this chapter. Also, the procedures to compute

the capacity factors (CF) for wind turbines (WT) and solar photovoltaics (PV) and

to represent the uncertain parameters: product demand, machine and labor hours

capacity are skipped since they correspond to the ones described in Section 3.3.

4.1 Prosumer model with BS and TOU - hourly granularity

As in the previous chapter, the set H is represents the hours of the year. All

the other sets used are the same listed in Table 2.1 in Chapter 2. The notation for

decision variables and parameters in Tables 2.2 to 2.4, and 3.1 to 3.2 also apply

for this model. The additional parameter u+h for this model defined in Table. TOU

is considered only for purchasing energy from main grid. On-peak hours and

off-peak hours are assumed from 8:01 AM to 8:00 PM and 8:01 PM to 8:00 AM,

respectively. The values for purchasing energy in off-peak hours and on-peak hours

are shown in Appendix B 5.15. The model is as follows.

Table 4.1: Parameters

Notation Description Unit
u+h Cost of purchasing energy from main grid in hour h $/MWh
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Model 5 - Prosumer microgrid with BS and TOU - hourly granularity:

min Z =
∑
i∈I

∑
k∈K

∑
t∈T

(cxit + cwit)xikt +
∑
i∈I

∑
k∈K

∑
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∑
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∑
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T∑
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∑
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∑
j∈J
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h∈H

∑
s∈S

p(s)u+hQ
+
njhs (4.1)

s.t.

yint−1 − yints + xikt + qikts − bikt−1 + bikts −mikt + rikt = Dikts

∀i ∈ I, t = 1, ∀k ∈ K, ∀n ∈ N, ∀s ∈ S (4.2)

yint−1s − yints + xikt + qikts − bikt−1s + bikts −mikt + rikt = Dikts

∀i ∈ I,∀t ∈ T\{1}, ∀k ∈ K, ∀n ∈ N, ∀,∀s ∈ S (4.3)∑
i∈I

(exi + qvdknwi)
xikt
ξ|Jt|

+ Lk + qvβhdknm
v +Bf

kjhs −B
f
kjh−1 +Q−kjhs

=
∑
g∈G

λgjhksP
c
kg +Q+

kjhs

j = 1, h = 1, t = 1, ∀k ∈ K, ∀n ∈ N, ∀s ∈ S (4.4)∑
i∈I

(exi + qvdknwi)
xikt
ξ|Jt|

+ Lk + qvβhdknm
v +Bf

kjhs −B
f
kjh−1s +Q−kjhs

=
∑
g∈G

λgjhksP
c
kg +Q+

kjhs

∀t ∈ T,∀j ∈ J,∀h ∈ H\{1},∀k ∈ K, ∀n ∈ N,∀s ∈ S (4.5)
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Model 5 - Prosumer microgrid with BS and TOU - hourly granularity

continue

∑
i∈I

efi yints(

h−
t−1∑
v=1

|Jvδ|

|Jt|δ
) + Ln + qvβhdnkm

v +Bf
njhs −B

f
njh−1 +Q−njhs

=
∑
g∈G

λgjhnsP
c
ng +Q+
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j = 1, h = 1, t = 1,∀k ∈ K, ∀n ∈ N,∀s ∈ S (4.6)

∑
i∈I

efi yints(

h−
t−1∑
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|Jvδ|

|Jt|δ
) + Ln + qvβhdnkm

v +Bf
njhs −B

f
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=
∑
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λgjhnsP
c
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∀t ∈ T,∀j ∈ J,∀h ∈ H\{1},∀k ∈ K, ∀n ∈ N,∀s ∈ S (4.7)∑
i∈I

aixikt = lkt

∀k ∈ K, ∀t ∈ T (4.8)

lkt ≤ LHmax
kts

∀k ∈ K, ∀t ∈ T,∀s ∈ S (4.9)

lkt = lkt−1 + hkt − fkt

∀k ∈ K, ∀t ∈ T (4.10)

hkt + fkt ≤ αlkt−1

∀k ∈ K, ∀t ∈ T (4.11)∑
i∈I

uixikt = wkt

∀k ∈ K, ∀t ∈ T (4.12)
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Model 5 - Prosumer microgrid with BS and TOU - hourly granularity

continue

wkt ≤MHmax
kts ∀k ∈ K, ∀t ∈ T,∀s ∈ S (4.13)

wkt = wkt−1 + okt − pkt ∀k ∈ K, ∀t ∈ T (4.14)

νxikt = mikt ∀k ∈ K, ∀i ∈ I,∀t ∈ T (4.15)

ηmikt = rikt ∀k ∈ K, ∀i ∈ I,∀t ∈ T (4.16)

0 ≤ mikt − rikt ≤ mmax
ikt ∀i ∈ I,∀k ∈ K, ∀t ∈ T (4.17)∑

i∈I

yints ≤ WHmax
t ∀n ∈ N, ∀t ∈ T,∀s ∈ S (4.18)

0 ≤ P c
kg ≤ Pmax

kg ∀k ∈ K, ∀g ∈ G (4.19)

0 ≤ P c
ng ≤ Pmax

ng ∀n ∈ N,∀g ∈ G (4.20)

Bc
k ≤ Bmax

k ∀k ∈ K (4.21)

Bc
n ≤ Bmax

n ∀n ∈ N (4.22)

0 ≤ Bf
kjhs ≤ Bc

k ∀k ∈ K, ∀s ∈ S, j ∈ Jt, h ∈ H (4.23)

0 ≤ Bf
njhs ≤ Bc

n ∀n ∈ N,∀s ∈ S, j ∈ Jt, h ∈ H (4.24)

Bf
k0 = Bc

k ∀k ∈ K, j = 0 (4.25)

Bf
n0 = Bc

n ∀n ∈ N, j = 0 (4.26)

Q−kjhs ≤ Qmax
kjhs ∀k ∈ K, j ∈ J, h ∈ H, s ∈ S (4.27)

Q−njhs ≤ Qmax
njhs ∀n ∈ K, j ∈ J, h ∈ H, s ∈ S (4.28)

xikt,mikt, rikt ≥ 0 ∀i ∈ I,∀k ∈ K, ∀t ∈ T (4.29)

hkt, fkt, lkt, wkt, pkt ≥ 0 ∀k ∈ K, ∀t ∈ T (4.30)

bikts, qikts ≥ 0 ∀i ∈ I,∀k ∈ K, ∀t ∈ T,∀s ∈ S (4.31)

yints ≥ 0 ∀i ∈ I,∀n ∈ N, ∀t ∈ T,∀s ∈ S (4.32)
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The explanation of the objective function and constraints for the Model 5 -

Prosumer microgrid with BS and TOU - hourly granularity presented above is

exactly the same as the ones provided for Model 4 - Prosumer microgrid with BS,

without TOU, and hourly granularity, and Model 2 - Prosumer microgrid with BS

and daily granularity. However, in the objective function of Model 5, the subscript h

is added to the energy purchasing cost u+h parameter used in the sums involving the

energy purchasing decision variables Q+
kjhs and Q

+
njhs.

4.2 Computational results - base case

The information provided in Section 2.5.1 regarding values for model’s input

parameters is also valid for this chapter. Model 5 - Prosumer microgrid with BS and

TOU - hourly granularity was coded using the AMPL mathematical programming

language and solved through the CPLEX solver. The total number of scenarios in

the Models is also 108 as detailed in the computational results section in previous

chapter. The demand values for products A and B are generated from the

probability distributions provided in Section 3.3.1. Tables 5.3 and 5.4 in Appendix

B, list the set of actual values used for the demands for products A and B at the

high and low levels. The values used for the machine and labor hour capacities in

the model’s scenarios are presented in Appendix B Table 5.10 to 5.13. Table 4.2

presents the number of decision variables and constraints in the model.

Table 4.2: Comparison of decision variables and constraints

Case Total
Decision variables 17,053,218
Constraints 126,632,574

As mentioned in the previous section, TOU is considered only for purchasing energy

from main grid. On-peak hours and off-peak hours are assumed from 8:01 AM to
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8:00 PM and 8:01 PM to 8:00 AM, respectively. Besides the total expected annual

costs of the model, the levelized cost of energy (LCOE) is also computed as a

performance measure.

4.2.1 Levelized cost of energy (LCOE)

The levelized cost of energy is defined as the cost of producing one MWh of

energy. It is considered as the main indicator to decide if a renewable energy project

is attractive or not compared to the conventional sources of energy. Since the range

for the actual cost of traditional sources of energy is $50-$100 per MWh, the goal is

to obtain LCOE within this range. The resulting LCOE’s for Model 5 - prosumer

microgrid with BS, TOU - hourly granularity is $36.29, which is below the $50-$100

cost range for non-renewable energy. Thus, this resulting LCOE shows that Model 5

is feasible to decarbonize the company operations. It is cheaper to operate the

facilities under the energy prosumer mode than relying entirely on conventional

energy from the main grid.

4.2.2 Energy production, buy and sell comparison

The total energy production (MWh/year) over the whole planning horizon for

the Model 5 - prosumer microgrid with BS, TOU - hourly granularity is shown in

Table 4.3. From Table 4.3 it is evident that the prosumer hourly model with TOU

tariffs prefers to sell RE rather than buy conventional energy because of the

favourable weather conditions for the onsite renewable installation.

Table 4.3: Energy production, buy and sell

Case Factories Warehouses Total
Total energy produce 58,435 273,176 331,611
Total energy buy 21,515 68,707 90,222
Total energy sell 25,553 162,620 188,173
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Figure 4.1: Energy produced, bought and sold

4.2.3 Technology installation at factory

The technology installation at San Francisco, Austin, and Boston over the

whole planning horizon is shown in Table 4.4.

Table 4.4: Technology installation at factory

City WT PV Total
San Francisco 2.92 6.61 9.53
Austin 2.99 7.05 10.04
Boston 4.85 3.59 8.44

Though San Francisco has better WT capacity factors than PV capacity factors,

San Francisco and Austin install more PV than WT capacity. The main reason for

this result is that the PV has carbon incentive of $25/MWh and the PV installation

cost is less than the WT installation cost. Those factors have significant influence

on the company’s decision to chose PV over WT. For Boston, the model prefers to

install more WT than PV because of strong wind speed. Though San Francisco has

higher WT capacity factor than PV, it ended installing less WT than Boston
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because San Francisco has higher PV capacity factor than Boston.

Figure 4.2: Technology installation at factory

4.2.4 Technology installation at warehouse

The technology installation at Phoenix, Dallas and New York over the whole

planning horizon is shown in table 4.5.

Table 4.5: Technology installation at warehouse

City WT PV Total
Phoenix 0 71.43 71.43
Dallas 15.20 12.60 27.80
New York 19.06 5.50 24.56

In Phoenix, the prosumer Model 5 does not install WT because the PV factor is

much higher than the WT capacity factor and PV has low installation cost than

WT. Despite of higher installation cost of WT, the prosumer model installs more

WT than PV in Dallas and New York. This is because in Dallas and New York the

WT capacity factor is higher than the PV capacity factor.
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Figure 4.3: Technology installation at warehouse

4.2.5 Cost comparison

Detailed results of Model 5 costs elements are presented in Table 4.6. The

proposed thesis work is focusing on energy intensive manufacturing companies. For

Model 5, the resulting expected energy cost as percentage of the expected total cost

is 39%.

Table 4.6: Annual cost breakdown

Cost element Cost amount Percentage
Materials Cost $ 19,937,944 51%
Energy Cost $ 15,309,347 39%
Backorder Cost $ 459,472 1%
Transportation Cost $ 1,186,850 3%
Subcontracting Cost $ 2,065,290 5%
Inventory Cost $ 0 0%
Total $ 38,958,903 100%
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4.3 Sensitivity analysis using DOE

Sensitivity analysis determines how changes in model parameters impacts the

output of a model. An efficient way to perform sensitivity analysis is through

statistical design of experiments (DOE). In this chapter, a DOE is performed with

the Model 5 - prosumer microgrid with BS, TOU - hourly granularity. A full four

factorial design is performed to identify the critical factors affecting different model

results. The factors considered in the DOE are type of demand distribution for the

products, PV installation cost, carbon incentives for PV, battery cost, and

probability distribution for the 108 scenarios included in the model. The number of

levels for each of these factors mentioned is 2, 3, 3, 3 and 2, respectively. One

replication or run was performed in each experimental condition. Hence, the DOE

required to solve the prosumer model 2× 3× 3× 3× 2 = 108 times and each run

will be named a case in the reminder of this document. Note that it is just as a

coincidence that the number of scenarios included in the model is 108 and the

number of experimental runs in the DOE is also 108. It is also a coincidence that

the number of runs in the DOE in this chapter ended equal to the number of runs

for the DOE presented in Chapter 2.

The levels selected for each of the factors included in the DOE are as explained

as follows. The DOE considers two types of product demand distribution:

triangular distribution (mode value is 7% lower than the mean value of the discrete

uniform distribution assumed in the base case, mode value is 7% higher than the

mean value of the discrete uniform distribution assumed in the base case), three PV

cost values ($1,000,000/MW; $750,000/MW and $500,000/MW), three types of

carbon incentive ($30/MWh, $20/MWh and $10/MWh), three levels of BS cost

($500,000/MWh, $300,000/MWh and $150,000/MWh) and two levels for the

probability distribution of the model scenarios. The levels for the mentioned factors
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are summarized Appendix B Table 5.17. The levels used for the probability

distribution of the model scenarios were assigned after classifying each of the 108

scenarios included in the two-stage stochastic model into 3 categories labeled as low,

medium and high. The classification is based on the total sum of the rankings given

to product demands, machine and labor hours available in the scenario. A total of

22 scenarios were classified as low, 64 in the medium category and 22 in the high

one. Level 1 corresponds to a pessimistic case where the 22 scenarios falling under

the low category have about 80% probability of occurrence and the medium and

high categories have equal probabilities. Level 2 is an optimistic case where the 22

scenarios falling under the high category have about 80% probability of occurrence

and the medium and low categories have equal probabilities. Note that the base

case analyzed in the previous section is Case 1, where the product demand follows

discrete uniform distribution, PV cost $1,000,000/MW, PV carbon incentive

$25/MWh, BS cost $500,000 /MWh, probability distribution (0.2037, 0.5926,

0.2037).

4.3.1 Total cost comparison

Figure 4.4 shows that case 75 (probability distribution for scenarios: L 0.7995,

M 0.1088, H 0.0917, probability distribution for product demands: Product A and

Product B follows triangular distribution where mean is -7% below than the base

case (PV cost $500,000/MW and PV incentives $30/MWh) has the lowest expected

cost ($47,921). This case has high probabilities for the scenarios categorized as low,

product demand follows triangular distribution where the mean is 7% lower than

the base case, the PV cost is at the lowest value assumed and the PV costs

incentives are at the highest value assumed. Since some of these, especially the last

two, are favorable conditions, it explains the resulting lower expected cost.

On the other hand, case 26 (probability distribution for scenarios: L 0.0917, M
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Figure 4.4: Total cost comparison

0.1088, H 0.7995, probability distribution for product demands: Product A and

Product B follows triangular distribution where mode is +7% higher than base case,

PV installation cost $1,000,000/MW and PV incentives $10/MWh) has the highest

cost ( $13,487,400). This case has high probability for scenarios classified as high,

higher probability of high product demand since the product demand follows

triangular distribution where the mode is 7% higher than the base case, PV cost at

the highest level of $1000,000/MW and carbon incentive at the lowest level of

$10/MWh. Thus such case has multiple not favorable conditions and it explains the

resulting high total cost.

4.3.2 WT and PV installation at Austin

Cases 25 to 36 in Figure 4.5 are the only ones where Austin install more WT

than the PV. This result is explained because in those cases, the PV cost is at the

highest or costlier level of $1,000,000/MW and the carbon incentive for PV is at the

lowest level of $10/MWh. Because in Austin the average wind capacity factor is

slightly higher than the average PV capacity factor, WT is attractive and also cost
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effective for those cases.

Figure 4.5: WT and PV installation at Austin

Among the cases that installed the largest amount of PV are for instance cases

37-49 in which PV installation cost is $750,000/MW and the PV incentives are

$30/MWh and cases 73-97 in which PV installation cost was also at the lowest level

of $500,000/MW and the incentives are at the highest level of $30/MWh.

4.3.3 WT and PV installation at Boston

Cases 1 to 36 in Figure 4.6 show that Boston installs more WT than the PV.

This result is explained because in those cases, the PV cost is at the highest or

costlier level of $1,000,000/MW. Furthermore, in cases 61 to 72 in Figure 4.6 Boston

installs more WT than the PV. This result is explained because in those cases, the

PV cost is $750,000/MW and the carbon incentive is $10/MWh. Because in Boston

the average wind capacity factor is higher than the average PV capacity factor, WT

is attractive and also cost effective for those cases.

Among the cases that installed the largest amount of PV are for instance cases

37-49 in which PV installation cost is $750,000/MW and cases 73-97 in which PV
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Figure 4.6: WT and PV installation at Boston

installation cost was also at the lowest level of $500,000/MW to $750,000/MW.

4.3.4 WT and PV installation at Dallas

Cases 25 to 36 in Figure 4.7 are the only ones where Dallas installs more WT

than PV.

Figure 4.7: WT and PV installation at Dallas
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This result is explained because in those cases, the PV cost is at the highest or

costlier level of $1,000,000/MW and the carbon incentive for PV is at the lowest

level of $10/MWh. Because in Dallas the average wind capacity factor is slightly

higher than the average PV capacity factor, WT is attractive and also cost effective

for those cases. Among the cases that installed the largest amount of PV are for

instance cases 37-49 in which PV installation cost is $750,000/MW and the PV

incentives are $30/MWh and cases 73-97 in which PV installation cost was also at

the lowest level of $500,000/MW and the incentives are at the highest level of

$30/MWh.

4.3.5 WT and PV installation at New York

Cases 37 to 48 in Figure 4.8 are the only ones where New York install more PV

than WT. This result is explained because in those cases, the PV cost is at the low

or less costlier level of $750,000/MW and the carbon incentive for PV is at the

highest level of $30/MWh. Hence, lower PV cost and highest carbon incentive make

solar PV attractive and also cost effective for those cases.

Figure 4.8: WT and PV installation at New York
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Among the cases that installed the largest amount of PV are for instance cases

73-96 in which PV installation cost is $500,000/MW and the PV incentives are

$20/MWh to $30/MWh.

4.3.6 Energy buying amount at factory and warehouse

Figure 4.9 presents the amount of energy bought from factories and

warehouses. The figure shows a relatively similar trend for factories and warehouses

even if the oscillations for the energy bought in the factory are larger than in the

warehouse. Lower amount of energy is needed in cases 10-12, 22-24 and so on where

the BS cost is $150,000/MWh. On those ranges factories and warehouses install

highest capacity of BS. The stored energy in BS is used on those days where the

lower wind speed and bad weather conditions are not good enough to meet the

energy demand of the facilities.

Figure 4.9: Energy buying amount at factory and warehouse
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4.3.7 BS installation at factory and warehouse

Figure 4.10 presents the BS installation at factories and warehouses. The figure

shows a relatively similar trend for factories and warehouses even if the oscillations

for the energy bought in the factory are larger than in the warehouse. Highest

capacity of BS is installed in cases 9-12, 21-24 and so on where the BS cost is

$150,000/MWh.

Figure 4.10: BS installation at factory and warehouse

4.3.8 Energy selling amount at factory and warehouse

Figure 4.11 presents the amount of energy bought by the factories and

warehouses. There is a similar trend for energy sold from factory and warehouse.

Cases 73-96, show the highest amount of energy sold from factory and warehouse. It

is because in those cases the PV installation cost is $500,000/MW and the carbon

incentives are $30/MWh and $20/MWh. These are favorable conditions to adopt

large RE capacity and sell extra energy generated. On the contrary, cases 13-36,

show the lowest amount of energy sold from factory and warehouse. It is because in
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those cases the PV installation cost is $1,000,000/MW and the carbon incentive is

$20/MWh and $10/MWh, respectively. It is observed that facilities normally sell

high amounts of energy when facing a low energy demanding case with the most

appealing conditions for adopting larger amounts of renewable energy.

Figure 4.11: Energy selling amount at factory and warehouse

4.4 VSS for the hourly prosumer microgrid models

The value of a stochastic solution (VSS) allows a researcher to evaluate the

goodness of a solution given by a stochastic model by comparing the stochastic

model objective function value to the expected cost of a solution in which the

random values for the uncertain inputs are replaced with the mean values (Escudero

et al., 2007). For a maximization problem, the gain in expected objective function

value from using a stochastic solution over one from a deterministic program is

called the VSS (Birge, 1995). In linear programming, the optimal solution obtained

from deterministic models falls toward extreme point solutions which rely on a

limited set of activities (basic variables) and force a solution to meet critical

constraints tightly (Birge, 1995). On the contrary, an optimal solution from a
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stochastic model allows for broader sets of activities and naturally impose penalties

that enable solutions to meet critical constraints with some cushion to avoid costly

violations (Birge, 1995). For practical problems in which a deterministic model

cannot provide adequate solutions the VSS becomes quite significant. A

mathematical formula to compute the VSS for a minimization problem is as follows

(Escudero et al., 2007):

V SS = EEV S −RP (4.33)

Where, EEVS is the expected cost of implementing the expected value solution and

RP is the expected cost of the stochastic recourse problem. In this research, the

expected cost of implementing the expected value solution (i.e. first term in the

formula) is the expected cost of implementing a solution obtained from solving the

model with a single-scenario that assumes the values for the uncertain parameters

equal to the expected values. The expected cost of the stochastic recourse problem

(i.e, second term in the formula) is the the expected cost of solving the two-stage

stochastic model. Consequently, for the minimization problem in this research

positive values of VSS are cost savings a decision maker incurs by implementing the

two-stage stochastic model solution instead of the one from a deterministic model.

Table 4.7: VSS comparison for prosumer models - hourly granularity

Model type EEVS ($) RP ($) VSS ($)
Prosumer without TOU 43,286,600 42,490,176 796,424
Prosumer with TOU 39,722,500 38,958,903 763,597

The VSS values for Model 4 - prosumer microgrid with BS, without TOU - and

Model 5 - prosumer microgrid with BS and TOU are presented in table 4.7. Both

models satisfy energy constraints under an hourly time granularity. The VSS for

both models are very similar and practically significant since they are near to a
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million dollars per year.

4.5 Analysis of the design of experiments

This section provides further details about the statistical analysis of the design

of Experiments (DOE) for Model 5 - Prosumer microgrid with BS and TOU -

hourly granularity presented in the previous section. The analysis was done using

Minitab and the General Linear Model (GLM) option available under the command

Stat, ANOVA. The aim of the DOE is to learn which parameters in the model,

which are named as factors in the DOE, significantly affect the model objective

function value using a significance level of 5% (confidence level 95%). The model

objective function is the total expected cost. It is desirable to identify the optimal

levels of the factors in the DOE that reduce such expected cost. In this section, the

expected cost will be abbreviated as total cost. The two categorical factors in the

experiments are: products demand distributions and probability distribution for the

model scenarios. The two levels (i.e., low and high) selected for these categorical

factors are as mentioned in the previous section and also are displayed in Appendix

B Table 5.17. The three experimental factors that in practice can be continuous

were included in the GLM analysis as covariates. They are: PV cost, carbon

incentive and battery cost. The three levels (i.e., low, medium and high) selected for

the covariates are also as mentioned in the previous section and displayed in Table

5.17. Montgomery (2017) suggests to keep the number of factor levels low, if the

purpose of the DOE is to screen which factors are significant. Following this

suggestion, the number of factor levels in this DOE was set to 2 for the categorical

factors and 3 for the covariates. Montgomery (2017) also mentions that the number

of replications that the experimenter can perform may be small and, in some cases,

restricted to a sample size equal to one because time and resources including

computational ones are usually limited.
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Minitab statistical software version 18 was used to generate and analyze the

DOE. In the first model generated by Minitab, all the factors and covariates (i.e, PV

cost, carbon incentive, battery cost, product demand distribution and probability

distribution for the model scenarios) were included in the GLM. This model has an

R-squared of 83.97%, but the residuals show non-constant variance. To correct the

non-constant variance issue, the total cost (i.e. response variable) for all cases (i.e.,

experimental runs) was transformed to the natural logarithm of total cost plus a

small constant ($47,921). Since there were a few cases where the model objective

function ended with a small revenue, this transformation permitted to have all the

costs positive and use the natural logarithm transformation. The variable total cost

+ 47,921 is named Small_Transformed_total_cost. The GLM on the natural

logarithm of Small_Transformed_total_cost is successful on stabilizing the

variance of the residuals, but the R-squared of the model is low (20.29%).

Further revision of the total costs in the experimental cases revealed that there

are four cases or experimental runs with considerably high residuals. Then, it was

explored if it was possible to adjust a better model to the remaining cases. Such

model didn’t require the addition of any constant, was performed on the total_cost,

but still required a Box-Cox transformation to stabilize the variance. The Box-Cox

transformation used was optimally selected by Minitab. In such model battery cost,

products demand distribution type and probability distribution for the scenarios

were non-significant factors to explain the variability in the total cost and to keep

the lack of fit of the model at the lowest possible value, and consequently they were

excluded from the model. After doing this step, a final GLM model with only PV

cost and carbon incentive, and second-order terms and interactions was produced to

explain the total cost variability. The ANOVA table, information concerning the

statistical significance of the regression coefficients at a 5% significance level (95%

confidence level), and the summary of the regression model reporting about the
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significance of the regression are shown in table 4.8 to 4.10. The final regression

equation is presented between the last two tables mentioned. This last model has

R-squared of 97.60%. Figures 4.12 and 4.13 show the normal probability plot and

residuals vs. fits graphs to evaluate the assumptions of normality and constant

variance of the residuals in GLM. Note that in the database provided to Minitab the

levels of PV cost were coded as 1 =$1,000,000/MW, 2=$750,000/MW, and 3

=$500,000/MW and the levels of carbon incentives for PV were coded as 1

=$30/MWh, 2=$20/MWh, and 3 =$10/MWh.

Table 4.8: Analysis of variance for transformed response

Source DF Adj SS Adj MS F-value P-value
PV_cost 1 6.4E+12 6.4E+12 23.91 0.000
Carbon_inc 1 2.1E+12 2.1E+12 7.69 0.000
PV_cost*PV_cost 1 3.0E+13 3.0E+13 112.69 0.000
Carbon_inc*Carbon_inc 1 5.9E+12 5.9E+12 21.95 0.000
PV_cost*Carbon_inc 1 1.4E+14 1.4E+14 532.47 0.000
Error 98 2.6E+13 2.7E+11 - -
Lack-of-Fit 3 4.0E+12 1.3E+12 5.76 0.001
Pure Error 95 2.2E+13 2.3E+11 - -
Total 103 1.2E+15 - - -

Table 4.9: Coefficients for transformed response

Term Coef SE Coef T-value P-value VIF
Constant 11701645 608205 19.24 0.000 -
PV_cost -2211662 452261 -4.89 0.000 51.83
Carbon_inc 1257407 453508 2.77 0.007 52.11
PV_cost*PV_cost -1135379 106954 -10.62 0.000 46.91
Carbon_inc*Carbon_inc -501088 106954 -4.69 0.000 47.85
PV_cost*Carbon_inc 1818976 78828 23.08 0.000 14.38
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Final regression equation:

Total_ cost

= 11701645 − 2211662 PV_cost + 1257407 Carbon_inc

− 1135379 PV_cost*PV_cost − 501088 Carbon_inc*Carbon_inc

+ 1818976 PV_cost*Carbon_inc

Table 4.10: Model summary for transformed response

S R-sq R-sq(adj) R-sq (pred)
0.517456 97.87% 97.76% 97.60%

Figure 4.12: Normal probability plot

To predict a total cost it is necessary to plug in the final regression equation

the PV cost and carbon incentive values in coded units (i.e., using the level numbers

not their real values). It is desirable to get small values for the regression equation

after plugging the PV cost and carbon incentive levels. The lowest level of carbon

incentive (i.e., 1) and the highest level of PV cost (i.e. 3) will produce those lowest
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Figure 4.13: Residuals vs. Fits graph

values and consequently the lowest expected costs. This resulting equation agrees

with the total expected cost results presented in the previous section that showed as

the most favorable cases the ones with PV cost equal to $500,000/MW) and PV

carbon incentives equal to $30). However, the model could be not the optimal one

for predicting the expected total cost because it exhibits some lack-of-fit, even if the

interactions and second-order level terms were included and Minitab found only one

unusual residual. Such lack of fit can indicate that there are other factors not

included in the model that could help to explain the variability in the total cost.

4.6 Hourly vs. daily models’ comparison and analysis

This section provide a comparative analysis of all models presented in this

thesis work.
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4.6.1 Total cost comparison

Table 4.11 provides the expected cost for all the models researched in this

thesis. Since all models have the option to adopt BS the words "with BS" were

dropped from the model names. The abbreviated names for the models used in

Figure 4.14 are given the third column of the table.

Table 4.11: Total cost comparison

Model Time Notation Expected
granularity total cost ($)

Island microgrid Daily IM daily 47,115,128
Prosumer without TOU Daily P daily 35,959,082
Island microgrid Hourly IM hourly 99,785,837
Prosumer without TOU Hourly P hourly 42,490,176
Prosumer with TOU Hourly P TOU hourly 38,958,903

Figure 4.14: Total cost comparison

From table 4.11, it is evident that the prosumer models always outperform the

island microgrid models. The lowest cost is seen in prosumer daily model without

TOU tariffs. However, the expected costs of the hourly models are more accurate

because they use directly the hourly capacity factors computed from the real
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weather database instead of using daily averages. In the daily models, the capacity

factor used in the models objective function and energy constraints is the average of

the 24 hours capacity factor. On the other hand, when models are converted from

daily to hourly time granularity, the island microgrid hourly model is impacted by

drastic changes due to the highly stochastic nature of the hourly weather conditions.

The prosumer hourly model ends less impacted by the variation in weather

conditions because it has the option of buying energy from the main grid. In poor

weather conditions, the prosumer models prefer to buy energy from the main grid

and install less microgrid to meet the energy demand of the facilities. In daily time

granularity, 23.68% cost will be reduced if manufacturers transform from island

mode to prosumer mode. On the other hand, in hourly time granularity, 57.42%

cost will be reduced if manufacturers transform from island mode to prosumer

without TOU tariffs mode. Also, 60.96% cost will be reduced if manufacturers

transform from island mode to prosumer with TOU tariffs mode. Furthermore, in

hourly time granularity, 8.31% cost will be reduced if manufacturers transform from

prosumer without TOU tariffs mode to prosumer with TOU tariffs mode. The IM

hourly model always incurs in the highest cost because of the high stochasticity in

the hourly weather conditions and the impossibility to energy from main grid in

adverse weather conditions or sell energy that it has to spill when the weather

conditions are favorable but there is no capacity in the BS, it it was adopted and

given that adopting BS is somehow expensive.

4.6.2 Energy cost comparison

From Table 4.12 and Figure 4.15 , it is evident that the prosumer models

always outperform the island microgrid models regarding energy cost. For the daily

time granularity, 46.98% energy cost will be reduced if manufacturers transform

from island mode to prosumer mode.
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Table 4.12: Energy cost comparison

Model type Time granularity Total cost ($)
Island microgrid Daily 23,220,186
Prosumer without TOU Daily 12,310,395
Island microgrid Hourly 75,339,170
Prosumer without TOU Hourly 18,840,457
Prosumer with TOU Hourly 15,309,347

Figure 4.15: Energy cost comparison

However, for the hourly time granularity there is a drastic change when the island

microgrid mode transforms into a prosumer mode. There is a 74.99% energy cost

reduction if manufacturers transform from island mode to prosumer without TOU

tariffs mode and a 79.68% cost reduction if manufacturers transform from island

mode to prosumer with TOU tariffs mode. Furthermore, in the hourly time

granularity, there is a 18.74% energy cost reduction if manufacturers transform from

prosumer without TOU tariffs mode to prosumer with TOU tariffs mode. The high

stochasticity in hourly weather conditions and the lack of an option to by energy

from the main grid in adverse weather conditions make the Island microgrid hourly

model the least attractive.
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4.6.3 Total energy produced and bought

Table 4.13 presents the total energy produced and bought in the five model

instances compared. Island microgrid with hourly time granularity has the highest

energy production because of the highly stochastic hourly wind profile and weather

conditions and the nonexistence of an option to buying energy from the main grid

to cope with the energy demands from the hours with low capacity factors.

Table 4.13: Energy produced, bought and sold comparison

Model type Time Produce Buy Sell or spill
granularity (MWh) (MWh) (MWh)

Island microgrid Daily 378,238 0 136,760
Prosumer without TOU Daily 409,466 12,379 187,788
Island microgrid Hourly 931,760 0 689,500
Prosumer without TOU Hourly 404,684 81,722 252,736
Prosumer with TOU Hourly 331,611 90,222 188,173

To deal with the stochasticity of wind and solar generation, the island microgrid

model prefers to produce more energy when there is a strong wind or sun and keep

energy in battery systems for later usage. On the other hand, the prosumer model

with TOU tariffs has the lowest energy production. This model finds an advantage

in the option to buy more energy in off-peak hours to balance the energy demand of

the facilities.

4.6.4 Microgrid sizing of San Francisco

Table 4.14 and Figure 4.16 present the microgrid sizing of San Francisco for all

models developed in this thesis work. There is a significant difference in microgrid

capacity adopted for the island microgrid with daily and hourly time granularity.

Island microgrid daily mode does not install WT whereas the island microgrid

hourly mode install 26.3MW WT. This is because in hourly time granularity PV
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Table 4.14: Microgrid sizing of San Francisco

Model type Time WT PV BS
granularity (MW) (MW) (MWh)

Island microgrid Daily 0 35.9 12.3
Prosumer without TOU Daily 1.9 14.7 0.5
Island microgrid Hourly 26.3 41.3 57.3
Prosumer without TOU Hourly 4.9 5.7 0
Prosumer with TOU Hourly 2.9 6.6 0

Figure 4.16: Microgrid sizing of San Francisco

does not generate electricity in night time as it is the real case. In daily time

granularity, the model uses an average capacity factor calculated from the 24 hours

weather data. Similarly, the prosumer hourly models decreased PV installation if

compared to the one in daily time granularity. Another significant observation is

that at the assumed BS cost (i.e. $500,000/MWh) the hourly prosumer models do

not install battery. Island microgrid hourly installs the highest amounts of all WT,

PV and BS for the same reasons mentioned in the previous section, Section 4.6.3.
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4.6.5 Microgrid sizing of Austin

Table 4.15 and Figure 4.17 present the microgrid sizing of Austin for all

models developed in this thesis work. There is a significant difference in the BS

capacity adopted in the island microgrid mode with daily vs. hourly time

granularity.

Table 4.15: Microgrid sizing of Austin

Model type Time WT PV BS
granularity (MW) (MW) (MWh)

Island microgrid Daily 8.7 2.8 12.3
Prosumer without TOU Daily 2.5 13.6 0.5
Island microgrid Hourly 11.6 8.4 57.3
Prosumer without TOU Hourly 5.2 5.8 0
Prosumer with TOU Hourly 3.0 7.0 0

Figure 4.17: Microgrid sizing of Austin

Island microgrid daily mode installs BS 12.3MWh, but island microgrid hourly

mode installs BS 57.3MWh. For the prosumer hourly models, a decrease of PV

installation is observed if compared to the one in the daily time granularity.

Another significant observation is that the hourly prosumer models’ do not install
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battery. IM hourly installs the highest amounts of all WT and BS because of the

reasons already mentioned in Section 4.6.3.

4.6.6 Microgrid sizing of Boston

Table 4.16 and 4.18 presents the microgrid sizing of Boston for all the models

developed in this thesis work. It is observed a significant difference between the

island models with daily and hourly time granularity models.

Table 4.16: Microgrid sizing of Boston

Model type Time WT PV BS
granularity (MW) (MW) (MWh)

Island microgrid Daily 8.3 0 12.3
Prosumer without TOU Daily 6.2 4.1 0.5
Island microgrid Hourly 18.0 71.7 57.3
Prosumer without TOU Hourly 6.8 2.7 0
Prosumer with TOU Hourly 4.9 3.6 0

Figure 4.18: Microgrid sizing of Boston

Island microgrid daily mode does not install PV whereas the island microgrid

hourly mode install 71.7MW PV. This is because in daily time granularity the

143



average capacity factor is calculated from the 24 hours weather data. In some hours

the solar PV capacity factor is 0 which makes the average daily solar PV capacity

factor very low. On the contrary, in hourly time granularity for some hours the

capacity factor is high enough to make the model end choosing a higher PV

capacity. Similarly, in prosumer hourly models a decrease in PV installation is

observed if compared to the PV installed in daily time granularity. It is because at

night the PV does not generate electricity which makes prosumer model to buy

energy from the main grid. Another significant observation is that the hourly

prosumer models’ do not install BS. Again, IM hourly installs the highest amounts

of all WT, PV and BS because of the reasons mentioned in Section 4.6.3.

4.6.7 Microgrid sizing of Phoenix

Table 4.17 and Figure 4.19 present the microgrid sizing of Phoenix for all

models developed in this thesis work. In the island models, there is a significant

difference on the capacities adopted in the daily and hourly time granularity

models.

Table 4.17: Microgrid sizing of Phoenix

Model type Time WT PV BS
granularity (MW) (MW) (MWh)

Island microgrid Daily 0 61.1 19.6
Prosumer without TOU Daily 0 92.0 1.1
Island microgrid Hourly 21.5 121.8 91.7
Prosumer without TOU Hourly 0 80.5 0
Prosumer with TOU Hourly 0 71.4 0

Island microgrid daily mode does not install WT whereas the island microgrid

hourly mode install 21.5MW WT. In hourly time granularity, for some hours the

solar PV capacity factor is 0. It makes the model to install WT to meet the energy
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demand of the facilities. Similarly, in prosumer hourly models a decrease of PV

installation is observed if compared to the one in the daily time granularity. It is

because at night the PV does not generate electricity, which makes prosumer model

to opt for buying energy from the main grid as the cehapest recourse action.

Another significant observation is that the hourly prosumer models’ do not install

BS.Again, IM hourly installs the highest amounts of all WT, PV and BS because of

the reasons mentioned in 4.6.3.

Figure 4.19: Microgrid sizing of Phoenix

4.6.8 Microgrid sizing of Dallas

Table 4.18 presents the microgrid scalability of Dallas of all the models

developed in this thesis work. There is a significant difference in daily and hourly

time granularity of island microgrid mode.

Island microgrid daily mode install 19.6MWh BS whereas the island microgrid

hourly mode install 91.7MWh BS. This is because the hourly capacity factor is

highly stochastic than the daily capacity factor.Furthermore, in hourly time

granularity in some hours the solar PV capacity factor is 0 which makes the model

to install WT to meet the energy demand of the facilities. Similarly, in prosumer
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Table 4.18: Microgrid sizing of Dallas

Model type Time WT PV BS
granularity (MW) (MW) (MWh)

Island microgrid Daily 15.2 27.2 19.6
Prosumer without TOU Daily 13.4 25.9 1.1
Island microgrid Hourly 27.5 68.4 91.7
Prosumer without TOU Hourly 22.4 9.5 0
Prosumer with TOU Hourly 15.2 12.6 0

Figure 4.20: Microgrid sizing of Dallas

hourly models’, decrease of PV installation is observed from the daily time

granularity because in night the PV does not generate electricity which makes

prosumer model to buy energy from the main grid or install more WT to meet the

energy demand of the facilities. Another significant observation is that the hourly

prosumer models’ do not install BS. In Figure 4.20 is observed that Island model

hourly time granularity installs the highest WT, PV, and BS. The resons for it were

mentioned in Section 4.6.3 Also prosumer models install low WT and PV capacity if

compared to island microgrid. This result is explained because of the energy buying

option from the main grid in adverse weather conditions.
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4.6.9 Microgrid sizing of New York

Table 4.19 presents the microgrid scalability of New York for all the models

developed in this thesis work.

Table 4.19: Microgrid sizing of New York

Model type Time WT PV BS
granularity (MW) (MW) (MWh)

Island microgrid Daily 14.1 27.8 19.6
Prosumer without TOU Daily 24.8 0 1.1
Island microgrid Hourly 31.1 51.6 91.7
Prosumer without TOU Hourly 24.4 1.7 0
Prosumer with TOU Hourly 19.1 5.5 0

Figure 4.21: Microgrid sizing of New York

There is a significant difference in the capacities adopted in daily and hourly time

granularity of island microgrid mode. The daily model installs 19.6MWh BS whereas

the hourly mode install 91.7MWh BS. This is because the higher fluctuations in the

hourly capacity factor while the daily capacity factor is an average value.

Furthermore, in the hourly time granularity for some hours the solar PV capacity

factor is 0. It makes the model to install WT to meet the energy demand of the
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facilities. Another significant observation is that the hourly prosumer models do not

install BS. As in the previous subsection, Figure 4.21 shows that Island microgrid

hourly model installs the highest WT, PV and BS compared to other models. The

reasons for this behaviour were given in Section 4.6.3. Prosumer models install low

capacity WT and PV compared to island microgrid because of the energy buying

option from the main grid that result advantageous in adverse weather conditions.

4.6.10 LCOE comparison

The levelized cost of energy is defined as the cost of producing one MWh of

energy. It is considered as the main indicator to decide if a renewable energy project

is attractive or not compared to the conventional sources of energy.

Table 4.20: LCOE comparison

Model type Time granularity LCOE ($/MWh)
Island microgrid Daily 61.4
Prosumer without TOU Daily 29.2
Island microgrid Hourly 80.9
Prosumer without TOU Hourly 38.7
Prosumer with TOU Hourly 36.3

Figure 4.22: LCOE comparison

148



Since the range for the actual cost of traditional sources of energy is $50-$100 per

MWh, the goal is to obtain LCOE within this range. The LCOE for island

microgrid operation is calculated in this thesis work by using the following equation

(Shea and Ramgolam, 2019). Table 4.20 and Figure 4.22 presents the LCOEs for

all the models developed in this thesis work. The prosumer mode always give less

LCOE than the island microgrid mode as the prosumer mode can make revenue

from selling energy and also can buy energy from main grid when the low capacity

factor is not cost effective for generating electricity from onsite microgrid.

Encouragingly, all the LCOEs present in table 4.20 indicate that it is cheaper to

operate facilities with onsite renewable microgrid installation rather than solely

purchasing energy from main grid.

4.6.11 Computational time comparison

All the hourly models have a large number of decision variables and constraints.

Model 3, Model 4, and Model 5 were run in one of the two Texas State University

large memory nodes (1.5TB) available in the LEAP cluster (LEAP, 2021). The

characteristics of the LEAP large memory nodes were provided in the previous

chapter. It was also necessary to follow the procedure for dealing with insufficient

memory to run the CPLEX solver in AMPL available in "AMPL software website"

(AMPL, 2021) also detailed in the computational results section in the previous

chapter. Table 4.21 summarizes the computational time for the hourly models

presented in the previous chapter and in this one. The solve user time is the time

the processor spends running the application code. The solve system time is defined

as the time in CPU seconds that the operating system spends running operating

system functions connected to the application (e.g., reading and writing files). The

total solve time (i.e., solve user time plus solve system time), abbreviated as solve

time in the last column of Table 4.21, seems a comprehensive way to appraise the
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models’ computational time as seen from the definitions for these times. The solve

time may seem large but because of LEAP uses multiple processors the actual clock

time elapsed to run these models was about one-third the reported solve time.

Cplex used a combination of the dual simplex and the barrier method. The dual

simplex method was used to get a starting basic feasible solution in Phase I of the

two-phase simplex method.

Table 4.21: Computational time comparison (CPU seconds)

Model type Solve user time Solve system time Solve time
IM with BS 297,446 133 297,579
Prosumer without TOU 271,422 159 271,581
Prosumer with TOU 213,812 158 213,970

In this chapter the prosumer model with hourly time granularity was enhanced

to consider TOU energy rate. Numerical experiments for the implemented base case

and sensitivity analysis performed through a DOE show that it is feasible and

cost-effective to decarbonize the manufacturing, warehousing, and transportation

activities of a company (or supply chain) operating three factories and three

warehouses. The DOE hypothesis was that five different factors: products demand

distributions, probabilities for the scenarios in the two-stage stochastic model, PV

installation cost, carbon incentives from PV installation, and battery cost could

affect the model total expected cost. The DOE analysis showed that from these five

factors only two were significantly affecting the total expected cost of the model.

These factors were PV cost and carbon incentives. It is desirable that actual PV

cost continues decreasing and that carbon incentives for adopting PV be kept and

ideally increased to continue motivating more manufacturing companies to adopt

microgrids coupled with PV systems. A difference found between the island model

and the prosumer models under hourly time granularity is that BS adoption is
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highly relevant for the island model but irrelevant for the prosumer models since

they ended preferring to purchase energy from the main grid. The value of solving

the two-stage stochastic APP prosumer models with and without TOU under

hourly time granularity to satisfy energy constraint was assessed and it is practically

relevant since it is near one million dollars per year for both models. Once again

this chapter showed the advantages of energy prosumer microgrid operation over

island one with respect to total expected cost and LCOE.
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5. CONCLUSIONS AND FUTURE WORK

This thesis work implemented island and energy prosumer based two-stage

stochastic models for the attainment of cost-effective aggregate production planning

plans for manufacturing companies and supply chains. The models are relevant to

industries adopting microgrid consisting of solar photovoltaic, wind turbines, and

battery storage systems and interested on optimizing production, machine, and

work force levels. The goal of this thesis is to decarbonize the manufacturing,

transportation, and warehouse operations under uncertain product demand,

machine hour capacity, labor hour capacity and renewable energy supply. In the

stochastic models developed, the first-stage decisions are the sitting and sizing of

the renewable generation technologies, the capacity of the battery systems, amount

of product to produce, hours of labor to keep, hire or layoff, and regular, overtime,

and idle machine hours to use for the entire planning horizon. Second-stage recourse

actions include storing product in inventory, subcontracting or backorder it, buying

energy, selling renewable energy to the main grid, and using BS to respond to

variations in wind profile and weather conditions.

Three sets of realistic climate data were collected from weather underground for

San Francisco, Austin, Boston, Phoenix, Dallas and New York to fed the models.

The data sets are statistically analyzed and used to calculate hourly capacity factors

that reflect the variability of climate conditions over a one-year planning horizon.

The main research questions answered in this thesis were: (1) Is it possible to

decarbonize the manufacturing, transportation and warehousing operations of a

manufacturing company with RE integration? (2) Is it possible to integrate RE into

manufacturing and warehouse operations with affordable levelized cost of energy

(LCOE)? (3) what are the costs when the energy constraints are satisfied under
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hourly and daily time granularity? and (4) what is the cost advantage a

manufacturing facility gets if enrolling in a time of use (TOU) energy tariff plan?

Numerical experiments show that the integration of renewable energy into the

manufacturing facilities and warehouses is feasible and it would significantly reduce

the use of fossil fuels and the emission of harmful gases into the atmosphere. The

proposed two-stage aggregate production planning model potentially accelerates the

manufacturers plans to transition toward eco-friendly operations. Three managerial

insights are derived. First, under current and future installation prices and carbon

incentive levels for the renewables, onsite renewable microgrid penetrated with WT

and PV promises to attain zero-carbon industrial operations. Second, energy

prosumer under time-of-use (TOU) tariff is a more attractive option than energy

prosumer without TOU and island microgrid operations, given cost affordability

and system reliance are the company objectives. Third, onsite renewable microgrid

is capable of meeting the hourly energy demand under stochastic wind profile and

weather conditions with an affordable levelized cost of energy. When the microgrid

operation is transformed from daily granularity to hourly granularity, a drastic cost

change is observed in island microgrid where the annual cost goes up by

approximately 112%. On the other hand, only 18.2% increase is observed in the

annual cost for prosumer microgrid. Another interesting finding is that under

time-of-use tariff, PV installation goes up because it is more cost-effective than

buying electricity in daytime or peak hours. However, the wind installation

decreases because of the lower electricity buying cost in night or off-peak hours.

In this thesis, experimental analysis was performed on five instances to test the

feasibility of adopting renewable microgrid in manufacturing facilities. One of the

goal of this thesis was: (1) Is it possible to achieve net-zero carbon in the

manufacturing operations with RE integration? From Table 4.13 we can conclude

that the Island microgrid always achieves a net-zero carbon manufacturing
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environment. The prosumer models (i.e., both daily and hourly time granularity

with and without TOU) always sell more RE than the amount of conventional

energy they buy from the main grid. Hence, we can conclude that prosumer models

also achieve net-zero carbon manufacturing environment in the cities studied in this

thesis work.

A further numerical analysis was performed by changing the buying cost of

energy from $130/MWh to $105/MWh in the prosumer model without TOU and

hourly granularity in the energy balance constraints. The objective was to see the

relative changes in total cost, energy cost, microgrid sizing and LCOE values. It was

hypothesized that the prosumer model without TOU using the buying energy cost

of $105/MWh would always give a lower total cost. The results show that, by

reducing the buying cost of energy from $130/MWh to $105/MWh the total cost

reduces approximately 4.6%, energy cost reduces approximately 11.3%, and the

sizing of RE microgrid is also reduced in each city. These results occur because now

the prosumer model without TOU buys approximately 10% more energy (i.e. 89,715

MWh) from the main grid. But still the prosumer model without TOU with buying

energy cost of $105/MWh cannot outperform the prosumer hourly TOU model

($140/MWh on-peak; $70/MWh off-peak) in terms of total expected cost, energy

cost and LCOE. The prosumer TOU model has approximately 3.9% lower total

cost, 8.4% lower energy cost and lower LCOE (i.e., $36.29/MWH for TOU model

vs. $39.09/MWh for the prosumer model without TOU and $105/MWh buying

energy cost). The prosumer TOU model installs more PV compared to the

prosumer without TOU at $105/MWh buying energy cost. On the contrary, the

prosumer TOU model installs less WT because of the lower buying energy cost in

off-peak hours.

In this thesis, the product demand data was generated synthetically from

pre-defined discrete uniform and triangular distributions. This research work could
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be extended to forecast the demand of the products using traditional and artificial

intelligence forecasting methods and real historical data. In addition, it would be

relevant to derive the single probability distribution for the scenarios assumed in the

model based on the individual probability distributions for the different random

elements that define a scenario. Another future work to be considered is

implementing mirrors with the microgrid system (Budiyanto and Fadliondi, 2017)

that would maximize the heat and generate more energy from solar PV. Application

of decomposition algorithms for solving this type of large-scale stochastic

optimization problem could open the doors to solve even larger model instances or

improve the computational efficiency of the current model instances. Finally the

inclusion of other realistic aspects to the model, such as budget limitations and

additional renewable technologies is a way to enhance the models presented in this

thesis work.
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APPENDIX SECTION

APPENDIX A: Notation used in the computation of solar PV generation

Parameters and variables used to compute solar PV generation

Notation Factor Unit Explanation
Wt Weather condition N/A Random variable between 0 and 1
A PV size m2 PV module area
η PV efficiency % Typically between 15-25%
d Date N/A d∈ {1, 2, ..., 365}
ω Solar hour rad Related to the local clock hour
T0 PV temperature ◦C PV operating temperature
φ Latitude rad Depends on geographic location

α
Surface azimuth an-
gle rad α = 0, if facing south

β PV tilt angle rad Between PV and ground
t Local time hour t∈ {1, 2, ..., 24}

γ Sun zenith angle rad Angle between sun ray and the normal
to the ground

θ PV incident angle rad Angle between sun ray and the normal
to PV surface

ωrise Sunrise hour hour Perceived by the PV
ωset Sunset hour hour Perceived by the PV
δ Declination angle rad Depending on the date

T
Total number of
generation hours N/A

Depends on the sunrise and sunset
hour. In the equator, it is (8760/2)=
4380 h

PMax
PV

Rated capacity of a
PV system W Maximum output power of the PV

panel considered
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APPENDIX A: Parameters and variables in solar PV generation

Values of Wt under different weather conditions

Scenario Condition Value of Wt

1 Clear sky 1.00

2 Scattered cloud 0.70

3 Partially cloudy 0.50

4 Mostly cloudy 0.30

5 Overcast 0.20

6 Light Rain 0.10

7 Rain 0.10

8 Heavy Rain 0.10

9 Haze 0.10

10 Widespread Dust 0.10

11 Patches of Fog 0.10

12 Fog 0.10

13 Light Thunderstorms and Rain 0.10

14 Thunderstorms 0.10

15 Thunderstorms and Rain 0.10

16 Heavy Thunderstorms and Rain 0.10

17 Light Drizzle 0.10

18 Mist 0.10

19 Snow 0.00

20 Unknown 0.00
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APPENDIX B: Values for the product demand

Values for product demand if it follows discrete uniform distribution

Factory Period Product A Product B Unit
low high low high

San 1 504 656 764 892 item/period
Francisco 2 509 694 753 889 item/period

3 520 707 751 870 item/period
4 531 731 735 866 item/period
5 549 735 730 859 item/period
6 573 738 729 853 item/period
7 582 741 726 832 item/period
8 583 760 706 810 item/period
9 594 776 689 796 item/period
10 605 793 670 787 item/period
11 629 795 622 782 item/period
12 653 799 603 766 item/period

Austin 1 455 514 751 795 item/period
2 460 515 742 791 item/period
3 461 515 737 789 item/period
4 462 528 732 779 item/period
5 463 530 731 777 item/period
6 484 532 725 777 item/period
7 488 534 720 775 item/period
8 490 535 719 772 item/period
9 503 544 714 771 item/period
10 512 547 714 761 item/period
11 513 548 712 754 item/period
12 514 548 710 752 item/period
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APPENDIX B: Values for product demand

Values for product demand if it follows discrete uniform distribution continuation

Factory Period Product A Product B Unit
low high low high

Boston 1 557 649 766 842 item/period
2 560 657 748 827 item/period
3 566 659 740 821 item/period
4 580 666 716 820 item/period
5 584 694 689 814 item/period
6 594 696 688 803 item/period
7 608 722 686 796 item/period
8 629 740 680 792 item/period
9 631 741 673 780 item/period
10 635 745 672 779 item/period
11 640 747 669 775 item/period
12 643 749 665 773 item/period
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APPENDIX B: Values for product demand

Values for product demand of San Francisco factory if it follows triangular distribution

Period Product A Product B Unit Comment
low high low high

1 549 732 842 878 item/period mode +10%
2 581 735 820 876 item/period than the mean
3 592 741 816 875 item/period of base case
4 597 753 801 874 item/period
5 603 755 790 874 item/period
6 636 756 777 868 item/period
7 668 761 744 863 item/period
8 680 769 708 863 item/period
9 691 769 703 861 item/period
10 706 769 697 851 item/period
11 709 772 685 846 item/period
12 731 774 651 844 item/period
1 531 688 787 857 item/period mode -10%
2 552 692 754 853 item/period than the mean
3 559 703 749 850 item/period of base case
4 562 723 732 849 item/period
5 566 726 721 848 item/period
6 587 727 711 836 item/period
7 610 736 688 828 item/period
8 620 748 666 827 item/period
9 631 748 663 824 item/period
10 648 750 660 803 item/period
11 653 753 652 793 item/period
12 686 757 632 789 item/period
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Values for product demand if it follows triangular distribution (-7% mean)

Factory Period Product A Product B Unit
low high low high

San 1 534 759 635 860 item/period
Francisco 2 557 755 658 856 item/period

3 565 752 666 853 item/period
4 569 751 670 852 item/period
5 572 751 674 851 item/period
6 596 739 698 840 item/period
7 619 731 721 832 item/period
8 629 730 731 831 item/period
9 640 727 742 828 item/period
10 656 708 758 809 item/period
11 660 698 762 799 item/period
12 691 694 793 795 item/period

Austin 1 459 535 699 791 item/period
2 465 534 702 789 item/period
3 467 532 704 787 item/period
4 468 532 705 787 item/period
5 469 532 706 787 item/period
6 475 527 714 781 item/period
7 483 525 724 777 item/period
8 487 524 729 777 item/period
9 491 523 734 775 item/period
10 497 516 741 766 item/period
11 499 512 743 761 item/period
12 510 511 758 759 item/period
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APPENDIX B: Values for product demand

Values for product demand if it follows triangular distribution (-7% mean) continuation

Factory Period Product A Product B Unit
low high low high

Boston 1 570 721 669 820 item/period
2 584 718 681 817 item/period
3 588 716 685 815 item/period
4 591 715 687 814 item/period
5 593 715 689 814 item/period
6 607 707 702 805 item/period
7 622 701 717 799 item/period
8 629 700 725 799 item/period
9 637 698 733 796 item/period
10 648 685 744 782 item/period
11 651 677 748 775 item/period
12 673 675 771 772 item/period
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APPENDIX B: Values for product demand

Values for product demand if it follows triangular distribution (+7% mean)

Factory Period Product A Product B Unit
low high low high

San 1 547 771 649 874 item/period
Francisco 2 577 768 681 872 item/period

3 588 766 692 870 item/period
4 593 765 698 869 item/period
5 598 765 703 869 item/period
6 630 756 737 861 item/period
7 660 750 768 856 item/period
8 672 750 781 856 item/period
9 682 748 792 854 item/period
10 696 734 806 841 item/period
11 700 727 810 835 item/period
12 722 724 831 833 item/period

Austin 1 468 545 716 805 item/period
2 480 545 730 804 item/period
3 484 545 735 804 item/period
4 486 545 737 804 item/period
5 488 545 739 804 item/period
6 501 543 754 802 item/period
7 513 542 767 801 item/period
8 517 542 772 801 item/period
9 521 542 777 801 item/period
10 527 539 783 797 item/period
11 528 537 785 795 item/period
12 536 536 794 793 item/period
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APPENDIX B: Values for product demand

Values for product demand if it follows triangular distribution (+7% mean) continuation

Factory Period Product A Product B Unit
low high low high

Boston 1 583 733 683 834 item/period
2 604 731 705 832 item/period
3 612 730 713 831 item/period
4 615 729 716 830 item/period
5 619 729 720 830 item/period
6 641 724 743 825 item/period
7 662 721 764 822 item/period
8 671 721 772 822 item/period
9 678 719 780 821 item/period
10 688 711 790 813 item/period
11 690 707 792 809 item/period
12 704 705 806 807 item/period
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APPENDIX B: Machine hours for the different factories

Machine hour capacity in San Francisco and Austin

Factory Period Low Medium High Unit
San 1 150,633 152,856 155,997 hour/period
Francisco 2 150,972 153,353 156,221 hour/period

3 151,071 153,815 156,840 hour/period
4 151,233 153,856 157,049 hour/period
5 151,621 155,137 157,569 hour/period
6 151,751 155,153 157,585 hour/period
7 151,809 155,287 157,766 hour/period
8 151,898 155,300 158,250 hour/period
9 152,088 155,577 158,395 hour/period
10 152,277 155,650 158,421 hour/period
11 152,713 155,667 158,996 hour/period
12 152,798 155,715 159,258 hour/period

Austin 1 150,011 150,264 150,483 hour/period
2 150,018 150,285 150,515 hour/period
3 150,079 150,287 150,520 hour/period
4 150,091 150,300 150,562 hour/period
5 150,113 150,329 150,597 hour/period
6 150,126 150,348 150,612 hour/period
7 150,129 150,353 150,667 hour/period
8 150,139 150,400 150,835 hour/period
9 150,182 150,406 150,874 hour/period
10 150,217 150,440 150,913 hour/period
11 150,220 150,443 150,917 hour/period
12 150,235 150,450 150,977 hour/period
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APPENDIX B: Machine hours for the different factories

Machine hour capacity in Boston

Factory Period Low Medium High Unit
Boston 1 151,046 153,722 156,276 hour/period

2 151,567 153,848 156,468 hour/period
3 151,859 154,173 156,820 hour/period
4 151,917 154,370 157,397 hour/period
5 151,940 154,551 157,404 hour/period
6 151,983 154,911 157,488 hour/period
7 152,143 155,370 157,947 hour/period
8 152,406 155,485 158,928 hour/period
9 152,439 155,541 159,102 hour/period
10 152,467 155,643 159,388 hour/period
11 152,474 155,778 159,845 hour/period
12 153,685 155,781 160,421 hour/period

166



APPENDIX B: Labor hours for the different factories

Labor hour capacity in San Francisco and Austin

Factory Period Low Medium High Unit
San 1 46,004 46,121 46,314 hour/period
Francisco 2 46,011 46,140 46,325 hour/period

3 46,015 46,141 46,326 hour/period
4 46,043 46,147 46,400 hour/period
5 46,054 46,156 46,408 hour/period
6 46,058 46,166 46,424 hour/period
7 46,063 46,191 46,448 hour/period
8 46,064 46,215 46,453 hour/period
9 46,068 46,244 46,472 hour/period
10 46,079 46,264 46,488 hour/period
11 46,096 46,265 46,489 hour/period
12 46,102 46,307 46,492 hour/period

Austin 1 46,104 46,274 46,465 hour/period
2 46,105 46,280 46,467 hour/period
3 46,113 46,317 46,489 hour/period
4 46,129 46,333 46,497 hour/period
5 46,151 46,339 46,501 hour/period
6 46,154 46,371 46,513 hour/period
7 46,165 46,377 46,518 hour/period
8 46,198 46,385 46,555 hour/period
9 46,213 46,386 46,556 hour/period
10 46,230 46,387 46,558 hour/period
11 46,253 46,401 46,570 hour/period
12 46,273 46,423 46,587 hour/period
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APPENDIX B: Labor hours for the different factories

Labor hour capacity in Boston

Factory Period Low Medium High Unit
Boston 1 46,201 46,379 46,560 hour/period

2 46,220 46,420 46,588 hour/period
3 46,227 46,435 46,590 hour/period
4 46,227 46,450 46,602 hour/period
5 46,266 46,483 46,613 hour/period
6 46,276 46,487 46,615 hour/period
7 46,289 46,508 46,635 hour/period
8 46,300 46,521 46,652 hour/period
9 46,320 46,523 46,667 hour/period
10 46,336 46,524 46,682 hour/period
11 46,339 46,540 46,696 hour/period
12 46,346 46,551 46,696 hour/period
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APPENDIX B: Model input parameters

Production input parameter values

Items Notation A B Unit
Materials cost cxit 66 68 $/item/period
Inventory holding cost cyit 5 5 $/item/period
Backorder cost cbit 200 230 $/item/period
Transportation cost cwit 26 26 $/item/period
Subcontracting cost cqit 720 730 $/item/period
Defective items cost cmit 66 68 $/item/period
Recycle items cost crit 352 352 $/item/period
Factory energy consumption exi 0.8 0.9 MWh/item
Warehouse energy consumption efi 0.01 0.01 MWh/item
Production allowable defect ν 1 1 %
Allowable recycle percentage η 1 1 %
Initial inventory yin0 0 0 item
Initial backorder bik0 0 0 item
Maximum allowable defect β 2 2 %
Unit machine hour ai 100 100 hour/item
Unit labor hour ui 16 16 hour/item
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APPENDIX B: Model input parameters

Other input parameter values

Parameter Notation Value Unit
Labor hour cost clt 23 $/hour
Labor hiring and layoff hour cost cht , c

f
t 38, 14 $/hour

Energy sell and buy u−, u+ 30, 130 $/MWh
Energy buy considering TOU u+h 70, 140 $/MWh
Warehouse capacity WHmax

t 2,000 item
Initial machine hour wk0 152,714 hour
Initial labor hour lk0 23,000 hour
Allowable labor hour variation α 20 %/period
Battery cost for single fty & Wh ab 520,000 $/MWh
Battery cost for other models ab 500,000 $/MWh
WT and PV cost ag1 1.5M, 1.0M $/MW
Capital recovery factor WT and
PV φg 0.0858 N/A

Capital recovery factor BSS φb 0.1424 N/A
O&M cost of WT and PV bg1,bg2 8, 4 $/MWh
Carbon incentive for WT and PV cg 0, 25 $/MWh
Energy intensity rate qv 0.000000119 MWh/kg/km
Distance between fty and wh d11,d22,d33 435,195,215 km
No of trips β 1 trip/day
Vehicle self weight mv 2,630 kg
WT and PV generation hours λgj 24, 12 hour/day
Fty and wh electricity load Lk, Ln 2, 7 MW
Battery capacity Bmax

k , Bmax
n 1,300 MWh

WT and PV capacity Pmax
kg , Pmax

ng 150 MW
Daily operating hours of facilities δ, ξ 24 hour/day
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San Francisco WT capacity factor of year 2012

Day CF Day CF Day CF Day CF Day CF
1 0.055 36 0.018 71 0.316 106 0.685 141 0.639
2 0.054 37 0.038 72 0.480 107 0.427 142 0.790
3 0.055 38 0.311 73 1.000 108 0.415 143 0.655
4 0.030 39 0.033 74 0.906 109 0.567 144 0.904
5 0.211 40 0.062 75 0.233 110 0.843 145 0.977
6 0.470 41 0.083 76 0.169 111 0.605 146 0.982
7 0.196 42 0.286 77 0.316 112 0.677 147 0.838
8 0.351 43 0.604 78 0.724 113 0.544 148 0.650
9 0.063 44 0.322 79 0.560 114 0.375 149 0.640
10 0.038 45 0.736 80 0.901 115 0.340 150 0.630
11 0.035 46 0.294 81 0.112 116 0.655 151 0.711
12 0.027 47 0.777 82 0.141 117 0.205 152 0.637
13 0.034 48 0.322 83 0.224 118 0.331 153 0.925
14 0.025 49 0.290 84 0.563 119 0.851 154 0.793
15 0.219 50 0.707 85 0.272 120 0.641 155 0.465
16 0.558 51 0.753 86 0.297 121 0.760 156 0.753
17 0.057 52 0.255 87 0.064 122 0.957 157 0.880
18 0.084 53 0.182 88 0.367 123 0.494 158 0.833
19 0.056 54 0.126 89 0.524 124 0.404 159 0.915
20 0.199 55 0.303 90 0.717 125 0.819 160 0.951
22 1.000 57 0.201 92 0.519 127 0.450 162 0.539
23 0.479 58 0.799 93 0.458 128 0.583 163 0.621
24 0.475 59 0.349 94 0.583 129 0.502 164 0.671
25 0.951 60 0.603 95 0.746 130 0.665 165 0.716
26 0.437 61 0.453 96 0.686 131 0.427 166 0.664
27 0.081 62 0.179 97 0.474 132 0.380 167 0.660
28 0.239 63 0.182 98 0.318 133 0.506 168 0.500
29 0.498 64 0.369 99 0.339 134 0.298 169 0.543
30 0.024 65 0.922 100 0.400 135 0.306 170 0.351
31 0.067 66 0.879 101 0.153 136 0.721 171 0.440
32 0.234 67 0.188 102 0.453 137 0.621 172 0.473
33 0.051 68 0.230 103 0.729 138 0.652 173 0.743
34 0.220 69 0.479 104 0.395 139 0.679 174 0.307
35 0.021 70 0.508 105 0.899 140 0.582 175 0.395
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San Francisco WT capacity factor of year 2012 continuation

Day CF Day CF Day CF Day CF Day CF
176 0.515 211 0.453 246 0.349 281 0.359 316 0.172
177 0.649 212 0.474 247 0.390 282 0.281 317 0.128
178 0.647 213 0.495 248 0.573 283 0.216 318 0.169
179 0.595 214 0.431 249 0.363 284 0.322 319 0.120
180 0.555 215 0.487 250 0.330 285 0.392 320 0.239
181 0.640 216 0.357 251 0.489 286 0.184 321 0.204
182 0.229 217 0.460 252 0.906 287 0.177 322 0.384
183 0.471 218 0.309 253 0.674 288 0.299 323 0.397
184 0.743 219 0.558 254 0.367 289 0.390 324 0.092
185 0.489 220 0.828 255 0.373 290 0.141 325 0.245
186 0.321 221 0.651 256 0.302 291 0.575 326 0.656
187 0.767 222 0.584 257 0.539 292 0.691 327 0.393
188 0.642 223 0.735 258 0.725 293 0.133 328 0.182
189 0.564 224 0.505 259 0.765 294 0.208 329 0.166
190 0.770 225 0.625 260 0.679 295 0.380 330 0.214
191 0.768 226 0.677 261 0.558 296 0.426 331 0.250
192 0.507 227 0.616 262 0.374 297 0.676 332 0.151
193 0.617 228 0.561 263 0.512 298 0.495 333 0.142
195 0.697 230 0.601 265 0.841 300 0.217 335 0.376
196 0.484 231 0.767 266 0.578 301 0.178 336 0.111
197 0.361 232 0.584 267 0.389 302 0.239 337 0.409
198 0.537 233 0.706 268 0.355 303 0.254 338 0.130
199 0.400 234 0.612 269 0.378 304 0.192 339 0.154
200 0.467 235 0.510 270 0.318 305 0.137 340 0.040
201 0.525 236 0.472 271 0.340 306 0.191 341 0.111
202 0.753 237 0.412 272 0.360 307 0.222 342 0.114
203 0.632 238 0.324 273 0.332 308 0.283 343 0.290
204 0.638 239 0.402 274 0.326 309 0.189 344 0.271
205 0.522 240 0.704 275 0.251 310 0.193 345 0.073
206 0.171 241 0.484 276 0.249 311 0.414 346 0.053
207 0.209 242 0.475 277 0.055 312 0.568 347 0.038
208 0.310 243 0.437 278 0.369 313 0.375 348 0.230
209 0.370 244 0.385 279 0.292 314 0.359 349 0.312
210 0.410 245 0.355 280 0.346 315 0.426 350 0.470
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Experimental cases in the sensitivity analysis in Chapter 4

SI. PV cost Carbon BS cost Product demand Scen. Probability
incentive distribution

1 1 M 30 0.5 M Tri [+7% mean] (0.80, 0.11, 0.09)
2 1 M 30 0.5 M Tri [+7% mean] (0.09, 0.11, 0.80)
3 1 M 30 0.5 M Tri [-7% mean] (0.80, 0.11, 0.09)
4 1 M 30 0.5 M Tri [-7% mean] (0.09, 0.11, 0.80)
5 1 M 30 0.3 M Tri [+7% mean] (0.80, 0.11, 0.09)
6 1 M 30 0.3 M Tri [+7% mean] (0.09, 0.11, 0.80)
7 1 M 30 0.3 M Tri [-7% mean] (0.80, 0.11, 0.09)
8 1 M 30 0.3 M Tri [-7% mean] (0.09, 0.11, 0.80)
9 1 M 30 0.15 M Tri [+7% mean] (0.80, 0.11, 0.09)
10 1 M 30 0.15 M Tri [+7% mean] (0.09, 0.11, 0.80)
11 1 M 30 0.15 M Tri [-7% mean] (0.80, 0.11, 0.09)
12 1 M 30 0.15 M Tri [-7% mean] (0.09, 0.11, 0.80)
13 1 M 20 0.5 M Tri [+7% mean] (0.80, 0.11, 0.09)
14 1 M 20 0.5 M Tri [+7% mean] (0.09, 0.11, 0.80)
15 1 M 20 0.5 M Tri [-7% mean] (0.80, 0.11, 0.09)
16 1 M 20 0.5 M Tri [-7% mean] (0.09, 0.11, 0.80)
17 1 M 20 0.3 M Tri [+7% mean] (0.80, 0.11, 0.09)
18 1 M 20 0.3 M Tri [+7% mean] (0.09, 0.11, 0.80)
19 1 M 20 0.3 M Tri [-7% mean] (0.80, 0.11, 0.09)
21 1 M 20 0.15 M Tri [+7% mean] (0.80, 0.11, 0.09)
22 1 M 20 0.15 M Tri [+7% mean] (0.09, 0.11, 0.80)
23 1 M 20 0.15 M Tri [-7% mean] (0.80, 0.11, 0.09)
25 1 M 10 0.5 M Tri [+7% mean] (0.80, 0.11, 0.09)
26 1 M 10 0.5 M Tri [+7% mean] (0.09, 0.11, 0.80)
27 1 M 10 0.5 M Tri [-7% mean] (0.80, 0.11, 0.09)
29 1 M 10 0.3 M Tri [+7% mean] (0.80, 0.11, 0.09)
30 1 M 10 0.3 M Tri [+7% mean] (0.09, 0.11, 0.80)
31 1 M 10 0.3 M Tri [-7% mean] (0.80, 0.11, 0.09)
32 1 M 10 0.3 M Tri [-7% mean] (0.09, 0.11, 0.80)
33 1 M 10 0.15 M Tri [+7% mean] (0.80, 0.11, 0.09)
34 1 M 10 0.15 M Tri [+7% mean] (0.09, 0.11, 0.80)
35 1 M 10 0.15 M Tri [-7% mean] (0.80, 0.11, 0.09)
36 1 M 10 0.15 M Tri [-7% mean] (0.09, 0.11, 0.80)
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Experimental cases in the sensitivity analysis in Chapter 4 continuation

SI. PV cost Carbon BS cost Product demand Scen. Probability
incentive distribution

37 0.75 M 30 0.5 M Tri [+7% mean] (0.80, 0.11, 0.09)
38 0.75 M 30 0.5 M Tri [+7% mean] (0.09, 0.11, 0.80)
39 0.75 M 30 0.5 M Tri [-7% mean] (0.80, 0.11, 0.09)
40 0.75 M 30 0.5 M Tri [-7% mean] (0.09, 0.11, 0.80)
41 0.75 M 30 0.3 M Tri [+7% mean] (0.80, 0.11, 0.09)
42 0.75 M 30 0.3 M Tri [+7% mean] (0.09, 0.11, 0.80)
43 0.75 M 30 0.3 M Tri [-7% mean] (0.80, 0.11, 0.09)
44 0.75 M 30 0.3 M Tri [-7% mean] (0.09, 0.11, 0.80)
45 0.75 M 30 0.15 M Tri [+7% mean] (0.80, 0.11, 0.09)
46 0.75 M 30 0.15 M Tri [+7% mean] (0.09, 0.11, 0.80)
47 0.75 M 30 0.15 M Tri [-7% mean] (0.80, 0.11, 0.09)
49 0.75 M 20 0.5 M Tri [+7% mean] (0.80, 0.11, 0.09)
50 0.75 M 20 0.5 M Tri [+7% mean] (0.09, 0.11, 0.80)
51 0.75 M 20 0.5 M Tri [-7% mean] (0.80, 0.11, 0.09)
52 0.75 M 20 0.5 M Tri [-7% mean] (0.09, 0.11, 0.80)
53 0.75 M 20 0.3 M Tri [+7% mean] (0.80, 0.11, 0.09)
54 0.75 M 20 0.3 M Tri [+7% mean] (0.09, 0.11, 0.80)
56 0.75 M 20 0.3 M Tri [-7% mean] (0.09, 0.11, 0.80)
57 0.75 M 20 0.15 M Tri [+7% mean] (0.80, 0.11, 0.09)
58 0.75 M 20 0.15 M Tri [+7% mean] (0.09, 0.11, 0.80)
59 0.75 M 20 0.15 M Tri [-7% mean] (0.80, 0.11, 0.09)
60 0.75 M 20 0.15 M Tri [-7% mean] (0.09, 0.11, 0.80)
61 0.75 M 10 0.5 M Tri [+7% mean] (0.80, 0.11, 0.09)
63 0.75 M 10 0.5 M Tri [-7% mean] (0.80, 0.11, 0.09)
64 0.75 M 10 0.5 M Tri [-7% mean] (0.09, 0.11, 0.80)
65 0.75 M 10 0.3 M Tri [+7% mean] (0.80, 0.11, 0.09)
66 0.75 M 10 0.3 M Tri [+7% mean] (0.09, 0.11, 0.80)
67 0.75 M 10 0.3 M Tri [-7% mean] (0.80, 0.11, 0.09)
68 0.75 M 10 0.3 M Tri [-7% mean] (0.09, 0.11, 0.80)
69 0.75 M 10 0.15 M Tri [+7% mean] (0.80, 0.11, 0.09)
70 0.75 M 10 0.15 M Tri [+7% mean] (0.09, 0.11, 0.80)
71 0.75 M 10 0.15 M Tri [-7% mean] (0.80, 0.11, 0.09)
72 0.75 M 10 0.15 M Tri [-7% mean] (0.09, 0.11, 0.80)
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Experimental cases in the sensitivity analysis in Chapter 4 continuation

SI. PV cost Carbon BS cost Product demand Scen. Probability
incentive distribution

73 0.50 M 30 0.5 M Tri [+7% mean] (0.80, 0.11, 0.09)
74 0.50 M 30 0.5 M Tri [+7% mean] (0.09, 0.11, 0.80)
75 0.50 M 30 0.5 M Tri [-7% mean] (0.80, 0.11, 0.09)
76 0.50 M 30 0.5 M Tri [-7% mean] (0.09, 0.11, 0.80)
77 0.50 M 30 0.3 M Tri [+7% mean] (0.80, 0.11, 0.09)
78 0.50 M 30 0.3 M Tri [+7% mean] (0.09, 0.11, 0.80)
79 0.50 M 30 0.3 M Tri [-7% mean] (0.80, 0.11, 0.09)
80 0.50 M 30 0.3 M Tri [-7% mean] (0.09, 0.11, 0.80)
81 0.50 M 30 0.15 M Tri [+7% mean] (0.80, 0.11, 0.09)
82 0.50 M 30 0.15 M Tri [+7% mean] (0.09, 0.11, 0.80)
83 0.50 M 30 0.15 M Tri [-7% mean] (0.80, 0.11, 0.09)
85 0.50 M 20 0.5 M Tri [+7% mean] (0.80, 0.11, 0.09)
86 0.50 M 20 0.5 M Tri [+7% mean] (0.09, 0.11, 0.80)
87 0.50 M 20 0.5 M Tri [-7% mean] (0.80, 0.11, 0.09)
88 0.50 M 20 0.5 M Tri [-7% mean] (0.09, 0.11, 0.80)
89 0.50 M 20 0.3 M Tri [+7% mean] (0.80, 0.11, 0.09)
90 0.50 M 20 0.3 M Tri [+7% mean] (0.09, 0.11, 0.80)
91 0.50 M 20 0.3 M Tri [-7% mean] (0.80, 0.11, 0.09)
93 0.50 M 20 0.15 M Tri [+7% mean] (0.80, 0.11, 0.09)
94 0.50 M 20 0.15 M Tri [+7% mean] (0.09, 0.11, 0.80)
95 0.50 M 20 0.15 M Tri [-7% mean] (0.80, 0.11, 0.09)
96 0.50 M 20 0.15 M Tri [-7% mean] (0.09, 0.11, 0.80)
98 0.50 M 10 0.5 M Tri [+7% mean] (0.09, 0.11, 0.80)
99 0.50 M 10 0.5 M Tri [-7% mean] (0.80, 0.11, 0.09)
100 0.50 M 10 0.5 M Tri [-7% mean] (0.09, 0.11, 0.80)
101 0.50 M 10 0.3 M Tri [+7% mean] (0.80, 0.11, 0.09)
102 0.50 M 10 0.3 M Tri [+7% mean] (0.09, 0.11, 0.80)
103 0.50 M 10 0.3 M Tri [-7% mean] (0.80, 0.11, 0.09)
104 0.50 M 10 0.3 M Tri [-7% mean] (0.09, 0.11, 0.80)
105 0.50 M 10 0.15 M Tri [+7% mean] (0.80, 0.11, 0.09)
106 0.50 M 10 0.15 M Tri [+7% mean] (0.09, 0.11, 0.80)
107 0.50 M 10 0.15 M Tri [-7% mean] (0.80, 0.11, 0.09)
108 0.50 M 10 0.15 M Tri [-7% mean] (0.09, 0.11, 0.80)
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