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ABSTRACT 

 
 

 

The aim of this thesis is to develop and evaluate methods of human movement 

classification using motion tracking data captured using a RGB-D sensor. As hardware 

solutions evolve and improve, so too must the software solutions evolve to creatively 

leverage and combine new technologies. Accurate human movement classification can 

facilitate a variety of practical applications, ranging from the health domain to sports, 

film, and even advanced surveillance. In this work, we focus on human movements 

related to physical therapy exercises. Motion tracking data was collected from subjects 

performing various physical exercises. The goal of our system is to automatically 

recognize the types of exercises performed by teach subject and the number of repetitions 

of each particular exercise. To achieve this goal, we use 3D skeleton tracking data points 

provided by the Microsoft Kinect sensor. After a set of transformation steps, we apply a 

Long Term Short Term Memory (LSTM) Deep Learning networks in tandem with the 

Dynamic Time Warping sequence matching algorithm to classify the types of exercises 

and number of repetitions performed by each subject.  
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1. INTRODUCTION 

 
 

Human movement classification and analysis remains a challenging task for which 

there are many uses especially in the medical field. As with many other problems in 

computer vision, a task that is very simple for a human to perform can be exceedingly 

difficult for a machine. 

 

In this thesis, I gather data of subjects performing exercises using a Microsoft Kinect. 

The data is classified and analyze using two distinct techniques. One is a common signal 

processing strategy used for comparison called dynamic time warping (DTW). The other 

is a deep learning classification strategy that uses a long short-term memory (LSTM) 

network. 

 

The purpose of the analysis is to compare and contrast the two strategies and assess 

their usefulness in terms of applications in physical therapy. Each algorithm may excel in 

different ways to be used in different applications. Speed, accuracy, resource efficiency, 

and system requirements all play a role in fitting into a particular scenario. 

 

Tracking and analyzing movements of patients is a difficult task even for an 

experienced physician. The goal of this research is to explore and compare effective 

methods for classifying and evaluating physical movements using sensor technologies 

and software analysis. Currently much of the assessment is made visually by a medical 

professional or reported verbally from the patient themselves. This process is subjective 

and can be inconsistent from patient to patient or therapist to therapist. 
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1.1 Motivation 

Physical therapy in practice has a number of challenges that are increasingly being 

remedied through the use of technology. In a physical therapy setting patients are 

typically tasked with repeating certain movements or exercises in order to progress with 

recovery or adaptation. There exist a number of standards for movements though there is 

not one universally agreed upon set. Even within the same set the progress is evaluated 

by a physician or medical worker which leads to highly subjective interpretation. In cases 

such as these it is useful to have an automated system with which to compare data 

between sets and users. Automated systems open up the potential for scalability by 

allowing for tasks that require trained medical professionals to be performed by untrained 

individuals assisted by smart tools. Many physical therapy patients will have limited 

mobility would benefit greatly from digital systems that allow them to get advanced 

medical care without having to leave their homes. New and improved tools continue to be 

explored to give patients better diagnoses and to improve the treatment options. 

 

1.2 Challenges 

There is an extensive array of tools that can potentially aid in movement analysis. 

Many of these such as motion capture require large equipment that users wear obtrusive 

gear in order to capture the data. They can also require the need of specialized technicians 

to operate and process. The more that these procedures require specific technologies and 

advanced operational expertise, the more limited these resources will be. The more 

simplified the system is the more it can be made available. These requirements have 

encouraged us to explore the Kinect. The Kinect is small, lightweight, portable, can be 
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connected to almost any computer. It is simple to operate and allows the potential for 

remote capture and analysis. The budget requirements for a Kinect are far more 

affordable than a full scale motion capture lab without sacrificing much in the level of 

detail [21].  

The Kinect itself does have some challenges of its own when it comes to collecting 

data. The data gathered comes from a camera and IR array that is then interpreted to a 3D 

space. The subject is not viewed from all angles simultaneously so there are some 

scenarios where the joints of the subject are estimated indirectly. These include when 

joints of the subject are blocked from view and when joints leave cross the boundaries of 

the Kinect field of view and come back. Certain variables will lower the accuracy of 

these estimations such as the depth of the subject not varying greatly from their 

surroundings or having vaguely human shaped objects in the field of view. For the sake 

of these experiments we asked our subjects not to stand right up against a wall. We do 

however have some odd objects have in the field of view and for one exercise have 

subjects interacting with a chair. The last major drawback to using the Kinect is the 

requirement of the local machine. For recording detailed images at a maximum frame rate 

does require a modern cpu. Recording only skeleton data does not have this limitation 

and can be done with a minimal setup. 

 

1.3 Applications 

3D motion capture technologies have been around for decades now and are 

continually advancing in their capabilities. Many healthcare facilities that could benefit 

from having systems like these use outdated computer systems in general. Not only are 
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budgetary constraints a limiting factor in this but healthcare standards require rigorous 

safety testing to be approved. The Kinect is readily available and affordable for 

individual patients. It is already a widely adopted technology with low potential risk and 

high potential reward for use in medicine. 

 The Kinect is also more advantageous to the patients. Not requiring the patient to 

put on any specialized gear or clothing is a major positive to those with limited mobility 

which the target users are more likely to be. As is the overall size and weight of the 

system. The hardware is only 3 pounds, easy to install, and does not require any bulky 

equipment to be worn. 

 

I collected data from ten subjects performing exercises in multiple varied sequences for 

analysis. The data collection application I developed and optimized for recording 

multiple data streams through the Kinect. It is written in C# and leverages Microsoft’s 

libraries and Kinect services. The application is simple enough to use that an operator 

does not require much if any training to record data. It is a Windows application with 

minimal system requirements. It should run on most modern desktops and laptops. 

 Once the data is collected there is some extensive preprocessing that is done in 

order to make the sequences more amenable to analysis. Not least of which is 

normalization of the skeleton data. This data gives the most accurate representation of the 

movements and is much easier to analyze from the machine’s perspective. I have built on 

and improved existing skeleton normalization methods. All of this preprocessing is done 

in matlab. The data can all be represented in the form of matrices making matlab 

algorithms optimized exactly for manipulating this data.  
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The data analysis is also done in matlab for many of the same advantages. There are 

two different algorithms that were chosen to classify the exercises. The dynamic time 

warping (DTW) algorithm is commonly used to compare signals that are equivalent to 

each other but take different amounts of time to. For example you may have a song that 

you want to compare to another song that is identical except played at double speed. A 

straight forward comparison of the audio signals will not give a positive match because 

the signals do not line up very well. DTW allows the signal to be aligned along the same 

time scale giving a more accurate match for comparison. In the same way we can 

compare people performing exercises even if they do not perform them at the same speed 

or cadence. DTW is a dynamic programming technique that requires comparing each 

point in time of one sequence M to each point in time in a second sequence N. This 

makes the time to run just one comparison O(NxM). One positive aspect of using DTW is 

that it gives a distinct distance measure between the two exercises compared. So not only 

do we know the classification but also how closely that classification matches the 

standard. We can use that distance as a measure of how well the subject performed the 

exercise. It could be used to create a standard that is transferable across different medical 

offices and different patients. 

The second comparison algorithm used is Long Short Term Memory (LSTM). This 

utilizes a neural network that is trained on a set of exercises that are already classified. 

This training assigned weights to hidden variables that are used to later classify new 

sequences. Each round of training refines the hidden weights. We want to define a large 

number of hidden variables since we know that there are many possible dependencies 
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between each step in an exercise. This process is useful when we know there are 

relationships but they are hard to define explicitly. We use a neural network that mimics 

the brain’s power to learn these relationships. The LSTM implementation does not 

however give the same kind of distance measure that DTW does. LSTM also makes it 

more challenging to count individual repetitions since it does not automatically detect the 

start and finish of each exercise. DTW by its very nature gives a count of repetitions. 

Training can take a long time to reach acceptable levels of accuracy but once the network 

is trained it can be used to classify other sequences quickly. 

 Matlab was selected for analysis because of some of the new features developed 

for their Deep Learning Toolbox. The features optimize hardware utilization for LSTM 

and streamline the programming process. The examples provided by matlab combined 

with the examples built in this these will hopefully make programming with neural 

networks more accessible. 

DTW and LSTM have different advantages with each being better for a given task 

depending on the circumstances. DTW does not scale will with a large number of classes 

and LSTM has challenges with reliably counting individual exercises. Ultimately a 

hybrid implementation can take advantage of the best qualities of each. The LSTM can 

be used to narrow the classification on a particular sequence and DTW used to count 

repetitions using only one movement. 
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2. RELATED WORK 
 

 

The problem of analyzing movements has been an ongoing area of research and there 

are existing solutions that attempt to do many of the tasks that I am going through in this 

thesis. In one attempt the data gathering process is equivalent but the normalization and 

analysis uses mostly rudimentary methods to compare data. They found better accuracy 

in analyzing just the joint angles rather than their absolute positions. The results of their 

experiments were not very favorable for precise body movement analysis where these 

methods excel is in counting exercise repetitions [3]. “Comparative abilities of Microsoft 

Kinect and Vicon 3D motion capture for gait analysis” ( Pfister, A., West, A. M., 

Bronner, S., & Noah, J. A. 2014) compared the data collected from the Kinect with data 

from 3D motion capture technologies and both found that the Kinect is less accurate 

especially when joints are hidden behind other body parts [2]. However there are multiple 

suggested methods to work around this obstacle some of which I have used in my 

implementation. 

The obstacles presented by certain Kinect inaccuracies has encouraged research to 

compensate. One difficulty with comparing the 3D motion of two different people is that 

they never perfectly line up in the 3D space. Subjects are different distances from the 

Kinect sensors and at different angles in relation to the sensor. To account for misaligned 

subjects I make extensive use of the skeleton normalization presented by “Kinect 

skeleton coordinate calibration for remote physical training” (Wei, T & Qiao, Y & Lee, 

B. 2014) which combines skeleton rotation and translation [3]. Another problem is the 

inferred data from the Kinect. When portion of the body is hidden from view the Kinect 
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makes its own estimation about the location of the hidden body parts. For example when 

a person puts their arm behind their back while facing the Kinect, the arm’s location is 

estimated. When the arm comes back on screen it may seem to jump if the estimation was 

wrong. A method for correcting for inaccurate estimations in Kinect data was found to be 

quite successful that uses a Gaussian filter passed over the joint movements to smooth out 

irregularities in the sequence [6]. I used the smae approach with a different filter passed 

over the data set. 

 Dynamic time warping as an algorithm has been extensively studied in the use of 

signal processing. Much of this work has been done with speech and audio signals which 

have some challenges when mapping to multidimensional image and body data [4]. The 

basic concepts of using dynamic time warping involve expanding and contracting time 

sequences compared to each other to find a best match. 

Similarly LSTM networks have been around for years and been explored in different 

avenues, often with speech and audio signals [8]. Studies have been done to perform 

sequence classification on Kinect skeleton data [9]. The availability of Kinect 3D 

skeleton data is a relatively recent phenomenon so there still many unexplored 

possibilities. With the skeleton positions we train a neural network on sequence data 

gathered from test subjects performing exercises over many iterations until it can reliably 

classify exercises. In addition to the use of Kinect sensor data, there are studies that use 

different movement sensors like accelerometers to classify exercises using neural 

networks with comparable results to our own [24][25].  A different study includes 

comparing using and LSTM and DTW for gesture classification using input from 
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accelerometers and gyrometers. In this study LSTM accuracy was much worse at 75% as 

compared to DTW at 95% [28]. 

 Neural networks have been studied in comparison to many classification 

techniques for movements. One study compared many classification techniques to neural 

networks using Kinect skeleton data. These other classification were K nearest neighbors, 

Support Vector Machines, and Bayes classifiers. Each method has its own merits with 

some being superior at classification, some being better at assessing the quality of the 

movement, and others better for performance [30][31]. This experiment was used for 

classifying still poses rather than a continuous sequence of movements [10]. Another 

study created a system for classifying a sequence of movements of subject playing video 

games showing that the Kinect has a comparable level of accuracy to human viewers 

when it comes to counting and classifying movements [16]. What the studies note as a 

major motivation for using the Kinect is the ease of use and the simplicity of the skeleton 

data [21][23][26]. Having the skeleton data as inputs allows for much more speed and 

precision as opposed to image data alone [11]. Without processing the image and just 

using skeleton data allows for some applications to do real-time classification when it 

would otherwise be difficult to do so without specialized hardware [22]. One study was 

able to achieve near real-time classification using Kinect data and neural networks having 

only a one second delay [27]. The Kinect depth data also adds a layer of accuracy that is 

difficult to extract from images only. One study was able to accurately measure minute 

changes in breathing and heart rate of subjects thanks to these additional sensors [12]. 

Another major advantage of the Kinect is the lack of requirement for subject to wear 
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anything obtrusive. Sensor technologies are still being studied with the same goal of 

therapeutic enhancement but typically require such equipment [13]. 

 A large portion of the research done with the Kinect and on image processing in 

general is gesture recognition. This thesis can be considered a subset of this research. One 

study “Easy gesture recognition for Kinect, Advances in Engineering Software” (Rodrigo 

Ibañez, Álvaro Soria, Alfredo Teyseyre, Marcelo Campo 2014) while not explicitly 

targeted for physical therapy did use the Kinect to achieve an over 99% classification rate 

using Dynamic Time Warping and Hidden Markov Models. The classifications were for 

gestures recorded by the Kinect of which there were only seven. Hidden Markov Models 

use statistical probabilities to predict sequence states based on previous inputs and their 

predictability. Baysian classifiers are an extension of this process into multiple levels 

[14].  

One of the aims of this Thesis is to put together s data set of 3D skeleton, RGB, and 

Depth data that can be made publicly available and used by future researchers. I am quite 

thankful for the efforts of others to make their own data sets publically available such as 

the gesture recognition library for the Kinect [15]. 

As the technology evolves research is being conducted to compare individual versions 

of the Kinect for their usefulness. This Thesis uses the Kinect 2 for all of its tests but the 

older Kinect is still heavily used. Many studies compare the Kinect 1 and the Kinect 2 

and most often find the Kinect 2 to be more accurate [17]. The Kinect 1 has the 

advantage of being more thoroughly explored and lower in cost however [18][19][20]. 
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This study differs from the existing work in a number of ways. Building on previous 

research I implement an improved skeleton normalization method that uses more 

sequence input to make its calculation and also accounts for the different sizes of 

subjects. The DTW methods that I implement use a dozen classes which can be quite 

slow so some unique optimizations are employed. The boundary limits are defined by the 

minimum and maximum length of time it takes to perform exercises. The distance given 

by DTW to show how closely the exercises line up is also given some boundary 

limitations based on previously compared exercises and their distance measures. The 

LSTM implementation used is new in that it has two layers of classification. The first 

layer is used to classify which exercise is being used at a particular period of time. The 

second layer takes the output from the first layer and classifies the exercise as either 

being in the first half of the movement or in the second half. From the second layer of 

classification we can count and measure the individual repetitions. I also conducted 

additional experiments using the LSTM for the first layer classification and DTW for the 

second layer. The LSTM implementation uses new features in the matlab Deep Learning 

Toolbox that have yet to be fully explored. Sequence to sequence classification takes a 

sequence as input and classifies an entire sequence as output. Past LSTM 

implementations using the Kinect and in matlab are optimized to classifying a single 

frame as output [10]. These new methods from the Deep Learning Toolbox are optimized 

for output of an entire sequence. 
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3. METHODOLOGY 
 
 

3.1 Overview 

 

In this thesis I explore the efficacy and utility of two different strategies for analyzing 

Kinect RGB-D video data. Dynamic time warping (DTW) and a long short-term memory 

(LSTM) network are used to classify a series of movements performed by a human in 

front of the Kinect sensor into classes of exercises. 

 

The approach includes data collection of 10 subjects performing sequences of 

instruction led exercises. Once the data is collected there is a series of preprocessing steps 

performed on the data to make it usable for comparison by DTW and LSTM. Then the 

data is analyzed using the two strategies outlined above.  

For this study I selected twelve exercises (See Figure 1) that are used in physical 

therapy with a standard set of instructions. Modifications were made to those where an 

object is placed in between the Kinect sensor and the subject by removing the object from 

the exercise. These exercises vary in similarity with some involving the exact same body 

parts moving in a different way and others involving completely different joints 

altogether. These exercises are number 1 through 12.  
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1. Adductor stretch 

 

Client`s aim 

To stretch tight tissue over your inner thigh and knee. 

Client`s instructions 

Position yourself in standing with feet wide apart. Shift 

weight to one side by bending your knee on the same side 

and maintain the position.   Change your position so that 

you receive maximal stretch over your inner thigh as 

instructed by your physiotherapist. 

 

2. Hamstring strengthening in standing 

 

Client`s aim 

To strengthen the muscles in the back of your knee. 

Client`s instructions 

Position yourself standing holding onto the back of a chair. 

Start with your knee straight. Take your heel towards your 

bottom. Finish with your knee bent.  Ensure that you keep 

your thigh straight. 

 

3. Hip abductor strengthening in standing using sandbag weights 

 

Client`s aim 

To strengthen the muscles at the side of your hip. 

Client`s instructions 

Position yourself standing with a weight around your ankle. 

Start with your leg beside your body. Finish with your leg 

away from your body. 

 

 Figure 1. Exercise Diagrams 

Figure 1. Continued 
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4. Elbow flexion 

 

Client`s aim 

To improve your ability to bend your elbow. 

Client`s instructions 

Position yourself with your elbow straight. Bend your elbow 

so that your palm moves towards your shoulder. 

 

5. Elbow flexion and extension skimming body 

 

Client`s aim 

To maintain or improve range of motion of your elbow with 

your arm in a sling. 

Client`s instructions 

Position yourself standing with your arm outside of the 

sling. Keep your hand against you stomach and slowly 

straighten your elbow as much as possible.  Keep your hand 

against your stomach and bend your elbow. Ensure that your 

hand skims your body and that your shoulder remains still. 

 

6. Hip flexor strengthening in standing 

 

Client`s aim 

To strengthen the muscles at the front of your hip. 

Client`s instructions 

Position yourself standing with your feet together. Start with 

your hip straight. Lift your hip and knee in front of you. 

 

Figure 1. Continued 
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7. Stepping sideways 

 

Client`s aim 

To improve your ability to walk. 

Client`s instructions 

Position yourself standing with your feet together. Practice 

stepping sideways. Ensure that your knees are kept straight 

and your feet point forwards. 

8. Squatting 

 

Client`s aim 

To strengthen the muscles that straighten your leg. 

Client`s instructions 

Position yourself standing holding onto the back of a chair 

or table. Start with your knees straight. Bend your knees and 

move your bottom back. Ensure to keep your back straight 

and your heels on the  floor and your weight is equally 

borne through both legs. 

 

9.  Stand and shift weight forwards and backwards 

 

Client`s aim 

To improve your ability to stand and balance. 

Client`s instructions 

Position yourself standing with your feet slightly apart. 

Practice leaning forwards and backwards. Ensure that the 

movement occurs at your ankles, your hips stay straight and 

your feet do not move. Feel your weight through the balls of 

your feet as you lean forwards and through your heels as 

you lean backwards. Go as far as you can without moving 

your feet or stepping. 

Figure 1. Continued 
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10.  Stand and look behind 

 

Client`s aim 

To improve your ability to stand and balance. 

Client`s instructions 

Position yourself standing with your feet slightly apart. 

Practice turning your head to look over your shoulder. Aim 

to look around behind you as far as you can, without 

moving your feet or taking a step. 

 

11.  Maintaining single-leg stance while moving the other foot to targets in a 

semi-circle 

 

Client`s aim 

To improve your ability to weight-bear through your 

affected leg. 

Client`s instructions 

Position yourself standing on your affected leg with targets 

placed in a semi-circle on the floor in front of you. Practice 

moving your unaffected foot from one target to another. 

Ensure that your unaffected foot only lightly touches the 

targets. 

12. Standing up and sitting down 

 

Client`s aim 

To improve your ability to stand up or sit down. 

Client`s instructions 

Position yourself sitting with your feet underneath your 

knees. Practice standing up and sitting down. Ensure that 

your shoulders and knees move forward while you move 

between sitting and standing, and your weight is borne 

equally through both legs. 

 

 
Figure 1. Continued 
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3.2  Collecting Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Prior to collecting data from various test subjects, each provided written consent to this 

department’s use of the provided data. The collection involved each user to perform a 

sequence of physical therapy exercises as instructed, in front of a Microsoft Kinect, to the 

best of their abilities. There were two test cases that each subject performed. This first was 

performing in sequence each of a dozen exercises in a specific order  

 

 

 

 

 

 

 

{Adductor stretch, 
Hamstring strengthening in standing, 
Hip abductor strengthening in standing, 
Elbow flexion, 
Elbow flexion and extension skimming body, 
Hip flexor strengthening in standing, 
Side-stepping, 
Squatting, 
Stand and shift weight forwards and 
backwards, 
Stand and look behind, 
Stand on one leg and move the other leg, 
Standing up and sitting down} 
 

Example 1. Exercise Sequence 

Figure 2. Data Collection Application 
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for five repetitions each. The second test case was performing the same set of exercises in 

a randomized order and using a random number of repetitions between two and five.  

Using the Kinect we gathered three data streams. The Kinect skeleton data stream plots 

twenty five joints key joints along the body in 3 dimensions{x,y,z}. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Joint 

 

SpineBase, 

SpineMid, 

Neck, 

Head, 

ShoulderLeft, 

ElbowLeft, 

WristLeft, 

HandLeft, 

ShoulderRight, 

ElbowRight, 

WristRight, 

HandRight, 

HipLeft, 

KneeLeft, 

AnkleLeft, 

FootLeft, 

HipRight, 

KneeRight, 

AnkleRight, 

FootRight, 

SpineShoulder, 

HandTipLeft, 

ThumbLeft, 

HandTipRight, 

ThumbRight 

        X              Y            Z          

 

   -0.0976   -0.0037    2.2424 

   -0.1000    0.3168    2.2641 

   -0.1018    0.6249    2.2726 

   -0.1067    0.7717    2.2855 

   -0.2851    0.4986    2.2465 

   -0.3525    0.2544    2.2483 

   -0.3742    0.0581    2.1579 

   -0.3784    0.0218    2.1474 

    0.0836    0.4933    2.2293 

    0.1548    0.2449    2.2172 

    0.1907    0.0553    2.1163 

    0.1851    0.0303    2.1103 

   -0.1830   -0.0029    2.2049 

   -0.2088   -0.3321    2.2395 

   -0.2343   -0.6198    2.2457 

   -0.2343   -0.6522    2.1052 

   -0.0090   -0.0042    2.2022 

    0.0453   -0.3593    2.2627 

    0.0945   -0.6178    2.2793 

    0.0893   -0.6502    2.1386 

   -0.1015    0.5495    2.2728 

   -0.3638   -0.0423    2.1290 

   -0.3830    0.0335    2.1003 

    0.1818   -0.0298    2.1100 

    0.1503    0.0360    2.0888 

Example 2.  Skeleton Frame 
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The RGB stream is a typical high quality color camera and each frame is stored as an 

individual image.  

 

 

 

 

 

 

 

 

 

 

 

The Depth stream uses an infrared sensor array to create a gray scale showing depth 

gradients. Each depth frame is stored into an individual image file.  

 

 

 

 

 

 

 

 

Example 3. RGB Frame 

Example 4.  Depth Frame 



20 

 

We also store recording timings by frame and stream for use in aligning frames from one 

stream to the corresponding frames in parallel streams. For classification purposes the RGB 

and Depth frames are not used. Initial testing with these frames included did not significantly 

impact the results but greatly increased the time taken to perform classification. 

 

3.3 Skeleton Normalization 

 

As each subject is recorded the 3D skeleton data is gathered based on the distance from 

and orientation to the Kinect sensor. As subjects are at variable distances and orientations, 

comparing the 3D skeleton data between users does not give meaningful results. A user 

performing an exercise may get misclassified just because they happen to be standing in a 

particular spot that has nothing to do with how well the exercise was performed. To get a 

meaningful comparison the skeletons must be spacially aligned. The methods used to 

normalize the skeleton are based on the methods described by Wang, Yao, and Lee [7]. The 

result is a skeleton aligned to a standard orientation. Translated so that the base of the spine is 

at the origin and rotated so that the shoulders begin at an equal depth. Typically the subject is 

rotated at a slight angle in relation to the Kinect sensor no matter how they might try to 

position themselves perpendicular to it and this normalization compensates for that. 

Additionally we have implemented scaling. The entire skeleton is scaled to in relation to the 

distance between the base of the spine and the top of the spine so as to match a standard spine 

length.  
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One change to the original normalization method was the frame sample used for making 

the calculations. Wang, Yao, and Lee used an average of the first 120 frames of as a 

representation by which to translate and rotate the body. In my result set the first 120 frames 

did not accurately represent the skeleton sequence as whole. I used an average of the entire 

sequence for my calculations. Not only did this not negatively impact the performance, it 

greatly improved the accuracy of my results. Movement comparisons became consistent 

across sequences from different users. In addition to account for inaccuracies with the Kinect, 

I tried various methods of smoothing the sequence data. The goal was to adjust for outliers in 

a joint sequence that appear as jitters on the video and ultimately found that smoothing with 

rloess gave the best results. Rloess stands for robust locally estimated scatterplot smoothing. 

This smoothing method takes a small segment in a sequence and finds the best fit curve for 

the local segment. Using the best fit curve, any outlier points that stray far away from the 

curve are revised to fit. This The Kinect would often have joints that seem to pop in and out 

Figure 3. Skeleton Normalization 
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of place when they came into close proximity to each other. After applying the rloess filter 

the movements are much more fluid and natural. 

 

3.4 Stream Alignment 

 

All three streams, RGB, Depth, and Skeleton, record concurrently and data collection 

was coded in an effort to maximize frame rates. The streams often do not have matching 

frame rates. To reconcile these differences I used the timings recorded with each frame to 

align one frame to the nearest frame in the parallel streams. The Skeleton stream typically 

has the highest frame rate so it is used as the master and the RGB and Depth frames are 

matched to the nearest skeleton frame. This usually leaves gaps in the sequence that have 

lower frame rates. To fill these gaps I used dynamic time warping as a means of 

interpolation. The two frames temporally nearest to a gap are aligned to each other using 

dynamic time warping and then merged into a new frame that fills in the sequence gap. 

For example say there are three adjacent skeleton frames but there are only two RGB 

frames within the same time window due to mismatched frame rates. The first RGB 

frame is aligned to the first skeleton frame and the second RGB frame is aligned to the 

last skeleton frame. This leaves the middle skeleton frame with no pairing. To match 

frame rates a new RGB frame is generated from the first and second RGB frame by 

aligning them with each other using DTW and merging the images together. The result is 

paired to the middle skeleton frame. This gap filling is a slow process usually taking 

several minutes per data set. While I ultimately did not use the RGB and Depth frames in 
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the experiments, this will make the data much more accessible for future experiments 

where all of the streams are used. 

 

3.5 Dynamic Time Warping 

 

 

The dynamic time warping algorithm uses a programming technique wherein we take 

two sequences that we want to compare and compare each value in the first sequence to 

every other value in the second sequence and store their distances in a table 

corresponding to their placement in the original sequence. Using this table we select a 

path from the start of one sequence to the end of the other so that the sum of distances for 

the selected path is the least possible value.  

 

 

 

 

 

 

 

 

 

Figure 4 shows the basic visualization the dynamic time warping algorithm for two 2D 

sequences. The green lines show which points in the blue sequence are compared to 

which points in the red sequence. The data collected has multiple joints with 3D 

Figure 4. Visualization of DTW in Two Dimensions 
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coordinates plus RGB and depth information at each step of the sequence. I based the 

algorithm on a multidimensional time warping solution by Wöllmer, Al-Hames, Eyben, 

Schuller, and Rigoll [4]. Their method works for the skeleton data alone but there is an 

added layer of complexity because of the RGB and depth frames. Running DTW on 

sequences that include RGB and Depth frames is very costly in terms of performance 

which is why ultimately only the skeleton data is used.  

DTW classification is based on comparing skeleton data collected from subjects 

performing exercises to skeleton data that represents the ideal standard of that exercise. I 

used myself performing each exercise as the standard by which the others are measured. 

DTW in this case always measures my skeleton data to the other users. The algorithm 

will classify a segment of the second sequence as a particular exercise if the distance 

measure for that segment is within a specific tolerance limit. The tolerance was 

developed by testing on a smaller subset and calibrated based on test results. 

Each joint is segregated into its own sequence to only be compared with a matching 

joint for example wrists only matching to wrists and elbows only comparing to elbows. 

The Kinect software has a built-in mechanism to classify joints which was visually 

verified at the start of each experiment. Once segregated into individual sequences the 

joint movements can be compared using a basic 3D DTW algorithm. Their distances are 

aggregated and this aggregate is used to determine the best comparison for the sequence 

overall. For the RGB and Depth images the individual image pixels are first aligned using 

DTW and then those overall distance for one image is used to run another layer of DTW 

on the whole sequence of images. Ultimately this RGB and depth data was not used in 
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my experiments as it did not change the end results in a reliable way and the process is 

time consuming to do even when attempting to leverage a GPU for acceleration. 

 

3.6 Long Short-Term Memory Networks 

Long short-term memory networks are deep learning networks that adapt and refine 

classifiers for a given training sequence which can be used to classify other sequences 

within a certain level of accuracy and even make predictions. My LSTM attempts to learn 

the long-term dependencies between values in exercise sequence. It uses iterative 

gradient descent to refine the dependency values and create a more accurate 

classification. I trained the network on a sample data subset that with all twelve exercises 

as one defined class. After training the network I use to classify a separate test data set. 

Both data sets were collected from different users. These methods were developed and 

tested in Matlab using new tools in the Machine Learning Toolbox. Within Matlab the 

LSTM architecture is defines as follows 

inputSize = 75; 
numHiddenUnits = 200; 
numClasses = 12; 
 
layers = [ ... 
    sequenceInputLayer(inputSize) 
    bilstmLayer(numHiddenUnits,'OutputMode','sequence') 
    fullyConnectedLayer(numClasses) 
    softmaxLayer 
    classificationLayer] 
 

The inputSize specifies the number of features we are giving the network at each point 

in the sequence. We have 25 joints that each have 3 coordinate numbers totaling to 75 

inputs. The numHiddenUnits specifies the number of variables being calibrated to make a 

classification. I experimented with a number of different variable numbers and found that 
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generally 200 works best. The more hidden units the slower each test iteration will be but 

typically it means fewer iterations to achieve a desired result. numClasses is 12 for the 12 

exercise classes that we have selected. LSTM classification is done in two phases. For the 

first layer of classification only classifies which type of exercise is performed for each 

section of the sequence without trying to count repetitions. For the second layer we want 

to count the number of repetitions for each exercise so two classes are used. One class is 

for the first half of the exercise and one class is for the second half of the exercise. Then 

we count how many times both the first and second half of the exercise was performed to 

measure the number of exercise repetitions. For these experiments I opted for the 

bidirectional version of the lstmLayer which has the added advantage of being able to 

look ahead at the sequence data for dependencies as well as backward in the sequence. 

The softmaxLayer is also an optional added layer that includes that probability of each 

classification made at each iteration. This can slow the training for each new class added 

but increases the accuracy of the training at each stage. 

  In addition to defining the parameters for the LSTM we have to define our 

training methods 

options = trainingOptions('adam', ... 
    'GradientThreshold',1, ... 
    'MaxEpochs',200,... 
    'MiniBatchSize',10,... 
    'SequenceLength','shortest',... 
    'Shuffle','never',... 
    'InitialLearnRate',0.009, ... 
    'LearnRateSchedule','piecewise', ... 
    'LearnRateDropPeriod',20, ... 
    'LearnRateDropFactor',0.49,... 
    'Verbose',0, ... 
    'Plots','training-progress'); 
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Adam is short for adaptive momentum and this specifies algorithm used for the rate of 

change for the weights of hidden variables. GradientThreshold sets the maximum scale 

for which the weights can shrink and grow at a given time. MaxEpochs specifies the 

number of iterations run on the training set. MiniBatchSize is the length of the sequence 

considered for each point on the sequence. In other words, how far ahead or behind to 

look. SequenceLength shortest specifies to truncate the start and end of the sequence 

instead of padding them to equal 10. InitialLearnRate is the scale at which to start 

modifying variable weights. The learn rate is lowered by the LearnRateDropFactor after a 

number of iterations equal to the LearnRateDropPeriod. The last 2 options specify the 

output details. The shuffle options is set to never as it is necessary to preserve the order of 

frames within each exercise. It is however beneficial to randomize the exercises 

themselves before input so I created a separate function that reorders the training set 

before input into the LSTM but preserves individual exercises. Without this 

randomization the LSTM would learn to expect all of the exercises to be in a specific 

order. This is because about half of the training sets are intentionally ordered the same 

way. Lowering the batch size and adding this randomization worked well to resolve this 

issue. All of the numeric values were altered in different experiments to achieve the best 

results and modifying the training set usually requires making adjustments to the training 

variables. The values above are what have become standard for the experimental results 

below. 
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4. EXPERIMENTS AND RESULTS 
 

4.1 DTW Experiment 

 

The dynamic time warping experiments were run using a single user as a gold standard 

for the ideal movement. Each repetition of a particular exercise for that singled out 

baseline user were stretched using dynamic time warping to be the same length and then 

the results averaged together to get a single standard. The remaining data that did not 

contain that user was used for the experimental comparisons. For the frame classification 

without knowing where the start and end point of each exercise is we had to set some 

boundary parameters. First minimum exercise length is determined by the length of the 

shortest exercise performed in data collection which is 20 frames. DTW does not 

compare segments shorter than 20 frames. Similarly the maximum is set for the slowest 

an exercise at 120 frames. DTW does not compare segments longer than 120 frames. On 

a separate set of data I found the maximum distance between the baseline exercise and 

the corresponding exercise matches to use as a cutoff. The cutoff is padded by 20%. If the 

best match distance is not below this cutoff then it is not considered a match. Within 

these limits the segment with the best possible match is found to the nearest baseline 

exercise using the multiple joint DTW distance. After the first exercise is found then the 

same process is run recursively to the left and right of the already classified segments 

until the entire set is classified. 
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Class 
True 
Negatives 

True 
Positives 

False 
Positives 

False 
Negatives Total Recall Precision 

Error 
Rate 

1 2258 240 14 25 265 0.90566 0.944882 0.015372 

2 2235 213 76 13 226 0.942478 0.737024 0.035081 

3 2388 103 22 24 127 0.811024 0.824 0.018132 

4 2428 71 19 19 90 0.788889 0.788889 0.014978 

5 2442 46 36 13 59 0.779661 0.560976 0.019314 

6 2287 183 12 55 238 0.768908 0.938462 0.026409 

7 2430 76 9 22 98 0.77551 0.894118 0.012219 

8 2308 165 28 36 201 0.820896 0.854922 0.025227 

9 2170 286 46 35 321 0.890966 0.861446 0.031927 

10 2379 109 12 37 146 0.746575 0.900826 0.019314 

11 2347 118 54 18 136 0.867647 0.686047 0.02838 

12 2298 159 52 27 186 0.853305 0.7284 0.031336 

 

 

 

The above table shows the accuracies for a frame by frame classification of DTW 

without predetermined segmentation. You can see a high level of predictability with most 

of these exercises. Some of the challenges with this method are time and scalability. This 

problem in the worst case is O(n^3) which is why we want to explore alternative 

methods. There is about a 17% error rate which might seem high but most of these errors 

are attributed to the boundaries of each exercise. The first few frames and the last few 

frames being misclassified do not affect the overall count for number of exercises. 

 

 

 

Table 1. Frame Classification By DTW 

Macro-averaged 
Precision 

Macro-averaged 
Recall 

Micro-averaged 
Precision 

Micro-
averaged 
Recall 

0.821085545 0.827763722 0.837997635 0.841980198 
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Above you can see that the missed frames in red are in close proximity to the correct 

green frames and the same holds true for the blue frames which are true exercise frames 

but not predicted as such. 

This next experiment is a little different. In this the start of a sequence of repetitions 

for a given exercise is given and DTW is used to count the number of reps for the 

sequence. The reason for this is to evaluate DTW solely for the purpose of counting 

repetitions regardless of how the frames are originally classified. 

Figure 5. Frame Classification By DTW 
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    Class TRUE Predicted Root Square Error 

1 95 95 0.00% 

2 97 96 1.03% 

3 96 95 1.04% 

4 97 97 0.00% 

5 89 93 4.49% 

6 92 92 0.00% 

7 94 95 1.06% 

8 95 100 5.26% 

9 82 80 2.44% 

10 85 86 1.18% 

11 87 87 0.00% 

12 85 85 0.00% 

  

Root Mean Square Error: 1.38% 

    

As the table above shows,  DTW is very reliable with just 1.38% error rate on average 

when counting repetitions. The left column contains the class number that corresponds to 

the same exercise number. The TRUE column is the actual number of repetitions 

preformed for that exercises in the tested sequence. The Predicted column are the number 

of repetitions for each exercise measured using DTW. The last column is the percentage 

error rate. 

 

 

4.2 LSTM Experiments 

 

These next experiments were done in two phases. The first layer just classifies the 

movements of the sequence without attempting to count the repetitions. By doing this the 

two functions can be evaluated independently. In the following table the movements are 

shown by classification number and the error rates are shown individually and as 

Table 2. Repetition Classification By DTW Ground Truth 



32 

 

averages. These represent the number of frames classified but not the movements as a 

whole. 

 

Class 
True 
Negatives 

True 
Positives 

False 
Positives 

False 
Negatives Total Recall Precision 

Error 
Rate 

1 2177 215 14 50 265 0.811321 0.938865 0.026059 

2 2141 208 89 18 226 0.920354 0.700337 0.043567 

3 2311 121 18 6 127 0.952756 0.870504 0.009772 

4 2366 58 0 32 90 0.644444 1 0.013029 

5 2397 50 0 9 59 0.847458 1 0.003664 

6 2209 140 9 98 238 0.588235 0.939597 0.043567 

7 2351 77 7 21 98 0.785714 0.916667 0.011401 

8 2223 173 32 28 201 0.860697 0.843902 0.02443 

9 2065 246 70 75 321 0.766355 0.778481 0.059039 

10 2275 145 35 1 146 0.993151 0.805556 0.014658 

11 2271 117 49 19 136 0.860294 0.704819 0.027687 

12 1776 521 62 97 618 0.843042 0.893654 0.064739 

 

 

Macro-averaged 
Precision 

Macro-averaged 
Recall 

Micro-averaged 
Precision 

Micro-
averaged 
Recall 

0.866031726 0.822818402 0.843241042 0.82019802 

 

 

The following graph shows us how even missing a number of frames does not mean a 

bad result. This graph shows the sequence frames along the x axis and the classification 

along the y axis. Blue dots are places where a frame should have been classified as a 

certain class or a false negative. Red dots represent a frame that was wrongfully classified 

or a false positive. Green dots are the true positive classifications. As you can see all of 

the misclassifications are always adjacent to correct classifications and are only around 

Table 3.  First Layer Classification By LSTM Recognizing exercise Type 
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boundaries when switching between different movements. This happens because most of 

the exercises share a common starting and ending position which is a subject standing 

with arms at their sides.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Frame Classification By LSTM 
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The first layer of the LSTM only classifies the frames but it does not give an exercise 

count. To do this a second network is used that is trained on two classifications. One class 

represents the first half of a movement and the second class represents the second half of 

the individual movement. This is done independently for each movement. To measure the 

accuracy of this method independently from the first layer of classification I executed this 

layer on sequences where the first level of classification was already known to be correct. 

The results of this test are in the above table. 

To test the overall accuracy of using the methods end to end the same test was run on 

the output from the first layer. This means that there was already a certain degree of error 

    Class TRUE Predicted Root Square Error 

1 95 95 0.00% 

2 97 96 1.03% 

3 96 93 3.13% 

4 97 87 10.31% 

5 89 92 3.37% 

6 92 99 7.61% 

7 94 93 1.06% 

8 95 101 6.32% 

9 82 80 2.44% 

10 85 86 1.18% 

11 87 86 1.15% 

12 85 85 0.00% 

  

Root Mean Square 
Error: 3.13% 

Table 4. 

Repetition Classification By LSTM Using Ground Truth 

Exercise Type Input 
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with the classification of frames. This same test sequence was also used for counting 

repetitions by DTW as a comparison. 

 

 

 

 

 

 

 

 

 

Table 5. 

Repetition Classification By DTW Using LSTM Predicted Exercise Type Input 

Table 6. 

Repetition Classification By LSTM Using LSTM Predicted Exercise Type Input 
 

    Class TRUE Predicted Root Square Error 

1 95 96 1.05% 

2 97 98 1.03% 

3 96 91 5.21% 

4 97 85 12.37% 

5 89 95 6.74% 

6 92 99 7.61% 

7 94 98 4.26% 

8 95 100 5.26% 

9 82 88 7.32% 

10 85 87 2.35% 

11 87 85 2.30% 

12 85 85 0.00% 

  

Root Mean 
Square Error: 4.63% 

 

 

    

Class TRUE Predicted 
Root Square 
Error 

1 95 96 1.05% 

2 97 96 1.03% 

3 96 94 2.08% 

4 97 96 1.03% 

5 89 93 4.49% 

6 92 92 0.00% 

7 94 92 2.13% 

8 95 92 3.16% 

9 82 80 2.44% 

10 85 83 2.35% 

11 87 83 4.60% 

12 85 85 0.00% 

 
 

 

Root Mean Square 
Error: 2.03% 
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5. DISCUSSION 
 
 
 

The two algorithms discussed have some vast differences in implementation and 

usage. From these analyses LSTM seems far superior to DTW in terms of classification 

speed and accuracy. More time must be invested initially in the training process but once 

that is complete then classification can be done in real time. LSTM is superior in speed 

but the drawback seems to be in the second layer of classification that is used for 

counting repetitions. The best result comes from using the LSTM to classify the 

sequences by exercise alone and then use DTW to classify individual exercises and count 

repetitions. This has the added advantage of coming with a distance result for each 

repetition which can be used to gage how well the exercise was performed. DTW has a 

quadratic time complexity so naturally one would want to avoid using this method for 

any significant set of classification. However for the repetition counting only 1 class is 

considered at a time allowing for fast analysis. 
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6. CONCLUSION AND FUTURE WORK 

 

The results show that neural networks are a very powerful tool when it comes to 

classifying Kinect skeleton data. These methods still have many possibilities that can be 

explored. The best results came from combining both LSTM and DTW. LSTM results 

were more accurate in classifying the exercises in the first layer and scale much better 

than DTW. One of the greatest challenges with using DTW alone for classification is that 

in including additional exercises   to the set of classes. The time taken by DTW grows 

exponentially with each new exercise. By using the LSTM in the first layer, the number 

of classes required to be run by DTW for repetition counting is always limited to two 

classes(first half of an exercise and second half of an exercise). This changes the scaling 

from exponential to linear. With these performance improvements we can utilize these 

algorithms to create applications that will classify exercises and count repetitions in real 

time. These applications can be used to guide patients through physical therapy sessions 

and report results to a medical professional for analysis without either person having to 

be in the same room. The data collected can be shared between doctors and by having 

more empirical data should give them more insight into how patients recover and 

advance through therapy. 

There are many future improvements that can be made for better accuracy within 

these algorithms. While the results are promising, improved accuracy would make for a 

more useful tool in a clinical setting. Future research should explore changes such as 

creating an additional LSTM classification layer. This layer would run before the existing 

layers do by classifying the exercises into groups based on which part of the body is 

moving. Localizing the body parts and narrowing down the exercises in this layer reduces 
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the chance of mismatch in subsequent layers. Another challenge that I hope will be 

explored in future research is incorporating the RGB and Depth data streams more 

effectively. The skeleton data is generated based on the RGB and Depth streams but this 

is only a fraction of the data captured. There is much potential and I think I am only 

scratching the surface 
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