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Existence of periodic solutions for a semilinear

ordinary differential equation ∗

Petr Girg

Abstract

Dancer [3] found a necessary and sufficient condition for the existence
of periodic solutions to the equation

ẍ+ g1(ẋ) + g0(x) = f(t) .

His condition is based on a functional that depends on the solution to the
above equation with g0 = 0. However, that solution is not always explic-
itly known which makes the condition unverifiable in practical situations.
As an alternative, we find computable bounds for the functional that pro-
vide a sufficient condition and a necessary condition for the existence of
solutions.

1 Introduction

In this paper, we study the existence and the non-existence of solutions of the
semilinear boundary-value problem

ẍ(t) + g1(ẋ(t)) + g0(x(t)) = f(t) , (1)

x(0) = x(T ), ẋ(0) = ẋ(T ) . (2)

Although a necessary and sufficient condition is already known [2], it can not
be verified in practical situations because the condition is given by a related
nonlinear boundary-value problem. In this article we give, on the one hand,
a sufficient condition, and on the other hand a necessary condition, which can
be verified for any continuous function f . In the first part of this article, we
present a survey of known results and their physical interpretation. And in the
second part, we present our main result, which is stated as Theorem 2.
Overall, we will suppose that g0, g1, f are continuous real-valued functions,

and f is T –periodic. For a given k ≥ 0, let

CkT =
{
u : u is k-times continuously differentiable on [0, T ], with

u(0) = u(T ), u′(0) = u′(T ), . . . , u(k)(0) = u(k)(T )
}
.
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In these spaces the maximum norm will be denoted by ‖ · ‖CkT , and C
0
T will be

denoted by CT . The subspace consisting of functions with mean value zero will
be denoted by

C̃kT =
{
u ∈ CkT :

∫ T
0

u(t) dt = 0
}
.

For functions with domain [0, T ], with distributional derivatives, we define:

Lp =
{
u :
∫ T
0
|u(t)|pdt <∞

}
, 1 ≤ p < +∞ ;

L∞ =
{
u : ess supt∈[0,T ] |u(t)| <∞

}
,

W 1,2T =
{
u ∈ L2 : u′ ∈ L2, u(0) = u(T )

}
,

W 2,∞T =
{
u ∈ L∞ : u′′ ∈ L∞, u(0) = u(T ), u′(0) = u′(T )

}
.

For a subset X on the space of integrable functions on [0, T ], we define X̃ ={
u ∈ X :

∫ T
0
u(t)dt = 0

}
. For integrable functions, we use the decomposition

f = f̃ + f̄ , with f̄ =
1

T

∫ T
0

f(t) dt .

We will assume that f , the right-hand side of (1), belongs to CT , and the
solution x belongs to C2T . Although the results in [2] assume that f is in a
certain Lebesgue space and that x is in a certain Sobolev space, it is not hard
to get analogous results for f in CT and x in C

2
T . So when we cite results from

[2], we do a conversion to our function spaces (except in section 2).
When g0 = 0, for each f̃ ∈ C̃T there exists a value s(f̃) such that

ẍ(t) + g1(ẋ(t)) = f̃(t) + s(f̃) (3)

has a periodic solution, [2, Theorem 1]. Equivalently, the range of the operator
H1 : C

2
T → CT , H1(x) = ẍ+ g1 ◦ ẋ, can be written as

R1 = {f̃ + s(f̃) : f̃ ∈ C̃T } . (4)

Under the assumption that g0 is bounded, continuous, and satisfies

g0(−∞) := lim
ξ→−∞

g0(ξ) < lim
ξ→+∞

g0(ξ) =: g0(+∞) ,

Dancer [2, Theorem 2] showed that a function f ∈ CT belongs to R, the range
of H : C2T → CT , H(x) = ẍ+ g1 ◦ ẋ+ g0 ◦ x, if

g0(−∞) < f̄ − s(f̃) < g0(+∞) . (5)

Thus, (5) is a sufficient condition for (1) to posses a periodic solution. However,
if we also have

g0(−∞) < g0(ξ) < g0(+∞) ∀ξ ∈ R ,

then (5) is also a necessary condition, [2, Theorem 4]. Since we do not know the
functional s(f̃) explicitly, we can not verify condition (5) in practical situations.
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The aim of our work is to find estimates for the functional s(f̃). In particular
we find functionals a : C̃T → R, and A : C̃T → R, such that a(f̃) ≤ s(f̃) ≤ A(f̃ )
for all f̃ ∈ CT (see Theorem 2). Using these bounds we define the sets:

A1 =
{
f : f ∈ CT and a(f̃) ≤ f̄ ≤ A(f̃)

}
,

A =
{
f : f ∈ CT and g0(−∞) + a(f̃) < f̄ < g0(+∞) +A(f̃)

}
,

B =
{
f : f ∈ CT and g0(−∞) +A(f̃) < f̄ < g0(+∞) + a(f̃)

}
.

Main result With the above definitions, R = H(C2T ), and R1 = H1(C
2
T ), our

main result is stated as

R1 ⊂ A1, and B ⊂ R ⊂ A .

This means that f being in A is a necessary condition, and that f being in B
is a sufficient condition for the existence of solutions to (1).

2 Related results

In this section, we present some known results, and give a physical interpretation
for particular cases of equation (1). We want to emphasize the fact that although
the conditions come from abstract methods of functional analysis, they have
physical interpretations (For various physical examples see e.g. [7] or [8]).
If the function g0 is bounded and g1(ξ) = λξ for some λ ∈ R, then (1)

becomes the “classical” Landesman-Lazer equation.

ẍ(t) + λẋ(t) + g0(x(t)) = f(t) . (6)

A short review of applicable results for this equation with boundary conditions
(2) is as follows:

• A sufficient condition for (6) to have a T –periodic solution is the so called
Landesman–Lazer condition [4],

g0(−∞) < f̄ < g0(+∞) . (7)

• Condition (7) is also necessary when g0(−∞) < g0(ξ) < g0(+∞) for all
ξ ∈ R.

• The range of the operator ẍ+ λẋ+ g0 ◦ x : C2T → CT is a set of functions
in CT , enclosed by two parallel hyper-planes.

From a physical point of view, when g0(−∞) < 0 < g0(+∞), this boundary-
value problem is a model for vibrations with linear damping and nonlinear
restoring force. When λ is equal to zero, we have a conservative oscillator.
Condition (7) can be interpreted as representing the restoring force being able
to overcome the mean value of the external forcing term f .
For g0 = 0, a brief summary of results is as follows:
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• For g1 continuous, Dancer [2] proved that for all f̃ ∈ L̃∞ there exists
exactly one s(f̃) ∈ R such that (3) has solution x in W 2,∞T , in the sense

of distributions. Furthermore, the functional s : L̃∞ → R is continuous.

• For g1 continuous, Mawhin [5] showed that for all f̃ ∈ L̃1 there exists
s(f̃) ∈ R such that (3) has a strong solution.

• For g1 continuously differentiable, Cañada, Drábek [1] proved that for all
f̃ ∈ C̃T there exists exactly one s(f̃) ∈ R such that (3) has a classical
solution. Furthermore, the functional s : C̃T → R is continuously differ-
entiable, and the range of H1 can be written as in (4).

• The functional s gives the necessary and sufficient condition for the solv-
ability of the boundary-value problem, namely

f̄ = s(f̃) .

But s(f̃) is given in terms of the solution, which we do not know a priori.
Thus, we can not formulate the condition explicitly as is done in the
Landesman–Lazer result.

From a physical point of view, (3) describes the periodically forced vibration
of a mass on a damper. The damping term makes the system unbalanced and
s(f̃) represents a constant force which tends to compensate for the damping
term. In this example, we consider the dissipative case: ẋg1(ẋ) > 0, or ẋg1(ẋ) <
0, which represents a self–excitation (positive damping).

For general functions g1 and g0, with g0 bounded as in the Landesman–Lazer
case, Dancer [2] proved that the range H(W 2,∞T ) is enclosed by two manifolds

parallel to the range H1(W
2,∞
T ). A sufficient condition for the solvability of

Problem (1)–(2) is given by (5). Note that if g0(−∞) < 0 < g0(+∞), then
from (5) it follows that the range R1 of the operator H1 is a subset of the range
R of the operator H . In this case (1) is a model for vibrations with nonlinear
damping and nonlinear restoring force.

3 Bounds for s(f̃)

Estimates for s(f̃) are derived from the study of equation (3). Putting w = ẋ,
problem (3) subject to (2) becomes

ẇ(t) + g1(w(t)) = f̃(t) + s(f̃) , (8)

w(0) = w(T ) ,
∫ T
0
w(τ) dτ = 0 . (9)

Theorem 1 Let g1 be a continuously differentiable function satisfying |g1(ξ)| ≤
K for all ξ ∈ R. Then for each f̃ ∈ C̃T there exists precisely one s(f̃) such that
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(3) has a periodic solution. In this case problem (3) has a family of solutions
xc(t) = x(t) + c, where c ∈ R is arbitrary and

x(t) =

∫ t
0

ws(f̃)(τ) dτ ,

with ws(f̃) the unique solution of (8) subject to (9). Moreover, the map s : f̃ 7→

s(f̃) from C̃T to R is continuously differentiable and −K ≤ s(f̃) ≤ K.

The proof of the above theorem can be found in [1]. Existence results consid-
ering a continuous function g1 are studied in [2]. The analogous a priori bound
for ‖w‖CT as in the following Lemma is also given in [2].

Lemma 1 Let g1 be a continuous function, and w be the solution of (8) subject
to (9). Then

‖w‖CT ≤ ‖f̃‖2

√
T

12
.

Proof Multiplying both sides of equation (8) by ẇ and integrating from 0 to
T , using the boundary condition w(0) = w(T ), we see that ‖ẇ‖22 = 〈f̃ , ẇ〉2. The
Cauchy-Schwartz inequality yields that ‖ẇ‖22 ≤ ‖f̃‖2‖ẇ‖2, so that ‖ẇ‖2 ≤ ‖f̃‖2.

Since w ∈ C1T ⊂ W
1,2
T and

∫ T
0 w(t)dt = 0, we can use a Sobolev inequality, [6,

Prop. 1.3], to obtain

‖w‖∞ ≤ ‖ẇ‖2

√
T

12
≤ ‖f̃‖2

√
T

12
.

Since w is continuous, ‖w‖CT = ‖w‖∞ which is the desired inequality. ♦

As a consequence of the above lemma, Theorem 1 can be applied for a
function g1 that is not necessarily bounded. This is so because the argument of
g1 lies on a bounded interval.
An estimate for s(f̃) is obtained as follows: Integrate each term in (8) from

0 to T , use the boundary conditions (9) to eliminate terms with ẇ, cw, f̃ , and
divide by T , to obtain

1

T

∫ T
0

g1(w(t)) dt = s(f̃) .

As in [2, Theorem 1], the minimum and the maximum values of g1 provide

bounds for s(f̃). To obtain the basic estimate we use the fact that
∫ T
0
w = 0.

First subtract cw in the integrand above, and then compute the infimum and
the supremum over c ∈ R:

sup
c∈R
min
|ξ|≤b
(g1(ξ)− cξ) ≤ s(f̃) ≤ inf

c∈R
max
|ξ|≤b
(g1(ξ)− cξ) , (10)

where ‖w‖CT ≤ b (for instance we can set b = ‖f̃‖2
√
T/12 due to Lemma 1).
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Remarks If the function g1 is a polynomial of degree 1, then a(f̃) = A(f̃) =
g1(0), and this is the exact value of s(f̃). On the other hand if g1(w) = w

2,
then a(f̃) < A(f̃ ) and the direct estimate in Dancer [2, Theorem 1] is the same
as the basic estimate.
Finding the infimum and the supremum over all real numbers is not amenable

for computations; hence, we need to find a finite set of suitable values for c.
For example, the upper bound can be interpreted as an error in a minimax
polynomial approximation. In which case, we are looking for a polynomial
q(ξ) = cξ + d such that ‖g1 − q‖∞ is as small as possible. With interpolation
nodes {−b, 0, b}, we obtain c = (g1(b)− g1(−b))/(2b), and we avoid calculating
the supremum over R.
Notice that the upper bound minus the lower bound in (10) is an increasing

function of b, the bound for ‖ẋ‖∞. Therefore, our strategy is to decrement b,
which is done by using the following two lemmas.

Lemma 2 Let k and K be positive constants, and w ∈ C̃T be absolutely con-
tinuous with −k ≤ ẇ(ξ) ≤ K a.e. on [0, T ]. Then

‖w‖CT ≤
TkK

2(k +K)
.

Proof On the contrary, suppose that ‖w‖CT >
TkK
2(k+K) . Without lost of gener-

ality, we may assume that the maximum norm is attained at a point t0 =
kT

2(k+K) ,

0 ≤ t0 ≤ T/2. If necessary multiply w by −1, interchange the roles of k and K,
and shift w suitably in time. Then

w(t0) = ‖w‖CT >
TkK

2(k +K)
= Kt0 .

Our strategy is to prove the following two inequalities for t ∈ [0, T2 ]:

w(t) > min
{
Kt, k(T2 − t)

}
, (11)

w(t+ T2 ) > −min
{
kt,K(T2 − t)

}
. (12)

Which lead us to the contradiction that
∫ T
0 w = 0 and∫ T

0

w(t) dt =

∫ T/2
0

w(t) dt +

∫ T/2
0

w(t+
T

2
) dt > 0 .

For (11), we consider the two cases: If 0 < t ≤ t0, then

w(t) = w(t0) +

∫ t0
t

(
−ẇ(τ)

)
dτ > Kt0 + (t0 − t)(−K) = Kt .

and if t0 < t ≤
T
2 , then

w(t) = w(t0) +

∫ t
t0

ẇ(τ) dτ > Kt0 + (t− t0)(−k) = k(
T

2
− t) .
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For (12), we put u(t) = w(t + T
2 ) and notice that u(0) = w(

T
2 ) > 0 and

u(T2 ) = w(T ) = w(0) > 0. For t in [0,
T
2 ] we have

w
(
t+ T2

)
= u(t) = u(0) +

∫ t
0

u̇(τ) dτ > −kt

and

w
(
t+ T2

)
= u(t) = u

(
T
2

)
+

∫ T/2
t

(
−u̇(τ)

)
dτ > −K(

T

2
− t) .

Hence

w(t+ T2 ) > max
{
− kt,−K(

T

2
− t)
}
= −min

{
kt,K(

T

2
− t)
}
.

Which concludes the present proof. ♦

Lemma 3 Let w be a solution to Problem (8)-(9), with ‖w‖CT ≤ b and f̃ 6≡ 0.
Then

−k ≤ ẇ(t) ≤ K ,

where k and K are the positive constants: −k = mint∈[0,T ] f̃(t) +m and K =

maxt∈[0,T ] f̃(t) +M , where

m = supc∈Rmin|ξ|≤b(g1(ξ)− cξ)−max|ξ|≤b g1(ξ) ,

M = infc∈Rmax|ξ|≤b(g1(ξ)− cξ)−min|ξ|≤b g1(ξ) .

Proof From (8) we obtain

min
t∈[0,T ]

(
f̃(t) + s(f̃)− g1(w(t))

)
≤ ẇ(t) ≤ min

t∈[0,T ]

(
f̃(t) + s(f̃)− g1(w(t))

)
.

Using the estimates for s(f̃) in (10), we obtain the desired inequality. Notice that
because g1 is continuous and the extrema is computed on a bounded interval,
then

−∞ < min|ξ|≤b(g1(ξ)− 0 · ξ)−max|ξ|≤b g1(ξ) ≤ m,

M ≤ max|ξ|≤b(g1(ξ)− 0 · ξ)−min|ξ|≤b g1(ξ) <∞ .

It is left only to check that k and K are positive. This follows from the fact

that −k < ẇ(t) < K on [0,T],
∫ T
0 ẇ(τ)dτ = w(T ) − w(0) = 0 and w is not a

constant function if f̃ 6≡ 0. ♦

Iterated estimates As an initial value put b0 > 0, such that ‖w‖CT ≤ b0
(for instance: b0 = ‖f̃‖2

√
T/12 due to Lemma 1). Then for n = 0, 1, 2, . . ., let

kn,Kn be the constants obtained in Lemma 3 with b = bn, and let

bn+1 =
TknKn

2(kn +Kn)
.

Lemma 4 Let bn, kn,Kn be defined as above. If b1 ≤ b0, then bn+1 ≤ bn for
all n ≥ 1.
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Proof We proceed by induction. First notice that b1 ≤ b0 is one of the
hypotheses. Now assume that bn ≤ bn−1. Then in the statement of Lemma 3
we see that

0 ≥ mn ≥ mn−1 and 0 ≤Mn ≤Mn−1 .

Thus, kn ≤ kn−1 and Kn ≤ Kn−1. Since
TkK
2(k+K) is a decreasing function of k,

and of K, we have bn+1 ≤ bn. ♦

From the above lemma, iterations can be repeated indefinitely. However,
in practice the process should stop when the decrement in bn is less than a
predetermined value. Now, we define the lower and upper bounds for s(f̃).

Theorem 2 Let bn be as defined above. Put b = inf{b0, b1, . . .}, and

a(f̃) = supc∈Rmin|ξ|≤b (g1(ξ)− cξ) ,

A(f̃) = infc∈Rmax|ξ|≤b (g1(ξ)− cξ) .

Then the functional s(f̃) satisfies a(f̃) ≤ s(f̃) ≤ A(f̃).

Proof Notice that by Lemma 2, ‖w‖∞ ≤ bn for all n. Therefore, from the
basic estimate (10), the statement of this theorem follows. Notice that even if
A(f̃) is not the absolute infimum over c, the equality in this Theorem is still
valid. The same statement applies for a(f̃). ♦

Computational experiments show that the iteration method refines estimates
if the ratio −max(f̃)/min(f̃) is much larger than one, or very close to zero. To
illustrate this case, we study the following boundary-value problem

Example 1 Consider ẇ(t) + g1(w(t)) = f̃(t) + s(f̃), where

f̃(t) =

{
− sin(t)/20 if 0 ≤ t ≤ π
sin(20t) if π < t ≤ 21π/20 .

Notice that the ratio −max f̃ /min f̃ is large. The period is T = 21π/20, ‖f̃‖22 =
π/800 + π/40, and the estimate for ‖w‖∞ is b0 = ‖f̃‖2

√
T/12.

To avoid computing the maximum and the minimum over c ∈ R, we use
c = (g1(b)− g1(−b))/(2b); see the remark after (10). The following table shows
the estimates obtained for several functions g1.

g1(ξ) = ξ
2 g1(ξ) = ξ

3 0.1 arctan(ξ)
min-max g 0 ≤ s ≤ 2.2669e-2 |s| ≤ 3.4131e-3 |s| ≤ 1.4944e-2
basic est. 0 ≤ s ≤ 2.2669e-2 |s| ≤ 1.3137e-3 |s| ≤ 4.3011e-5
iterated 0 ≤ s ≤ 8.2592e-3 |s| ≤ 1.9403e-4 |s| ≤ 1.0002e-5

Example 2 For α > 0, consider the equation

ẇ(t) + arctan(w(t)) = α sin(t) + s(f̃) .
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Notice that max f̃ = −min f̃ = 1, the period is T = 2π, ‖f̃‖2 = α
√
π, and

the estimate for ‖w‖∞ is b0 = απ/
√
6. The following table shows the estimates

obtained for several values of α.

α = 0.01 α = 0.1 α = 1
min-max g |s| ≤ 1.2824e-2 |s| ≤ 0.12756 |s| ≤ 0.90856
basic est. |s| ≤ 2.7064e-7 |s| ≤ 2.6716e-4 |s| ≤ 0.11593
iterated |s| ≤ 2.7064e-7 |s| ≤ 2.6716e-4 |s| ≤ 0.11593

Remark For all functions g1 and all α 6= 0 in ẇ(t)+g1(w(t)) = α sin(t)+s(f̃)
the iterated method fails to improve the basic estimate.
To prove this statement, notice that max f̃ = −min f̃ = |α|, the period is

T = 2π, ‖f̃‖2 = |α|
√
π, and the estimate for ‖w‖∞ is b0 = |α|π/

√
6. As in

Lemma 3, m0 and M0 are non-negative quantities; thus, k0 ≥ |α| and K0 ≥ |α|.
Since b1 is an increasing function of k0 and of K0, it follows that

b1 ≥
π

2
|α| >

π
√
6
|α| = b0 .

Which indicates that the iteration method is unsuccessful in this case.

Example 3 Consider ẇ(t) + g1(w(t)) = f̃(t) + s(f̃) with

g1(ξ) = 2
(
arctan

(
10000(ξ + 0.12)

)
+ arctan

(
10000(ξ − 0.12)

))

and f̃ defined as in Example 1. Note that g1 varies significantly only in the
neighbourhood of several points (namely −0.12 and 0.12). In such a case it is
better no to apply the iteration method directly, but apply the iteration method
with b0 = ‖f̃‖2

√
T/12 to

v̇(t) + d(v(t)) = f̃(t) + sd(f̃) ,

where d(ξ) = g1(ξ) for |ξ| < δ and d(ξ) = g1(δsgn(ξ)) otherwise with some 0 <
δ ≤ b0. If b = inf{b0, b1, . . .} ≤ δ then considering ‖v‖∞ ≤ b and d(ξ) = g1(ξ)
for |ξ| ≤ δ we get w = v. Thus ‖w‖∞ ≤ b and s(f̃) = sd(f̃). The following
table shows the estimates obtained for direct application of iteration method
and different values of δ.

direct application δ = 0.11 δ = 0.1
b 1.5056e-1 1.1946e-1>0.11 9.0409e-2<0.1

min-max g |s| ≤ 6.2759 |s| ≤ 6.2759 |s| ≤ 9.0908e-3
basic est. |s| ≤ 4.8202 |s| ≤ 4.8202 |s| ≤ 1.4010e-3
iterated |s| ≤ 4.8202 |s| ≤ 4.8202 |s| ≤ 1.6342e-3

Remark Note that for δ = 0.1 the basic estimate yields better result than
iterated although b = 9.0409e-2 < b0 = 1.5056e-1. The reason is that we avoid
calculating supremum or infimum over c and use c =

(
g1(b) − g1(b)

)
/2b in

formulas for a(f̃) and A(f̃) in Theorem 2.
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