
EXTRACTING CONCEPT MAPS FROM INSTRUCTOR AND LEARNER

BEHAVIOR IN AN INTERACTIVE E-LEARNING ENVIRONMENT

THESIS

Presented to the Graduate Council of
Texas State University-San Marcos

in Partial Fulfillment
of the Requirements

for the Degree

Master of SCIENCE

by

Joshua' Emmett Byrne, BChE

San Marcos, Texas
August2007

COPYRIGHT

by

Joshua Emmett Byrne
'

2007

DEDICATION

This thesis is dedicated to my mother, Kathy Byrne, who was my typist and

proofreader throughout grade school, and who avoided the same fate in this endeavor

thanks to the invention of word processing software for personal computers.

ACKNOWLEDGEMENTS

Thank you to my committee: Dr. Deborah East, Dr. John Durrett, Dr. Jawad

Drissi, and Dr. Carol Hazlewood, who graciously accommodated my working on my

thesis from a thousand miles away. A special thanks to Dr. John Durrett. Thank you to

my wife, Lucia Byrne, who helped with proofreading, and along with my son Lex

accommodated many absences. Many thanks to Bill Alfveby, who went above and

beyond the call of duty to help with the experiment and testing UTS. Thanks to my

parents John and Kathy Byrne who have always supported my academic endeavors.

Finally, thanks to the many friends, colleagues, and students who participated in this

study and provided comments on UTS, including Steve Byrne, Vijay Dayafule, Erik

Mohr, Harold O'Dell, Mouli Paturi, Drew Thorstenson, and Ron Waara.

This manuscript was submitted on March 24, 2007.

V

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS .. V

LIST OF FIGURES .. xi

CHAPfER 1 INTRODUCTION TO THE STUDY ... 1

Changes From the Original Scope of the Study .. 2

Nomenclature .. 3

Question ... 3

ADL and e-Learning ... 3

Concept Map vs. Ontology .. 3

Instructor ... 4

Sharable Content Object (SCO) .. 4

UTS ... 4

CHAPTER 2 LITERATURE SURVEY AND BACKGROUND INFORMATION 5

Instructional Technology ... 5

ADL Standards .. 5

Intelligent Tutoring .. 6

Concept Maps and Ontologies.~ .. 7

Concept Maps .. 7

Constructing Concept Maps .. 8

vi

Concept Map Versus Ontology ... 9

Self-Organizing Systems ... 11

CHAPTER 3 UNNERSAL TUTORING SYSTEM .. 12

UTS Methodology ... 12

Preparation ... 13

Course Delivery ... 15

Analysis and Production .. 16

Software Design .. 17

Overall Architecture .. 17

Components and Deployment ... 17

Common Patterns .. 18

Ajax ... 18

JSP vs. Servlets .. 19

Code Conventions ... 20

Array Indexing .. 21

JSP Logic ... 21

JSP Formatting .. 21

File Naming ... 21

Student Features .. 22

Use Cases and Feature Requirements ... 22

Comments on Instructional Design ... 23

User Interface .. 24

Important Design Details ... 29

vii

Module Completion ... 29

Path and Event Tracking ... 29

Instructor Features ... 30

Use Cases and Feature Requirements ... 30

User Interface .. 32

Static Design and Database ... 33

CHAPTER 4 EXPERIMENTAL RESULTS .. 34

Common Aspects of the Modules ... 34

Test the Basic Hypothesis ... 34

Create a Concept Map ... 35

Start With a Single SCO .. 36

Test Module #1: Single User in All Three Roles .. 37

Overview ... 37

Initial SCO Design .. 38

Module Prerequisites ... 38

Module Post Requisites and Exit Assessment.. ... 38

Initial SCO ... 40

Initial SCO Assessments ... 40

Interactive Content Generation ... 41

Observations .. 41

Test Module #2: Separate Student and Instructor ... 42

Overview ... 42

Initial SCO Design .. 42

viii

Module Post Requisites and Assessment .. 43

First SCO ... 45

First SCO Assessment ... 45

Interactive Content Generation ... 46

Concept Map ... 46

Observations .. 47

Experiment: Large Student Data Set ... 47

Overview ... 47

Initial SCO Design .. 48

Module Prerequisites ... 48

Module Post Requisites and Exit Assessment ... 48

First SCO ... 51

First SCO Assessment ... 51

Interactive Content Generation ... 52

Concept Map ... 52

Observations .. 53

CHAPTER 5 ANALYSIS AND CONCLUSIONS .. 55

Derived Concept Map Algorithm .. 55

Algorithm Step #1: Unique Set of Pre and Post Assessments 56

Algorithm Step #2: Similarity Threshold .. 57

Algorithm Step #3: Divide At Question .. 58

Concept Map Analysis .. 59

Quantitative Comparison to Expert Concept Map······················~·························· 59

ix

Qualitative Comparison to Expert Concept Map .. 60

Summary of Findings .. 63

CHAP'fER 6 FUTURE STUDY ... 66

UTS Software Features ... 66

Standards Ref actor .. 66

Assessment Component and Bottom Navigation Effectiveness 67

How Much to Keep ... 68

Exit Assessment Balance ... 68

Number of Choices .. 68

UTS Cloud ... 69

UTS Process and Applications .. 69

Algorithmic Assessment Relationship Determination 69

Applicability to the Semantic Web ... 70

Assessment Type ... 70

Simplified Assessment Authoring ... 71

Spontaneous Content Generation .. 71

UTS Learning Effectiveness ... 71

Multi Page SCORM Player ... 72

Appendix A: Experimental SCO Names ... 73

GLOSSARY .. 74

BIBLIOGRAPHY ... 76

X

LIST OF FIGURES

Page

Figure 1: Proposition in a Concept Map ... 8

Figure 2: UTS Process Activity Diagram .. 13

Figure 3: UTS Deployment Diagram .. 17

Figure 4: Select New Assessment Sequence Diagram .. 18

Figure 5: Student Navigate Back Sequence Diagram ... 20

Figure 6: UTS Student Use Cases ... 22

Figure 7: UTS Student Interface ... 24

Figure 8: Score Component Concept in Two Different States .. 25

Figure 9: Student Interface With Assessment Interface Visible 26

Figure 10: Student Role Deployment .. 27

Figure 11: Database Schema ... 28

Figure 12: Instructor Use Case Diagram ... 30

Figure 13: UTS Tutor Activity Diagram for a New Question .. 31

Figure 14: UTS Assessment Edit User Interface ... 32

Figure 15: UTS Instructor File Structure .. 33

Figure 16: Experiment #1 Initial SCO .. 40

Figure 17: Test Module #2 First SCO ... 45

xi

Figure 18: Location of Novak's "What is a Cmap" Concept Map in the CmapTools

(CmapTools, 2007) Application ... 46

Figure 19: Experiment First SCO .. 51

Figure 20: Binary Tree Concept Map for Experiment .. 53

Figure 21: Analysis Step #1 .. 56

Figure 22: Analysis Step #3 .. 58

Figure 23: Student and Instructor Paths Overlayed on Instructor Designed

Concept Map ... 61

xii

CHAPTER!

INTRODUCTION TO THE STUDY

The structure of knowledge as seen by an expert does not represent the order in

which most novices naturally learn that information. The goal of this study is to

experimentally explore that hypothesis by comparing concept maps designed by experts to

concept maps derived from student and instructor behavior in a Web-based instructor

facilitated training (WBIFT) course. Chapters 4 and 5 detail the experiments and their

results.

The largest part of the effort in this study was creating the WBIFT software,

hereafter called the Universal Tutoring System (UTS). UTS delivers learning content to

students and assesses their learning. Students choose their own path through the course by

submitting questions and by studying answers to questions submitted by other students.

Two types of instructors-tutors and librarians-facilitate learning by answering student

questions. Tutors answer students' questions by creating new content. Librarians answer

questions by linking to existing content. Chapter 3 details the design and implementation

ofUTS.

This study involves several knowledge domains including computer science and

instructional design. Chapter 2 provides a survey of the literature in those domains that

1

informed this study. Chapter 6 examines potentially useful findings in these areas that

are not directly related to the basic hypothesis of the study and suggests further study.

One important application of this research is for intelligent tutoring systems.

2

Intelligent tutoring has been shown to be more effective than the more typical linear

sequenced courses (Murray, 1999). Unfortunately, intelligent tutoring is not widely used

due to the considerable cost and difficulty of authoring (Oguejiofor, 2004), especially

authoring the ontology that maps student needs to instructional content. Concept maps

derived from UTS are useful for this application and could be developed at a fraction of

the cost of expert designed concept maps. Others have alluded to automatic extraction of

concept maps for ADL (Abdulah and others, 2004), but my literature search did not

reveal any truly similar work.

The UTS software developed during this study is best characterized as a proof of

concept sufficient for research purposes, but not yet robust enough for real-world use.

Chapter 6 suggests further research and development needed for UTS to achieve broader

applicability.

Changes From the Original Scope of the Study

While the primary objective and overall approach remained the same, one

difference between this study and that envisioned in the original thesis proposal is the use

of SCORM. My thesis proposal envisioned implementing the learner interface in a

SCORM conformant learning management system (LMS). The SCORM standard

defines the interface between learning content and conformant LMSs. Unfortunately,

closer inspection reveled that SCORM does not allow enough visibility among learning

objects to work easily with the Universal Tutoring System.

As a result, I built UTS as a single Web application. This added significantly to

the development effort required, but gave a great deal of flexibility that was ultimately

useful. The concept maps derived from UTS can still be used to drive the sequencing of

SCORM conformant learning content that is delivered separately.

Nomenclature

The following terms are applied broadly in common usage, but I construe them

more narrowly to improve clarity.

Question

In this thesis and in the UTS documentation, the term "question" refers to a

question a student asks about a unit of content. An assessment question the student

answers to demonstrate competence is referred to simply as an "assessment."

ADL and e-Learning-

3

The US Department of Defense typically uses the term Advanced Distributed

Learning (AOL) to refer to electronically delivered educational content. Outside of the

military, the terms e-Learning and Computer Based Training (CBT) are more common. I

have adopted the term ADL for content that is not instructor led and Web-Based

Instructor Facilitated Training (WBIFT) for computer based learning that includes

instructor intervention.

Concept Map vs. Ontology

Concept maps and ontologies are similar for the purposes of this study, and I

occasionally refer to the literature for ontology development with the implication that the

findings apply to concept maps as well. For readability, I use the term concept map

throughout. The reader should understand this to include node attributes, machine

readability, and other features which are not formally part of concept mapping.

Instructor

In the context of UTS, there are two instructor roles: the tutor and the librarian.

Because these two share many traits, I often refer to them collectively as an "instructor"

role or user type. In discussion of AOL production, I refer to the "instructor" as the

person or people creating a course. In practice AOL development typically involves a

number of specialists including instructional designers, subject matter experts, visual

designers, and media developers.

Sharable Content Object (SCO)

4

A SCO is a piece of AOL content conforming to the SCORM standard-typically

centered on one or more Web pages and supporting media assets. In practice, the term

SCO is often applied more generally to a collection of ADL content smaller than a

module, which is in turn smaller than a course. In this study the term SCO refers to a

single page of ADL content, regardless of whether it follows the SCORM standard.

UTS

Universal Tutoring System is the working name for the software system

developed for this project. At the time of writing, a Web search showed that this name

was not in common use by any other software system. Another search will be conducted

before the system is publicly released. I am still trying to determine whether there is

commercial applicability for UTS, but readers interested in obtaining the software for

research purposes are encouraged to contact me.

5

CHAPTER2

LITERATURE SURVEY AND BACKGROUND INFORMATION

Instructional Technology

ADL Standards

Work on the Sharable Content Object Reference Model (SCORM) was initiated

in 1997 by the US Department of Defense with the goal of enabling AOL

interoperability, affordability, durability, reusability, and accessibility, which are

sometimes referred to as the SCORM "ilities" (Advanced Distributed Learning, 2007).

At its core, SCORM has two major components. The first is a content packaging

and metadata standard that defines how the files that compose a conformant SCORM

package are to be structured and the XML metadata that it must include. The second is a

standard set of JavaScript functions that a conformant learning management system must

provide to an ADL course. For example, a conformant LMS must provide the loadPage()

function (Advanced Distributed Learning, 2004).

Of its original goals, SCORM has been most successful at achieving portability.

Today, SCORM conformant content will run on most conformant learning management

systems with a small amount of testing and modification. SCORM has been less

successful at enabling reusability, in large part because it is very difficult to author

5

context independent content. UTS attempts to overcome this problem by using student

questions to provide context.

6

My original intention was to implement the student interface to UTS as SCORM

packages on an open source LMS. After further analysis, I determined that this was not a

good design. SCORM was designed before the limits imposed by modem browsers on

cross-domain scripting (the ability of a page to load dynamic content from more than one

domain). These restrictions make it difficult to provide content from a server different

from the one that contains the learning management system, further limiting its

usefulness for UTS (Brusilovsky, 2004).

Organizing content into small independent SCOs is important to evaluating my

hypothesis because it is the most visible expression of the instructor's understanding of

the structure of the content. In a typical ADL course design, content is organized in an

outline that reflects the instructor's understanding of the best order to learn it in. If the

generated concept map deviates significantly from this outline, it supports the hypothesis

that learners conceptualize the content differently than an expert instructor.

SCORM also supports learning objectives, which might be a close analog to the

nodes of the designed concept map. Unfortunately, it does not support relationships

among the nodes, and the sequencing model for SCOs is primarily tree-based, not map

based. So, I did not use SCORM learning objectives as part of this study.

Intelligent Tutoring

The term "intelligent tutoring" has been applied to a broad range of computer

based training systems, but they typically share three common features (Evans and others,

1993) (Angelides and Paul, 1993).

1. The system has a model of the student's understanding
2. The system has a model of the subject domain
3. The system adapts the material presented to the student based on 1 and 2

Intelligent tutoring has been shown to be more effective than traditional linear

ADL (Murray, 1999), but its application is limited due to the cost of developing domain

models, learner models, and the additional content required to accommodate different

learning styles (Abel, 2004). Intelligent tutoring is an important application of my

research because the self organizing system approach embodied in UTS eliminates the

need to expressly create these things.

7

Some intelligent tutoring methodologies draw extensively from the area of

cognitive psychology, where there has been an enormous amount of effort to build

models of how people learn, and how concepts are represented in the human brain.

Rather than explore this work in great depth, I observe that despite great progress these

theories have had limited impact on the way ADL is delivered. Instead, I focus on

finding a self organizing approach that empirically delivers superior learning-even if the

exact mechanism isn't completely understood.

Concept Maps and Ontologies

Concept Maps

Novak and Canas (2006) describe concept maps as" ... graphical tools for

organizing and representing knowledge" composed of the following elements:

1. Concepts enclosed in circles or boxes
2. Connecting lines
3. Linking phrases
4. Cross links
5. Examples to clarify

8

These are typically organized so the most general or abstract concept is at the top

of the concept map. Two or more concepts linked by a connecting line are said to form a

proposition.

(Automobile J
t

Part Of

I
Tire

Figure 1: Proposition in a Concept Map

Concept map developers sometimes talk of a concept map "cloud" or "soup": a

large collection of propositions, often formed by joining many different concept maps.

This is similar to an upper ontology.

Constructing Concept Maps

Concept maps are most effective when created in a particular context. This

context is typically provided by a "focus question" the map is intended to answer (Novak

and Cafias, 2006). The following steps are recommended to produce useful concept

maps.

1. Define focus question and domain
2. Identify 15 to 25 key concepts
3. Sort concepts by level of abstraction

4. Construct a preliminary map
5. Seek cross links
6. Revise many times
7. "Clean-up" visually to improve clarity before publishing

Concept Map Versus Ontology

The literature is not entirely consistent in defining the term ontology (Oguejiofor

and others, 2004). Russell and Norvig (2003) state that ''the ontology determines what

kinds of things exist, but does not determine their specific properties and

interrelationships." Sugumaran and Storey (2006) directly contradict this when they say

"an ontology is conceptually represented as a semantic network where the nodes

correspond to the ontology's concepts or terms, and the arcs correspond to various

relationships." These are only two of many published definitions.

9

Concept maps are more narrowly defined, as described in the previous section,

but are not quite sufficient for my purposes. There is not a rigorous mathematical

definition of a concept map, and the literature is more focused on the educational benefits

of the process of constructing them than on defining them as a means of machine useable

knowledge representation.

In this study, I use both the term "concept map" to refer to a directed acyclic

graph with nodes representing concepts and arcs representing the relationships between

and among concepts. An arc connecting two nodes forms a proposition, and an abstract

concept may encapsulate many propositions.

The concept maps generated by UTS are anonymous; nodes and relationships are

not explicitly named by the system (Patel-Schneider and others, 2002). This is somewhat

unusual because most concept mapping efforts focus on the question of how to name

things for human understanding. However, human readable names are not required to

apply the concept map to intelligent tutoring, as long as the manner in which it was

derived is well understood.

In principle, it might be possible to reduce all human knowledge to a set of

propositions. In practice, it is only practical to develop high granularity concept maps for

small domains. Efforts such as CYC to develop upper ontologies that cover large

domains have been going on for many years and are incomplete despite having more than

a million propositions (Cycorp, 2007). Yet concept maps are still useful for human

understanding because the human brain encodes an enormous number of propositions,

but in most cases we consciously deal with a smaller number of abstractions that

encapsulate the more fundamental propositions. For example, a simple proposition such

as chicken:buy-at:store encapsulates a large number of fundamental propositions, yet we

are never consciously aware of many of them unless one turns out to be faulty.

Asking an expert to design a concept map is a good way to determine the abstract

concepts and relations that make up the expert's view of a domain because that view is

relatively stable. Student designed concepts maps are a poor way to measure novice

understanding of a domain because the concept maps themselves are an excellent

learning tool (Novak and Canas, 2006) so the act of constructing the map is likely to

significantly change the student's understanding. Instead, I deduce the student's

conception of the domain from the questions they ask as they learn. For individual

students, this approach has the same drawback as asking students to create concept

maps-by the time they answer enough assessments and ask enough questions, they will

know too much about the domain to be considered novices any longer. So, I look at

students in the aggregate when determining how the concept implied by many novices

compare to the concept map designed by a group of experts.

Self-Organizing Systems

In self organizing systems, complex aggregate behavior is achieved through the

actions of individuals who act locally and have little or no visibility on the system as a

whole. Such systems appear in the physical world in biology, chemistry, and human

societies.

UTS is a self organizing system in the sense that students, tutors, and librarians

carry out a relatively simple set of tasks teaching and learning in a particular domain.

11

CHAPTER3

UNIVERSAL TUTORING SYSTEM

This chapter describes the UTS process and WBIFr software that evolved as a

result of my research. This chapter has two sections; the first describes the instructional

methodology for using UTS. The second section describes the design of the UTS

software.

UTS is required for testing my hypothesis because it generates data for the

concept map representing the student conception of the domain being taught. This is a

better approach than simply asking students to create their own concept maps because

creating concept maps is an important teaching technique in itself, and the end product

may not really represent the student's knowledge as a novice.

UTS Methodology

Over the course of this project, a process for authoring ADL content using UTS

evolved. This section describes the state of the process and related best practices after the

experiments and subsequent analysis. Chapter 4 provides additional information about

how the process evolved over the course of development.

Figure 2 shows the UTS process for a single module. There is no rigid definition

of the length of a module, but in my experiment the goal was that a typical student should

complete a module in an hour.

12

13

-~
Instructors Student

!.
Choose [FirstSCO l Students

Write Exit Document I

Assessment Scope 1

l l Prel!aration

T
J.

[Study First SCO]

Instructor Process I ~
[Complete Assessments) [Ask Questions]

Course Delive[I [Mastery Score]

@
Figure 2: UTS Process Activity Diagram

UTS could be used to deliver training on an ongoing basis, but my objective was

to use it as an experimental authoring environment where the interactions of students and

instructors would ultimately evolve to ADL that would be useful without an instructor.

The UTS process starts with a group of at least four knowledgeable instructors

and ten to twenty representative students. The students understand that they are engaged

in a course development activity and that the content may not be as refined as fully

developed courses they have taken. As shown in Figure 2, the UTS process has three

major elements: preparation, course delivery, and analysis. Each is detailed below.

Preparation

During the preparation phase, the lead instructor starts by writing the module

name and a narrative description of objectives for the course. This could be a paragraph

14

or a list of five to ten items. For my experiments I used the concept map focus question.

The lead instruction then gathers the other instructors to create a list of post requisite

assessments that will define the bounds of the module. I found 10-15 questions to be

sufficient, as the number grows significantly during module delivery. The instructors

also work together to create the introductory SCO and its initial assessments.

After the course definition, exit assessments, and initial SCO, the student test

group is chosen. It is important to choose a group that understands they are involved in

course development, 'and are willing to overlook some delays at the beginning. Students

in the development group should be chosen to reflect the diversity of the ultimate target

audience. For example, if the course is intended for students with a wide range of prior

experience in the topic, then the test group should include students who have significant

prior knowledge as well as those with little or no background in the topic. This situation

is typical of a corporate training environment where the goal is for all students to reach a

certain competency level, but recognizes that some of them might be 90% of the way

there already and others only 10%. By including both kinds of students in the

development group, one ensures that the final course will have paths for each type of

student to complete the course in the most efficient way.

An academic course might have the opposite situation if it has well defined

prerequisites and students have fairly consistent prior domain knowledge. In this case it

might be necessary to diversify the development student group in a different way; it

might be desirable for non-native English speakers to be represented, for example.

The test group can all be registered in UTS at the same time, but I discovered that

it is a good idea to start them two or three at a time. Otherwise too many students will

15

quickly overwhelm the instructors with questions, leading to a lot of equivalent questions.

There is a risk that this approach leads to a course heavily weighted to the predilections

of the first couple students, but I doubt that it is a serious problem in practice because I

saw many questions on the initial SCOs, even from students who joined the course after a

significant amount of content had been created.

Course Delivery

When the students first log into the course there is only a single SCO, so their first

steps are to read the content, attempt the assessments, and ask questions. Where

possible, it is helpful to start with a synchronous session where the students and

instructors are online at the same time and can rapidly ask questions and build out the

initial SCOs. Over subsequent hours or days, depending on the difficulty of the exit

assessments, students continue asking questions and completing SCOs until they have

scored sufficient points on the exit assessments to pass the module. As the content

grows, additional students are added.

During course delivery, the tutors look for questions from students and answer

them with new SCOs. For each new SCO, the tutor also creates three assessments and

evaluates the relationship of other assessments to the new SCO. Tutors are encouraged to

go back to the most popular SCOs to improve the writing and add interactivity and

assessments.

During course delivery, librarians also look for questions, and answer them using

existing SCOs. Similar to tutors, librarians create new assessments and evaluate existing

assessments after answering a question. It is critical that both tutors and librarians

rephrase the student questions where necessary. In some cases, they should even

communicate directly with the students to determine the student's intent for a particular

question.

Analysis and Production

16

After a number of students have completed the course, the number of new

questions will decline, or the ratio of linked SCOs from librarians to new SCOs from

tutors will rise. The average time to complete the course should also drop, as the most

common questions are answered. These measures indicate when the topic has been

adequately covered for the target student population. At this point it is possible to simply

disable the question component on UTS, and use it to deliver the course as ADL instead

of WBIFT. This is undesirable in most practical situations because UTS is not a full

featured LMS, and because the development process may lead to an excess of closely

related questions in some areas, making it hard for students to find what they are looking

for. Instead, the data from UTS should be extracted for further analysis and refinement.

Ideally the course delivery phase will include experienced media developers who

can take the basic SCOs created by the instructors and augment them with interactive

components and high quality graphics. In the analysis phase, the most frequently used

SCOs should be identified for further improvement. The least used SCOS and questions

should be considered for removal. The course content can then be published in a

SCORM or AICC conformant framework for portability to a wide variety of learning

management systems. For my experiments, the goal was not the production of a polished

ADL course, but the evaluation of student behavior, so I did not go through the final

production step.

17

Software Design

UTS evolved significantly over the course of the three experiments. This section

describes UTS at the end of this process. This section is organized into three subsections.

The Overall Architecture subsection covers design and implementation issues important

to all of the user types: student, librarian, and tutor. The second subsection covers the

student user features The third subsection covers instructor features, both tutor and

librarian.

Overall Architecture

Components and Deployment

□
.. ---0- □ JSP

□ Servlets

Browser Apache Tomcat

Client Server

Figure 3: UTS Deployment Diagram

As shown in Figure 3, UTS is built on the MySQL database management system

and Apache Tomcat application server. Its user interface is implemented using HTML,

18

CSS, and JavaScript. Server side coding is in the Java programming language using JSP,

Servlets, and JDBC.

Common Patterns

The following patterns are noteworthy because they are used consistently across

different parts of the system.

Ajax

The student user interface makes extensive use of Asynchronous Javascript and

XML (Ajax) to improve interactivity in a number of places. The instructor interface also

uses Ajax in some places. For example, when the instructor chooses a new item from the

list box on the assessment editing page, the form elements are updated without refreshing

the entire page. This improves response time and general user experience. Figure 4

shows a sequence diagram for this scenario, which is typical of all Ajax use in UTS.

tutor assess edit.isp I Utsl.js I I TutorAssessEdit I
Tutor

Select List Item

updateAssessEd1t()11 l
Q createAssessXMLHttpRequestQ

Update Ul

I
I

Figure 4: Select New Assessment Sequence Diagram

doPost() ':::::,,,

aeListener(XMLHttpResponse)

Readers who are not familiar with J2EE and Ajax should note that this diagram

elides (intentionally hides for the sake of readability) many details. For example, the JSP

19

is really compiled to a servlet that generates HTML which is sent to the browser. It is in

the browser that the user selects a list item; JavaScript calls are also internal to the

browser. When the listener is invoked, it is the browser's implementation of the

Document Object Model (DOM) that is used to update the UI. Figure 4 only shows the

Ajax specific aspects of this scenario. Instead of posting directly to the server, the Web

page generated by the JSP uses JavaScript to make an asynchronous post, and selectively

update the UI based on the response. In a less dynamic implementation, selecting a list

item would simply get a whole new page from the server.

JSP vs. Servlets

Two major capabilities of J2EE are Java Server Pages (JSP) and Servlets. JSP

allows the developer to mix HTML and Java code in a single source document. This

document is then compiled to a Servlet. JSP is particularly convenient for building user

interfaces because the developer doesn't need to explicitly write code to output static

HTML in a servlet. The drawback of JSP is that the mix of HTML and Java makes them

very difficult to read if there is too much Java code. They are also inappropriate for

returning data types other than HTML. UTS uses JSP to generate each page of the user

interface, including loading data from the database, but does not use JSP to write to the

database.

Servlet classes inherit from the HTTPServlet class, which provides methods for

handling GET and POST requests from the client browser. UTS uses servlets where a

component needs to write to the database, or where a component needs to return XML.

The sequence diagram in Figure 5 shows the scenario where a students navigates to the

previous SCO. This flow is typical of the use of JSP and Servlets in UTS for both

20

student and instructor roles, except for doGet() calling doPost(). This was done to

accommodate the hyperlink. Most other areas of the US use onclick() or buttons, and call

doPost() directly.

I student sco.isp 11 StudentNavigation I
I I

I .JD~C I I Ses ion I
Student

nav prev10us lmk ',:

'doGet(sco1d, 91d, tosco~:

QdoPost()

'
: set tune m paths

'
; update bookmark m instructors to tosco •
I ~I

' '
: new path m paths

: setAttribute("SCOID", tosco)

doGet()

Figure 5: Student Navigate Back Sequence Diagram

In Figure 5, the student presses a link to navigate to the previous sea. The Web

page issues a GET request to the StudentNavigation servlet, which forwards the request

to the servlet's doPost(). This extra step makes it easier for HTML to treat a hyperlink to

the servlets as a plain HTML request. The doPost() method then makes various calls to

the database, and sets the sea number in the session so that when it redirects back to the

JSP, it will display the previous sea.

Code Conventions

Some code conventions for UTS evolved over the course of the project, so these

are not universally followed in the current build. However, they are followed on all new

development, and added to old code as time permits.

21

Array Indexing

Where user interface elements with 1 based indexing correspond to code

elements with zero based indexing, make the conversion as close as possible to the user

interface.

JSPLogic

Where practical, place Java code in JSP files at the top of the JSP. For example,

database queries should be in the <HEAD> of the document with the results assigned to

variables that are output by <%= %> in the body of the document. A small amount of

Java code is still required in the body of the HTML for iterative building of tables and the

like.

JSP Formatting

One unfortunate aspect of the way JSP works is that many uses of whitespace that

make the JSP readable render the generated HTML very difficult to read. I chose to err

on the side of JSP readability.

File Naming

Where a JSP posts to a single Servlet, use filenames role_pagedescription.jsp and

RolePageDescription.java (e.g. tutor_question_list.jsp and TutorQuestionList.jsp). Each

JSP should post to its own Servlet. In cases such as student_sco.jsp with many different

posts, there should be a servlet for each major functionality.

22

Student Features

This section details the requirements and design of the student interface to UTS.

Students are users who log in to UTS for the purpose of taking a course during the

development process. The greatest emphasis was placed on ease of use for the Student

interface because it has the most total user interface time, and the least time is available

for training each student users.

Use Cases and Feature Requirements

~
~ ::::::---+---------\ Ask question

Student ~

Answer assessment

Figure 6: UTS Student Use Cases

Figure 6 shows the overall Unified Modeling Language (UML) use case diagram

for UTS students. A use case diagram shows the functionality of a system from the

perspective of an outside observer. It shows neither process, nor how that functionality is

implemented. The rectangle represents the system, and the ovals use cases. A stick

figure-an official part of the UML specification-represents an actor, an entity external

to the system that interacts with it in some way. In this example the student is a role for a

human being, but an actor could as easily be another computer system.

23

Comments on Instructional Design

To enable its goal of concept map generation, UTS enforces certain instructional

design constraints that would be less restrictive in most other ADL courses. UTS

assesses the student on each page because the assessments are the foundation of the

concept map extraction algorithm. This would generally be considered excessive

assessment in a linear AOL course, so UTS encourages but does not require assessment

at any given time. Students are free to browse a course and ask questions as long as they

like without taking any assessments. The only restriction is that a student cannot

complete the module until they have achieved the mastery score on the exit assessments.

Likewise, students can take as many assessments as they like on a particular SCO. If the

system runs out of new questions on that SCO, it repeats the ones the student has already

taken. Only the most recent attempt for each assessment is counted.

UTS limits each SCO_ to a single scrollable page. There is not an enforced limit to

the length of the page, but I strongly encouraged instructors to create content that fit on

an 800x500 screen. UTS also limits the instructor to one figure, graphic, or code sample

per SCO. This is a simplification for the sake of the experiment. I envision a future

version of UTS accepting SCO uploads from any commercial or open source ADL

authoring tool.

UTS also draws assessments for a SCO randomly from four sources: prerequisite,

post-requisite, unrelated, and module exit assessments. The proportion of these is

configurable, but in the experiment I found 10:60:5:25 to be effective. Delivering

assessments that are not post requisite to the SCO is necessary for UTS to determine the

relationship of the concepts underlying one SCO to the concepts underlying another.

However it is also distracting to students if they are not warned about it, so students are

told that they should expect some questions they cannot answer because the system is

trying to determine the best path for them.

User Interface

BlnaryT..-..
tree • similar to linked • • bu .

more than two links and thc first od · called the •root•
rather than the ' head." A bin tree· a tree in hlch a
nod h one parent and zero, one, or two chlld.ren<Xccpl
fi r the rooc nod hlch h n parent W u tcnns uch

parent and child when rc.fcmn to the node of a b'cc,
but the5c relationship different from object oriented
inheritanee. The figure to lhe left show. example of a
binary tree. In this ex.ample, the nod arc objects, but e
tree could also have nod containing ingle primiti,·e
valu .

1) Back to
previous SCO

What should a software vclopcr know abou, .. =Q

I •:-J$ I
clement I
Jell h11d

.. /L,; I b,IJ -~·
~ . ..---~ --. r _..

b: ode c:: ode
ckmcnl
ldlCl11ld

I i cl<m<:nl
, left hild

/ np,lqlild naf,IC!uld

:

!!;___L
danrnl
lcn hild
riglttChild

noJc \'llh nQ

e: ode chddrtn 1>a

clctncnl leaf

ld!Child 2)read

rightClukl answers to
previous
questions

Why use• binery t,_7

How do binery t,_ ,.late to f ilu'I'

Will th i■ create ■ balenced t...7
,t, l,.• • U J ~-.•. ' . • _. 'l 4a, L •' ._ _. '

24

11 11111111
ModuJe:6/1 ew Ques ion Ask

4) Aska new

Figure 7: UTS Student Interface

Figure 7 shows the student user interface. On the browser side it is implemented

using HTML, CSS, and JavaScript. To provide the greatest simplicity and ease of use for

students, it makes extensive use of Ajax-students can ask questions and take

assessments without refreshing the whole page.

The back link (1) takes the student to the prior SCO, except when they are in the

first (root) SCO of the module, in which case the link is inactivated as shown here. The

text of the back link is the question the student followed in order to get to this SCO. In

25

the case of the root SCO, it is the focus question for the module. The question is

truncated in the link if it exceeds a certain number of characters, but the student can see

the entire question if they roll over the link.

The forward link (2) shows the recommended next question. For experiment 3

the suggested link is randomly chosen to avoid biasing the student's chosen path through

the material. In future iterations of UTS, it could be based on the shortest path to

complete the post assessment, on the student's stated preferences, or on a number of other

factors. Rolling the mouse over the suggested next question link, the student sees the

other question links to choose from.

111111111 1 11111111 1

~
~

' r

1111111

, -
One
correct

Twelve
correct

t:;,

Figure 8: Score Component Concept in Two Different States

By clicking on the assessment component (3) the student shows or hides the semi

transparent assessment area. This design allows the student to see the SCO content whi le

completing the assessment. The top bar on the assessment component shows the

student's mastery of this SCO. If the student answers an assessment correctly, a green

bar is added; incorrectly and a red bar is added. For example, Figure 8 shows the score

component in two different states- first with one correct and one wrong, and then with

twelve correct and one wrong. If the student answers enough post requisite assessments,

26

all bars will be green. My intention is to make a game of the assessments so students are

encouraged to answer more than if they were required to answer a fixed number.

The new question area (4) aJlows the student to submit a new question. Pressing

the submit button posts the question asynchronously and shows the student a

confirmation message. The question will not appear in the question link list until a tutor

creates new content for it, or a librarian links it to a new SCO.

Binary Trees

A tree is similar to a linked list. but each node may have more
than two links and the first node is called the 'root' rnther than

parent and zero, one,
'l\ilich has no parenL \\
when referring to the
are different &om ob·

Figure 9: Student Interface With Assessment Interface Visible

,\ nod, 1111h nu
children is a
, .. r

7

Figure 9 shows the student interface with the assessment screen activated. It is

semjtransparent, so students can review the SCO as they complete the quiz. By making it

easy to access the assessments without going to a different page, this interface encourages

students to take as many assessments as possible.

Static Design and Database

__ urs10

~ uts1.js

login.jsp

student_sco.jsp

text_code.jsp

I I text_graphic.jsp

Figure 10: Student Role Deployment

StudentNavigation.class

StudentQuestion.class

StudentSCO.class

UTSUtil.class

27

Figure 10 shows the deployment of the files that implement the student role. The

primary student interface is provided by student_sco.jsp, and each of its major interactive

components is handled on the server side by a servlet called by a JavaScript function.

For example, StudentQuestion loads assessments from the database and evaluates student

responses.

The text_code and text_graphics JSPs are included by student_sco depending on

what type of content a SCO has. This design keeps the individual JSPs from becoming

too complex, and makes it easy to provide a SCO preview in the instructor components.

Due to extensive use of Ajax, most of the student interface is handled by student_sco, but

it is supported by four different servlets for different types of server side data handling.

IAEID I SCO I AID I UID I Relatlonslup I Comment I EditFlag

assessmentresponses I ARID I AID I UID I Date I Response I Correct I
AID I Question I Correct I D1stl I D1st2 I D1st3 I D1st4 I CorrectComment I WrongComment I Pubhshed I AssessAuthor

en llment
Idlsidhmd

UID I UserID I LastName I F1rstName I EMAIi i Password I NewQuestton I Role

log I LID I EventType I Context I Descnpt10n I when I
modulepostre,sites I ID I Module I AID_

modules I Id I name I minassess I mmscore I
paths

I PIO I ~serID I StartSCO I StopSCO I SCOID I Question I
QID I StudentID I SubjectSCO I TargetSCO I QuestlonText I lnstructorID I Date I Pubbshed

scos

28

SCOID I SCOType I SCOT1tle I SCOText I SCOimage I SCOAudlo I SCOAudloScnpt I CodeText I CodeOutText I Pubhshed I
SCOimagePath I lmageHeight I Image Width

Figure 11: Database Schema

Figure 11 shows the database schema for UTS. Some of the specific fields are

instructor related, but the student role uses all of the tables. Most of this will be self

explanatory to readers familiar with database design, but one unusual naming convention

that has not been factored out of the system is noteworthy: the instructors table holds user

information for students, tutors, and librarians.

Another noteworthy feature is the paths table, which keeps track of all of the

SCOS the student visits. This information is used in testing my hypothesis for comparing

the typical student's path through a set of SCOs to the instructor's intended path. It will

also be important when UTS is used to design an ADL course because it will help

determine which SCOs and links are most important. At some point in the future with a

larger data set it could also be useful for identifying groups of students (e.g. those who

take a certain path through the qontent) and creating concept maps specific to those

student types.

Important Design Details

Module Completion

29

Each time a user submits a response to an assessment, the system evaluates all of

the user's submissions to see if the user has met the completion criteria for a module.

Once a user completes the exit criteria, it is reflected in the score component, but they are

free to continue studying the module and completing additional assessments.

The system tracks the relationship between assessments using modules and

modulepostrequisites tables. The modules table lists course name and ID,

modulepostrequisites relates course ID to assessment ID. For simplicity, the system

currently only supports student enrollment in one module at a time, but the database is

structured to accommodate multiple simultaneous enrollments for future use.

The system calculates the student's completion score based on the most recent

submission for each assessment using the following query.

SELECT assessmentresponses.aid, MAX(date), response, correct
FROM enrollment,modulepostrequisites,assessmentresponses
WHERE enrollment.sid='student' AND

enrollment.sid=assessmentresponses.uid AND
enrollment.mid=modulepostrequisites.module AND
assessmentresponses.aid=modulepostrequisites.aid

GROUP BY aid

Path and Event Tracking

To support the experimental goals of UTS, I added a number of features for

robust user behavior tracking, including path tracking and event logging. Every time a

user navigates from one page to another, an entry is made in the path table. These data

30

are also required for the forward and back functionality which is non-trivial because UTS

is a map, and not a linear path.

Instructor Features

This section describes the UTS features for the tutor and librarian roles. The tutor

is the most complicated role in terms of number of features, but was somewhat simpler

than the student role to implement because it is less interactive. As shown in Figure 12,

the librarian role is quite similar to the tutor-reusing many of the same screens.

Use Cases and Feature Requirements

View owned SCOs

Figure 12: Instructor Use Case Diagram

Login
loginJsp

Select Question
tutor_queshon_list.Jsp

l
(i)

["publish'1

PreviewSCO
tutor _publishjsp

Edit Question
tutor _view _courseJsp

Write Assellsments
tutor J,ISSINS=ldttJsp

Figure 13: UTS Tutor Activity Diagram for a New Question

31

Evaluate Assessments
tutor _assess_evalJsp

EdltSCO
tutor _sco_editJsp

Tutors follow the steps outlined in Figure 13 in the UTS process. Upon logging

in, the tutor is presented with a list of questions that need to be answered, questions they

have already answered, and whether they already have a question open for editing. If the

tutor selects a new question to edit, the system creates a new SCO in the database and

navigates to an editpr page that allows the tutor to edit the student's question. Enabling

the instructor to edit the student's question was not an original feature of UTS, but proved

necessary because students' questions were often unclear or error ridden.

Once in editing mode, the instructor can'navigate freely among pages for editing

the SCO content, adding new assessments, characterizing existing assessments, and

previewing the target (answer) SCO. After editing the tutor publishes the course,

makeing it accessible to students, and allowing the tutor to open a different question for

editing. From the publish page, the tutor may also cancel editing. Saved edits are not

lost, but other instructors have the option to edit and publish the SCO.

32

User Interface

-----------------~~::::::::::~
0 hltl) :/ftocahost:6080,4JT'S 10/tutcr _a=ss_edit.jsp

~~~ ;;~ -- -JO Tutor Assessment Edit 

Logged in as: Joe Tutor logout Editing Assessment _ 7 598 of SCO 4022 in response to Que:.tion - 003 

stion I Answer I Add Assessment I Evalu te Assessment I Publish 

27598 tnsert uesllon here 
27599 Insert question here 
27600 Insert question here 

Question Te.'tl 

Correct Feedback 

Incorrect F ccdback 

Characterize Assessment 

... 

Figure 14: UTS Assessment Edit User Interface 

____ ] 

The user interface in Figure 14 is typical of the UTS tutor interface. In this 

V 

particular example, the tutor edits assessments for the target SCO. Any time a new SCO 

is created, UTS creates a blank SCO and three blank assessments to go with it. The tutor 

may choose to create additional assessments as well. This screen does have some client-



side interactivity-when an assessment is selected in the list area, the data for the new 

form are loaded using Ajax, so there is no reload. The other screens of the instructor 

interface (not shown) are of similar design and interactivity. 

Static Design and Database 

cajs 
I luts1 .js 

~ login.jsp 

~ tutor_quesiton_list.jsp 

I I web.xml 

-8classes 
8 joshbyrne 

,..,""""'~ thesis 

Login.class 

33 

Tutor Assess Edit.class 

TutorOuestionEdit.class 

TutorOuestionlist.class 

T utorSCOEdit.class 

TutorPublish.class 

Figure 15: UTS Instructor File Structure 

Figure 15 shows the deployment of the instructor role in the file system. Because 

the instructor interface uses relatively little client side interaction there is a one to one 

correspondence between JSPs and the servlets that post data for them. The instructor 

roles use the same database tables as the student role shown in Figure 11. 



34 

CHAPTER4 

EXPERIMENT AL RESULTS 

This study revolves around two test modules and an experiment-each composed 

of a Web-based instructor facilitated training (WBIFf) session using UTS, a concept map 

design, and subsequent data analysis. This chapter maps out the overall approach to the 

modules, and the goals for each with respect to testing my hypothesis. Chapter 5 

provides analysis of results. 

The UTS software was developed over the course of this project, so gathering 

information for its development and improvement was also an important objective of 

each module. UTS development objectives are also described here. 

Common Aspects of the Modules 

Test the Basic Hypothesis 

The most important objective of all three modules was to test the hypothesis that 

novices see a knowledge domain in a different way than the expert instructors. My basic 

premise is that there is cloud of low level propositions that describe the universe as we 

understand it. While people can argue about the naming and connecting phrases of these 

concepts, they are essentially fixed from person to person, except at the fringes of 

knowledge where experts disagree on the fundamental nature of our world. 



35 

I contend that in a Web-based self organizing system, assessments created by 

instructors are a good proxy for these fundamental propositions. That is not to say that a 

particular assessment corresponds one-to-one with a single proposition, but that experts 

can have an objective discussion and come to good agreement on the correctness of an 

assessment. Any given assessment will deal in part with the instructors' abstract notions 

of the domain, but by comparing a large number of assessments, get a more and more 

detailed picture of the fundamental proposition cloud. 

Similarly, I contend that an effective way to measure the student's abstract 

conception of the domain is to look at the questions they ask. It is true that this 

measurement will be colored by the content of the SCOs they are asking questions about, 

but I believe that influence will diminish with a sufficient number of students. So, one 

objective of each module is to collect student and instructor data for the purpose of 

generating a student concept map and comparing it to the concept map designed by 

instructors. 

Create a Concept Map 

It is impractical to directly gather student concepts of a domain by asking them to 

create a concept map, because the process of constructing the map significantly changes 

their perception of the domain, and because they often lack the vocabulary to express the 

concepts they do have. Instructors on the other hand have a fairly stable concept of the 

domains they teach, so simply asking them to design a concept map is a good way to find 

out how they view the domain. 

An important part of the test modules and experiment was obtaining the instructor 

designed concept map. For test module one and the experiment, the map was designed 



by the instructors. For module two, I used a published concept map designed by third 

party experts. 

Start With a Single SCO 

Each module starts with a single SCO answering the same focus question as the 

target concept map. Students are informed that to complete the module they must ask 

questions and check back for answer SCOs until they learn enough to pass the exit 

assessment. 

36 

In order to bound the content, instructors were asked to submit assessments they 

think a student should be able to pass after completing the course. Students pass the 

course by scoring 80% or better on a minimum of ten exit assessments. These exit 

questions are mixed in with the SCO specific questions, so there is an opportunity for 

students to demonstrate mastery of the material as they learn it. 

I considered an alternative approach where the starting point would be a linear 

multi-SCO ADL course, but decided that this would bias the derived concept map too 

strongly towards the instructors' model of the domain, and require a large number of 

students before the typical path deviated significantly from the initial design. 

The chosen approach also guarantees a significant number of questions and 

answers, and has the potential to generate good path information. The disadvantage is 

that it requires a short response time from instructors. 



37 

Test Module #1: Single User in All Three Roles 

Overview 

The experimental objective for test module #1 wa,s to generate enough data to test 

the basic concept map extraction algorithm, and put in place the evaluation procedures. It 

also creates a baseline for maximum user awareness of the UTS process-how the 

derived and designed concept maps compare if the instructor is also the student and 

simply uses UTS as a programmed learning design tool. To the extent that the results 

show a closer correlation between derived and designed concept maps in test module #1 

than in the later experiments, it supports the hypothesis that students organize abstract 

concepts differently than instructors. It also provides additional support for the 

hypothesis because it helps to show that any lack of correlation in later experiments is not 

simply because the concept map extraction methodology is ineffective. 

The UTS development goal of test module #1 was to verify the completeness and 

usability of the student interface. It was also interesting to determine whether UTS could 

be useful purely as a programmed learning design and authoring tool with the designer 

acting as both the student and instructor during course development. During the initial 

stages of test module #1, I manipulated the database directly for the instructor tasks. The 

experimental process was as follows: 

1. Write description, prerequisites, and post requisites 
2. Write exit assessments 
3. Write introductory SCO 
4. Populate UTS 
5. Ask and answer questions 
6. Author Concept Map 
7. Generate Concept Map 



Initial SCO Design 

The topic oftest module #1 was "Using UML Sequence Diagrams in a Design 

Document." The focus question was "How should a software developer use sequence 

diagrams in a design document?" 

Module Prerequisites 

• Basic knowledge of an object oriented programming language 
• Understand the basic goals of a design document 

Module Post Requisites and Exit Assessment 

38 

After completing this module, students will know how and when to apply simple 

sequence diagrams in a design document. Students will know where to look for 

authoritative information on sequence diagrams. The following questions formed the exit 

assessment. 

1. A sequence diagram is best for showing: 
a. Database design 
b. Class composition 
c. Recursive functions 
d. Interactions among objects (X) 

2. In a sequence diagram, time is shown: 
a. Relative to vertical position (X) 
b. Relative to horizontal position 
c. By numbering function calls 
d. Sequence diagrams are time independent 

3. Which is typically not shown on a sequence diagram? 
a. Object 
b. Message 
c. Link (X) 
d. Lifeline 

4. A sequence diagram is NOT good for showing: 
a. Interactions between objects 
b. Complex iteration (X) 
c. Time dependent behavior 



39 

d. Multiple objects 

5. Use a sequence diagram to show 
a. All dynamic aspects of a design 
b. The most important dynamic aspects of a design (X) 
c. The system from a user perspective 
d. A class's members 

6. In a sequence diagram, a box around the lifeline shows: 
a. Focus of control (X) 
b. An asynchronous function 
c. Object initializations 
d. Acomment 

7. In a sequence diagram, a dotted line descending from an object is 
a. A swimlane 
b. The object's life line (X) 
c. A function call 
d. The object's focus of control 

8. In a sequence diagram, an asynchronous message is indicated by: 
a. A solid arrow 
b. A stick arrow (X) 
c. A dotted line 
d. A blue arrow 

9. Where can you find the latest UML specification 
a. w3c.org 
b. omg.org (X) 
c. ibm.com 
d. microsoft.com 

10. Sequence diagrams are defined in what specification 
a. UML(X) 
b. XML 
c. HTML 
d. Java Programming Language 



Initial SCO 

Usino CQuence Ol11or11ms 

The t:nified Modeling L~ (l..~lt) I 1d Exarnpl!J 
Sequence Diagram is an important tool when 
Cf'eatillg a soft\\'att design doc:UUlent. The 
sequwce dia@flllll ws } u to visually I 0bl1: Obl~t 
~Strate the exchange of messa{!es (function 
or method calls) in your design. The 6gurt to 
the right shows a basic sequence diagram. X 
Sequence diagrams require some time to 
construct, so only use them to sho\\' 
particularly important or difficult to 
understand sequences. 

How do l use t.~ sequence diap-mns in a de ... = > 

Figure 16: Experiment #1 Initial SCO 

Initial SCO Assessments 

111 111111111111 
~ odule:l /1 

40 

0bi2· Oblect I Qbl)·Obftm 

1. Messages shown in a sequence diagram are often implemented in a programming 
language as: 

a. Variables 
b. Class definitions 
c. Destructors 
d. Method or function calls (X) 

2. Which UML diagram shows the exchange of messages among objects? 
a. Class diagram 
b. Object diagram 
c. Use case diagram 
d. Sequence Diagram (X) 

3. Why not create a sequence diagram for an entire program? 
a. Sequence diagrams are expensive to create (X) 
b. Sequence diagrams are not useful for modeling software 
c. The exchange of messages is not important to document 
d. A visual approach is more appropriate 



Interactive Content Generation 

After posting the exit assessments and first SCO, I alternated in the role of 

student, tutor, and librarian-asking and answering questions. The following are 

observations made during test module #1. 

Observations 

It quickly became obvious that it was difficult to avoid adding very similar 

questions, even with a single instructor and a single student. I ultimately decided that 

there wasn't a good way to avoid this in small scale use of UTS. With a sufficient 

number of students, it will be possible to eliminate questions that always evaluate the 

same against a given set of SCOs. 

41 

One of the first observations on UTS in Experiment #1 was that it did not 

properly handle navigation related to the initial SCO. The design and code were 

modified so that when a new module is started, the focus question is added as a question 

in UTS, and set to refer to the root SCO as both its source and target. The user interface 

was updated to inactivate the back link for self-referential questions. 

At the start of test module #1, "exit" status for assessments was still just a flag in 

the assessments table. This limited UTS to a single module, so I added a lookup table so 

that each module could have different exit assessments. 

After completing only two or three SCOs as a student, it became obvious that 

having the assessments on a separate page from the SCO content was unwieldy. This 

observation inspired the first use of Ajax in the user interface for the assessment popup 

shown in Figure 9. Test course #1 also drove the first of several upgrades of the bottom 



42 

navigation bar with the arrows being removed, and the module score added to the 

assessment component. 

Test,Module #2: Separate Student and Instructor 

Overview 

The experimental objective for test module #2 was to determine the differences in 

generated concept map when the student and tutor are different individuals. The UTS 

development goal was to verify the completeness and usability of the tutor interface. For 

this test I continued to play both instructor roles, but did so using the UTS interface 

where possible. Four other people were the students in this test. 

The UTS evaluation goal was to further test the student interface and provide 

information for the design of the tutor and librarian interfaces. The experimental process 

was as follows: 

1. Write description, prerequisites, and post requisites 
2. Write exit assessments 
3. Write introductory SCO 
4. Populate UTS 
5. Ask and answer questions 
6. Author Concept Map 
7. Generate Concept Map 

Initial SCO Design 

For the second test module, I chose concept maps as a topic, and most of the 

students were people who had been chosen as instructors for the final experiment. This 

met the dual goals of further testing the student interface and preparing the instructors for 

the experiment. Rather than create my own concept map for this experiment, I used the 

one previously published by Novak (2006), who invented concept maps. The topic and 



43 

focus question (also from Novak) were "Introduction to Concept Mapping" and "What is 

a concept map?" 

Module Post Requisites and Assessment 

After completing this module, students will be able to use concept maps to 

explain a knowledge domain. For this module I used the following exit assessments, one 

for each concept on the designed concept map. 

1. Which of the following is not a good use of a concept map? 
a. Graphically illustrate relationships between concepts 
b. Replace a flow chart (X) 
c. Assist in learning a new idea 
d. Assist in teaching a new idea 

2. Who invented concept maps? 
a. Robert Novak 
b. Joseph Novak (X) 
c. Robert Joseph 
d. Joseph Roberts 

3. Which of the following are not used to label concepts in a concept map? 
a. Symbols 
b. Words 
c. Pictures 
d. Linking Words (X) 

4. In a concept map, what is a concept? 
a. A perceived pattern (X) 
b. A relationship between two things 
c. A place on a map 
d. An innovative idea 

5. How should concept maps be structured? 
a. Radially 
b. As a taxonomy 
c. Randomly 
d. Hierarchically (X) 

6. What does a concept map show? 
a. Effective learning 
b. Effective teaching 
c. Organized knowledge (X) 



44 

d. A geographic region 

7. Which is a benefit of a concept map? 
a. Organizes knowledge without respect to context 
b. Aids creativity (X) 
c. Supports rote learning 
d. Useful for modeling large knowledge domains 

8. In terms of a concept map, what is a proposition? 
a. An event or object 
b. A concept map created by an expert 
c. Two or more concepts connected by linking words (X) 
d. The starting point for a new concept map 

9. What is a crosslink on a concept map? 
a. An interrelationship between different map segments (X) 
b. Any linking words 
c. A symbol in a concept icon 
d. A perceived regularity or pattern 

10. How is organized knowledge useful? 
a. enables effective learning 
b. enables effective teaching 
c. enables both effective learning and effective teaching (X) 
d. it can represent a concept map 

11. When learning to use concept maps, start with 
a. a large number of concepts 
b. a familiar domain (X) 
c. four or five linking words 
d. a new concept 

12. Concept maps are most effective when 
a. created by learners 
b. crosslinks are created first 
c. used to answer broad questions 
d. created in a particular context (X) 

13. What is used to identify new interrelationships on a concept map? 
a. Focus questions 
b. Creativity (X) 
c. Inference 
d. Iteration 



First SCO 

Ol ~ l/1 ,I 11 l' OX 

Con pt M pplna easies 

(Arithmetic ) ( Dealing with Money) 

'\ /' 
C Mccpt Maps Ott a useful iflll)hical t lulique fat both teaching end 
teaming about n lcr,ow\edge domain. The)' wrourngc learners who 
ere tc them to think critic oily about o. subject. d pro, idc a rnpid 
introductiou to a topic for those who att ccustomed to \\'OOO!li \\ith 
tlmn, 

P~rt of useful for 

In a concept lllllp, concepts arc teptescnted by circles ot squares 
containing the name of an image representing the concept. C 01U1ccting 
lines join the concepts, and linking phrases describe the rdationship 
denoted by the line. 
The figure to the right shows a simple map for the concept of addition. 
• otice how it clearly shows key infunnation about addition, and 

naturally leads to other questions. 

What ism coacept map?=> 

Figure 17: Test Module #2 First SCO 

First SCO Assessment 

1. Concept maps show which of the following 

/ 
AddlUon -Example----.( 1 + 1 = 2) 

~ses / i \ imp>e 

a. Concepts, connecting lines, and linking phrases (X) 
b. Concepts, mathematical expressions, and linking phrases 
c. Concepts, domains, and connecting lines 
d. Concepts, domains, and linking phrases 

2. Concepts maps model 
a. A knowledge domain (X) 
b. A process 
c. A computer program 
d. Questions 

3. Lines in a concept map show 
a. Limits of the map 
b. Geographic regions 
c. Important concepts 
d. A relationship between concepts (X) 

45 



46 

Interactive Content Generation 

After posting the exit assessments and first SCO, the UTS process was explained 

to several students. As they posted questions, I answered them either as a tutor or as a 

librarian, depending on the question. This was the first test of the instructor interface, so 

a significant amount of development accompanied this test module. 

Concept Map 

iiJ View!> - Cnldplool, GJ(g]IBJ 
Eile ~dit Iools ~indow t!elp 

Cmaps in 
My Computer 

Shared Cmaps 
in Places 

Favorites 

@ 
History 

0 icons only 

@ MyPlaces .,,. 

' : ... D Users ( create your own folder ... ) 

LeamePrimero 
I • ! ReadMeF1rst 

9 ~ IHMC Sample Knowledge Models 

~ @j CmapTools Website 

S ~Cmaps 
· ; ...... D Italian 

i" .... rTt CmapTools - Annotate 

f ...... rTt CmapTools - Applications 

[ ..... rTt CmapTools - Building a Concept Map 

i-.. -ijj CmapTools - Building a Concept Map 

f-..... rTt CmapTools - CmapServer 

f ...... CmapTools - CmapServer 

f ... ·rTt Cmap Tools - Collaboration 

i .... ijj CmapTools - Concept Map about Concept Maps 

' .. Jr:t Cmap Tools - Concept Map About Concept Maps 

~Add Place 

A j 

~, 
Delete 

Figure 18: Location of Novak's "What is a Cmap" Concept Map in the CmapTools 
(CmapTools, 2007) Application 

Rather than create a new concept map, I used the "What is a Cmap" concept map 

by Novak. A version of this concept map is available in published Il-IMC reports (Novak 



and Canas, 2006), and in electronic form using the CmapTools application. Figure 18 

shows the location of this concept map within CmapTools. 

Observations 

47 

Writing good multiple choice questions remains a challenge. Any large scale 

UTS deployment would need an incentive mechanism to encourage instructors to write 

them. Chapter 6 also discusses the possibility of using multiple select questions. These 

are easier to write and typically more challenging for students. They also hold more 

information for concept map extraction, if a system for easily evaluating them could be 

developed. Adding a wider variety of question types and supporting commercial 

assessment authoring tools would also make writing questions easier. 

As soon as there were actual students in the course, it became obvious that UTS 

needed a mechanism to handle questions that were based on errors in the SCO, comments 

about UTS, and other topics that needed to be addressed but were of little value to other 

students. Based on this observation, I added a "do not publish" option for the instructor 

to the UTS requirements. Future versions of UTS will also have e-mail integration, so 

the student who posted a question will receive a reply, but their question will not be 

available as a link to other students. 

Experiment: Large Student Data Set 

Overview 

The primary objective of this experiment was to evaluate the generated concept 

map in a scenario that approximates "real-world" use of UTS and in so doing answer the 

basic scientific question of the study-how does a concept map designed by 



48 

knowledgeable instructors compare to one derived automatically? The UTS development 

goal was to verify the completeness and usability of UTS in a real-world situation with 

multiple instructors, and more than ten students. The experimental process was as 

follows: 

1. Write description, prerequisites, and post requisites 
2. Write exit assessments 
3. Write introductory SCO 
4. Design concept map 
5. Populate UTS 
6. Ask and answer questions 
7. Author Concept Map 
8. Generate Concept Map 

Initial SCO Design 

After considering many options, I chose "binary trees" as the topic for the 

experiment. I considered using a non-computer science topic, but ultimately decided that 

having a good selection of instructors and students was more important. 

Module Prerequisites 

Basic knowledge of an object oriented programming language is required. 

Module Post Requisites and Exit Assessment 

After completing this module, students will know how to construct and 

manipulate a binary tree, and when it is appropriate to use one. Students must 

successfully answer 80% of at least ten module post requisite questions to pass the 

module. The system evaluates only the student's most recent attempt when determining 

module completion. 

1. What is the most child nodes a parent can have in a binary tree? 
a. Zero 
b. One 
c. Two (X)' 
d. Unlimited 



2. What are nodes with the same parent referred to as? 
a. Children 
b. Siblings (X) 
c. Left-Right Children 
d. Sub-nodes 

3. A leaf node has how many children 
a. Zero (X) 
b. One 
c. Two 
d. Unlimited 

4. What Java structure can be used to store a heap? 
a. java.lang.Integer 
b. java.titil.Heap 
C. int 
d. int[] (X) 

5. Which is not an application of a binary tree? 
a. Company organizational structure (X) 
b. Sorting 
c. Heap 
d. Yes/No decision tree 

49 

6. After inserting a value to the bottom of the heap, what process turns a binary 
tree into a heap? 
a. Reheapification (X) 
b. Reorder 
c. Sort 
d. Removing the root node 

7. Which of these is not a feature of a heap? 
a. A heap is balanced 
b. All nodes have two children (X) 
c. At the deepest level the elements are sifted to the left 
d. A node's value may not be less than either of its children 

8. Which is the top node of the tree? 
a. Parent 
b. Head 
c. Heap ' 
d. Root (X) 

9. Heap sort works because? 
a. The root node is always largest (X) 



b. Every parent has the same number of children 
c. The depth of the tree is predictable based on the value of the root node 
d. The leaf nodes at the lowest depth are largest 

10. After you remove the root of a heap, which element should be moved to the 
root in the first step of reheapifying? 
a. The node with the highest value 
b. The node that was the left-most child to the former root 
c. The node that was the right-most child to the former root 
d. The last element of the binary tree (X) 

11. Why do many algorithms call for removing the first node of the heap? 
a. Because it is the node with the lowest value 
b. Because it is the only node with more than two children 

50 

c. Because it is the only node whose relationship to the others is completely 
known (X) 

d. Because its value can not be the highest 



First SCO 

Blnarv Trees 
A tree is similar to n linked list, but each node may hll\ 'C mote 
than two links and the first node is c cd the 'root" rather than 
the 'bead.• A binary tree is a. tree in which a. node bas one 
parent and zero, one. two cbildrcn-c.<tcept for the root node 
which bas no parent. \\' e use tcnns such as parent and child 
when rcfcaillg to the nodes of a tree, but these relationships 
ore different &om object oriented inheritance. The figlR to the 
left shows an example of a bi■ary tree. In this example. the 
nodc.s ore objects, but a tree could also ha,'C nodes contoining 
single primW\'C \"alues. 

What should a sotm-are de\"doper kDo"· abou. .. => I 1111111111 
)..iodule: /0 

Figure 19: Experiment First SCO 

I ic: odt' I 
ckt1lCtll f 
kll :tnld 

., ngll1G111_ld 
~ .. _ 

Figure 19 shows the initial SCO for the experiment. It also shows the question 

roll over that gives the student a list of available questions. 

First SCO Assessment 

1. How is a tree different from a linked list? 
a. It doesn't have a "first" node 
b. A node can have two children instead of one (X) 
c. There are no links 
d. A tree can only contain primitive values 

2. How is a binary tree different from other trees? 
a. Its nodes hold Boolean values 
b. Its nodes hold primitive values 
c. Its root node has a parent 
d. Each node has a maximum of two children (X) 

3. Which node of a tree has no parent? 
a. Leaf node 

51 



52 

b. Headnode 
c. Root node (X) 
d. Binary node 

Interactive Content Generation 

For this experiment, students were introduced to the system 2 and 3 at a time over 

a number of days to avoid overwhelming the instructors and frustrating the students 

because their questions were not answered fast enough. I also played the instructor role 

in a limited capacity, but primarily for the purpose of handling exceptions and keeping 

the process moving. For example, there were a number of questions about UTS itself, 

and I created some "help'' SCOs to explain the system. There were also several situations 

where changes that were not accommodated by the instructor interface needed to be made 

directly in the database. 

Concept Map 

To generate the concept map we used the Cmap software (CmapTools, 2007) and 

followed the approach suggested by Novak. (Novak and Caiias, 2006) The instructors 

chose the focus question "what should software developers know about the binary tree 

data structure?" Next, we created a "parking lot"-a list of concepts that are likely to be 

on the map. These concepts were then organized into propositions during an interactive 

online session. The concept map in Figure 20 is the result of that session. 



53 

(..__A_ttn_·b_ute_,,)"f- has an·( Node) 

, "'is a. -◄-- ,._ Binary Tree 
Has i,: 1, or 2('Rool Node) Has A _,;,t I 

( Child Node) / 

has a ~ -....~ 
· • Is.a 1sa / I Implemented Using 

Implemented Using ,___,...__---, ~ 

( Leaf Node) / ts Fixes Important Process Implemented Using 

§) / \ Impo1tant Process ,,___:au\ __ ~ 
operates ant ( Reheapify J ~ 

Is a 
,--,..~I ~ ( Balanced ) 

Heap'~rt 

first st:'p '- (~R-e-m.a_v_ln-g ;;:..Fro_m_a -Hea---,p) i Secon\step . . 

( Qeate Jn1t1al Heap ) ( Swj!lp) 

Figure 20: Binary Tree Concept Map for Experiment 

Observations 

The initial SCO in Figure 20 is a good example of the power of the UTS and of 

intelligent tutoring. In a conventional course, the instructional designer would need to 

worry about whether the students had a prerequisite such as knowing what a linked list is. 

In the experiment, students who didn't know asked, and that information was added to 

the course. 

With the expanded student group in the experiment it quickly became clear that 

the ability for the instructor to rephrase student questions is critical; many questions were 

too long, incomplete, or unclear. This feature was added to UTS during the course of the 

experiment. 

It was also observed that student questions quickly went outside of the specified 

scope of the module. It only took three or four questions to go from binary trees to 

obscure details of file system design. Over the long term, this is a good thing because 



54 

one of the goals of UTS is that new modules will be spontaneously generated as students 

follow lines of inquiry they are interested in. To avoid distracting instructors from the 

focus question, instructors were asked to simply delay a couple of days in answering 

questions that were outside the initial scope. This proved an effective technique because 

by the time the question was answered, it was mixed in with a lot of other questions, and 

few students selected it. 

The initial design for UTS envisioned an interactive help function for students 

who had trouble using the system. However, I found that simply allowing students to 

submit help questions in the same way they do content questions was effective. It kept 

the interface simple, and once the help SCOs were developed, the questions were easy for 

the librarians to answer. In future applications of the UTS methodology, I plan to start 

with an "about UTS" SCO with the focus question linking it to the initial content SCO. 

Requiring instructors to evaluate three assessments when they created or linked a 

SCO proved to be insufficient. To generate a useful data set, we had to work through a 

complete matrix of assessments versus SCOs. For future development a complete data 

set might not be necessary, but more than three evaluations per SCO will be: 



CHAPTERS 

ANALYSIS AND CONCLUSIONS 

Derived Concept Map Algorithm 

This section describes the algorithms used to extract concept maps from student 

behavior and the results of applying it to the experimental data. The algorithms I 

examined has several basic premises. First, it is assumed that each concept relates to one 

or more SCOs. Second a relationship exists between two concepts exists when the first 

concept relates to a SCO that is the subject of a question, and the second concept relates 

to the SCO that answers that question. A relationship is also presumed to exist between 

concepts that relate to the same SCO. Each SCO has a set of pre and post requisite 

assessments. Likewise, each assessment is prerequisite, post requisite, or unrelated to a 

givenSCO. 

55 



Algorithm Step #1: Unique Set of Pre and Post Assessments 

Initial 
Assumption 

After 
Step #1 

SC0#1 
«SCO» 

I 

: «teaches>> 
y 

[ Concept #1 ) 

SC0#1 
«SCO>> 

I 

: <<leaches>> 
y 

[ Concept #1 ) 

Figure 21 : Analysis Step #1 

SC0#2 
« SCO» 

SC0#3 
// «SCO» 

Identical pre and 
post assessments y y 

[ Concept #2 ) [ Concept #3 ) 

SC0#2 
«SCO» 

SC0#3 
«SCO» 

' , ' , ' , ' , 
'~ t.:-' 

[ Concept #2 ) 

56 

This algorithm defines a concept for each unique set of pre and post assessments, 

and a connecting line for each question. In practice, this is implemented by starting with 

a concept corresponding to each SCO. If two concepts have the same pre and post 

requisites, they are merged because requisites of one concept are the same as another, the 

two are deemed to teach the same underlying concept. 

In practice, I found the set of assessment to SCO relationships generated by UTS 

too sparse to be useful for this step, so I reviewed the assessments and SCOs with the 

instructors outside of UTS and generated a complete set of data for the relationship 

between all SCOs and all assessments. This technique provided useful data, but is 

problematic for larger experiments-for this experiment we evaluated more than two 

thousand SCO and assessment pairs for approximately twenty-five SCOs and a hundred 

assessments. 



57 

In order to improve the efficiency of the algorithm for comparing the ( ordered) 

sets of assessment relationships for each SCO, I first summed the values of the index 

numbers corresponding to the relationships, and only compared those columns with the 

same value. In itself, this step was not a good discriminator for the data set I had; as 

there were never any SCOs combined in this way. Its potential effectiveness is likely to 

diminish as the data set grows. 

Algorithm Step #2: Similarity Threshold 

The next step was to extend the algorithm from step one by recognizing that there 

is likely to be some variation in any set of experimental data, and allowing for a 

similarity threshold. I defined similarity threshold as a percentage of items in the sets 

(SCO to assessment relationships) that could be different, and still consider the 

corresponding SCOs equivalent. The data was evaluated for similarity thresholds of 10% 

and 20%. At a 10% threshold, only two percent of SCOs were deemed equivalent. At a 

20% threshold twelve percent of SCOs were deemed equivalent. 

I took this as strong evidence that few if any of the SCOs in my experiment 

covered the same exact set of concepts, because the number of concepts in the derived 

map was only slightly reduced by this algorithm. At the same time, I demonstrated that 

the number of concepts can be reduced using this algorithm. It proved useful for 

recombining SCOs after step #3, and will likely become more effective as the number of 

SCOs grows. 



Initial 

State 

Algorithm Step #3: Divide At Question 

Source sea 
<<SCO>> <<Leads To>> 

Postreq (a,b,c,d] 
Prereq [n] 

:«teaches» 

Concept #1 
Postreq [a,b,c,d] 

Prereq (n] 

I ' I «Answers» Target sea 
Question ----- <<SCO>> 

Prereq [a, b] 

58 

>source sea > «Leads To») I Question I (<Answers>> Target sea > 
I ", ..,. • 

Final 

State 

I ' 

Concept #1a 
Postreq (a,b] 

Prereq (n) 

Figure 22: Analysis Step #3 

', ... 

----~·-------... 
Concept #1b 

Postreq [c,d] 
Prereq [n, a, b] 

Step #3 addresses the possibility that a concept will be divided when a question is 

asked from the corresponding SCO. When assessments are post requisite to a subject 

SCO but prerequisite to the target SCO, I deduce that there is a concept learners could 

learn from the subject SCO before linking to the target SCO. Therefore, the concept 

corresponding to the subject SCO is divided into two concepts . Both have the same 

prerequisites, but one has the post requisites that are prerequisite to the target SCO, and 

the other has the remainder of the post requisites. 

This analysis yielded a good number of opportunities to break the concepts linked 

to SCOs into multiple concepts. After splitting off the new concepts, they were again 

compared for recombination using step #3. After division there were twelve new 

concepts, but they subsequently recombined back to just six concepts. This is excellent 



59 

preliminary evidence that the algorithm is effective, and won't simply create an unlimited 

number of new concepts. For example, qualitative analysis of the results from the 

experiment very clearly show that one of the concepts that was separated by questions, 

and subsequently recombined into a single concept was the basic definition of a binary 

tree. Intuitively this makes sense--even if a students doesn't understand everything in 

the root SCO, they should grasp the idea that a binary tree is a tree where a node can have 

no more than two children. 

Concept Map Analysis 

Quantitative Comparison to Expert Concept Map 

To measure the similarity between the derived and extracted concept maps I 

evaluated each concept in the designed map against each assessment question as 

prerequisite, post-requisite, or unrelated. Concepts which had 80% or greater similarity 

were deemed to represent the same abstract concept, with similarity defined as the 

number of assessments with the same relationship divided by the total number of 

assessments. 

Unfortunately, the comparison of concepts from the concept map to assessments 

yielded very few pre and post requisite relationships. This seemed to be because the 

nodes of the designed concept maps are too granular, and the assessments tend to involve 

multiple concepts. Consider the question "What is the most child nodes a parent can 

have in a binary tree?" When evaluated against the concept "node" there is clearly some 

relationship but one can neither say that someone should be able to answer the 

assessment before they can understand the concept of "node," nor is it correct to say that 



60 

someone who understands "node" could necessarily answer the question. The most 

useful observation from the expert concept map analysis was that even instructors seem 

to take a much broader view of a domain when constructing a concept map, as compared 

to designing a linear course. 

Qualitative Comparison to Expert Concept Map 

Because the differences in level of abstraction made it difficult to compare the 

student and instructor concepts maps on the basis of prerequisites and post requisites, I 

also applied a second analytical approach composed of three steps. In the first step, I 

compared SCOs generated in UTS to the instructor designed concept map by identifying 

each concept taught by each SCO. 

In the second step I used the path data for each student-the data showing the 

order in which they studied the SCOs-to determine the order in which they navigated 

the SCOs. Because most students visited a number of SCOs multiple times, I simplified 

this analysis by only considering the first time a student visited a SCO. The sequence 

data for each concept was then averaged to develop a picture of how the average student 

approaches this domain. 

In the final step, I cross-referenced the results of steps one and two to determine 

the order in which students studied the concepts. I also performed a similar analysis on 

an existing linear lesson on binary trees (Byrne and Alfveby, 2005) in order to shed 

further light on the relationship between student and instructor chosen sequencing. 

Figure 23 shows the result of this analysis mapped onto the instructor designed concept 

map. 



/ 
first step / 

~ / 

Students 

Second step 

\ 
~ 
- ~ 

• - -> Linear Course 

Removing From a Heap 
L 8) 

Figure 23: Student and Instructor Paths Overlaid on Instructor Designed Concept Map 

I 
I 

°' ...... 



The pair of numbers appended to each concept is the sequence number of that 

concept in the student and instructor paths respectively. For example, the idea of a 

balanced tree was covered fifth ( on average) by students, but was taught third in the 

sample linear course. 

The initial SCO students were required to start with was very similar to the first 

section of the instructor sequenced lesson, so the first concepts in the sequence are also 

very similar. The grey area of Figure 23 highlights these concepts. 

62 

The bottom three concepts are not on the original instructor designed map, but 

represent additional information about the student path. The first is for information about 

UTS, and the experiment. The typical student asked about this fairly early on. The 

second additional concept encapsulates all concepts that are out of scope of the lesson. 

This analysis shows that the typical student went very quickly off topic (at least in part). 

Remember that these are just concepts, and some SCOs taught both in and out of scope 

concepts. Finally I added a concept for topics that were in scope, but not on the concept 

map designed by the instructors. Many of these were additional binary tree application 

examples. 

There are several notable differences between the student and instructor paths 
, 

through the concept map. The first is early and frequently the students went outside the 

instructor's concept map. This isn't altogether surprising because students exhibit the 

same behavior in a classroom, asking questions that go beyond the prepared material or 

about administrative aspects of the class. The main difference in the WBIFT is that it 



provides the opportunity to go into greater depth on these questions for small groups of 

students without using the time of the class as a whole. 

63 

The second notable difference is that the instructors turned to code examples 

much earlier than students asked for them, and the instructor concept map goes into more 

detail about code than students ever get to through their own questions. This may be in 

part due to UTS's focus on multiple choice assessments, which do not lend themselves to 

code related questions. However, it may also reflect the fact that instructors find it 

important for students to learn to code, but students do not find it intuitive to deduce 

concepts from the underlying code. 

Finally, the instructor path seems to the expert eye to follow a much more logical 

progression that the student path. The instructor goes from a high level explanation, to 

more detail, to an example. The student path seems much more fractured. Additional 

study will be required to determine if this simply reflects the student's lack of 

understanding of the big picture, or if allowing students to choose their own path can 

enhance the learning experience by helping them learn more thoroughly, more quickly, or 

more comfortably. 

Summary of Findings 

Over the course of the experiment, I compared the way students organize 

knowledge as measured by their questions in a WBIFT system to the way instructors 

organized knowledge as measured by their design of concept maps and of courses. In 

comparing the derived concept maps to designed concept maps and to an existing course, 



64 

the key finding was that the domain is much larger than the instructor captures in either a 

designed concept map or a traditional linear AOL course. 

The results of the concept map generation algorithm are also promising, clearly 

delineating concepts that were identifiable when the questions involved were examined. 

Unfortunately, achieving that level of result required me to gather data outside of the 

UTS process, in a way that isn't scalable. It took almost six hours to evaluate the 

approximately two thousand relationships to produce the data described here. The UTS 

methodology shows real promise for concept map generation, but won't be scalable until 

a technique for easily evaluating a much larger number or relationships is developed. I 

believe such a method is possible because the relationship sets tend to be fairly sparse

most relationships were "unrelated." Chapter 6 provides some ideas for additional 

research that could shed light on this, including the idea that any future experimentation 

will need to address the problem of how to characterize a very large set of assessments 

against a large number of SCOs. 

Analyzing the experimental data by mapping instructor and student paths to the 

concepts by qualitatively correlating the concepts to SCOs yielded more information 

about the core hypothesis. It showed that the student path is very different from the 

instructor path in some ways that were expected ( e.g. going off topic, and taking a more 

erratic path through the concepts). It also showed tendencies that merit further study (e.g. 

lack of student interest in code examples early in the learning process). 

In conclusion, the experiments supported my hypothesis that "the structure of 

knowledge as seen by an expert does not represent the order in which novices naturally 

learn that material," but the data were not robust enough to make any firm conclusions. I 



65 

did raise some interesting questions, and verify the usefulness of several analysis 

techniques. With some enhancements to UTS, and a much larger data set, I believe that 

my approach could lead to a number of useful conclusions about the way students learn. 

With respect to UTS, I found that even in its relatively primitive state, it is a 

useful ADL design tool because it expands the instructors view of what concepts need to 

be covered, and gives immediate feedback on the questions students will have about a 

piece of content before a lot of effort has been expended on it and it is difficult to change. 

It also provides a useful way for a group of instructors to collectively address a domain 

much more thoroughly than they could alone. A key goal for future research should be to 

determine whether this ultimately speeds or slows student learning of the domain. 



CHAPTER6 

FUTURE STUDY 

This chapter outlines questions that merit further study, but are beyond the scope 

of this work. Some are directly related to UTS and concept map generation. Others are 

broader observations on learning technology 

UTS Software Features 

This section describes recommended design and feature changes to UTS based on 

observations during the three experiments. These are significant changes that will require 

thought, effort, and in some cases experimentation. The UTS source code also includes 

many smaller suggestions in comments starting with "TODO." Developers using the 

Eclipse IDE can automatically generate a consolidated list of these suggestions. 

Standards Refactor 

In order to have full control over UTS, I built some functionality that is also 

available off-the-shelf in a more robust and functional, if less flexible way. With my 

experiment completed, the way forward for UTS is to focus on its core business logic and 

a few aspects of instructional design, and start integrating third party components for less 

unique functionality. The first step in this process should be for UTS to accept SCORM 

and AICC compliant content packages. This will allow instructors to upload content 

66 



67 

from almost any open source or commercial ADL authoring tool, leading to much more 

interactive content on UTS. 

The next step will be to configure UTS as a SCORM and AICC capable 

repository. This will enable anyone with a learning management system to deploy UTS 

courses to their students, while retaining the enterprise class user management and portal 

features of the LMS. As mentioned earlier, this is a challenge with SCORM due to cross 

domain scripting issues, but they can be addressed by co-installation with the LMS or by 

use of a proxy server. 

My analysis was performed in Microsoft Excel, but it would be useful to 

implement it in UTS, and provide for output to a standard ontology description language 

such as OWL (Heflin, 2004) (McGuiness and van Harmelen, 2004). 

Finally, the student and instructor parts of UTS should be extended to accept and 

deliver QTILite standard assessments. This would enable UTS to support questions from 

a number of commercial and open course assessment authoring tools, which are 

sometimes separate from AOL authoring tools. 

Assessment Component and Bottom Navigation Effectiveness 

The assessment component still requires explanation when new students start a 

course. This needs to be refactored to be more intuitive. The assessment component is 

also not very robust in handling longer questions or different question types. It should be 

extended on the instructor side to accept QTILite standard questions, as mentioned above. 

The entire visual metaphor for the bottom navigation needs to be redesigned to 

make it more intuitive. The typical student should recognize by looking at it that the 



68 

back link is the question that was asked from the previous SCO to get to the current SCO, 

and that the forward links are questions other students have asked about the current SCO. 

How Much to Keep 

In most cases, it is undesirable to keep all of the material added to a course during 

the UTS process unless the final course will have a robust question ranking algorithm. 

This is especially true when UTS results are extracted to create an ADL course. 

Presumably, it is desirable to retain the paths through the content that are chosen by the 

most students, but further research is required to determine how much content can be 

removed without significantly diminishing the effectiveness of UTS. 

Exit Assessment Balance 

With a well designed initial exit assessment, there is a balance of questions over 

the topics in the module. As instructors add new questions and mark them as exit 

assessments, the exit assessment may become heavily weighted towards a small number 

of topics. A technique needs to be developed to ensure that exit assessments delivered to 

students are balanced across concepts. 

Number of Choices 

The current version of UTS randomly selects the links presented to a user. This 

has the advantage of encouraging exploration, but is probably not optimal for moving 

students quickly to completion of a module. 

Oguejiofor (2004) suggests a continuum from strictly scripted courses where the 

user must view SCOs in a particular sequence to entirely free form courses where the 

SCOs may be viewed in any order. The UTS POC is closer to the latter, but students may 



69 

be more comfortable choosing from a smaller number of carefully selected options. This 

is a question that requires further research to answer. Another possibility is to rank the 

question links by the shortest path through SCOs that teach the remaining exit 

assessments. 

UTS Cloud 

Concept map developers talk of a "cloud" or "soup"-a large collection of 

relations, often formed by integrating multiple concept maps. UTS has the potential to 

form such a cloud if multiple groups adopt it and start building content from different 

focus questions. Integrating these sites will be reasonably straight forward in a purely 

open content model (all instructors license their content for free use). However, if 

ownership of the content is restricted, the problem becomes more difficult, and a 

federation model is more appropriate. 

UTS Process and Applications 

Algorithmic Assessment Relationship Determination 

Is it possible or desirable to eliminate the need for instructors to specify the 

relationship between assessments and SCOs? On one hand, such a change would require 

less work of instructors, allowing them to focus more on content and driving broader 

acceptance of the UTS methodology. On the other hand, automating this process might 

be critical to scaling UTS because instructor evaluation alone cannot lead to enough 

evaluations for the analysis to work properly. 

The need for instructors to evaluate the relationship between SCOs and 

assessments could be eliminated in a system with a large number of students by 



evaluating what students know before and after a SCO, and deducing that the SCO 

teaches those assessments where there is an n% increase in correct answers before and 

after viewing the SCO. Fischer (2001) has done some work in this area that might be 

expanded to benefit UTS. 

Applicability to the Semantic Web 

70 

One major roadblock in implementing the semantic Web (Zhadanova and others, 

2004) is the difficulty agreeing to a common vocabulary and writing all of the necessary 

propositions. Because UTS generates an anonymous concept map, it isn't certain that it 

would be applicable, but the possibility of integrating UTS with a controlled vocabulary 

and creating large amounts of semantic Web metadata as a byproduct of learning activity 

is compelling enough to merit further study. 

Assessment Type 

For the experiments in this study, UTS used multiple choice questions-students 

were asked to select one and only one correct answer from among four possible answers 

(distracters). In later iterations, UTS will support other question types, perhaps even 

complex simulation questions. This raises the question of whether a single question can 

yield more information for concept map extraction than a simple pre, post, or unrelated. 

Consider the example of multiple select questions. fu a multiple select question, 

the user may select any number of distracters, making it essentially four interrelated true 

and false questions. This raises the possibility of characterizing the user's response to 

each distracter independently. I considered using multiple select questions in the 



71 

experiments for this study, but was unable to find a simple enough way for instructors to 

characterize the distracters independently. 

An added advantage of multiple select questions is that they are easier to author 

than multiple choice because "which of the following" questions do not need to be 

phrased in the negative, and it isn't necessary to think of three plausible but incorrect 

choices for each question. 

Simplified Assessment Authoring 

Inducing instructors to write and evaluate the number of assessments required for 

UTS to work on a large scale will be a challenge. One approach is to set up a monetary 

or other incentive. Another approach is to simplify the question authoring process. 

The most time consuming part of authoring multiple choice and multiple select 

questions is thinking of incorrect distracters. It might be possible to configure the system 

so the instructor writes the question and correct answer as a fill-in-the-blank question. 

Incorrect distracters would then be drawn from subsequent student answers. 

Spontaneous Content Generation 

An observation from the experiment was that if instructors kept answering off 

topic questions, they would go far a field very quickly. It would be interesting to 

assemble twenty or thirty instructors in a large domain and see what evolved from a 

single initial SCO. 

UTS Learning Effectiveness 

A study should be completed to determine the learning effectiveness of UTS both 

in terms of the rate at which students learn, and the amount they learn. For the former, a 



72 

good experiment would be to apply the UTS process to a course that already exists as 

linear ADL. Both UTS and the existing ADL would be extended to accurately measure 

the time students spend working on the course. Randomly selected students would be 

assigned to UTS or the ADL over the course of several weeks. Time to master the post 

assessment would be tracked. I believe this experiment would show that the first students 

through UTS would take longer than ADL students, but that students who started after 

UTS had evolved for several weeks would master the material faster. 

After UTS performance surpasses ADL, the "ask" option will be removed so that 

UTS runs in intelligent tutoring ADL mode. Continued tracking will demonstrate 

whether the superior performance of UTS continues, or even improves as students are 

forced to more closely consider th~ questions others have asked. 

Multi Page SCORM Player 

One limitation of the UTS approach that became obvious is that many answers do 

not require a full page. A large number of five word SCOs are likely to annoy students. I 

envision a UI approach that shows content objects as a series of sections on a page, more 

like "Normal View" in Microsoft Word or the portlets in a JSR 168 portal. The left 

margin could contain some navigation showing the flow of questions and so on. When to 

go to a new page could even be left to the student. This idea could also be applied to 

general SCORM content. A SCORM runtime could be developed that displays existing 

SCORM content as a series of sections instead of a series of pages. 



Appendix A: Experimental SCO Names 

"Binary Trees" 

"Uses of a Binary Tree" 

"Binary Trees and File Organization." 

"Depth of a Binary Tree" 

"Binary Search Trees" 

"Benefits of Sequential and Random Access" 

"Balanced Binary Trees" 

"Making an Array that Represents a Binary Tree" 

"Values Within a Binary Tree" 

"Some Special Types of Binary Trees" 

"Benefits of a Heap Versus the Binary Tree" 

"Ways to Find the Deepeset Node in a Binary Tree" 

"About the Universal Tutoring System" 

"UTS Architecture" 

"Trees and Various Types of Trees" 

"The Values of the Elements of a Binary Tree" 

"Heapsort" 

73 



GLOSSARY 

Distracters - The possible answers a student selects from in a multiple choice or 

multiple select question. 

Instructor - In UTS there are two instructor roles: librarian and tutor. 

J2EE-The Java application programming interface (API) for server side coding. 

Originally the acronym Java 2 Enterprise Edition, it is now simply the name of the APL 

Learning Management System (LMS) - A class of Web server designed to 

manage students and deliver courses. , 

Module - A multi-SCO unit of instruction. 

Module Post Requisite - Narrative description of the expected student 

capabilities after completing a module. Used as a guideline for writing the completion 

assessment. 

Module Prerequisite - Narrative description of the expected student capabilities 

going into a module. Used as a guideline for tutors and librarians. 

Multiple Choice Assessment - The user chooses one and only one distracter. 

Multiple Select Assessment - The user chooses any number of the distracters. 

Programmed Learning - A technique for organizing learning materials where a 

question leads students from one module to the next. 

Scaffolding -- In educational theory, the strategy of providing temporary support 

to students in accomplish a task to facilitate learning to complete the task on their own. 

74 



Self-Organizing System - An information or physical system that exhibits 

sophisticated overall _behavior based on interactions components which have only local 

visibility. 

Sharable Content Object Reference Model (SCORM) - A US Department of 

Defense sponsored standard to provide learning content portability among learning 

management systems. 

Universal Tutoring System (UTS) - The working title of the software developed 

for this thesis. 

75 



BIBLIOGRAPHY 

Abel, Marie-Helene. 2004. Using two ontologies to index e-learning resources. 
Proceedings of the IEEE/WIC/ ACM International Conference on Web 
Intelligence (WI'04): 553-557. 

Discusses the relationship between domain ontology, which defines the 
knowledge in the domain being trained, and the application ontology, which specifies 
"organization of theoretical notions which are studied." 

Abdulah, N.A. Christopher Bailey, and Hugh Davis. 2004. Augmenting SCORM 
Manifests with Adaptive Links. Proceedings of the fifteenth ACM conference on 
Hypertext and hypermedia (HYPERTEXT '04) (August):183-184. 

Describes a project to extract concept maps from SCORM manifests using the 
AuldLinky server. Their goal is to add adaptive links, but they don't really seem to have 
accomplished that in this paper. 

Advanced Distributed Leaming. 2004. Sharable Content Object Reference Model 
(SCORM) Sequencing and Navigation (SN) Version 1.3.1. Internet. Available 
from http://www.adlnet.org/downloads/index.cfm; accessed August 2005. 

This specification contains a detailed description of SCORM requirements. 

Advanced Distributed Leaming. 2007. SCORM General Common Questions. Internet. 
Available from http://www.adlnet.gov/help/CommonQuestions/SCORMGeneral 
Questions.cfm; accessed March 2007. 

This site contains interesting historical background on the genesis and evolution 
of the SCORM standard. 

76 



Angelides, Marios C, and Ray J. Paul. 1993. Towards a Framework for Integrating 
Intelligent Tutoring Systems and Gaming-Simulation. Proceedings of the 35th 
Conference on Winter Simulation. 1281 - 1289. 

The authors identify three capabilities a tutoring system needs to be considered 
intelligent: 1) draw inferences in the domain being taught, 2) approximate the student's 
current capabilities. 3) implement strategies to reduce the difference betw~en expert and 
student capabilities. 

Brusilovsky, Peter. KnowledgeTree: A Distributed Architecture for Adaptive E
Learning. WWW 2004. Internet. Available from 
http://www2004.org/proceedings/docs/2p104.pdf; accessed 5 December 2005. 

This paper proposes an architecture that divides responsibility for intelligent 
tutoring over four server types. This architecture supports the delivery of the same 
learning objects in or pre-defined or intelligent tutoring way. Many good ideas, but 
doesn't fit well with SCORM. Excellent overview of existing e-Leaming standards. 

Byrne, Joshua and William Alfveby. 2005. Java Course Notes. Unpublished book. 

Draft of a textbook commissioned by McGraw Hill, but not yet published. 

CmapTools Version 4.09, Institute for Human and Machine Cognition, Pensacola, FL, 
2007. 

Free software tool used to create the designed concept maps in this thesis. 

Cycorp. 2007. The Cyc Knowledge Base. Internet. Available from http 
http://www.cyc.com/cyc/technology/whatiscyc_dir/whatsincyc; accessed 10 
March 2007. 

Overview of the history and current status of Cycorp's upper ontology and 
software products. 

Fischer, Stephan. 2001. Course and exercise sequencing using metadata in adaptive 
hypermedia learning systems. Journal on Educational Resources in Computing 
{JERIC) v.1 (March): 1-21. 

The authors focus on creating exercises automatically. Refers to an IEEE LTSC 
upper ontology. Contains a good overview of various metadata standards. 

Heflin, Jeff. 2004. OWL Web Ontology Language: Use Cases and Requirements. W3C 
2004 (February). Internet. Available at http://www.w3.org/TR/webont-req/; 
accessed September 1995. 

77 



78 

This document provides a high level introduction to OWL, a language intended to 
support the creation of a semantic Web. 

McGuiness, Deborah L, and Frank van Harmelen. 2004. OWL Web Ontology Language 
Overview. Internet. Available from http://www/w3/org/TR/2004/REC-owl
features-20040210/; accessed August 2005. 

Murray, Tom. 1999. Authoring Intelligent Tutoring Systems: An Analysis of the State 
of the Art. International Journal of Artificial Intelligence in Education 10: 98-
129. 

Novak, J. D. & A. J. Cafias. 2006. The Theory Underlying Concept Maps and How to 
Construct Them. Technical Report IHMC CmapTools 2006-01 Florida Institute 
for Human and Machine Cognition Internet. Available from: 
http://cmap.ihmc.us/Publications/ResearchPapers/TheoryUnderlyingConceptMap 
s.pdf; accessed February 2007. 

This paper is an excellent overview of concept maps and how to use them for 
teaching and learning, by the person who invented concept maps. 

Oguejiofor, Emeka, Rafal Kicinger, Elena Popovici, Tomasz Arciszewski, and Kenneth 
De Jong. 2004. Intelligent tutoring systems: an ontology-based approach. 
International Journal of IT in Architecture, Engineering and Construction: 115-
128. 

This article provides a good description of the type of tutoring system the UTS 
derived ontology could be applied to. 

Patel-Schneider, Peter F and Dieter Fensel. 2002. Layering the Semantic Web: Problems 
and Directions. First International Semantic Web Conference: 16-29. 

This paper contains some interesting observations on anonymous nodes, and a 
good introduction to Resource Description Frameworks (RDF). 

Russel, Stuart and Peter Norvig. 2003. Artificial Intelligence: A Modern Approach. 
Upper Saddle River, NJ: Prentice Hall. 

Sugumaran, V. and V. C. Storey. 2006. The Role of Domain Ontologies in Database 
Design: An Ontology Management and Conceptual Modeling Environment. ACM 
Trans. Database Syst. 31, 3 (Sept): 1064-1094. 

Zhadanova, Anna V., Jos de Bruijn, Kerstin Zimmerman, Francois Scharffe. 2004. 
Ontology Alignment Solutions D1.4 V2.0: 3. 



VITA 

Joshua Emmett Byrne was born at Fort Lewis, Washington, on September 1, 

1970, the son of Kathryn Ann Byrne and John Eccleston Byrne. After completing his 

work at Cloquet Senior High School, Cloquet, Minnesota, in 1988, he attended the 

University of Delaware. He received the degree Bachelor of Chemical Engineering from 

the University of Minnesota in May of 1993. During the following years he was 

employed in various engineering and management positions at Applied Materials in 

Santa Clara, California, founded Mahnomen, Inc in Austin Texas, and is currently 

employed as Chief Technology Officer by Adayana, Inc in Minneapolis, Minnesota. In 

2003 he entered the Graduate College of the University of Texas State University-San 

Marcos. 

Permanent Address: 9972 Oxborough Road 

Bloomington, Minnesota 55437 

This thesis was typed by Joshua E. Byrne. 


	Byrne_Joshua_2007_0001
	Byrne_Joshua_2007_0002
	Byrne_Joshua_2007_0003
	Byrne_Joshua_2007_0004
	Byrne_Joshua_2007_0005
	Byrne_Joshua_2007_0006
	Byrne_Joshua_2007_0007
	Byrne_Joshua_2007_0008
	Byrne_Joshua_2007_0009
	Byrne_Joshua_2007_0010
	Byrne_Joshua_2007_0011
	Byrne_Joshua_2007_0012
	Byrne_Joshua_2007_0013
	Byrne_Joshua_2007_0014
	Byrne_Joshua_2007_0015
	Byrne_Joshua_2007_0016
	Byrne_Joshua_2007_0017
	Byrne_Joshua_2007_0018
	Byrne_Joshua_2007_0020
	Byrne_Joshua_2007_0021
	Byrne_Joshua_2007_0022
	Byrne_Joshua_2007_0023
	Byrne_Joshua_2007_0024
	Byrne_Joshua_2007_0025
	Byrne_Joshua_2007_0026
	Byrne_Joshua_2007_0027
	Byrne_Joshua_2007_0028
	Byrne_Joshua_2007_0029
	Byrne_Joshua_2007_0030
	Byrne_Joshua_2007_0031
	Byrne_Joshua_2007_0032
	Byrne_Joshua_2007_0033
	Byrne_Joshua_2007_0034
	Byrne_Joshua_2007_0035
	Byrne_Joshua_2007_0036
	Byrne_Joshua_2007_0037
	Byrne_Joshua_2007_0038
	Byrne_Joshua_2007_0039
	Byrne_Joshua_2007_0040
	Byrne_Joshua_2007_0041
	Byrne_Joshua_2007_0042
	Byrne_Joshua_2007_0043
	Byrne_Joshua_2007_0044
	Byrne_Joshua_2007_0045
	Byrne_Joshua_2007_0046
	Byrne_Joshua_2007_0047
	Byrne_Joshua_2007_0048
	Byrne_Joshua_2007_0049
	Byrne_Joshua_2007_0050
	Byrne_Joshua_2007_0051
	Byrne_Joshua_2007_0052
	Byrne_Joshua_2007_0053
	Byrne_Joshua_2007_0054
	Byrne_Joshua_2007_0055
	Byrne_Joshua_2007_0056
	Byrne_Joshua_2007_0057
	Byrne_Joshua_2007_0058
	Byrne_Joshua_2007_0059
	Byrne_Joshua_2007_0060
	Byrne_Joshua_2007_0061
	Byrne_Joshua_2007_0062
	Byrne_Joshua_2007_0063
	Byrne_Joshua_2007_0064
	Byrne_Joshua_2007_0065
	Byrne_Joshua_2007_0066
	Byrne_Joshua_2007_0067
	Byrne_Joshua_2007_0068
	Byrne_Joshua_2007_0069
	Byrne_Joshua_2007_0070
	Byrne_Joshua_2007_0071
	Byrne_Joshua_2007_0072
	Byrne_Joshua_2007_0073
	Byrne_Joshua_2007_0074
	Byrne_Joshua_2007_0075
	Byrne_Joshua_2007_0076
	Byrne_Joshua_2007_0077
	Byrne_Joshua_2007_0078
	Byrne_Joshua_2007_0079
	Byrne_Joshua_2007_0080
	Byrne_Joshua_2007_0081
	Byrne_Joshua_2007_0082
	Byrne_Joshua_2007_0083
	Byrne_Joshua_2007_0084
	Byrne_Joshua_2007_0085
	Byrne_Joshua_2007_0086
	Byrne_Joshua_2007_0087
	Byrne_Joshua_2007_0088
	Byrne_Joshua_2007_0089
	Byrne_Joshua_2007_0090
	Byrne_Joshua_2007_0091

