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Abstract. We consider the nonlinear fractional Kirchhoff equation“
a+ b

Z
R3
|(−∆)α/2u|2 dx

”
(−∆)αu+ V (x)u = f(u) in R3, u ∈ Hα(R3),

where a > 0, b ≥ 0, α ∈ (3/4, 1) are three constants, V (x) is differentiable and

f ∈ C1(R,R). Our main results show the existence of ground state solutions
of Nehari-Pohozaev type, and the existence of the least energy solutions to the

above problem with general superlinear and subcritical nonlinearity. These

results are proved by applying variational methods and some techniques from
[27].

1. Introduction

In this article, we study the fractional Kirchhoff equation(
a+ b

∫
R3
|(−∆)α/2u|2 dx

)
(−∆)αu+ V (x)u = f(u) in R3,

u ∈ Hα(R3),
(1.1)

where a > 0, b ≥ 0, α ∈ (3/4, 1) are three constants, the operator (−∆)α is
the fractional Laplacian defined as F((−∆)αφ)(ξ) = |ξ|2αF(φ)(ξ), where F is the
Fourier transform. V : R3 → R and f : R→ R satisfy the following assumptions:

(A1) V ∈ C(R3, [0,∞));
(A2) V∞ := lim inf |y|→∞ V (y) ≥ ( 6≡)V (x) for all x ∈ R3;
(A3) f ∈ C1(R,R) and there exist constants C0 > 0 and p ∈ (2, 2∗α), 2∗α := 6

3−2α ,
such that

|f(t)| ≤ C0(1 + |t|p−1), ∀t ∈ R;
(A4) f(t) = o(t) as t→ 0.
When a = 1 and b = 0, problem (1.1) reduces to the fractional Schrödinger

equation
(−∆)αu+ V (x)u = f(u) in R3. (1.2)
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As we all known, the fractional Laplacian (−∆)α is now experiencing impressive
applications in different subjects, such as phase transition, anomalous diffusion,
fractional quantum mechanics and so on, see [22]. Equation (1.2) concerns fractional
quantum mechanics, exactly, in the study of particles on stochastic fields modeled
by Lévy processes. For this kind of fractional and nonlocal problems, Caffarelli and
Silvestre [6] constructed general fractional power of Laplacian from an extension
problem to the upper half space by mapping the Dirichlet condition to Neumann
condition for a specific elliptic equation. Their work devotes efforts to dealing
with nonlinear variational problems with fractional Laplacian by standard local
perturbation method from variational method. After that, many results on the
existence of ground state and multiplicity for solutions of (1.2) have been obtained.
Just to mention a few, we recall, for instance, the following papers and the references
therein [33, 12, 34, 25, 7]. Moreover, if α = 1, (1.2) reduces to the classic nonlinear
Schrödinger equation, we refer to [4, 29, 30] and the references therein for the recent
research progress on this field.

If α = 1, then (1.1) formally reduces to the well-known Kirchhoff equation

−
(
a+ b

∫
R3
|∇u|2 dx

)
∆u+ V (x)u = f(u) in R3. (1.3)

This equation is related to the stationary analogue of the Kirchhoff equation

utt −
(
a+ b

∫
Ω

|∇u|2 dx
)

∆u = f(x, u), (1.4)

where Ω ⊂ R3 is a bounded domain. In 1883, Kirchhoff [18] proposed (1.4) as a
generalization of the well-known D’Alembert wave equation

ρ
∂2u

∂t2
−
(r0

λ
+
K

2L

∫ L

0

|∂u
∂x
|2 dx

)∂2u

∂x2
= f(x, u)

for describing the changes in length of the elastic string arising from transversal
oscillations. Here, L is the length of the string, K is the Young modulus of the
material, ρ is the mass density, r0 is the initial tension and f denotes the area
of the cross section, see [23]. In addition, Kirchhoff-type equation also models
several physical and biological systems for the applications of the nonlocal effect.
For more detail on the background of Kirchhoff type problems, we refer the readers
to [1, 3] and the reference therein. With the widespread applications of Kirchhoff
type equations, abundant results on the solvability of this kind of equations have
brought out after the pioneer work [20]. Without attempts to provide a complete list
of references, we refer the reader to [9, 19, 14, 31, 10, 15, 32, 26, 27] for the existence
of ground state solutions, nodal solutions, sign-changing solutions, positive solutions
and the concentration phenomena of solutions.

In the context of fractional quantum mechanics, a great interest has been de-
voted to fractional Kirchhoff type equations in recent years. Similar with classical
Kirchhoff’s model, Fiscella and Valdinoci [13] first proposed the stationary Kirch-
hoff equation involving nonlocal integro-differential operators

M
(∫

RN
|(−∆)α/2u|2 dx

)
(−∆)αu = f(x, u), x ∈ Ω,

u = 0, x ∈ RN \ Ω,
(1.5)

which takes into account the nonlocal aspect of the tension produced by nonlo-
cal measurement of the fractional length of the string. Ambrosio and Isernia [2]
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investigated the fractional Kirchhoff equation(
a+ b

∫
RN
|(−∆)α/2u|2 dx

)
(−∆)αu = f(u) in RN , (1.6)

when f is an odd subcritical nonlinearity satisfying the well known Berestycki-Lions
assumptions introduced in [4]. By minimax arguments, the authors established
a multiplicity result in the fractional radial function space Hα

rad(RN ) while the
parameter b is sufficiently small. Jin and Liu [17] considered the Kirchhoff equation
with the critical growth(

a+ b

∫
RN
|(−∆)α/2u|2 dx

)
(−∆)αu+ u = f(u) in RN , (1.7)

when N > 2α. By using a perturbation approach, they proved the existence of
positive radial solutions to (1.7) without the (AR) condition when the parameter b
is small. A natural question now arises on whether (1.1) has ground state solution if
the potential function V (x) is not a constant. Recently, Liu, Squassina and Zhang
[21] studied the equation with general potential(

a+ b

∫
RN
|(−∆)α/2u|2 dx

)
(−∆)αu+ V (x)u = f(u) in RN (1.8)

in low dimension 2α < N < 4α, that is N = 2, 3. When N = 3 with α ∈ (3/4, 1),
the potential V in (1.8) satisfied not only the assumptions (A1)-(A2) but also the
following assumptions:

(A5) V ∈ C1(R3,R) and ‖max{∇V (x) · x, 0}‖
L

3
2α (R3)

< 2aαSα, where · denotes

the inner product in R3 and Sα will be defined in Section 2.
Moreover, the nonlinearity f in (1.8) satisfies the following assumptions in addition
to (A4):

(A6) f ∈ C1(R+,R), f(t) = 0 for all t ≤ 0;
(A7) limt→∞

f(t)

t2
∗
α−1 = 1;

(A8) there are D > 0 and 2 < q < 2∗α such that f(t) ≥ t2
∗
α−1 + Dtq−1 for any

t ≥ 0.
Clearly, when N = 3, weak solutions to (1.8) correspond to critical points of the

energy functional defined in Hα(R3) by

I(u) =
1
2

∫
R3

[a|(−∆)α/2u|2 + V (x)u2] dx+
b

4

(∫
R3
|(−∆)α/2u|2 dx

)2

−
∫

R3
F (u) dx.

(1.9)

Here, Hα(R3) denotes the usual fractional Sobolev space and F (u) :=
∫ u

0
f(s) ds.

Under above assumptions on V and f , Liu et al. proved that (1.8) has a positive
least energy solution when D is large enough. In fact, under the assumptions on N
and α, it follows that 2∗α > 4. Thus f(x, t) is critical growth at t =∞ and

lim
t→∞

F (t)
t4

=∞ uniformly in x ∈ R3.

Then it easily follows that the energy functional I possesses a mountain-pass ge-
ometry. But it is difficult to get a bounded (PS) sequence because of without (AR)
condition. To overcome this difficulty, Liu et al. used Jeanjean’s monotonicity [16]
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to show that there exists a bounded (PS) sequence {un(λ)} at the level cλ for al-
most λ ∈ [1/2, 1]. However, by the presence of the Kirchhoff term, it is not easy to
show that I has a critical point since in general, for any v ∈ C∞0 (R3), we do not
know that ∫

R3
|(−∆)α/2un|2 dx

∫
R3

(−∆)α/2un(−∆)α/2v dx

→
∫

R3
|(−∆)α/2u|2 dx

∫
R3

(−∆)α/2u(−∆)α/2v dx

from un ⇀ u in Hα(R3). Although I ′λ(u) = 0 from un ⇀ u in Hα(R3) can
not be directly concluded, partly inspired by [19], they consider a family of related
functionals Jλ, whose corresponding problem is a non-Kirchhoff equation. Through
establishing a profile decomposition of the (PS) sequence {un(λ)} related to Jλ,
they obtained a nontrivial critical point uλ of Iλ at the level cλ. Subsequently, by
choosing a sequence {λn} ⊂ [1/2, 1] with λn → 1, thanks to the Pohozaev identity
they obtain a bounded (PS)c1 sequence of the original functional I. We point out
that f ∈ C1 is very crucial to get the profile decomposition of the (PS) sequence
in [21]. In addition, the result is heavily dependent on the existence of a constant
D > 0 large enough in (A8).

This article is motivated by [8, 28, 27, 29, 21]. Provided f ∈ C1(R,R) with
superlinear growth at infinity, under some mild assumptions on V and f , we obtain
the existence of a ground solution of Nehari-Pohozaev type for (1.1) which is a min-
imizer of I on the Nehari-Pohozaev manifoldM. Moreover, we prove the existence
of the least energy solutions for (1.1).

To state our results, in addition to (A1)–(A4), we make the following assumptions
on V and f .

(A9) V (x) is weakly differentiable, and there exists θ ∈ [0, 1) such that

(∇V (x), x) ≤ 2αθaK(α)
|x|2α

, a.e. x ∈ R3\{0},

where K(α) := 1
πΓ2( 1+2α

2 ) and Γ is the Gamma function;
(A10) V ∈ C1(R3,R) and there exists θ ∈ [0, 1) such that

4αt4α[V (x)− V (tx)]− (1− t4α)(∇V (x), x) ≥ −2αθaK(α)(1− t2α)2

|x|2α
,

for all t > 0, x ∈ R3\{0};
(A11) lim|t|→∞

F (t)
|t|2 =∞;

(A12) (4α−3)f(t)t+6F (t)
(4α−3)t|t| is nondecreasing on (−∞, 0) ∪ (0,∞).

Remark 1.1. Note that the monotonicity condition
(A13) f(t)

|t| is nondecreasing on (−∞, 0) ∪ (0,∞)

is the weakened Nehari type condition. When α ∈ (3/4, 1), it is easy to prove that
(A13) implies (A12). In fact, there are many functions satisfying (A12) but not
(A13). For example,

f(t) =
( t2

5
+ 3|t|+ 2 sin t+ t cos t

)
t.

Furthermore by (A3) and (A4), for any ε > 0, there exists Cε > 0 such that

|f(t)| ≤ ε|t|+ Cε|t|p−1, ∀t ∈ R. (1.10)
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Before starting our main results, we define a functional on Hα(R3) as follows

J(u) :=αa
∫

R3
|(−∆)α/2u|2 dx+

1
2

∫
R3

[4αV (x) + (∇V (x), x)]u2 dx

+ αb
(∫

R3
|(−∆)α/2u|2 dx

)2

− 1
2

∫
R3

[(4α− 3)f(u)u+ 6F (u)] dx.
(1.11)

In addition, we set

M := {u ∈ Hα(R3) \ {0} : J(u) = 0} (1.12)

as Nehari-Pohozaev manifold. We are now in a position to state the main results
of this article.

Theorem 1.2. Assume that V and f satisfy (A1)-(A4), (A10)–(A12). Then Prob-
lem (1.1) has a solution ū ∈ Hα(R3) such that I(ū) = infM I > 0.

Theorem 1.3. Assume that V and f satisfy (A1)–(A4), (A9), (A11), (A12). Then
Problem (1.1) has a least energy solution ū ∈ Hα(R3) \ {0}.

To prove Theorem 1.2, we first look for a minimizer of the functional restricted
to Nehari-Pohozaev manifoldM which is defined by a condition through combining
the Nehari equation with the Pohozaev equality, for the usual method of Nehari
manifold becomes invalid in this case. Note that such type of manifold was first
introduced by Ruiz [24] for the study of the Schrödinger-Poisson problem. Then
we prove that the minimizer on M is a critical point. To show Theorem 1.3, we
use Jeanjeans monotonicity tricks, which is partly followed by [21]. These results
will greatly improve the existing ones on fractional Kirchhoff problems.

To illustrate conveniently, we introduce some useful notation. In the sequel,
‖u‖s = (

∫
R3 |u|s dx)1/s denotes the norm of the Lebesgue space Ls(R3)(1 ≤ s ≤ ∞).

we set (·)t := t4α−3[(·)(xt )] for t > 0, where (·) denotes any function belongs to
Hα(R3) \ {0}. For x ∈ R3 and r > 0, Br(x) := {y ∈ R3 : |y − x| < r}. Throughout
the paper, C1, C2, . . . denote various positive constants.

This article is organized as follows. In Section 2, we give some preliminaries. In
Section 3, the limited problem is discussed and the proof of Theorem 1.2 is given.
Section 4 is devoted to finding a least energy solution for (1.1). Theorem 1.3 will
be proved in this section.

2. Preliminaries and variational setting

The fractional Sobolev space Hα(R3) is defined by

Hα(R3) :=
{
u ∈ L2(R3) :

|u(x)− u(y)|
|x− y| 3+2α

2

∈ L2(R3 × R3)
}
.

It is known that∫
R3

∫
R3

|u(x)− u(y)|2

|x− y|3+2α
dxdy = 2C−1

α

∫
R3
|(−∆)α/2u|2 dx,

where
Cα =

(∫
R3

1− cos ζ1
|ζ|3+2α

dζ
)−1

.

We endow the space Hα(R3) with the norm

‖u‖Hα(R3) :=
(∫

R3
|u|2 dx+

∫
R3
|(−∆)α/2u|2 dx

)1/2

.



6 J. CHEN, X. TANG, S. CHEN EJDE-2018/142

The space Hα(R3) is the completion of C∞0 (R3) with ‖ · ‖Hα(R3) and it is continu-
ously embedded into Lq(R3) for q ∈ [2, 2∗α] and compactly embedded into Lqloc(R3)
for any q ∈ [2, 2∗α). Moreover, the best embedding constant is

Sα := inf
u∈Dα,2(R3), u 6=0

∫
R3 |(−∆)α/2u|2 dx( ∫

R3 |u|2∗α dx
)2/2∗α .

Let

H :=
{
u ∈ Hα(R3) :

∫
R3
V (x)u2 dx <∞

}
be a Hilbert space equipped with the inner product

〈u, v〉H := a

∫
R3

(−∆)α/2u(−∆)α/2v dx+
∫

R3
V (x)uv dx

and the corresponding induced norm

‖u‖ :=
(∫

R3
a|(−∆)α/2u|2 dx+

∫
R3
V (x)u2

)1/2

.

The homogeneous Sobolev space Dα,2(R3) is defined by

Dα,2(R3) :=
{
u ∈ L2∗α(R3) :

|u(x)− u(y)|
|x− y| 3+2α

2

∈ L2(R3 × R3)
}
,

which is also the completion of C∞0 (R3) under the norm

‖u‖Dα,2(R3) :=
(∫

R3
|(−∆)α/2u|2 dx

)1/2

= ‖(−∆)α/2u‖2.

A function u ∈ H is a weak solution to problem (1.1) if, for every φ ∈ H, we
have (

a+ b

∫
R3
|(−∆)α/2u|2 dx

)∫
R3

(−∆)α/2u(−∆)α/2φdx+
∫

R3
V (x)uφdx

=
∫

R3
f(u)φ dx.

Lemma 2.1 ([21]). Assume that V satisfies (A2). Then for every ε > 0 there exists
τε > 0 such that∫

R3
((a− ε)|(−∆)α/2u|2 + V (x)u2) dx ≥ τε

∫
R3
u2 dx, u ∈ Hα(R3).

From the above lemma, it easily follows that the norm ‖·‖ is equivalent to ‖·‖Hα .

Lemma 2.2 ([25]). Assume that {un}n∈N is bounded in H and

lim
n→∞

sup
y∈R3

∫
Br(y)

|un|2 dx = 0,

for some r > 0. Then un → 0 in Ls(R3) for all s ∈ (2, 2∗α).
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3. Limit problem and proof of Theorem 1.2

In this section, through discussing the corresponding limit problem for (1.1), we
will obtain the proof of Theorem 1.2. To this aim, we define two new functionals
on Hα(R3) as follows:

I∞(u) =
1
2

∫
R3

[
a|(−∆)α/2u|2 + V∞u

2
]

dx

+
b

4

(∫
R3
|(−∆)α/2u|2 dx

)2

−
∫

R3
F (u) dx,

(3.1)

J∞(u) = αa‖(−∆)α/2u‖22 + 2αV∞‖u‖22 + αb‖(−∆)α/2u‖42

− 1
2

∫
R3

[(4α− 3)f(u)u+ 6F (u)] dx.
(3.2)

Set

M∞ := {u ∈ Hα(R3)\{0} : J∞(u) = 0},
m0 := inf

u∈M
I(u), m∞ := inf

u∈M∞
I∞(u).

Lemma 3.1. Assume that (A3) and (A12) hold and α ∈ (3/4, 1). Then

(4α− 3)(1− t4α)
8α

f(w)w − 4α− 3 + 3t4α

4α
F (w) + t3F (t

4α−3
2 w) ≥ 0, (3.3)

for all t ≥ 0 and w ∈ R.

Proof. It is clear that (3.3) holds for w = 0. For w 6= 0, let

h(t) =
4α− 3

8α
(1− t4α)f(w)w− 4α− 3 + 3t4α

4α
F (w) + t3F (t

4α−3
2 w), t ≥ 0. (3.4)

Then from (A12), one has

h′(t) =
t4α−1w2

2

[f(t
4α−3

2 w)(t
4α−3

2 w) + 6
4α−3F (t

4α−3
2 w)

(t
4α−3

2 w)2

−
f(w)w + 6

4α−3F (w)
w2

]
=

{
≥ 0, t ≥ 1,
≤ 0, 0 < t < 1.

(3.5)

From this and the continuity of h it follows that h(t) ≥ h(1) = 0 for t ≥ 0. This
implies (3.3) holds. �

Lemma 3.2. Assume that (A1), (A3), (A4), (A10), (A12) hold. Then

I(u) ≥ I(ut) +
1− t4α

4α
J(u) +

a(1− θ)(1− t2α)2

4
‖(−∆)α/2u‖22, (3.6)

for all u ∈ Hα(R3), t > 0.

Proof. According to the fractional Hardy inequality in [5], we have

‖(−∆)α/2u‖22 ≥
1
π

Γ2
(1 + 2α

2
) ∫

R3

u2

|x|2α
dx. (3.7)
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Note that

I(ut) =
at2α

2
‖(−∆)α/2u‖22 +

t4α

2

∫
R3
V (tx)u2 dx+

bt4α

4
‖(−∆)α/2u‖42

− t3
∫

R3
F
(
t

4α−3
2 u

)
dx.

(3.8)

Thus, in view of (A10), (1.9), (3.3), (3.7) and (3.8), one has

I(u)− I(ut)

=
a(1− t2α)

2
‖(−∆)α/2u‖22 +

1
2

∫
R3

[V (x)− t4αV (tx)]u2 dx

+
b(1− t4α)

4
‖(−∆)α/2u‖42 +

∫
R3

[
t3F (t

4α−3
2 u)− F (u)

]
dx

=
1− t4α

4α

{
α(a+ b‖(−∆)α/2u‖22)‖(−∆)α/2u‖22

+
1
2

∫
R3

[4αV (x) + (∇V (x), x)]u2 dx

− 1
2

∫
R3

[(4α− 3)f(u)u+ 6F (u)] dx
}

+
a(1− t2α)2

4
‖(−∆)α/2u‖22

+
1

8α

∫
R3
{4αt4α[V (x)− V (tx)]− (1− t4α)(∇V (x), x)}u2 dx

+
∫

R3

[ (4α− 3)(1− t4α)
8α

f(u)u− 4α− 3 + 3t4α

4α
F (u) + t3F (t

4α−3
2 u)

]
dx

≥ 1− t4α

4α
J(u) +

a(1− θ)(1− t2α)2

4
‖(−∆)α/2u‖22.

This shows that (3.6) holds. �

From Lemma 3.2, we have the following two corollaries.

Corollary 3.3. Assume that (A3), (A4), (A12) hold. Then

I∞(u) ≥ I∞(ut) +
1− t4α

4α
J∞(u) +

a(1− t2α)2

4
‖(−∆)α/2u‖22, (3.9)

for all u ∈ Hα(R3) and t > 0.

Corollary 3.4. Assume that (A1), (A3), (A4), (A10), (A12) hold. Then for u ∈
M,

I(u) = max
t>0

I(ut). (3.10)

Lemma 3.5. Assume that (A1), (A2), (A10) hold. Then there exist two constants
ω1, ω2 > 0 such that

ω1‖u‖2 ≤ αa‖(−∆)α/2u‖22 +
1
2

∫
R3

[4αV (x) + (∇V (x), x)]u2 dx ≤ ω2‖u‖2, (3.11)

for all u ∈ Hα(R3).

Proof. Using (A2) and Lemma 2.1, in a same way as in [27, Lemma 2.5], we can
prove (3.11) holds. �

Lemma 3.6. Assume that Assumptions (A1)-(A4), (A10)–(A12) hold. Then for
any u ∈ Hα(R3) \ {0}, there exists a unique t(u) > 0 such that ut(u) ∈M.
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Proof. Let u ∈ Hα(R3) \ {0} be fixed and define a function g(t) := I(ut) on (0,∞).
From (3.8), we have that

g′(t) = 0

⇔ αat2α‖(−∆)α/2u‖22 +
t4α

2

∫
R3

[4αV (tx) + (∇V (tx), tx)]u2 dx

+ αbt4α‖(−∆)α/2u‖42 −
t3

2

∫
R3

[(4α− 3)f(t
4α−3

2 u)t
4α−3

2 u+ 6F (t
4α−3

2 u)] dx = 0

⇔ J(ut) = 0
⇔ ut ∈M.

(3.12)
It is easy to verify, using (A1), (A2), (A3), (A4) and (A11), that g(0) = 0, g(t) > 0
for t > 0 small and g(t) < 0 for t large. Therefore maxt∈[0,∞) g(t) is achieved at
t0 = t(u) > 0 so that g′(t0) = 0 and ut0 ∈M.

Next we claim that t(u) is unique for any u ∈ Hα(R3)\{0}. In fact, for any given
u ∈ Hα(R3) \ {0}, let t1, t2 > 0 such that ut1 , ut2 ∈M. Then J(ut1) = J(ut2) = 0.
Jointly with (3.6), we have

I(ut1) ≥ I(ut2) +
t4α1 − t4α2

4αt4α1
J(ut1) +

(1− θ)a(t2α1 − t2α2 )2

4t2α1
‖(−∆)α/2ut1‖22

= I(ut2) +
(1− θ)a(t2α1 − t2α2 )2

4t2α1
‖(−∆)α/2ut1‖22

(3.13)

and

I(ut2) ≥ I(ut1) +
t4α2 − t4α1

4αt4α2
J(ut2) +

a(t2α2 − t2α1 )2

4t2α2
‖(−∆)α/2ut2‖22

= I(ut1) +
(1− θ)a(t2α2 − t2α1 )2

4t2α2
‖(−∆)α/2ut2‖22.

(3.14)

Inequalitites (3.13) and (3.14) imply t1 = t2. Therefore, t(u) > 0 is unique for any
u ∈ Hα(R3) \ {0}. �

Lemma 3.7. Assume that (A1)-(A4), (A10)–(A12) hold. Then

inf
u∈M

I(u) := m0 = inf
u∈Hα(R3)\{0}

max
t>0

I(ut).

Note that Corollary 3.4 and Lemma 3.6 imply the above lemma.

Lemma 3.8. Assume that (A1)-(A4), (A10)–(A12) hold. Then
(i) there exists ρ0 > 0 such that ‖u‖ ≥ ρ0 for all u ∈M;
(ii) m0 = infu∈M I(u) > 0.

Proof. (i) Since J(u) = 0 for all u ∈ M, by (A3), (1.10), (1.11), (3.2), (3.11) and
Lemma 2.1, one has

ω1‖u‖2 ≤ αa‖(−∆)α/2u‖22 +
1
2

∫
R3

[4αV (x) + (∇V (x), x)]u2 dx+ αb‖(−∆)α/2u‖42

=
1
2

∫
R3

[(4α− 3)f(u)u+ 6F (u)] dx

≤ ω1

2
‖u‖2 + C1‖u‖p.
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This implies

‖u‖ ≥ ρ0 :=
( ω1

2C1

)1/(p−2)
, ∀ u ∈M. (3.15)

(ii). By (A2), there exists R > 0 such that V (x) ≥ V∞
2 for |x| ≥ R. From (1.10),

there exists C2 > 0 such that

|F (t)| ≤ 1
4

min
{
aSα

( 3
4πR3

)2α/3

, V∞

}
|t|2 + C2|t|2

∗
α , ∀t ∈ R. (3.16)

For u ∈M, let tu = (aS
2∗α
2
α

12C2
)

3−2α
4α2 ‖(−∆)α/2u‖−

1
α

2 . Using Hölder’s inequality and the
fractional Sobolev inequality, we obtain∫

|tux|<R
u2 dx ≤

(4πR3

3t3u

)2α/3(∫
|tux|<R

u2∗α dx
)2/2∗α

≤
(4πR3

3t3u

)2α/3

S−1
α ‖(−∆)α/2u‖22.

(3.17)

Then from (3.6), (3.8), (3.16), (3.17) and the fractional Sobolev inequality, we have

I(u) ≥ I(utu)

=
at2αu

2
‖(−∆)α/2u‖22 +

t4αu
2

∫
R3
V (tux)u2 dx+

bt4αu
4
‖(−∆)α/2u‖42

− t3u
∫

R3
F (t

4α−3
2

u u) dx

≥ at2αu
4
‖(−∆)α/2u‖22 +

aSα
4

( 3
4πR3

)2α/3

t4αu

∫
|tux|<R

u2 dx

+
V∞t

4α
u

4

∫
|tux|≥R

u2 dx− t3u
∫

R3
F (t

4α−3
2

u u) dx

≥ at2αu
4
‖(−∆)α/2u‖22 +

1
4

min
{
aSα

( 3
4πR3

)2α/3

, V∞

}
t4αu ‖u‖22

− t3u
∫

R3
F (t

4α−3
2

u u) dx

≥ at2αu
4
‖(−∆)α/2u‖22 − C2t

6α
3−2α
u ‖u‖2

∗
α

2∗α

≥ at2αu
4
‖(−∆)α/2u‖22 − C2S

− 2∗α
2

α t
6α

3−2α
u ‖(−∆)α/2u‖2

∗
α

2

=
a

6

(aS 2∗α
2
α

12C2

) 3−2α
2α

, ∀u ∈M.

This shows that m0 = infu∈M I(u) > 0. �

Lemma 3.9. Assume that (A3) and (A4) hold. If un ⇀ ū in Hα(R3), then along
a subsequence of {un},

lim
n→∞

sup
ϕ∈Hα(R3),‖ϕ‖≤1

∣∣ ∫
R3

[f(un)− f(un − ū)− f(ū)]ϕdx
∣∣ = 0. (3.18)

The above lemma was proved in [11, Page 77-80] and a simpler and more direct
proof has been given in [28, Lemma 2.7].
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Lemma 3.10. Assume that (A1), (A3), (A4), (A10) hold. If un ⇀ ū in Hα(R3),
then

I(un) = I(ū) + I(un − ū) +
αb

2
‖(−∆)α/2ū‖22‖(−∆)α/2(un − ū)‖22 + o(1), (3.19)

〈I ′(un), un〉 = 〈I ′(ū), ū〉+ 〈I ′(un − ū), un − ū〉

+ 2αb‖(−∆)α/2ū‖22‖(−∆)α/2(un − ū)‖22 + o(1),
(3.20)

J(un) = J(ū) + J(un − ū) + 2αb‖(−∆)α/2ū‖22‖(−∆)α/2(un − ū)‖22 + o(1). (3.21)

The proof of the above lemma is similar to the one in [27, Lemma 2.10], we omit
it here.

Lemma 3.11. Assume that (A3), (A4), (A11), (A12) hold. Then m∞ is achieved.

Proof. Let t→ 0 in (3.3), then we have

f(w)w − 2F (w) ≥ 0, ∀w ∈ R. (3.22)

We introduce a new functional Φ∞ : Hα(R3)→ R as follows

Φ∞(u) =
a

4
‖(−∆)α/2u‖22 +

4α− 3
8α

∫
R3

[f(u)u− 2F (u)] dx. (3.23)

For any u ∈ M∞, we have Φ∞(u) = I∞(u) ≥ m∞. Let {un} ⊂ M∞ be such that
I∞(un)→ m∞. Since J∞(un) = 0, then it follows from (3.9) with t→ 0 that

m∞ + o(1) = I∞(un) ≥ a

4
‖(−∆)α/2un‖22. (3.24)

This shows that {‖(−∆)α/2un‖2} is bounded. Next, we prove that {‖un‖} is also
bounded. By (1.10), (3.2) and Sobolev embedding theorem, it holds

min{αa, 2V∞}‖un‖2

≤
∫

R3
(αa|(−∆)α/2un|2 + 2V∞u2

n) dx+ αb
(∫

R3
|(−∆)α/2un|2 dx

)2

=
1
2

∫
R3

[(4α− 3)f(un)un + 6F (un)] dx

≤ 1
2

min{αa, 2V∞}‖un‖2 + C3‖un‖
2∗α
2∗α

≤ 1
2

min{αa, 2V∞}‖un‖2 + C3S
− 2∗α

2
α ‖(−∆)α/2un‖

2∗α
2 .

(3.25)

This shows that {un} is bounded in Hα(R3). By Lemma 2.2, one easily prove that

δ := lim sup
n→∞

sup
y∈R3

∫
B1(y)

|un|2 dx > 0.

Going to a subsequence, if necessary, we may assume the existence of {yn} ⊂ R3

such that ∫
B1(yn)

|un|2 dx >
δ

2
.

Let ũn(x) = un(x+ yn). Then ‖ũn‖ = ‖un‖,∫
B1(0)

|ũn|2 dx >
δ

2
, (3.26)

I∞(ũn)→ m∞, J∞(ũn) = 0. (3.27)
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Then, there exists ū ∈ Hα(R3) \ {0} such that

ũn ⇀ ū, in Hα(R3);

ũn → ū, in Lsloc(R3), ∀ s ∈ [1, 2∗α);

ũn → ū, a.e. on R3.

(3.28)

Let ûn = ũn − ū. Then (3.28) and Lemma 3.10 yield

Φ∞(ũn) = Φ∞(ū) + Φ∞(ûn) + o(1), (3.29)

J∞(ũn) = J∞(ū) + J∞(ûn) + 2αb‖(−∆)α/2ū‖22‖(−∆)α/2ûn‖22 + o(1). (3.30)

From (3.1), (3.2), (3.27), (3.29) and (3.30), one has

Φ∞(ûn) = m∞ − Φ∞(ū) + o(1), J∞(ûn) ≤ −J∞(ū) + o(1). (3.31)

If there exists a subsequence {ûni} of {ûn} such that ûni = 0, then going to this
subsequence, we have

I∞(ū) = m∞, J∞(ū) = 0, (3.32)
which implies that Lemma 3.11 holds. Next, we assume that ûn 6= 0. In view of
Lemma 3.6, there exists tn > 0 such that (ûn)tn ∈M∞. We claim that J∞(ū) ≤ 0.
Otherwise, if J∞(ū) > 0, then (3.31) implies J∞(ûn) < 0 for large n. From (3.1),
(3.2), (3.6), (3.23) and (3.31), we obtain

m∞ − Φ∞(ū) + o(1) = Φ∞(ûn)

=
a

4
‖(−∆)α/2u‖22 +

4α− 3
8α

∫
R3

[f(u)u− 2F (u)] dx

= I∞(ûn)− 1
4α
J∞(ûn)

≥ I∞((ûn)tn)− t4αn
4α

J∞(ûn)

≥ m∞ − t4αn
4α

J∞(ûn) ≥ m∞,

which implies J∞(ū) ≤ 0 due to Φ∞(ū) > 0. Since ū 6= 0, in view of Lemma 3.6,
there exists t̄ > 0 such that ūt̄ ∈ M∞. From (3.1), (3.2), (3.6), (3.22), the weak
semicontinuity of norm and Fatou’s lemma, one has

m∞ = lim
n→∞

[
I∞(ũn)− 1

4α
J∞(ũn)

]
= lim
n→∞

{a
4
‖(−∆)α/2ũn‖22 +

4α− 3
8α

∫
R3

[f(ũn)ũn − 2F (ũn)] dx
}

≥ a

4
‖(−∆)α/2ū‖22 +

1
8α

∫
R3

[(4α− 3)f(ū)ū− 2F (ū)] dx

= I∞(ū)− 1
4α
J∞(ū)

≥ I(ūt̄)−
t̄4α

4α
J∞(ū)

≥ m∞ − t̄4α

4α
J∞(ū) ≥ m∞,

which implies
J∞(ū) = 0, I∞(ū) = m∞.
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�

Lemma 3.12. Assume that (A1)–(A4), (A10)–(A12) hold. If ū ∈ M and I(ū) =
m0, then ū is a critical point of I.

Proof. Assume that I ′(ū) 6= 0. Then there exist δ > 0 and % > 0 such that

‖u− ū‖ ≤ 3δ ⇒ ‖I ′(u)‖ ≥ %. (3.33)

Firstly, in the same way as [27, Lemma 2.13], we can prove that

lim
t→1
‖ūt − ū‖ = 0. (3.34)

Thus, there exists δ1 > 0 such that

|tα − 1| < δ1 ⇒ ‖ūt − ū‖ < δ. (3.35)

In view of Lemma 3.2, one has

I(ūt) ≤ I(ū)− a(1− θ)(1− t2α)2

4
‖(−∆)α/2ū‖22

= m0 −
a(1− θ)(1− t2α)2

4
‖(−∆)α/2ū‖22, ∀t > 0.

(3.36)

It follows from (3.12) that there exist T1 ∈ (0, 1) and T2 ∈ (1,∞) such that

J(ūT1) > 0, J(ūT2) < 0.

Let

ε := min
{a(1− θ)(1− T 2α

1 )2‖(−∆)α/2ū‖22
24

,

a(1− θ)(1− T 2α
2 )2‖(−∆)α/2ū‖22
24

, 1, %δ/8
}
.

The rest of the proof is similar to the proof of [29, Lemma 2.13]. �

Now we can draw a conclusion on the existence of a ground state solution of
Nehari-Pohozaev type to the “limit problem” of Problem (1.1)(

a+ b

∫
R3
|(−∆)α/2u|2 dx

)
(−∆)αu+ V∞u = f(u), x ∈ R3;

u ∈ Hα(R3).
(3.37)

Theorem 3.13. Assume that f satisfies (A3), (A4), (A11), (A12) hold. Then
Problem (3.37) has a solution ū ∈ Hα(R3)\{0} such that I∞(ū) = infM∞ I∞ > 0.

Corollary 3.14. Let f̃(t) = 0 for t < 0 and f̃(t) = f(t) for t ≥ 0, use f̃ to take
place of f in (3.37) and assume (A3), (A4), (A11), (A12) hold, then Problem (3.37)
has a positive solution ū ∈ Hα(R3)\{0} such that I∞(ū) = infM∞ I∞ > 0.

Lemma 3.15. Assume that (A1)–(A4), (A10)–(A12) hold. Then m0 < m∞.

Proof. In view of Theorem 3.13 and Corollary 3.14, I∞ has a minimizer u∞ > 0
on M∞, i.e.

u∞ ∈M∞ and m∞ = I∞(u∞).
In view of Lemma 3.6, there exists t0 > 0 such that (u∞)t0 ∈ M. Thus, it follows
from (A2), (1.9), (3.1), (3.9) that

m∞ = I∞(u∞) ≥ I∞((u∞)t0) > I((u∞)t0) ≥ m0.

�
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Lemma 3.16. Assume that (A1)–(A4), (A10)–(A12) hold. Then m0 is achieved.

The proof of this lemma is analogous to the one of [27, Lemma 3.2], so we omit
it here.

Proof of Theorem 1.2. It is a direct corollary of Lemmas 3.8, 3.12 and 3.16. �

4. Proof of Theorem 1.3

To obtain the boundedness of the Palais-Smale sequence, we adopt a monotonic-
ity technique due to Jeanjean.

Proposition 4.1 ([16]). Let X be a Banach space and let Λ ⊂ R+ be an interval.
We consider a family {Φλ} of C1-functionals on X of the form

Φλ(u) = A(u)− λB(u), ∀λ ∈ J,

where B(u) ≥ 0 for all u ∈ X, and such that either A(u) → +∞ or B(u) → +∞,
as ‖u‖ → ∞. We assume that there are two points v1, v2 in X such that

cλ := inf
γ∈Γ

max
t∈[0,1]

Φλ(γ(t)) > max{Φλ(v1),Φλ(v2)}, (4.1)

where
Γ = {γ ∈ C([0, 1], X) : γ(0) = v1, γ(1) = v2}.

Then, for almost every λ ∈ J , there is a bounded (PS)cλ sequence for Φλ; that is,
there exists a sequence such that

(i) {un(λ)} is bounded in X;
(ii) Φλ(un(λ))→ cλ;

(iii) Φ′λ(un(λ))→ 0 in X∗, where X∗ is the dual of X.

To apply Proposition 4.1, we introduce two families of perturbed functionals

Iλ(u) =
1
2

∫
R3

(a|(−∆)α/2u|2 + V (x)u2) dx

+
b

4

(∫
R3
|(−∆)α/2u|2 dx

)2

− λ
∫

R3
F (u) dx

(4.2)

and

I∞λ (u) =
1
2

∫
R3

(a|(−∆)α/2u|2 + V∞u
2) dx+

b

4

(∫
R3
|(−∆)α/2u|2 dx

)2

− λ
∫

R3
F (u) dx,

(4.3)

for λ ∈ [1/2, 1].

Lemma 4.2 ([14]). Assume that (A1)–(A4) amd (A9) hold. Let u be a critical
point of Iλ in Hα(R3), then we have the following Pohozaev type identity

Pλ(u) :=
(3− 2α)a

2
‖(−∆)α/2u‖22 +

1
2

∫
R3

[3V (x) + (∇V (x), x)]u2 dx

+
(3− 2α)b

2

(∫
R3
|(−∆)α/2u|2 dx

)2

− 3λ
∫

R3
F (u) dx = 0.

(4.4)

Note that Pλ(u) = d
dtIλ(u(x/t))|t=1.
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We set Jλ(u) := 4α−3
2 〈I

′
λ(u), u〉+ Pλ(u), then

Jλ(u) = αa‖(−∆)α/2u‖22 +
1
2

∫
R3

[4αV (x) + (∇V (x), x)]u2 dx

+ αb‖(−∆)α/2u‖42 −
λ

2

∫
R3

[(4α− 3)f(u)u+ 6F (u)] dx,
(4.5)

for λ ∈ [1/2, 1]. Correspondingly, we let

J∞λ (u) = αa‖(−∆)α/2u‖22 + 2αV∞‖u‖22 + αb‖(−∆)α/2u‖42

− λ

2

∫
R3

[(4α− 3)f(u)u+ 6F (u)] dx
(4.6)

for λ ∈ [1/2, 1]. Set

M∞λ := {u ∈ Hα(R3) \ {0} : J∞λ (u) = 0}, m∞λ := inf
u∈M∞λ

I∞λ (u).

By Corollary 3.3, we have the following lemma.

Lemma 4.3. Assume that (A3), (A4), (A12) hold. Then

I∞λ (u) ≥ I∞λ (ut) +
1− t4α

4α
J∞λ (u) +

a(1− t2α)2

4
‖(−∆)α/2u‖22, (4.7)

for all u ∈ Hα(R3), t > 0, λ ≥ 0.

In view of Theorem 3.13 and Corollary 3.14, I∞1 has a minimizer u∞1 > 0 on
M∞1 , i.e.,

u∞1 ∈M∞1 , (I∞1 )′(u∞1 ) = 0, m∞1 = I∞1 (u∞1 ). (4.8)
Under the assumptions of Theorem 1.2, we first show that Iλ with λ ∈ [ 1

2 , 1] has
the mountain pass geometry.

Lemma 4.4. Assume that (A1)–(A4), (A9), (A11), (A12) hold. Then
(i) there exists T0 > 0 independent of λ such that Iλ((u∞1 )T0) < 0 for all

λ ∈ [1/2, 1];
(ii) there exists κ0 > 0 independent of λ such that for all λ ∈ [ 1

2 , 1],

cλ := inf
γ∈Γ

max
ς∈[0,1]

Iλ(γ(ς)) > max{Iλ(0), Iλ((u∞1 )T0)}

where

Γ = {γ ∈ C([0, 1], Hα(R3)) : γ(0) = 0, γ(1) = (u∞1 )T0};
(iii) cλ and m∞λ are non-increasing on λ ∈ [ 1

2 , 1].

Proof. (i) For fixed u ∈ Hα(R3) \ {0} and any λ ∈ [ 1
2 , 1], one has

Iλ(u) ≤ I 1
2
(u) =

1
2

∫
R3

(a|(−∆)α/2u|2 + V (x)u2) dx+
b

4

(∫
R3
|(−∆)α/2u|2 dx

)2

− 1
2

∫
R3
F (u) dx.

It is easy to verify that

I 1
2
(ut) =

at2α

2
‖(−∆)α/2u‖22 +

t4α

2

∫
R3
V (tx)u2 dx+

bt4α

4
‖(−∆)α/2u‖42

− 1
2
t3
∫

R3
F (t

4α−3
2 u) dx.
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Note that F (t
4α−3

2 u)/|t 4α−3
2 u|2 → +∞. Then by Fatou’s lemma, I 1

2
(ut) → −∞

as t → +∞. Then, combining Lemma 3.6, there exists T0 > 0 sufficiently large,
independent of λ ∈ [ 1

2 , 1], such that Iλ((u∞1 )T0) < 0.
(ii) In view of (4.2), (1.10) and the Sobolev embedding, there exist σ1, σ2 > 0

such that

Iλ(u) ≥ 1
2

∫
R3

(a|(−∆)α/2u|2 + V (x)u2) dx+
b

4

(∫
R3
|(−∆)α/2u|2 dx

)2

− λ
∫

R3
(ε|u|2 + Cε|u|p) dx

≥ σ1‖u‖2 − σ2‖u‖p,

Recalling that p > 2, then there exist ρ1, κ0 > 0 independent of λ, such that
for ‖u‖ = ρ1, Iλ(u) ≥ κ0. For any λ ∈ [ 1

2 , 1] and γ ∈ Γ, it is easily seen that
‖γ(1)‖ > ρ1. By continuity, there exists ς̄ ∈ (0, 1) such that ‖γ(ς̄)‖ = ρ1, which
implies that

cλ ≥ inf
γ∈Γ

Iλ(γ(ς̄)) ≥ κ0 > max {Iλ(0), Iλ((u∞1 )T0)} , ∀λ ∈ [
1
2
, 1].

(iii) For any u ∈ Hα(R3)\{0}, since cλ ≤ maxt>0 Iλ(ut) ≤ maxt>0 I 1
2
(ut) for all

λ ∈ [ 1
2 , 1], we obtain the conclusion. �

Lemma 4.5. Assume that (A1)–(A4), (A9), (A11), (A12) hold. Then there exists
λ1 ∈ [ 1

2 , 1) such that cλ < m∞λ for λ ∈ [λ1, 1].

This lemma can be proved similarly as in [27, Lemma 4.5], we omit the proof
here. In what follows we use profile decomposition to obtain the compactness for
any bounded (PS) sequence of the perturbed functional, which is crucial in our
proof.

Lemma 4.6. Assume that (A1)–(A4), (A9), (A11) hold. Let {un} be a bounded
(PS)c sequence for Iλ with λ ∈ [ 1

2 , 1]. Then there exist a subsequence of {un}, still
denoted by {un}, and u0 ∈ Hα(R3) such that B2 := limn→∞ ‖(−∆)α/2u‖22 exist,
un ⇀ u0 in Hα(R3) and I ′λ(u0) = 0, where

Iλ(u) =
a+ bB2

2

∫
R3
|(−∆)α/2u|2 dx+

1
2

∫
R3
V (x)u2 dx− λ

∫
R3
F (u) dx, (4.9)

and either
(i) un → u0 in Hα(R3); or
(ii) there exist an integer l ∈ N and w1, . . . , wl ∈ Hα(R3) \ {0} such that

(I∞λ )′(wk) = 0 for 1 ≤ k ≤ l, and

c+
bB4

4
= Iλ(u0) +

l∑
k=1

I∞λ (wk);B2 = ‖(−∆)α/2u0‖22 +
l∑

k=1

‖(−∆)α/2wk‖22,

where

I∞λ (u) =
a+ bB2

2

∫
R3
|(−∆)α/2u|2 dx+

V∞
2

∫
R3
u2 dx− λ

∫
R3
F (u) dx. (4.10)

Since (3.18) and (3.19) hold, we can prove the above lemma as in [19, Lemma
3.4]. We omit it here.
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Lemma 4.7. Assume that (A1)–(A4), (A9), (A11) hold. Then for almost every
λ ∈ [λ1, 1], there exists uλ ∈ Hα(R3) \ {0} such that

I ′λ(uλ) = 0, Iλ(uλ) = cλ. (4.11)

Proof. Under Assumptions (A3), (A4), (A11), Lemma 4.4 implies that Iλ(u) sat-
isfies the assumptions of Proposition 4.1 with X = Hα(R3) and Φλ = Iλ. So for
almost every λ ∈ [1/2, 1], there exists a bounded sequence {un(λ)} ⊂ Hα(R3) (for
simplicity, we denote the sequence by {un} instead of {un(λ)} such that

Iλ(un)→ cλ > 0, ‖I ′λ(un)‖ → 0. (4.12)

By Lemma 4.6, there exist a subsequence of {un}, still denoted by {un}, and
uλ ∈ Hα(R3) such that B2

λ := limn→∞ ‖(−∆)α/2un‖22 exists, un ⇀ uλ in Hα(R3)
and (Îλ)′(uλ) = 0, and either (i) or (ii) occurs, where

Îλ(u) =
a+ bB2

λ

2

∫
R3
|(−∆)α/2u|2 dx+

1
2

∫
R3
V (x)u2 dx− λ

∫
R3
F (u) dx. (4.13)

If (ii) occurs, i.e. there exists l ∈ N and w1, . . . , wl ∈ Hα(R3) \ {0} such that
(Î∞λ )′(wk) = 0 for 1 ≤ k ≤ l,

cλ +
bB4

λ

4
= Îλ(uλ) +

l∑
k=1

Î∞λ (wk), (4.14)

B2
λ = ‖(−∆)α/2uλ‖22 +

l∑
k=1

‖(−∆)α/2wk‖22, (4.15)

where

Î∞λ (u) =
a+ bB2

λ

2

∫
R3
|(−∆)α/2u|2 dx+

1
2

∫
R3
V∞u

2 dx− λ
∫

R3
F (u) dx. (4.16)

Since (Îλ)′(uλ) = 0, then we have the Pohozaev identity of the functional Îλ

P̃λ(uλ) :=
(3− 2α)(a+ bB2

λ)
2

‖(−∆)α/2uλ‖22

+
1
2

∫
R3

[3V (x) + (∇V (x), x)]u2
λ dx− 3λ

∫
R3
F (uλ) dx = 0.

(4.17)

From (A9) and fractional Hardy inequality,

a‖(−∆)α/2uλ‖22 ≥
aΓ2( 1+2α

2 )
π

∫
R3

u2
λ

|x|2α
dx ≥ 1

2α

∫
R3

(∇V (x), x)u2
λ dx. (4.18)

From (3.22), (4.13), (4.17) and (4.18) it follows that

Îλ(uλ) = Îλ(uλ)− 1
4α
[4α− 3

2
〈Î ′λ(uλ), uλ〉+ P̃λ(uλ)

]
=
a+ bB2

λ

4
‖(−∆)α/2uλ‖22 −

1
8α

∫
R3

(∇V (x), x)u2
λ dx

+
λ(4α− 3)

8α

∫
R3

[f(uλ)uλ − 2F (uλ)] dx

≥ bB2
λ

4
‖(−∆)α/2uλ‖22.

(4.19)
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Since (Î∞λ )′(wk) = 0, we have the Pohozaev identity of the functional Î∞λ ,

P̃∞λ (uλ) :=
(3− 2α)

2
(a+ bB2

λ)‖(−∆)α/2uλ‖22 +
3
2

∫
R3
V∞u

2
λ dx

− 3λ
∫

R3
F (uλ) dx = 0.

(4.20)

Thus, from (4.6), (4.15), (4.16) and (4.20), we have

0 =
4α− 3

2
〈(Î∞λ )′(wk), wk〉+ P̃∞λ (wk)

= α(a+ bB2
λ)‖(−∆)α/2wk‖22 + 2αV∞‖wk‖22

− λ

2

∫
R3

[(4α− 3)f(wk)wk + 6F (wk)] dx

≥ J∞λ (wk).

(4.21)

Since wk ∈ Hα(R3) \ {0}, in view of Lemma 3.6, there exists tk > 0 such that
(wk)tk ∈M∞λ . From (4.3), (4.6), (4.7), (4.16) and (4.21), one has

Î∞λ (wk)

= Î∞λ (wk)− 1
4α
[4α− 3

2
〈(Î∞λ )′(wk), wk〉+ P̃∞λ (wk)

]
=
a+ bB2

λ

4
‖(−∆)α/2wk‖22 +

λ(4α− 3)
8α

∫
R3

[f(wk)wk − 2F (wk)] dx

=
bB2

λ

4
‖(−∆)α/2wk‖22 + I∞λ (wk)− 1

4α
J∞λ (wk)

≥ bB2
λ

4
‖(−∆)α/2wk‖22 + I∞λ ((wk)tk)− t4αk

4α
J∞λ (wk)

≥ bB2
λ

4
‖(−∆)α/2wk‖22 +m∞λ .

(4.22)

It follows from (4.14), (4.15), (4.19) and (4.22) that

cλ +
bB4

λ

4
= Îλ(uλ) +

l∑
k=1

Î∞λ (wk)

≥ lm∞λ +
bB2

λ

4
[
‖(−∆)α/2uλ‖22 +

l∑
k=1

‖(−∆)α/2wk‖22
]

≥ m∞λ +
bB4

λ

4
, ∀λ ∈ [λ1, 1],

which contradicts Lemma 4.5. Thus un → uλ in Hα(R3) and Iλ(uλ) = cλ. �

Proof of Theorem 1.3. In view of Lemma 4.7, there exist two sequences of {λn} ⊂
[λ1, 1] and {uλn} ⊂ Hα(R3), denoted by {un}, such that

λn → 1, I ′λn(un) = 0, Iλn(un) = cλn . (4.23)
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From (A9), (3.7), (3.22), (4.2), (4.5) and (4.23), one has

c1/2 ≥ cλn = Iλn(un)− 1
4α
Jλn(un)

=
a

4
‖(−∆)α/2un‖22 −

1
8α

∫
R3

(∇V (x), x)u2
n dx

+
λn(4α− 3)

8α

∫
R3

[f(un)un − 2F (un)] dx

≥ (1− θ)a
4

‖(−∆)α/2un‖22.

(4.24)

This shows that {‖(−∆)α/2un‖2} is bounded. Next, we show that {un} is bounded
in Hα(R3). Combining Lemma 2.1, (1.10), (4.2), (4.23), (4.24) and the fractional
Sobolev embedding theorem, we have

ω′1‖un‖2 ≤
∫

R3

[
a|(−∆)α/2un|2 + V (x)u2

n

]
dx

≤ 2cλn + 2λn
∫

R3
F (un) dx

≤ 2c1/2 +
ω′1
4
‖un‖2 + C5‖un‖

2∗α
2∗α

≤ 2c1/2 +
ω′1
4
‖un‖2 + C5S

− 2∗α
2

α ‖(−∆)α/2un‖
2∗α
2 .

where ω′1 > 0 is a constant. This shows that {un} is bounded in Hα(R3). The rest
of the proof is the same as the one in [14], so we omit it. �
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