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SIGN-CHANGING SOLUTIONS FOR ELLIPTIC EQUATIONS
WITH FAST INCREASING WEIGHT AND CONCAVE-CONVEX
NONLINEARITIES

XIAOTAO QIAN, JIANQING CHEN

Communicated by Paul H. Rabinowitz

ABSTRACT. In this article, we study the problem
—div(K (z)Vu) = a(z) K (x)|u|?2u + b(ac)K(ac)|u|2* 24, zeRV,

where 2* = 2N/(N —2), N > 3,1 < q < 2, K(z) = exp(|z|*/4) with a > 2.
Under some assumptions on the potentials a(z) and b(z), we obtain a pair
of sign-changing solutions of the problem via variational methods and certain
estimates.

1. INTRODUCTION

In this article, we consider the existence of sign-changing solutions for the prob-

lem
— div(K (2)Vu) = a(x) K (2)|u|7 %0 + b(z) K (z)[u|* ~2u, zeRY, (1.1)
where 2* =2N/(N —2), N >3,1< ¢ <2, K(z) = exp(|z|*/4) with a > 2.

Our motivations of studying the equation (1.1]) relies on the fact that, for a =
qg=2,a(x) = (N —2)/(N+2) and b(z) = 1, equation (1.1)) occurs when one tries
to find self-similar solutions of the form

w(t,z) = t%u(xt_lm)
for the evolution equation
wy — Aw = [wY N "Dw  on (0,00) x RV,
See [8, 1] for a detailed description.

Equation (1.1)) with ¢ = 2, a(z) = A and b(z) = 1, has been studied in [12] [13] T4}

15]. We also refer to the paper of Catrina et al. [3] where the authors considered the

case ¢ = 2, a(z) = A|z|*"2 and b(x) = 1, and showed that the value of « affects the
critical dimension of the problem. Later on, Furtado et al. [9] studied the equation

—div (K (z)Vu) = MK (2)|2)P|u|%u + K (2)|u)® ~2u, zeRY, (1.2)

where 8 = (o — 2) g*:gg In that paper, by using Mountain Pass Theorem, the

authors obtained a positive solution if 2 < ¢ < 2*. Furthermore, they applied
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Linking Theorem to show that problem ((1.2)) when ¢ = 2 has a nontrivial solution
for any A > A1, where A\ is the first positive eigenvalue of the linear problem

—div (K(2)Vu) = AK (z)[z|* %y, z€RM.

With the help of the result of [3], namely there is no positive solution of for
q = 2 and A\ > )\q, then they can conclude that this nontrivial solution indeed is
a sign-changing solution. Recently, Furtado et al. [10] obtained two nonnegative
nontrivial solutions for when the potential a(x) has small norm in a suitable
weighted Lebesgue space.

On the other hand, for similar problems in bounded domain, Ambrosetti et al.
[2] studied the semilinear problem

—Au= "t +uP™t inQ, ue Hy(Q)
where Q ¢ RY is bounded, N >3, A > 0,1 < ¢ < 2 < p < 2*. They proved the
existence of at least two positive solutions if A € (0, \g) for some positive Ag. We
also refer the interested readers to [Il [} [6 20] where equations with concave and
convex nonlinearity on bounded domains were considered.

Motivated by the works we described above, in present paper, we try to seek
more solutions of . Special concern is the existence of sign-changing solutions
of . This kind of problem is variational in nature. Indeed, let us denote by H
the Hilbert space obtained as the closure of C°(R”") with respect to the norm

= ([, K@) Vudr)

We also define the weighted Lebesgue spaces
L3 (RN) = {u measurable in RV : ||u|$ = / K(z)|u*dz < oo}.
RN

It is proven in [9] that the embedding H — L%, (R™) is continuous for 2 < r < 2,
and compact for 2 < r < 2*. For any r > 1, we denote by r’ its conjugated
exponent, that is, the unique 7’ > 1 so that 1/r+1/r’ = 1. Throughout this paper,
we always use the following assumptions:
(A1) a(z) > 0 and a(x) € L7 (RY) N C(RY) for some (2/q) < o, < (2*/q);
(A2) b(x) > 0 and b(x) € L=(RN);
(A3) the set ) := {x € RV : b(x) > 0} has an interior point;
(A4) there are 7o € RY and 6 > 0 such that Bs(zg) C Q;‘ and
b(2)]0e — b(z) < M|z — 20!,
for a.e. x € Bs(xg), with M >0 and v > N.
On H, we define the functional
1 1 1 .
I(u) = 7/ K ()| Vul2ds — f/ K(@)a@)utde — ~ [ K(2)b(@)ul? d.
2 RN q JrN 2% RN
By (Al), (A2) and the above embedding, we conclude that I is well defined and
I € CY(H,R). Now, it is well known that there exists a one to one correspondence

between the critical points and the weak solutions of (1.1)). Here, we say u € H is
a weak solution of (1.1)), if for any ¢ € H, there holds

/RN K(z)[VuVe — a(z)|u|?*u¢ — b(x)|u|2*_2u¢] dx = 0.
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Our main result is stated below.

Theorem 1.1. Assume that (A1)-(A4). If N > 7 and (3N —2)/(2N —4) < ¢ < 2,
then there exists Mo > 0, such that (1.1) has at least two nonnegative nontrivial
solutions and a pair of sign-changing solutions in H for |la(x)|l,, < Mz and o >
(N —2)/2.

Since Furtado et al. [10] showed that has at least two nonnegative nontrivial
solutions in H for [|a|,, < M; with some M; > 0, we will focus our attentions to
find out sign-changing solutions of ([I.1]). To this end, there are some difficulties.
Firstly, since the embedding H — L2 (RY) is not compact, the functional I sat-
isfies (PS) condition only locally. We prove that the energy level belongs to the
range where (PS) condition hold by choosing a suitable test function as in [3] [10].
Secondly, as pointed in [5], the Mountain Pass Theorem which was used in [9] [10]
is usually unable to prove the existence of sign-changing solutions. Moreover, the
Linking Theorem used in [9] can not be applied here becasue to 1 < ¢ < 2. Instead
of the two above Theorems, we shall employ the separation argument for Nehari-
type set of the problem, which has been used in [5 17, [I8]. Thirdly, the potentials
a(z) and b(z) bring much difficulty to the above separation argument. To overcome
this difficulty, inspired by [16], we impose conditions (A1) and (A2) on the poten-
tials a(z) and b(x) respectively, which are stronger than the corresponding ones in
[10].

This article is organized as follows. In the next section, we give some notation
and preliminaries. Then we prove Theorem (1.1

2. PRELIMINARIES

Throughout this paper, E~! denotes the dual space of a Banach space E. We
denote by | - |;, the norm of the standard Sobolev space L*(RY). DL2(RY) is the
closure of C§°(RY) under the norm of [o [V - [*dz. B, (z) is a ball centered at
x with radius r. — denotes strong convergence. — denotes weak convergence.
d,d; will denote various positive constants whose exact values are not important.
Finally, we write [u, ||a]ls, and |b|s instead of [ox u(x)dz, ||la(z),, and |b(z)|s,
respectively.

For each r € [2,2*], the existence of the embedding H — L% (RY) enables us to
define

Sr:inf{/K(m)\VuP:ueH,/K(w)|u|T:1}. (2.1)
In particular, when r = 2*, we only write S := Sy«. It is worth pointing out that
this constant is equal to the best constant of the embedding DV2(RV) «— L2 (RY),
see [3].

By the condition (A4), we can choose i > 0 small enough such that By, (z¢) C
Bs(z0) with zg € int(9;7) and 6 > 0. Define a cutoff function t(z) satisfying
Y(z) =1 in By(xo), ¢¥(z) = 0 outside Ba,(xo) and 0 < ¢ < 1. Inspired by [3} [10],
we consider the function

1 (N-2)/2
- e )
ue(w) = K@) 0@ (=5

)

and set

1 )(N—?)/2 ue ()

Uew) = K o)V (e
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Without loss of generality, we assume that o = 0 from now on. To prove Theorem

we first give the next three Lemmas which will be useful later.

Lemma 2.1. Fore > 0 small,

/u*;:O(l) if0<p<

N -2
— N
/ugZO(E%_¥“|IDE|) Zfﬂzm,

— N
H:O %_N22H ) 2*
/ug (e ) sz72<u<

Proof. Note that

dx
ub < d/ —
/ Bayoy (€ + |z[2) N 72H/2

2n/\/€ 5N/2pr1dp
< dl/ e(N=2)n/2(1 4 |p|2)(N-2)n/2

Since N —1— (N —2)u > —1, when 0 < pu < N/(N — 2), we have

1
ult < dg/ ———— =0(1).
/ Ban(o) \x|(N 2

Thus, (2.2)) holds. The proofs of (2.3) and (2.4]) are similar.

Lemma 2.2. For e > 0 small, we have

Jut
b = €
f ot =i

= 0Ny fo<p<

N -2’

- N

— O(s3 -] =
(27 ¥ nel) i p= 5,
:O ﬂiN_Qiu' y 2*
(277771 sz 5 <H<

Proof. According to [3],

[|ue

with

1 .
AO_/W’ lf]\[>27

from which it follows that
_ ( N2y +0(1 )u/2
— de(N- 2)“/4+O(57% #-0),

This and (2.2) imply that for 0 < g < N/(N — 2) and ¢ small enough

/ v = fuiz
o(1)

T ge-(v- 2w/t O (37— 1)

2*_/K Nue* = N24540(1), if N>2

— O<E(N—2),u,/4).

(2.2)
(2.3)

(2.4)
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Thus, (2.5) follows. Similar arguments arrive at (2.6]) and (2.7). O

Lemma 2.3. Let wy be a nonnegative nontrivial solution of (L.1). For 1 < q < 2
and € > 0 small, then we have

N— 2)q

/K UQ>dsf4‘I+O( ) ifN 2<q<2, (2.8)
/K 2wy p? ! = 0( T, (2.9)

/K 2)ws |9 . = 07T, (2.10)

/K 2)wn |12 wyv. = O(e77), (2.11)

/K 2)wi [P . = 07T, (2.12)

/K 2)|wr[* 2wy, = 0 (7T, (2.13)

/K 2)w |02 Tt = 0(e7T). (2.14)

Proof. We only prove part(i). The rest parts of the Lemma can be proved by a
similar argument. Using (A1), one has

[ K@)l

— / K(x)a(x)K(x)*qﬂw(x)
Bay0) (e [z[2)aN=2)/2

Pi(x)
>d
- 1/3 (0) (€ + |z[?)aN=2)/2

2n

1 Yi(z) — 1
—d +/
(o Ao * 0 T )

N _ (N—2)g 1 1/)(’( )
=d gzz\; p) / _|_/
1( By, e(0) (L [22)IN=272 0 ) (e + [af?) 1V = 2)/2)

2n/ﬁ(
(1)

whenever ¢ > N/(N — 2). Therefore,

/K ‘q fK ‘u€|q

_d252

q

N _ (N—

doc ¥~ 552 1 0(1)
T dge=(N=2)0/4 4 O (e (D)
:dng 4 Q+O( W=2)e 2){1).
Hence, we obtain ([2.8)) holds. O

3. EXISTENCE OF SIGN-CHANGING SOLUTIONS

Following Tarantello [I8] and Chen [5], we first decompose the Nehari-type set
of the considered problem, then consider minimization problems of I on its proper
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subset. Set
A={ueH:(I'(u),u) =0}.
Consider the following three subsets of A:

—{ueh: (2 q)ul? - —q/K )lufz =0},

A = (ued: 2= qul® - 2" - 9) [ K@ba)lu? >0}
A= (ued:@-gul’ - 2" - 9) [ K@ba)lu? <0}
Furthermore, if we denote
— 2—gq 2" =2\ (N_Ngoq/2, 5
e (22 () g,
2 —¢ 2 —q)" ]

we indeed get that for [la|,, < M the following minimization problems:

co = ulenAf+ I(u) and ¢ = ulenAfi I(u)

attain their infimum at ug and u;, respectively. Additionally, ug and u; are non-
negative nontrivial solutions of (1.1). Next, we start establishing the existence of
sign-changing solutions of (|1.1]).

3.1. Some lemmas. For every u € H and u # 0, we set

—o)|ul? e,
- [(2*—61(2”?)” I : =7

Then we have the following result.

Lemma 3.1. Let |lal|,, < M. For every u € H and u # 0, we have
(i) there exists a unique t* = tT(u) > tmax > 0 such that ttu € A~ and
I(ttu) = maxi>y,,, I(tu).
(ii) there exists a unique 0 < t= = t7(u) < tmax Such that t—u € A" and
I(t7u) = ming<;<¢+ I (tu).
Proof. From direct computations, we have

ol _
Gt =0 (-l = 0 [ K@l ~ [ K@a)ul)

Let

o) = - ul = 70 [ Kool - /K o)l
By (A1), (A2) and easy calculations show that lim, .o+ ¢(t) = — [ K(z)a(z)|ul? <
0 and lim;_, 4o ¢(t) = —oco. In addition, ¢(t) is concave and attains 1ts maximum

at the point tyax. Also

B . 2(2*—q) N-2
Pltmax) = (22* —qq> (Z* —j)[ (J K(x) HUH |u|z*)(2 q)} 4

/K 2)lul.

From (A1), (A2) and (2.1)), it is eablly verified that

- 2—(] % 2% — N(2—q)/4 b
Pltmax) = (37— )5 [l ]

- [ K@@l
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(G2 =)ot

Thus, for ||lal|ls, < M, we have ¢(tmax) > 0. It then follows that ¢(t) has exactly
two points 0 <t~ < tmax < tT such that
ptT)=0=p(t") and ¢'(t7) <0<'(t7).

Equivalently, we obtain tTu € A~ and t~u € AT. Also I(tTu) > I(tu), for any
t > timae and I(t7u) < I(tu), for any ¢ € [0,¢T]. O

2
£ lallo, 5,22 Jull.

Lemma 3.2. Let [all,, < M, then Ag = {0}.

Proof. Suppose to the contrary, there exists w € Ao, w 7& 0 such that (2—q)||w||* —
(2* —q) [ K(x)b(x)|w|* = 0. Combining this with (2.1)), we can obtain that |jw| >

(2*_q)(N 2 /4|b\ (2=N)/4gN/4  On the other hand, we infer from w € A that
0=l - [ K@a(@ul ~ [ K@)
2% — 2 )
> (5= Il = llalle, 5.2 2wl

e
- 2% 2* —q

which is a contradiction. This completes the proof. O

bla=2/ DN/ ], 542 > 0,

’
a~qoy

Lemma 3.3. Let ||all,, < M. Given u € A~, there are p, > 0 and a differential
function g,, : B,,(0) — RT defined for w € H, w € B,,(0) such that

(i) 95.(0) =1, gp,(w)(u+w) €A™,
(i)
(9, (0), )
= —2/K vw¢+2*/K o) ul® ~2ug
+a [ K@a@lul™2u0) /(2 - llul - 2~ q) [ Klabia)al*).
Proof. Define F': R x H — R by:
Pt w) = 2+ w2 — 2 *q/K D+ wf?’ /K 2+ w]?.
In view of w € A~ C A, we obtain F'(1,0) = 0 and
F(1,0) = 2= @l - 2"~ 0) [ K@@ <0.

Using Implicit function Theorem for F' at the point (1,0), we know that there is
€ > 0 so that for w € H, ||w|| < &, the equation F(t,w) = 0 has a unique solution
t = gp,(w) > 0 with g,,(0) = 1. Since F(g,,(w), w) =0 for w € H, |w| < &, we
have

g2 (w)fu 4wl — g2 /K (@)l + w]” /K )l + w]?

= (llgp. (w)(u+w)? - /K ()95, (w) (1 + )
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- [ K@a@lgs, w)+ wl7) (g8, () =o.
namely, g,, (w)(u+w) € A for all w € H with ||w|| < &. Since F;(1,0) < 0 and

Fi(gp., (w), w)

= 2 - a)gh. @+l - (27 = 9gZ (W) [ Klabla)lu+ wl
_ 2= Qg @)+ ) = (2 — ) [ K@)b(a)lgp, () + w)”
gp. " (w) 7

we can choose € > 0 small enough (¢ < &) such that for w € H and ||w| < ¢,

2= Dl W)+ )| = @~ 0) [ K@b@lgp @)+ w) <0,
which means that
Gp (W) (u+w) e A™, forallwe H, |w| <e.
Moreover, for any ¢ € H, r > 0, we have
F(1,0+r¢) — F(1,0)
/K NV (u+re)|* — /K z)|u + re* /K x)|u+ rol?

/K )| Vul|* + /K o)ul®” + /K z)|ul?

/K )(2rVuVe + r2|Vé|?) /K (|u+r</)|2 |u|2*)

- [ K@a)(fu +rol? -~ ul?)

and so
< w7¢>|t 1,w=0 — h F(l O+T.¢) (]- 0)
_2/K Vqu)—Q*/K 2)[uf? "2ugd
_q/ K (w)a(x)lul**ug.

Therefore,

(9,,(0),9)

_ _<Fw7¢>,

Ft t=1,w=0
T2 M P o] Kt

(2 = @llull® = (2* = q) [ K(2)b(x)|ul*"

This completes the proof. (I
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3.2. Existence results. We are now in a position to prove Theorem [I.1] To this
end, we need to make comparisons among some minimization problems. Set

Al ={u=u"—u" €eA:ut € A7},
A;:{u:u+—u7€A:—U7€A7},

where 4t = max{u,0} and v~ = u™ — u. Define
B1 = inf I(u),

uEA]
B2 = inf I(u).

ueNS

Lemma 3.4. Let |all,, < M, then AT and A3 are closed.

Proof. Let {uy} be a sequence in A] with w, — wug. It then follows from {u,} C
AT C A that

N I &

n—oo

~ [ K@a@uol + [ K@)p(e)unl”

@)l |? - (2 /K Dl ?
= lim [(2—q)uu+\|2 2 /K

namely, ug € A and ua' e A~ UA,.

Since there exists a positive d; such that ||u™| > d; > 0 for all u € Al_7 we know
ug # 0. Combining this with Lemma for ||alls, < M, we have ui ¢ Ag. In
turn, uj € A~ and hence, ugp € A7. Thus, A7 is closed for ||all,, < M. The same
argument can prove that A is closed. The proof of Lemma is complete. O

= i [ [ K@@l + [ K@p@)"]

and

<0

)

Lemma 3.5. (i) If 81 < c1, then the minimization problem (3.2) achieves its
mfimum at a point which defines a sign-changing critical point of I.
(i) If B2 < c1, then the same conclusion follows for the minimization problem

B2).

Proof. We only prove (i). Part (ii) of the lemma can be proved by a similar ar-
gument. By Lemma we can use Ekeland variational principle to construct a
minimizing sequence {u,} C A] with the following properties:

(1) I(un) - ﬂl;
(2) 1(2) > I(up) — L|ju, — z|| for all z € AT .

Firstly, we claim that ||u; || > d > 0. Indeed, if to the contrary, there is a subse-

nl

quence (still denoted by {u,, }) such that |ju,, || — 0, then
1 +o0(1) = I(un) = I(uy) + I(=u,) > e1 +o(1),

which is a contradiction with assumptlon 61 < 01 Secondly, we claim I'(u,) — 0
in H='. Indeed, set 0 < p < pp = pu,, 9F = gu ., where p,,, and gfn are given by
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Lemma [3.3]so that for v, = pv with ||v|| = 1, there holds
2o = g (0p) (Un — 0p) " = g5 (v,) (un — vp)” € AT
Consequently,
(I'(un), un — 2p) + 0(1)l12, — UnH
= ()t =y = 2) 0T ). 8) + 0Dl —wall
=(1—-gn(v ))( (Un)’ (un —vp)* > + (I (un), v)
= (1= g (o)){I"(un), (un — vp) ") + 0(1) |25 — unl|.

It is trivial to show {u;}} is bounded, and so we may assume that u;} — wg in H
for some wg € H. Since {u,} C A, one has

1
=125 = n] >

@ =2l - 2 =) [ K@a)a ] >0,
This together with lim,, o [ K(z)a(2)|u}|? = [ K(z)a(z)|wd|? (see [10]) imply
(2* —2) hnmlnf |t |]? — (2* /K x)|wg]? > 0.
At this point, we show that for [lalls, < M,
@ =~ 2limint il |* - 2" ~ o) [ K(z)aa)lui |7 >0, (3:2)
To prove that, we employ the method used in [16] and suppose to the contrary that
(2* —2)hmmf||u+|\2 *—q) /K lwd 7.

In view of (A1) and the fact |[u,}|| > d > 0, we have [ K(z)a(x)lwg|? > 0 and so

* +1|2 liminf,, . [(2% — 2 +
liminf[ (2 = 2)ug } _ [( Dl ] =1 (3.3)
n=oo L2 —q) [ K(z)a(z) u |7 (2* = q) [ K(2)a(x)|w] |
Notice that e
2% —2
@ -l . -
(2 —Q)fK(l“) ()lui |2
for n = 1,2,.... Combining with ( and (| -, we obtain that there exists a
subsequence {u;} } of {u}} such that
(2" - 2)||u 2
(2" —q) [ K(z)a(@)|un, |

as k — oo. Hence,

o 7 — > /K olug 1,

/K(w)b(w) ut ¥

and so we have that for |lall,, < M,

z)wg |*

2%

o< (2G0T W s s ¥ [ o
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* 2(2%—q)
<o (T ( IK”“ e / K@)l
unk\ 2-q
_2- <2*—2)2“f [ngfK Iwol ]
S (f K () |w0|)
war|q:0

namely, u;f — 0in L%; (RY), and consequently wg = 0, which leads to a contradic-
tion. Thus, (3.2) follows. From (3.2]) we can further obtain that there is a suitable
positive constant d for n large enough

(2* = 2)||ut|? - (2 /K )| >d>0.

Therefore, by Lemma3.3|and the boundness of {u;} }, we conclude that ||(g;)’ ( )<
dy. Since 0 < dy < ||lu; || < ds, a similar argument can show [|(g;, ) (0)|| < d4. For
fixed n, since

(1 =g, (vp)) = p((9:)'(0),v),
(1 =g (v)) = p{(9,)'(0),0),
2o = unll < p+d(]1 = g (v,)| + 11 = g, (v,)]),

(I'(up),uf) = 0 and (u, — v,)T — uF as p — 0, letting p — 0 in (3.1)) we obtain
d
I/ n)s < -
() 0) < 4

From the above discussion, we can conclude that I’(u,) — 0 in H=! as n — oo.
By applying [8, Proposition 3.2], we obtain that the sequence {u,} indeed satisfies
the following

(i) I(up) = B <1 <eo+ %WSN/Q,

(i) I'(up) — 0in H~L
Then, we may use (i), (ii) and [8, Lemma 3.1] to guarantee a convergent subsequence
for {u,} whose strong limit will give the desired minimizer. O

Clearly, Lemma would give the conclusion for Theorem only if the given
relations 31 < ¢; or B2 < ¢1 could be established. While it is not sure whether or
not such inequalities should hold, we shall use these values to compare with another
minimization problem. Namely set

A =ATNA; CA™
and then define

co = inf I(u). (3.5)
ueEN,

It is easy to see that co > ¢1. Since I satisfies (PS) condition only locally, we need
the following upper bound for cs.

Lemma 3.6. (i) For any fized € > 0, then there are s > 0 and t € R such that
sup —tU: € AL .
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(i) For e > 0 sufficiently small , if N > 7, (B3N —2)/(2N —4) < q < 2 and
a> (N —2)/2, then we have

1 1
co < sup I(sus —tU.)<c1+———— N/2
2 320,211% ( ! E) ! N |b‘<()]!_2)/2

Proof. (i) It suffices to show that there are s > 0 and ¢ € R so that
s(up —tU.)T € A and  —s(ug —tU.)” € A™.
To prove that, we set

Ui .U
ts = max — and t; = min —.
RN U, RN U,

For each t € (t1,t2), we denote by s*(¢) and s~ (t) the positive values given by
Lemma [3.1] Then one has

stT(t)(uy —tU)T € A~ and  — s (t)(ug —tU.)” € A™.
Notice that s™(¢) is continuous with respect to ¢ satisfying

hm sT(t) =t (uy —t1U.) < o0 and  lim sT(t) = +oo.
t—ty t—ty

Moreover, s~ (t) is also continuous with respect to ¢ and

lim+ s7(t) =400 and lim s (t) = tT(t2U. — uy) < +o0.
t—t] t—ty

By the continuity of s*(¢), we conclude that there exists to € (t1,t3) such that
st(to) = s (to) = so > 0. This proves (i) with ¢t = ¢y and s = sg.

(ii). Obviously, it suffices to estimate I(su; — tU) for s > 0 and ¢ € R. Since ¢
can be now sufficiently small, we let U, = v.. From the structure of I, we can take
R; > 0 possible large such that I(su; — tv.) < ¢ for all s2 +¢2 > R?. Hence, we
only need to estimate I(su; — tv.) for all s* +¢? < R?. Tt follows from Lemma
and the elementary inequality

s+ t|™ > [s|™ 4+ [t|™ — d(|s|™ t] + |s||t|™ "), for any s, t € R, m > 1
that
I(suj —tve)

< I(suy) + I(tve) —st/K(a:) x)|u |92 ug v, —st/K (2)|ur|* ~2uqv.
+d /K )| su |2, |+/K )| sur |[tos] 2~ )
+d( /K o)|sur |77 \tv5|+/K ()]s [tve )

< I(suy) + I(tve) + 0(5%) + O(ENZr“).

Since [ K(z)v?" =1, we have

I(ve) = S - /K T—E/mewﬂ

= (Sl = Sopl) + o [ K@~ bz
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- % / K (2)a(z)v?

For any € > 0, it is easy to verify that the function ¢t — I(tv.) attains its maximum
at a point ¢. > 0. Moreover, applying the arguments similar to that of [8, Proposi-
tion 3.2] and [7, Lemma 4.1], we can conclude that there are two positive constants
dy and dy such that 0 < dy; < t. < ds, independent of ¢.
Let h(t) = 22|| ve||? — 22: |bloo- Clearly, h(t) achieves its maximum at the point
(Hv 12/1bloc) N =274 In conclusion, we can deduce from [ K(2)(|bloc —
b(w)) v2” = O(eN/?) (see [10]), [Joc||Y < SN2+ O(e2/2) + OV =2)72) (see [9 [10])

and (2.8]) that
< _ _
I{1>aXI(t’U5) h(t 2* /K (|bloc — b(z) /K
-
+ 2 [ K@) (bl — b /K
SN2+ 0(e*?) + 0N I2) 4 0(N?)

—deF T4 O(e ).
Furthermore, we can obtain that for € > 0 small enough,

max_I(su; —tU;)

1 1
=N \b|(N_2)/2

(N— 2)q

s>0,teR
(N—2)(g—1) N-2
<r§1>aacl(su1)+maxl(tv5)+0( T )4+0(e )
1 1 N/2 a2 (N=2)/2 N/2
+N\b|gg_2)/25 +0(=?) + O(el )+ 0(N?)
_der a4 O(E(NZZ)Q) + O(&:W) + O(ENZZ)
1 1 N/2
< C1 +N‘b|gi2)/2 )
ifN>T, g%—:i < g<2and a> (N —2)/2. This completes the proof. |
Lemma 3.7. Assume (31 > c¢1 and B > ¢1. The minimization problem
co = inf I(u) (3.6)
ueEAN,

achieves its infimum at ue € A, which defines a sign-changing critical point for I,
provided ||a||,, < My with some My > 0.

Proof. Set Ma = min{M, M}. As in the proof of Lemma we can construct a
minimizing sequence {u,} C A, for (3.6) such that I(u,) — ¢z and I'(u,) — 0.
Noting that {u,} C A, , we have

0<dy < |uy| < ds (3.7)
for some positive constants d; and dy. Thus, we may assume that ujE — ui in H.

Claim. u2 # 0. Suppose to the contrary, we assume first that u2 = 0, then we
infer from u;f € A~ C A and lim,, o [ K(z)a(2)u|? = [ K(z)a(z)|wg |9 that

mmﬁ—/memmmfzdu
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Combining this with (2.1)) and (3.7)), we can obtain that for n large enough

1
+ N/2
/K o)|uf|? |b|(N 2)/25 +o(1),
and so
1 1 1
I(uy) = 5”“2”2 /K o)uf? +o(1) > NWSN/Q +o(1). (3.8)
oo

On the other hand, from the upper bound of ¢ and I(—wu,, ) > ¢1, we have

I(uf) <cag—eci+o(l) < Zifmgl—?)/? N/2
which is a contradiction to . Hence, uj # 0. Similarly, we can prove that
u, # 0.

Let ug = u; — u5 . Obviously, ug is sign-changing and w,, — wug in H. Since
for any ¢ € H there holds (I'(u2),¢) = 0, us is a weak solution of (L.1). Now,
to complete the proof of Theorem we only need to show that u,, — us in H.
Define u; = uj + v} and u;, =wu; +v;,, then we have v — 0 in H. Combining
this with uf € A and (I'(u3),u3) = (I'(u5 ),u; ) = 0, we can use the Brezis-Lieb
Lemma [I9] to obtain

o1~ [ K@h@lE P = o), (39)
Because the fact ¢; < co + 5 WSN /2 it follows from Lemma that

lim (I(v}) 4+ I(—v;)) = lim I(u,) — I(u2) < c2—co

n—oo n—00

Y
SNpEoant AT

2 1w
SNpEort

Therefore, we must have

1 1
lim min{I(v;"), I(-v;)} < = ——s755"/2
00 N \b|£>]ov_2)/2

This and (3.9) imply

logll =0 or vl =0,
that is, us = uj —uy; €A orup = ugr —u; € A5 . Thus, under the assumption
B1 > ¢1 and By > ¢q, we get I(us) > ¢1. Hence, if writing w,, = us + w,, we have
wy — 0in H. According to Brezis-Lieb Lemma, one has

I(up) = I(ug + wy) = I(ug) + o(1) + wanHQ . /K |an|2 (3.10)

Since uso is a weak solution of | .7 it follows from u,, € A that
Junl? - [ K(z)

|w,]|?> —1>0, /K (2)|wn|> — 1> 0.

= o(1). (3.11)

Now assume
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If 1 # 0, then (2.1)) and (3:11)) yield that [ > WSN/Q. Using (3.10), I(uz) > 1
and Lemma [3.6] we obtain that

1 1 1 1
SSN2 < I(up) = ca+0(1) <1 + ——~—575 5"/

crto(l) + % —way; N N D2

which is a contradiction. Therefore, [ = 0, that is, u,, — wus in H which defines a
sign-changing solution of ([1.1)). d

The proof of Theorem [I.] follows from Lemmas [3.5] and [3.7] and the symmetry
of the functional I.
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