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STABILITY OF WEAK SOLUTIONS OF A NON-NEWTONIAN
POLYTROPIC FILTRATION EQUATION

HUASHUI ZHAN, ZHAOSHENG FENG

ABSTRACT. We study a non-Newtonian polytropic filtration equation with a
convection term. We introduce new type of weak solutions and show the
existence of weak solutions. We show that when [, [a(x)] 1P Ddz < oo,
the stability of weak solutions is based on the usual initial-boundary value
conditions. When 1 < p < 2, under the given conditions on the diffusion
coefficient and the convection term, the stability of weak solutions can be
proved without any boundary value condition. In particular, the stability
results are presented based on the given optimal boundary value condition.

1. INTRODUCTION

Consider the non-Newtonian polytropic filtration equation
uy = div (a(z)|Vu™ P2 Vu™) + b(z) - Vul, (z,t) € Qx (0,T), (1.1)

where p> 1, m >0, ¢ >0, a(z) > 0, a(z) € C*(Q), b(z) = (b;(x)), i =1,2,...,N,
bi(z) € CY(Q), and Q C RY is a bounded domain with the smooth boundary.
Equation arises from a variety of diffusion phenomena such as soil physics,
fluid dynamics, combustion theory, and reaction chemistry [T} 2] B] 4.

When a(z) = 1, equation with the usual initial-boundary value conditions

u(z,0) =up(z), =€, (1.2)
u(z,t) =0, (x,t) € 9Qx(0,T), (1.3)

has been extensively studied, see [5l [6] [7, 8, 9], [0, 1T, 12, 13} [14] and the references
therein. In this study, we restrict our attention to the case of a(x) > 0 and the
stability of weak solutions of . Note that when p > 1, |[Vu™|P~2? may be
singular or degenerate on §).

Definition 1.1. A function u(z,t) is said to be the weak solution of type 1 of (1.1),
if u(x,t) satisfies

m

we L*Qr), Z5- €L(Qr), a@)|Vu"P €L'Qr),  (14)
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and for any functions ¢; € L1(0,T;CA(Q)), w2 € L®(Qr), and ¢a(z,-) € W,2P()
for any given t € [0, T) it holds

// 5 (p12) + a(@)|[Vu™ [P2Vu™ - V(p1p2)] dz dt
Qr

(1.5)
+ // [u?b;(2)(p192)z; + ulbiz,1902] dx dt = 0.
T
The initial value condition (1.2)) is satisfied in the sense of
lim [ |u(z,t) — up(z)|dx = 0. (1.6)
t—0 Q
With the assumption that
a(x) >0, z€Q and a(r)=0, z € 0Q, (1.7)

we can obtain the existence of weak solutions of (1.1]) with the initial value condition

(1.2) as follows.
Theorem 1.2. Suppose thatp>2, m>0,q>1+ mTfl, and ug > 0 satisfies
up € L®(Q), a(x)|Vui'|P € LY(Q). (1.8)
If a(x) satisfies (1.7)) and
/ la(2)]” 72 |b(x)| 72 da < oo, (1.9)
Q
then there exists a nonnegative weak solution of type 1 to equation (L.1)).
Clearly, if we denote ¢(v) = v and v = A(u) = u™, then (T.4) is equivalent to

9¢(v)

S € LAQr). a@)Vel € LNQn). (110)

ve L™ (QT)»
and (1.5]) is equivalent to

// [M<W2> + a(@)| Vol * Vo - V(pipn)] dv dt
o (1.11)

// vmb; ) (p192)z; + 0™ bm( Yp12] dx dt = 0.
T
The following theorems relate to the stability of weak solutions.

Theorem 1.3. Let u(z,t) and v(x,t) be two nonnegative weak solutions of type 1
of (1.1)) when p > 1, ¢ > max{m, 1} and m > 0. Suppose that condition (1.3) holds
and

/[a(m)]fﬁdx < 00. (1.12)
Q

Then we have
/|¢ \(xtdx</ | 6uo) — d(v0) | (2)dz, ae. t€[0,T). (1.13)

Condition ([1.12)) ensures that the homogeneous boundary value condition is true
in the sense of trace. However, such a homogeneous boundary value condition may
be overdetermined.
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Theorem 1.4. Suppose that u(z,t) and v(z,t) are two nonnegative weak solutions

of type 1 of (L.1) when 1 <p <2 and g > m > 0. If condition (1.12)) holds, then
the stability of weak solutions holds in the sense of (1.13).

Definition 1.5. A function u(z,t) is said to be a weak solution of type 2 of (1.1)),
if (1.10)) is true, and for any function g(s) € C*(R) with g(0) = 0, and ¢; € C3(£2)
and g € L(0,T; W,-?(Q)), it holds

loc

/ / [0 (w)g(pr92) + a(@)|VulP>Vu - Vg(prps)] de dt
r (1.14)

+ //T [ by, (2)g(p1902) + u bi(2)g (91902)(P1902)s,] dx dt = 0.

The initial value condition is satisfied in the sense of (|L.6]).

The existence of weak solution of type 2 can be stated in a similar way as
Theorem so we omit it, and focus on the stability.

Theorem 1.6. Let u(x,t) and v(x,t) be two nonnegative weak solutions of type 2
of [CI). Ibi(x) = a(x), p > 1, ¢ > max{m, 1}, m > 0, and

/ [a(z)]~ P Yz < oo, (1.15)
)

then stability (1.13) holds.

Note that when m = 1, the usual initial-boundary value problem was investigated
n [I3]. We now present the stability of weak solutions based on an optimal partial
boundary value condition.

Theorem 1.7. Let u(x,t) and v(x,t) be two weak solutions of type 2 of the initial-
boundary value problem of (L.1)) with the same partial boundary value condition

u(z,t) =v(z,t) =0, (z,t) €%, x(0,T), (1.16)
where
X, ={z € 99 : bj(x)n; <0}, (1.17)
and i = {n;} is the inner normal vector of 1. Suppose that 2 > p > 1, ¢ > m,
a(z) satisfies (1.7), and
adP(z) <a(z) < cod(z), =€ Q\Qy, (1.18)
|bi(z)| < cd(z),i=1,2,....,N, x€Q\Q, (1.19)

where ¢1 and co are two constants, d(x) is the distance function from the boundary
00, Oy ={x € Q:d(z) > A}, and X is a small positive number. Then the stability

(1.13) holds.

The article is organized as follows. In Section 2, we prove the existence of weak
solutions of type 1 to equation . In Section 3, we prove Theorems and
In Section 4, we prove Theorem [I.6] The last section is devoted to the stability of
weak solutions only dependent on the partial boundary value condition.
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2. PROOF OF EXISTENCE

Consider the regularized equation
= div ((a(@) + &) (IVu™ P + )7 Vum) + B (1) - Vu?, (w8) € Qr, (2.1)
with the initial-boundary value conditions

u(z,0) =upe(z) +¢, €€, (2.2)
u(z,t) =€, (x,t) € 0Qx(0,T),

where & > 0 is small such that 0 < ug. € C§°(2), |[uoe ||z (q) and
l(a(z) + &) Vuge [l 1 @)

are uniformly bounded, and wg. converges to ug in VVO1 P(Q). Tt is well-known that
the problem ([2.1)-(2.3]) has a unique nonnegative classical solution [I1 [12].

Proof of Theorem[1.Z. Multiplying (2.I) by u* and integrating it over Q; = Q x
(0,t) for any t € [0,T) yields

1

- m+1l. 1) d 7/ m+1 g

m+1[/u6 (z,t) de Q(UOE(:E)+5) x

// )+ e)(|Vu™? +¢) EZVum-ﬁu;”dEdt
o0

// )+ e)(|Vu™|? +¢) En |Vu™|? dx dt

// - Vulul dx dt.

It is easy to see that
// z)|Vul'|P dx dt < // )+ &) (|[Vu™|? + &)= \Vum|2 drdt <c. (2.5)
Then
t
/ / [Vul* P de dt < (0, T) (2.6)
0 Jos

for any Q5 = {z € Q,d(z,99Q) > 6} C Q, where § is a small constant.
Multiplying ([2:1) by Zs

// ugt dxdt // div(a(z) +&)(|[Vu™|* +¢) ;2Vu2”) . 6;; dx dt

—I—/ v (z) - Vud Oug dx dt.
Q. ot

leads to

Note that

m|2 1;2;2 m e _ -7
(IVul'| +¢e)z Vul' -V 5t 5

Su™ 1d [IVu(@t) 1>+ b2
/ s 2 ds
0
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Then
. m2 =2 oOul’
dlv(( () +e)(|Vul'|* +¢e) = Vu! 5t dx dt
m|2 m as
)+ e)(|Vu™ > + &)= Vu \Y 5t dx dt

VPt
== // / s 2 dsdx dt (2.8)
t 0

[Vul(z,t)|*+e b2
:_7/(()4—5)/ s 2 dsdx
2 Q 0

1 IVul(2,0)*+e
+7/(a(x)+s)/ 52 dsdx.
2 Ja 0

By Young’s inequadity7 we obtain

/ / Oue - Vul dz dt

1 e

§§// |b(x)~Vug\/mu?71\2+§// |\/mu2"718;
t Q¢

< c// (a %| ugflfmTiF)ﬁ +a|Vu2"|”] dx dt

// |u5t |d1: dt.

According to -—-7 in view of ¢ > 1+ mT_l and (|1.9)) we deduce that

oul
//t |u5ta—t€|dxdt <c
// 5‘t drdt = // ul uet ue’ |dmdt<c (2.10)
t

By (2.5)-(2.6) and ([2.10] , according to the Sobolev embeddlng theorem there exists
a function v € LOO(QT) such that

dx dt

and

ul' — v, a.e €Qr. (2.11)

Let the nonnegative function u satisfy «™ = v. Then u* — u™ a.e. in Qr, and
o)

u: —u, ul—ul ae inQp. (2.12)
Since for any ¢ € C’é (Qr), it follows that

lim// pdrdt = —hm// ulto dx dt
e=0JJQr Qr
m
:// umgptdxdt:// Ou
Qr T 9

By a process of limit, the above calculation is also true for any ¢ € L?(Q7), then
we have

ou*  Ou™

e N T in L2(Qr). (2.13)
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From the above discussions, we also obtain

// 5pTﬁa(m)|Vu£"|2 dx dt < c. (2.14)

// z)(|Vul? 4+ ¢)" a2 O’ |71dxdt

T
<c// a7 \Vum|2+5) 72 Jue’ |f1 dx dt
T
// |Vum|2+€)2(1’ 1>|Vum|p T dx dt
T

Since

p(p=2)
< c// 2)|Vul P + 2670 a(x)| V! | 77T da dt
Qr

p—2

p(p—=2) p—2
< c// a(x)|Vul'|Pdx dt + ce2e-D 72 <,
T

N
this implies that there exists an n—dimensional vector ¢ = ((1,...,(n), ¢ €

L7 (Qr) such that
p—2 Qul"
m|2 == €
a@)(Var [ + )7 G

To prove that u is the solution of (1.1]), we note that for any function ¢ € C3(Qr),
we have

— ¢, in L7T(Qr). (2.15)

// v + (a(2) + ) (Va2 + &)™ TV - Vo] du dt

* // . ul[biz, (2) + bi() P, ] dx dt = 0.

Since a(z) > 0 when z € Q, we have ¢ > SUPg,;,p, Lv(f)‘ > 0 because ¢ € C3(Qr),

and

(2.16)

el // (\Vu;”|2 + &P 2V, - Voda dt|

Vol (2.17)
// z)(|[Vul*|P 4+ ¢) dz dt — 0,
suppyp @ T
as € — 0. Based on this 1nequahty, we find that
(|Vul'? + €)% Vau.
(2.18)

= |Vu P2V +eb

2 1
/ (|Vu™? + es)P*dsVu™.
0

Just like for the general evolutionary p-Laplician equation [12], by (2.16)-(2.18)
we derive that

// [urp + S Vo + ul (bia, (2) + bi(2)pa,)] dx dt = 0, (2.19)

// a(x)|[Vu™[P~2Vu - Vo dr dt = // Z) -Veodzdt (2.20)
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for any function ¢ € C3(Qr). Then
// [ure + a(z)|[Vu™|P2Vu™ - Vo + ul (b, ()@ + bi(2) ., )] dedt = 0. (2.21)
T

If we denote €2, = supp ¢, then
T
/ / [uro+a(z)| Vu™P2Vu™ - Vo +ul (bis, ()0 +bi (2) s, )] do dt = 0. (2.22)
o Ja,

For any functions ¢; € LY(0,T;C3(R)) and 2 € L®(Q7r), and for any given
t€[0,T) ga(x,-) € WEP(Q), we know that 109 € Wy P(Qy, ). By the fact of that
C5° () is dense in Wy (Q,,), by a process of limit, we have

T
// [ue(192) + a()|[Vu™ [P->Vu™ - V(p12)] da dt
(2.23)

/ / b, (2)(p102) + bi (@) (102), ) da dt =0,

which implies

T
/ /[“t(cplsoz)+a(x)IVU’"\p’2Wm-V(solsaz)] dx dt
0 % (2.24)

T
+ A /Q’U/q[me (-’E)(‘Pl%‘h) + bi(x)(gol(pg)wi] drdt = 0.

Finally, we can obtain (1.6) by applying a similar method as for the usual evolu-
tionary p—Laplacian equation [12]. Thus, u satisfies equation ([1.1]) in the sense of
Definition [l O

Proposition 2.1. Let u(z,t) be a weak solution of type 1 of (1.1). Then

8¢( ) e 17 (0,7 w1 (). (2.25)

Pmof For any o(z,t) € L”((O T; WP (), by (2.5) we have

o=,

// )| Vo[P2V0 - Vo 4 vm by (2)@a, —&—v%bm@] dx dt

pdxdt

// z)|VoulP + |[Ve|P + 1] dz dt < c.

3. PROOFSs OoF THEOREMS [L.3] AND [ 4]

Definition 3.1. A function u(z,t) is said to be a weak solution of (1.1} with the
initial-boundary conditions (1.2)-(L.3), if v is a weak solution of (1.1)) in the sense
of Definition and the boundary value condition (1.3]) is satisfied in the sense of
trace.
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Lemma 3.2 ([13]). Let u be a weak solution of type 1 of (L1)). If [, [a(x)]_ﬁdaj <

¢, then
// [Vu™|dx dt < c. (3.1)
T

By Theorem [[.2] and Lemma we have the following theorem.

Theorem 3.3. Let u be be a weak solution of type 1 of (1.1) with the initial value
ug. If a(x) satisfies (1.12)), then there exists a weak solution of (1.1) with the usual

initial-boundary value conditions (|1.2)-(1.3)).

Proof of Theorem[I.3 Suppose that u and v are two nonnegative solutions of type 1
of (1.1)) with the same homogeneous boundary value (|1.3). In view of the definition
of weak solution of type 1, we let o1 = p € L*(0,T;C}(Q2)) and o2 = 1. Then

D(6(u) — $(v)) .
/ngde—l—/Qa(x)ﬂVM Vu — |VolP~*Vv) - Vdz

(3.2)
+ / (biz; 0 + bigom)(u% — U%)d.ﬁ =0.
Q
For a small n > 0, let
’ _ 2 | s
Sy (s) = /0 b (7)dr, o (s) = 5(1 - T)+
Obviously, h,(s) € C(R), and
%E%Sn(s) = sign s, %E% 55y (s) = 0. (3.3)
Choosing ¢ = S, (u — v) as the test function, we have
9(¢(u) — o(v))
/Q Sy (u — ’U)de
+ / a(2)((VulP"2Vu — [VolP"2V0) - V(u - 0)8" (u — v)de
@ (3.4)
= 7/ bi(z)(um — v ) (u — )2, Sy (u — v)dx
Q
- / (um — v )big, ()Sy(u —v)dz.
Q
Since %(t”) e LV (0, T; W17 (Q)), by [8, Lemma 2.2], we obtain
t
o _
[ (sat6t) - oo, 2D 4 .
3.5
= [ Lfota) = )t do ~ [ 1,(6(w) - 0(0))(w,0) do.

).

While, from [I2] we know that

Q

S,y (u — v) — sign(u —v), in WyP(Q),
Sy (@(u) = d(v)) — sign(d(u) — ¢(v)) = sign(u —v), in Wy*(Q).
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So have
By (S5 (u = 0) = S, (9(u) — 9(0)), S

< Ly .8y (u — v) = Sy (d(w) = 60D lwyr (@) ||a—;

=0.
By (33)-(30), we have
t
9 —
" (3.7)
/|¢ :ct\dx—/|¢ ) (2, 0)|dz.
To evaluate the second part on the right hand side of ([3.4)), we have
/ a(x)|(|VulP~2Vu — |Vu|P~2 Vo) - V(u — v)S; (u —v)dz > 0. (3.8)
Since ¢ > m, and a(x) satisfies
/ [a(x)]z;flldx < 00,
Q
it follows by Lebesgue’s dominated convergence theorem and (3.5)) that
lim ‘ / (wm — v )b (2)(u — )z, Sy (u—v dx’
n—~0
p=1
< lim / i) (w — 0 ) S — v)a(e) | 7

p—1

y (/Qa(:r)(|Vu|p+ |Vv|p)dx>1 g

Sclim(/Q|(u—v)5’;7(u—v)a(m)_l/p\p%ldx) "o=0.

n—0

Meanwhile, since ¢ > 1 and |b;,,| < ¢, it follows that

lim |/ "
n—0
<c/| m — v )sign(u — v)|da

(3.10)

= [ 167 = ¢u))sign(otu) = o0 o

<c/|¢ v)|dx.

Let 7 — 0 in (3.2]). Then we arrive at the desired result ((1.13).

i (2) Sy (u — v)da|

3
3\0
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Proof of Theorem[I-]] By Definition for any functions ¢; € LY(0,T;C}(Q2)),

02 € L=(Qr), and for any given t € [0,T) ga(z,-) € WP(Q), we have
J [ )+ oo (9200
— |Vo|P~2V0) - V(gpupg)] d dt (3.11)
I ) =g, + b )0~ )] o =0

For a small positive constant A > 0, we let Q) = {z € Q : a(x) > A} in this
section and define

1, if xeQy,
= 3.12
(@) {}\a(x), if x € Q\ Q. (3.12)

Choosing @1 = @x(7)X[r,s and @2 = S, (u — v), and integrating it over 2, we have

/S/ @A(x)sn(u—v)wdxdt

ot
/ / ox(@)a()(|VulP~>Vu — [Vo[P2 Vo) - V(u — v) S (u — v) du dt
/ / Y(IVulP=2Vu — |[Vu[P~2Vv) - Vr (2)S, (u — v) dz dt

+/ bi) (u™ — v )pa(w) S (u = v)(u = v)a, + Sy(u = v)pas, (@)] dr dt
T JQ

+/TS/Qbizi(ug’ — v ) () Sy (u — v) = 0.

Moreover,

(3.13)

/Qcp)\(x)a(x)(|Vu|p72Vu — |Vo|P2Vv) - V(u — ) Sy (u—v)dx >0, (3.14)
and

|/ )(|VulP~2Vu — |Vo|P2Vv) - Vo (2) S, (u — v)dz|

< / a(@)|(IVulP~>Vu — [Vo[P~2Vv) - Vo (2) S, (u — v)|de
2\

(3.15)
< / a(@)|(|VuP=2Vu — [Vo[P=2V0) ||V (2) |dz
Q\Qx

gf[/ a(x)|vu|p*1|w|dx+// a(2) [ Vo~ Valde].
AlJava, r Ja\a,

Since 1 < p <2, |Va| < ¢, and
/ |[Va|lP dz < eX < e Pt
Q\Q,

it follows that

c 1/p c 1/p
a(z)|ValPdz < - )\/ Val|Pdz <e. 3.16
A(/m @IVap) < S (0 [ Vapar) (3.16)
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By (3.15)-(3.16), and Hélder’s inequality it follows that
’/ )(|VulP 2 Vu — [Vo|P72Vv) - Vo (2)S, (u — v)dz|

< 5[/ a(x)|vu\P—1|Va|dx+/ a(a) Vol |Valda]
AlJova, O\Qx
’ (3.17)

i(/ﬂ\g a|Va|pdx)1/p</Q\Q a(x)|Vu|pd:E>

5 g evanss)”"( [, wreanie)®

< C(/Q\m a(m)|Vu\pdac>p%1 +C(/Q\m a(x)|Vv|pdx)

IN

p—1
p

Thus, we obtain
(3.18)

hm ‘/ V(I VulP=2Vu — [Vo|P2V0) - Vor(z) S, (u — v dac‘ =0

In view of and (3.5), and Lebesgue’s dominated convergence theorem it

follows that
limy %b( ) (u —v%)S’;(u—v)(u—v)zidxzo. (3.19)
Since ¢ > 1, by using and ( we obtain
;in% | / @Amibi(x)(u% - v%)S,,(u - v)dgc’
< lim — / Va|dz
1S o, [Val (3.20)
< lim — ¢ (/ a(x)|Va|pd:r)1/p(/ a_p%l(:z)das)p%1 =0.
A=0 AN o\, O\
Similar to (3.10), we have
tim | [ a0 = )8, (u— 0)da] < 60 = 60)ir (321
Processing as we discussed in the proof of Theorem we have
N 9(¢(u) = ¢(v))
71]13%) ;136/ / ox(x)Sy(u — ’U)T dx dt
:hm/ /S u—v) (9(u) = $lv ))dxdt (3.22)
1—0 ot
v))(z, T)|dx.

- [ 16w - ot xs|dx—/|

Q
Letting A — 0 and n — 0 in , in view of the arbitrariness of 7 and -7

, we obtain
©)(w.s)lde < [ [0(ule,0)) = o(o(e.0))ldz

[ 10w ias) -
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4. PROOF THEOREM

To prove Theorem we start with a more general case.

Theorem 4.1. Let u and v be two weak solutions of type 2 of (1.1|) with the initial
values up(x) and vo(x) respectively. Whenp >1,¢>1 and 0 < m < 1, we suppose

that
/ \bl(x)Va| |U% ‘dﬂf <ec / |bl(x)va|
Q a 7 Ja a

/ o™ P | 7T da < oo, (4.2)
Q

vm

w|dx < c, (4.1)

and condition (1.15)) holds. Then stability (1.13)) holds.

Apparently, if b;(x) = a(x), conditions (4.1])-(4.2)) hold naturally. Thus, Theorem
[1.6)is a particular consequence of Theorem [4.1]

Proof of Theorem[/.1. Let v and v be two solutions of type 2 of (L.1)) with the
initial values ug(z) and vo(x) respectively. We choose x| ¢S,(a”(u — v)) as the
test function. Then

//S (u—w) W(ixdt

aP Y (z wlP72Vu — |[VolP~2V0) - V(u — 0)S. (P (u — v)) dx
+// (2)([VulP~ 2V — [VolP2V0) - V(u — 0)S! (0 (u — v)) da di

ulP~2Vu — |[VolP~2Vo) - Va? (u — v)S" (a® (u — v)) dx
s [ [ a@Tup =290 9290 Ve - 0 a0 - o) da d s
/ / (= 0% Vi, (2)Sy (@ (u — v)) der dt
/ / (uh — v )by(2)8! (0 (u — v)) [Ba” (u — v)aa,
aP(u —v), ]dxdt—O
Similar to the proof of Theorem we have
. A(¢(u) — ¢(v))
lim Sy(a”(u —v)) ———F——dx
77%0/ / ot (4.4)

:1JMM%T»*¢MWJDWL
/Qaﬁ“(x)(wuw*?vu — [VuP=2Vv) - V(u — )8 (a’(u — v))dz > 0. (4.5)

In view of |Va(z)| < ¢, in Q we have
y/ (u— )8, (0’ (u— ) (|VulP~>Vu — |Vo[P~2Vv) - Vada|

(4.6)
< C| /Qa (u— v)S;(aB(u — v))(|Vu|p_2Vu — |Vv|p_2Vv)dx|,
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and

| / a” (u —v) S (0’ (u — ) (|VulP~>Vu — [Vl Vo)dz|
Q
= ’/ a_pr%laﬁ(u—v)sg(aﬁ(u—v))a%
{Q:alflu—v|<n}
v |vvv’*2vv)dx’ (@.7)

- 1/
< (/ |a_Taﬁ(u—v)S;](a’G(u—v)ﬂpdx) !
{Q:aP|u—v|<n}

p—1

x (/ a(a)([Vup + [Vop)dz) 7
{Q:aP |lu—v|<n}

If {x € Q: u— v =0} has the zero measure, by (1.15) we have
/ |a_%aﬁ(u—v)S;](aB(u—v))de < o0,
{Q:aflu—v|<n}

and

lm / a@)(Vul? + [VoP)dz) T
n—0 {Q:af|u—v|<B}

(4.8)
- (/ a(e) (Vul? + [Vo)dz) T =0,
{Q:|lu—v|=0}
If {x € Q:u—v =0} has a positive measure, then
. s /3 1/p
hm0 (/ la™ 7 a”(u — )8, (a” (u - v))|pd:c)
n {Q:aflu—v|<n} (49)

p= 1/p
= (/ lim |a_71aﬁ(u—U)S;(aﬁ(u—v)ﬂpdx) = 0.
{Q:Ju—v|=0} 10

In view of (3.3) and condition (|1.15), by Lebesgue’s dominated convergence
theorem, for both cases we have

lim | / a’ (u — )8 (0’ (u — ) (|VulP">Vu — |[Vo[P~2V)dz| = 0, (4.10)
n— Q
and from we obtain

| /Q(u% — U%)bi(x)S;(aﬁ(u —0))(BaP " (u — v)awida:|

’ (4.11)
<e [ (ulf + ) LT
Q a

(u— U)S;](aﬁ(u —v))dx — 0,

as n — 0.
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Since ¢ > m, from (3.5) it holds

| [ = 0001830 0 = )0 = 01 )
= {/Qaﬁ_ﬁ(uﬁ fv%)bi(o:)S;](aﬁ(u—v))ail/p(ufv)midﬂ

o (4.12)
< c(/ |bs (x)a=PaP (u — 0)S) (a” (u — v))|ﬁ) g
Q
1/p
Vulf + |VoulP — 0,
< ([ a(var + vop))
as 1 — 0. In view of ¢ > 1, we deduce that
%13%)| (um —v%)bmz(x)sn(ag(u—v))dx’
|/ (¢%(u v)) zxl(x)sign(aﬁ(u—v))dx|
.y / (6(u) — ¢ (v))biz, () sign(d(u) — $(v))dz] (4.13)
< [ 1ot - or)lda
< c/ |o(u v)|dz.
Let n — 0 in . Because of the arbitrariness of 7 we obtain
/ |p(u (z,8)dx < c/ |p(uo) — ¢(vo)|(z)dx, Vs e|[0,T).
(I

5. PARTIAL BOUNDARY VALUE CONDITION

Proof of Theorem[1.7. Let u(x,t) and v(z,t) be two weak solutions of type 2 of the
initial-boundary value problem of (1.1). Let Q) = {x € Q : d(x) > A} in what
follows and

1, if x € Qy,

palz) = {id(x), if . € 2\ Qy.
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Choosing S, (px(u —v)) as the test function, we deduce that
/QS,,(QO,\(U _ U))8(¢(u)a; (b(v))dl‘
+ [ a@)er @Vl = [90P2V0) - V(=) (or(u— 0))da
+ / a(x)(|VulP~2Vu — |[Vu[P~2Vv) - Vo (u — v)S; (pa(u —v))dzx
@ (5.1)
+ [ big (@) (i —vm) Sy (pa(u —v))da

As in the proof Theorem [1.3] one can obtain
lim/ /S ox(u—v) 3((;5( ) = 9(v)) dx dt
=0 Jo ot

= [ 1660~ otw)e. e — [ [0 0)d, >

/Qa(x)(pA(x)ﬂVu\p*ZVu — |[Vu[P~2V0) - V(u — ) S, (pr(u —wv))dz >0, (5.3)

and
| / a(u —v)S; (pa(u — ) (|VulP>Vu — [Vo[P~2Vo) Vorda|
Q

_ |/ a5 au — v)S)(pa(u—v))a"s (V[P ~>Vu
{Q:ox|u—v|<n}
- |Vv|p_2Vv)V<p,\dx‘

1/p
<

(/ (017 (u ~ )8} (o (u — v)) Vipa P
{Qpalu—v|<n}

p—1

X (/ a(z)(|Vul? + |Vv\p)dx) !
{Qsprlu—vl<n}

If {x € Q : u—v = 0} has the zero measure, in view of condition (1.18]), |Vd| = 1,
1 <p<2, cd(x) > alx) > c1dP(z), and

/ a(x)|w|pda: = / @dx < 02/ d'P(x)dx < oo,
Q 5N oo, Q\2

then we have

’/ |a1/pV<p,\(u—U)Sf7(<ﬂ/\(u—U))|pd$|
{Q:px|u—v|<n} (5.5)

:/ al/pmgp,\(u—v)sg(go,\(u—v))‘pdx <ec,
{S:prlu—v|<n} A
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and

p—1

lim (/ a(z)(|Vul? + \Vv|p)dx) !
=0 A J{ Qg u—v|<n}

p—1

_ (/{Q:uvl_o}a(x)(Vup+|Vv|p)dx> -

If {x € Q : u—v = 0} has positive measure, by Lebesgue’s dominated convergence
theorem it follows that

.—> A — p 1/p
li / a\xT 1/p Y ¥A U v S/ w—v do
i s sy NN ZZ0r (=) (0w =) )

(5.6)

(5.7)
— alx E?im e VS (1 — pxl/p:
- </{Q:Iu—v—o} ( )| ©x ! %—»0|@A( )Sn(( Joa)[Pd ) 0.

So for both cases we have
hm |/ z)ox(u —v)S; (pa(u — V) (|VuP~?Vu — |Vv\p_2Vv)Vap>\dx| =0.

(5.8)
Denote

N
= {x c€N: —Zbi(x)dzi(x) > O}'

Then

3o

- /Q bi(z)(u

- %“%_ @ u—0)S, u—v))dx
- /Q\m d(z) ( Joa( )55 (ea( ))d

—vm) - g, (U — v)S; (pa(u — v))dx

= /(Q\Qk)mﬂl d(x) “(um — v )oa(u — )8 (pa(u — v))de

— bi(@)da, um — oy u—1v)S! u—v))|de
< i Jor(u = 0)S)(pa(u — v)ld

/ bi(x)dri
< —c

<Q\m>rml d(ﬂf)
In view of conditions (L.16)-(L.19) and |b;(z)| < cd(z), since limy_o Q1 = &

|lu — vldx.

D5
we have
~tim [ bi@) (et — vE ), (4~ )8} (o2 (0~ )i
=0 Jq
< —c lim M u— v|dx
=0 Jiavannae: d(@) (5.9)

< clim lu — v|dz
A0 J@\en) N

:/ lu —v|d¥ = 0.
b

P

Moreover, since |b;(x)| < cd(z) and cad(x) > a(z) > ¢1dP(x), we have

bi(z)a VP (x) < c.
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Using Lebesgue’s dominated convergence theorem leads to

lim | [ bi(aon(@at = o%)S, (oru = 0) (u— o)l

n—0
< clim (/ a(z)(|Vul + |Vv|p)dx)1/p
=0\ g (5.10)
< ([ @ @) —oh)S, (o= 0))T) 7
—0.
When ¢ > m and ¢(s) = s, there holds
li | [ (b (@) = 058, (w0
@ (5.11)

<e /Q 6(u) (2, 1) — $(v) ()| de

Lettin 7 — 0 and A — 0 in (5.1)) we have

/Q () (@, )~ (), )| dar— /Q |3(u) (2, 0)— $(v) (z, ) d < / /Q () (2, )~ 3(v) (. £)| .

By using Gronwall’s inequality, we obtain

/ |¢(u)(z,t) — d(v) (2, t)]|dz < C(T)/ |6(uo)(x) = ¢(vo)(2)|dz, Vi€ [0,T).
Q Q
(]

To conclude this article, we give an explanation why the partial boundary value
condition (1.17) imposed on (|1.1)) sounds optimal. Let us consider a simple case as
an example that p = 2 and m = 1 = ¢. Then (1.1) becomes

ou N
5~ div(a(@)Vu) - > bi(z)Diu =0, (5.12)
i=1

which is a linear degenerate parabolic equation. According to the Fichera-Oleinik
theory [I5, [16], the optimal partial boundary value condition matching up with

equation is

u(z,t) =0, (x,t) € X x[0,7), (5.13)
with

Y ={x€00:b(x)n;i(z) <0}, (5.14)

where 7 = {n;} is the inner normal vector of 2. Here, (5.14) agrees well with
condition (|1.17)).
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