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CHAPTER 1

INTRODUCTION

Most authors of probability and statistics books introduce the
definition of a joint-distribution function to prove certain properties
involving moment-generating functions for distribution functions of
independently distributed chance variables.

The purpose of this paper is to show that some of these properties
can be established without using the definition of a joint-distribution
function.

First,some properties involving sets and independent chance var-
iables will be established. These arguments will then be used to
obtain the distribution function for the sum of two independent chance

variables.



CHAPTER 1I

PRELIMINARY THEOREMS, NOTATIONS,AND DEFINITIONS

NOTATION 2,1. The symbol € will be used to denote the phrase belongs

to.

NOTATION 2.2, If A and B are sets, then the statement that A is a subset

of B will be denoted by A € B.
DEFINITION 2.1. The statement that A € B means that if x ¢ A, then x ¢ B.

DEFINITION 2.2. If A and B are sets, then the following statements are
equivalent:
(1) A=3B and

(2) A€ Band B €A.

DEFINITION 2.3. The statement that the set C is the common part of the
set A and the set B, denoted by C = A NBorcs= (A,B), means that C is

the set such that x ¢ C if and only if x ¢ A and x ¢ B.

DEFINITION 2.4. The statement that C is the union of the set A and the
set B, denoted by C = A U B, means that C is the set such that x € C if

and only if x ¢ A or x ¢ B,

x
N
NOTATION 2.3. If each of Al' A2. A3. «ss 18 a set, then i-lAi denotes

@©
the set such that x € {llAi if and only if x € Ai for each integer i > 0.
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NOTATION 2.4. If each of Al' AZ’ A3, veo 18 a set, then iglAi denotes

the set such that x e :I.U=1Ai if and only if there is an integer n > 0

such that x ¢ An'

NOTATION 2.5. The symbols <, <, >,and > will be used to denote the

phrases less than, less Lhan ox equal, greater than, and greater fhan

or equal respectively.

NOTATION 2.6. If A is a set, then the symbol A will be used to

denote the complement of A.

DEFINITION 2.5. The statement that R is a probability domain means
that R is a collection of sets such that the following statements are
true:
(1) there is a set S belonging to R such that if A ¢ R,
then A € 53
(2) there is a set ¢ belonging to R such that if A € R,
then ¢ € A;
(3 if AcRand Be R, then A N B ¢ R; and
(4) if A € R, then there is a set A® in R such that

AN A =¢anda U A® =35,

THEOREM 2.1, Suppose that D is a probability domain and A is a set in D
such that if s € S, then s ¢ A, then A = ¢.

Henceforth ¢ will be called the empty set.



DEFINITION 2.6. The statement that the set A and the set B are disjoint

means that A N B = 4.

THEOREM 2,2, If R is a probability domain, A ¢ R, B ¢ R,and C ¢ R,

then each of the following statements is true:
(1) (A NB) Nhc=(aNC) N B;
(2) AN (BUC=(@AANBU@DNC;
(3) Au@B NC)=(AUB) N (AUC);
(4) a° N 8= (AU B and

) aASuB®=(a N B)°

DEFINITION 2.7. If u and v are sets, then the statement that f is a

function with domain u and range v means
(1) £ 1is a collections of ordered pairs such that if
(x,y) e £, then x ¢ uand y ¢ v,
(2) 1f (x,y) ¢ f and (x,2) ¢ £, then y = 2, and
(3) if x € u, then there is a pair (x,y) such that
(x,y) ¢ £,

If u is a collection of sets, then £ is called a set function.

DEFINITION 2.8. If f is a set function with domain R and range the

real numbers, then the statement that f is additive means that if A ¢ R

and B ¢ R, then £(A) + £(B) = f(A U B) + £(A N B).

DEFINITION 2.9. The statement that R is a complete probability domain

means that R 1s a probability domain such that if Al’ AZ’ 3s oo is a



sequence of sets, each of which belongs to R, A Ai for 1 ¢ {1,2,3,

G
i+l =
«ee}, and A is the common part of the sets Al’ AZ' A3, «s2y then A ¢ R,

DEFINITION 2.10, The statement that (R,P) is a probability distribution
means that
(1) R is a complete probability domain and
(2) P is a function with domain R and range the real
numbers such that
(a) 1if A € R, then P(A) > O,
(b) P is additive,
(c) P(S) =1 and P(¢) = 0, and
(d) 4if A, Az, A3, .++ 18 a sequence of sets, each of

which belongs to R, A A for 1 € {1,2,3,...1,

1+ €
A is the common part of Al’ Az, A3, «vey and £ > 0,
then there is a positive number N such that if n is
an integer and n > N, then IP(Ah) - P(A)| <&, If
A ¢ R, then P(A) denotes the probability of the set

A,
THEOREM 2.3. If Ae¢ R, Be Rand A € B, then P(A) < P(B).

DEFINITION 2.1l. The statement that T is a chance variable means that
there is a probability domain R such that
(1) T 48 a function with domain S and range the real numbers
and |
(2) if t is a real numbe£ and (T < t) denotes the set such that

x € (T <£t) if and only if x € S and T(x) < t, then (T<t)eR.



THEOREM 2.4, If T is a chance variable for a probability domain R and
t is a real number, then the set (T = t) ¢ R. Moreover, if t' < t, then
(' <T<t)eR Theset (t' <T <t) denotes the set [(T <t) N

(T <t

DEFINITION 2,12, If T is a chance variable and (R,P) is a probability
distribution, then the statement that F is the distribution function for

T means that if t is a real number, then F(t) = P(T < t).

DEFINITION 2.13., The statement that the function £ is continuous from

the right at ¢ means if § > 0, then there is a real number 3 > 0 such

that if x is a real number and ¢ < x < ¢ + 3, then |£(x) - £(c)| < &.

DEFINITION 2.14. The statement that F ﬁs a nondecreasing function

means that if a < b and a and b are in Fhe domain of F, then F(a) < F(b).

THEOREM 2.5. If T is a chance variabl% and F is the distribution
function for T, then each of the folloJing statements 1s true:
(1) F is nondecreasing;
(2) 1if t is a real number, them 0 < F(t) < 1;
(3) if £ > 0, then there is a real number X such that if
x < X, then F(x) < &;
(4) 1f £ > 0, then there is a real number Y such that if
y > Y, then F(y) » 1 - £; and

(5) F is continuous from the right.

DEFINITION 2.15. If n > 1 is an integer and Tl’ TZ’ T3, ooy Tn is an

n-term sequence of chance variables with distribution function F, then



the statement that Tl’ T2’ T3, sery 'I'n are independently distributed
means that if tl’ tz, t3, veey tn is an n-term sequence of real numbers,
then P(T1 2ty '1'2 Sty eeey 'rn _<_tn) = 1>(2L'1 < t:l)'P(Tz < tz)'...-

P('rn 5_tn).

NOTATION 2.7, If T is a chance variable, then (T < «) will be used
to denote the set such that x € (T < =) if and only if x € S or T(x)

is a real number.

DEFINITION 2.16. The statement that D is a subdivision of the number
interval [a,b] means that
(1) D is a finite subset of [a,b] and

(2) aeDand b ¢ D.

DEFINITION 2,17. The statement that E is a refinement of the sub~-
division D of [a,b] means that
(1) E is a subdivision of [a,b] and

(2) DEE.

NOTATION 2.8, 1If {a,b] is a number interval and D is a subdivision of
(a,b], then the symbol Z will be used to denote a summation ranging
D

over D.

DEFINITION 2,18, If x and y are functions and [a,b] is a real number
interval, then the statement that afb y(t) d x(t) = A means if £ > O,
then there is a subdivision D of [a,b] such that if E is a refinement

of D, then | ] %{y(ti) + y(ti+1)][x(tt+1) - x(ti)] - al < &.
E



NOTATION 2.9. If f is a function, then Af(ti) will be used to denote

£( - f(ti).

i)

DEFINITION 2.19. The statement that the function f is quasi-continuous
on the real number interval [a,b)] means that if £ > O, then there is a
subdivision D = {ao, 815 Byy e0ey an} of [a,b] such that if a;, 8,4, €D

and s and t are numbers such that a, <8 <t <a,,, then |£¢s) - £(t)|

< E.

DEFINITION 2.20. The statement that the function f is of bounded varia-

tion on the real number interval [a,b] means that there is a number

M > 0 such that if D is a subdivision of [a,b], then ] |f(x1+l) - f(xi)l
D

<M.

THEOREM 2.6. If (R,P) is a probability distribution, T is a chance
variable, F is the distribution function for T, and [a,b] 15 a real
number interval, then F is quasi-continuous on [a,b] and F has bounded

variation on [a,b].

THEOREM 2.7, If [a,b) is a real number interval and f and g are func-
tions such that f is quasi-continuous on [a,b] and g has bounded varia-

tion on [a,b], then afb fdg exists.

THEOREM 2.8, If [a,b] and [c,d] are real number intervals, £ is a con-

tinuous, nondecreasing function such that f£(c) = a and £(d) = b, and

J® y(®) ax(t) extsts, then JP ywaxe) = [ yle(e)] 4 xLeo)],
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DEFINITION 2,.2).. The statement that the number set A is bounded above

means there is a number M such that if x € A, then x < M,

DEFINITION 2.22, The statement that the number set A has a least

upper bound means there is a number M such that
(1) if x ¢ A, then x <M and

(2) 41if p < M, then there is a number q in A such that q > p.

AXIOM 2.1. If a nonempty number set A i1s bounded above, then A has

a least upper bound.

DEFINITION 2.23. The statement that __J y(t) d X(t) = I means if

§ > 0, then there is a real number interval [a,b] such that if A < a
and b < B, then |AfB y(t) d X(t) - I] <&,

A
lim = 0.

THEQOREM 2.9. If A is a real number, then
R — p p-1
2

THEOREM 2.10. If A and B are real numbers, then the following state-
ments are equivalent:
(1) A=B and

(2) 1if £ > 0, then |A - B| < &.

NOTATION 2.10, If F is a distribution function for the chance variable

T, then F(-~) denotes P(T < -») = P(¢).



CHAPTER III
THE DISTRIBUTION FUNCTION FOR THE SUM OF

TWO INDEPENDENT CHANCE VARIABLES

LEMMA 3.1, If t is a real number, A is a positive integer, Dn =

{a

= A —i—%} where i € {0,1,2,3,...,2%) and 1 ¢ {1,2,3,...},

2
Tl and T, are independently distributed chance variables, and An

n
2°-1
denotes the set such that A = 120 (t-A < T, < t-a , &, <T; <
A
ani+1)' then A.n = (t-2A < '1‘1 + T2 Lt, Tl > =A, T2 > t=4).

n=1
Proof:

[ -] 00
Letxsﬁ A . xen

n=1 “n n=1 An means if p > 1 is an integer, then

X € Ap. Let p be an integer such that p > 1. Thus, x ¢ Ap. Since
X € Ap, then there is an integer q where 0 < q < 2P - 1 such that

xe¢ (t-A < T, < t-a a < T, <
( 2 S ta,0

pq 1 < apq+1). Since x € (t-A < T, < t-a

Pq

a <7T, <

- 1 £ apq_'_l), then t - A < T,(x) <t - aq and aq < T,(x) < a

pq+l’

Since T,(x) > a and a_ > -A, then T,(x) > -A. Since T,(x) < a

Pq Pq pqtl
and Tz(x) st~ apq, then Tl(x) + Tz(x) <st+ apq+ - apq. Since
- = op ¢ SotdA . A
apq +1 apq A + zp—l (-A + e )
= A +-SA_ LA . _9A
2p—l zp-l 2p-1
A A
= -I;:I , then Tl(x) + Tz(x) t+ 21"'1 for each integer p > 1.
2

10
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lim A 0
pe 2?"1 '

Since T,(x) + T,(x) < t - for each integer p > 1 and

A
oP-1
then Tl(x) + Tz(x) < t. Since Tl(x) > -A and Tz(x) >t - A, then
Tl(x) + Tz(x) >t - 2A, Since t - 2A < Tl(x) + Tz(x) Lt, Tl(x) > -4,

and Tz(x) >t =A, then x ¢ (t-2A < T +T > t=-A).

M2t T

> «A, T

1 2

o0

Hence, M A € (t-24 <T4T, <t, T) > -A, T, > t-A).

172 1 2

Suppose that x € (t-2A < '1‘1+T2 L<t, Tl > =A, T2 > t-A), then
t - 2A < Tl(x) + Tz(x) <t, Tl(x) >-A, and Tz(x) >t - A, Since
Tl(x) + T,(x) < t, then T,(x) <t - T,(x). Since T,(x) > t-A, then it
follows that Tl(x) < A. Let j be an integer such that j > 1. Since

~-A < ‘Tl(x) < A and Dj is a subdivision of [-A,A], then there is an

3.
integer k where 0 <k < 2 1 such that 840 8ypt1 € Dj and a5y <

Tl(x) < a Since Tl(x) > a,, and Tz(x) <t- Tl(x), then Tz(x)

Jk+1° ik

<t - ajk' Since t - A < '1’2(::) <t - ajk and ajk < Tl(x) < ajk+1’ then

xe (t-A<T, < t-ajk’ 8k <T < ajk-l-l)' Since there is an integer
i - -
k where 0 < k < 2°-1 such that x ¢ (t-A <T; < ¢t 851 Byy <T < ajk+1)’

then x ¢ A,. Since j is an integer where j > 1 and x ¢ A,, then

3 3

- «©
xe N A . Hence, (t-2A < T >-A,T2>t-A)SnA.

n=l “n 1+T2 =t Tl n=1l "n
- -
N - - - -
Since a=l An € (t-2A < 'I.‘l+'1.‘2 <t, Tl > =A, 'l?2 > t-A) and (t-2A < ’1.‘1+’1‘2

®
<t, T, >-A, T, >t-A) €0 A, then 1) A = (t-24 < T#T, < ¢,

T, > =A, T, > t=A).

1 2

LEMMA 3.2. If a and b are real numbers such that a < b, then

P(a < T; <b) = P(T <b) - B(T; < a).

1
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Proof:

P(a < T, <b) = P[(T, < B)N(T; < a)°]

1
c c
= 1’('1?1 <b) + P(Tl <a) - P[(Tl <b) U(Tl <a)]
because P is an additive set function,
= P(T, < b) +P(T,; < a)® - P(T, < =) by Notation 2.7,
P(T1_<_b)+1-P(T15a) -P(T1_<_w)
by definition 2.5,
=P(T; sb) +1 - KT, ca) -1

- P(Tl <b) - 1=‘('I'l < 1a).

LEMMA 3.3, If a, b, c,and ¢ are real numbers such that a <b and ¢ < d
and Tl and 'l?2 are independently distributed chance variables, then
P(a < T

2b,c<T)<d) =P(a <T, <b)*P(c <T, <b).

1 1

Proof:
P(a<Tl_<_b,c<'r2_<_d)
= PI(T; < b)A(T; < a)n(e < T, < d)]
= P[(T, <b)N(c < T, <d)N(T, < a)°] by Theorem 2.2,
= P{[(T; <B)N(c < T, <A)N(T; < a)Te]}
= P{[(T; <B)N(c <T, <N(T, < a)°IWI(T, <B)N(e <T, <N
(e <T, 2O
= P{I(T; <B)N(c < T, <DINI(T, <a)® U <T, <]}
by Theorem 2.2,
= P[(T; <B)N(c < T, <d)] +PU(T, <a)° Uc < T, <]

2{[(T, <B)N(ec < T, < IVI(T, < &)° Ve < T, < ).

2
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Since P{[(Tl <b)N(c < T, < d)]U[(Tl < a)® u(e < TZ < a1}

therefore, P(a < T

P{[(Tl < b)U(T1 < a)¢ u(e < '1‘2 < DN < T < d)U(Tl < a)€

2
U(c < TZ < a)¢1} by Theorem 2.2,

PIL(T; < =)U(e < T, < D°INI(T, < a) U(T, < =)]}
PI(T; 2 =)N(T, < =)]

P(T, < «)'P(T, < =) because T, and T, are independent,
1,

15b,c<T25d)

PI(T, <B)N(c <T) <d)]+P(T, <&)° Ul <T, <d)°I -1

2 2
P(T, <B)N(c <T, &)1 -1+P[(T] ca)N(c <T, <d)]°

by Theorem 2.2,

P('I.‘1 b, ¢ <T)<d) +P(T) <a, c <T, <d) by Definition 2.5,

2

P(Ty <b, c <T gd)+P(T1_<_b,T25_c)-P(Tlgb,'rzf_c)

2
-P('rl_ga,c<'r2_§_d)+P('r1_<_a,'r25_c)-P(’rlia,'rzf_c)

PL(T, < by T, £ )U(T, <b, ¢ < T, <d)] = P(T; <b, T, <)

2
-PL(T; <a, T) <c)U(Ty <&, ¢ <T, <d)]+P(T, <a, Ty <)
because (Tl <b, T, <c) and ('1‘1 by c<T, < d), and (‘1‘1 2 a,
T2 < c) and ('1'1 La,cc< '1'2 % d) are disjoint,

P{[T; < bINI(T, < e)U(c < T, < d)J} - B(T; < b, T) <)

-P{[Tl < alN(T, < e)VU(e < T, 2 d)]} + (T, <8, Ty < c)

by Theorem 2.2,

P(T; <b, T, <d) - P(T, <b, Ty <c) ~P(T <8, Ty <d)
+P('1‘1 28 T)<c)

P(T, <b)'P(T, <d) - P(T; <b)'P(T) <) - P(T; <a)P(T, <4d)

+P(T1 < a)'l"('l‘2 < ¢) because '1’1 and Tz are independent,
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- [P(Tl <b) - B(T, < a)I[P(T, < d) - P(T, < ¢)]

= P(a <T, <b)'Plc < '1‘2 < d) by Lemma 3.2.

1

LEMMA 3.4, If n > 1 is an integer, A > 0 is a real number,and A 1is

the set defined in Lemma 3.1, then

P(A)) = g [F,(t-a_ ,) - F,(t-A)](F (a , 1) = Fy(a )]
n

Proof:
2"
P(An) =P[U

1=0 (t-A < Ty < t-ayy, ayy <T) <8,)]

"3 P(t-A < T,st-a.,8,<T, < ] because the function

o ni %141
P is additive and the sets (t-A < T, < t-ani) and (a , < Ty

5 8.,,1) are disjoint for 1 ¢ {0,1,2,3,...,2%-1},

=] P(t-A<T,<t-a )P(a, <T <a, ) by Lemma 3.3,

D ni+l
n

-g[NHgtﬁm)-N%gt%ﬂﬂﬂli%ﬁﬂ-Pﬂli%B]
n
by Lemma 3.2,

- Z [Fz(t-ani) - FZ(t-A)]ul(anHl) - Fl(ani)] by Definition 2,12.

Dn

LEMMA 3.5. If n is an integer such that n > 1 and E is a refinement of

Du where Dn is the same as in Lemma 3.1, then

I [Ry(t-ap) - HRIE Gy) - Bapl s ] IR (ay) - B(e-w)

E
n

[Fl(ani+1) - Fl(ani) ]t
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Proof:

In Lemma 3.4 we have shown that Z [Fz(t-ani) - Fz(t-A)]

D
2"-1 "
l:Fl(an:i.+1) - l:l.(ani):l = P[:I.EO (t-a < Tp2trdpgs 8y <) = an:l.-i-l)]'

Suppose that n > 1 is an integer. Let E be a refinement of D h such

n-1
that E = {ao,al,az,...,am}. Let x ¢ iHo(t:-A <T, st-a;, a, <T; < ai-l-l)‘
m-l
Since x ¢ 120(1:-A <T, s t-a,, a; < T, £ a:l+1)’ then there exists an

integer p such that 0 <p <m=-1and xe (t-A < T, < t-ap, a, < Ty

< ap+1). Therefore, t - A < T,(x) <t - a, and a, < T, (x) < 341" Since

-A < ap < Tl(x) <a A and D N is a subdivision of [-A,A], then there

p+l =
n
is an integer k such that 0 <k <2'-l anda j < T,(x) <&, .- Since

E is a refinement of D, then a , < ae Since T,(x) < ¢t - a and

ap, then Tz(x) ft-a Since t - A < Tz(x) it-a, and a <

3k = nk’
Ty(x) <@,y then x € (t~A < T, < t-a,, a, <T, <a,. ). Since

there is an integer k such that 0 < k < 2%-1 and x € (t-A < T, 2 t-a s
n

2°~-1
8k < Ty S 8gp4q)s then x € 130 (t-A < T) < t-a, 8, <T) <a,,).
m-1 2n-1
Consequently, U (t-A <T, <t-a,, a, <T, <a,.)¢ U (t-A<T, <
1m0 2 ‘URST ES L A 2
m-1
t-a s 8,; <T; <a,.,) Thus, from Theorem 2.3 P[:I.EO (t-A <T, < t-a,,

2"
)] < P[illo (t-A < T, < t-a ., a8, <T, < ani+1)] and from

< ien
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Lemma 3.4 IZZEFZ(t-ai) - Fy(t-A)I[F,(a, ;) - F,(a,)] <’ (F,(t-a ;) -~
D
n

LEMMA 3.6. 1If D is a subdivision of [-A,A], then Z!’.Fz(t-xi) - Fy(t-A)]
D

[AFl(xi)] > P(t=2A < 'rlﬂ'z <t, T, >=-A, T, > t-A).

1 2

Proof:

Let D be a subdivision of [-A,A] such that D = {xo,xl,xz,...,xn}.

It was shown in Lemma 3.4 that Z[Fz(t—xi) - F,(t-A)J(4F, (x,)] =
D

n-1
P[j.zo(t-A <Ty 2 t=x;, X <T) < xi-!-l)]’ Let x € (t-2A < T,+T, < ¢,
T

>=-A, T, > t-=A). Then, t - 2A < 'rl(x) + Tz(x) <t, 'rl(x) > -A, and

1 2

Tz(x) >t - A, Since Tl(x) it- Tz(x) and Tz(x) >t - A, then

Tl(x) < A, Since -A < Tl(x) < A and D is a subdivision of [-A,A], then
there is an integer k such that 0 <k <n -1 and x < Tl(x) X
Since Tz(x) <t- 'I‘l(x) and 'I'l(x) > Xy then Tz(x) <t -x. Since

there is an integer k such that 0 <k <mn -1, t - A < Tz(x) <t =X,

n-1
and X, < Tl(x) 2 Fpapo then x ¢ 1U0(t-A <Ty S t=x;, X, <Ty < xi+l)'

n-1
Thus, (t-2A < T +T, < t, Tl > =A, T2 > t-A) € U (t-A < T, £ t-x

?
1 {=0 i

Xy < '1'1 < x1+1)’ and by Theorem 2,3 P(t-2A < T +T2 £t, T, >-A, T, > t=A)

1 1 2
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n-1
_gP[U(t-A<T2_5_t-xi,x <T, £ X

}J]. Since )[F,(t-x,) = F,(t-A)]
420 1571 =%n lz)z 1 T %2

n-1

[AFl(xi)] =P[ U (t-A < T, 2 t=x;, X, <T

O 4 1 §,x1+1)], then P(t-2A <

THT, <€, T) > <A, T, > t-A) < l2)[1?2(:-::1) - F,(t-A) J[aF, (x) .

LEMMA 3.7. If [a,b] is a real number interval, T, is a chance variable,

1
and £ > 0, then there is a subdivision D of (a,b] such that if

8,0 8,1 € D, then IP(T1 < a1+1) - P(T1 5,ai)| < &.

Proof:
Let [a,b] be a real number interval and £ > 0. Let J denote the
set such that x € J if and only if a < x < b and there exists a sub~-

division D of [a,x]such that if a;, a e D, then P(ai < Tl < ai+1)

i+l
< E.

Let Fl denote the distribution function for the chance variable Tl'

Since F, is continuous from the right at a and £ > 0, then there is a

1

positive number 3 such that if a < x < a + 3, then IFl(x) - Fl(a)l < E.
Let t be a real number such that a <t < a + 3. Let D1 be a subdivision
of [a,a+3]. Therefore, if 8,5 8,7 €Dy, then

P(ai <T, <a

) = P(T1 < - P(Tl 5_ai) by Lemma 3.2,

1< %141 *141)

SP(T, <a; ) - P(T; < a;) because (T; < a, )€
(Tl < ai_._l) ’

S B(T; < akd) - P(T; < a,) because (T, sa, )€
(Tl < at+d),

< P(Tl < a+d) - P(Tl < a) because (T, < @) € (I, <a)),
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= [P(Tl < atd) - P(T; < a)| because P(T; < a+d) >
P(Tl < a),
< E.
Thus, a + 2 ¢ J and, therefore,J is nonempty. Since J is bounded above
by b, then J has a least upper bound. Let L denote the least upper
bound of J.
Suppose 2 € N (Tl > L-—i-). Suppose that Tl(z) < L. Then, there
i=1 2

exists a positive integer n such that L - Tl(z) > -;;. Thus,
2

T,(2) <L - -—l-,which contradicts the fact that z ¢ N (T, > L ~ i-).
1 oh =1 l- ol

Therefore, the assumption that Tl(z) < L is false and Tl(z) > L., Since

[ -]
1
’I‘l(z) > L, then z ¢ (T1 > L). Consequently’ :ll(Tl 2L - ;I) < (Tl > L).

Suppose that z € ('1'1 > L), then Tl(z) >L. SincelL >L - -lT for
2

each integer 1 > 1, then '.l‘l(z) >L - —]-;_- for each integer 1 > 1. Thus,
2

A 1
('1‘1_>_L--I).

ze N (T 2L~ —]*-) and, as a result, (T, > L)
1 1 1 1=1 2

i=1 2
A 1
since N (1, > L -9 € (T
1=1 2

mn

o0
> L) and (T, > L) € N (r, > L --!'-),then
- l- 1l - 21

1 1=1

A (r >L -—%) = (T, > L),
Since (T >L-!'-) (T >L--]*) (T >L--]-'-) is a sequence
1="2720 V=T R 2Tl e 1

of sets, each of which belongs to R, (T, 2 L - "-i:i') €(I, 2L~ "']"i') for
2 2

each integer 1 > 1, and § > 0, then there is a positive number N such
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that if n is an integer and n > N, then

1
5>P013L-ﬂ)-NH3LH

1
1 -2, <L - 2n) -1+ KT <L)

AL
= |P(T, <L) - P(T; <L~ z“)l

v

L 1
Pﬂ1<m-P@liL-;ﬂbwmu(H<L-;?g

1

= IP(L . T, < L)| by Theorem 3.2,
of

=P(L---1-<T1<L) becauseP(L--—l-<T1<L)_>_0.
2" 2"

Since L - -%l- <L and L is the least upper bound of J, then there
2

1s an x € J such that x > L - -i-. Since x € J and £ > 0, then there is
2

a subdivision D, of [a,x] such that if a;, a € DZ’ then

i+l

1
P(ai < '1'1 < ai+1) <, Let D= DZU{L}. Since P(L - o <1y < L) < & and
1
X>L - zn, then P(x < '1'1 < L) < £, Therefore, if a,a,,, ¢ D, then
1’(&11 <Ty < ai+1) < £, Thus, it follows that L € J.

Since J is bounded above by b and L is the least upper bound of J,
then L < b. Suppose that L < b. Since Fl is continuous from the right

at L and £ > 0, then there is a real number 3, > 0 such that if

L

L<t<d +L, then |F(t) - Fy(L)| < E. Let r be the minimum of

{aL + L, b} and let D= pU{r}. Thus, if a;, a €D, then

i+l
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IFl(a )-Fl(a1)|<£. Thus, reJ. Ifr=3 +Lorif r = b,

i+l L
then r > L,which is a contradiction to the fact that L is the least
upper bound of J. Consequently, L = b. Therefore,if (a,b] is an
interval and £ > 0, then there is a subdivision D of [a,b] such

that if a, a € D, then IP(Tl < ai+1) - P(Tl _g_ai)l < &,

i+l
2™-1
LEMMA 3.8, If C, denotes the set such that C = :I.EO (t-xi <D=
t - x,)N(T,+T, = c)°n(x <T, <x,,,) where x, = =-A + 14
i 1'"2 i 1= "1+l i 2n--l’

ic¢ {0,1,2,3,...,2% 1}, and n ¢ {1,2,3,...}, then
Q) N ¢ =4¢ and
n
n=1
(2) 4if &€ > 0, then there is a positive number N such that if
n is an integer and n > N, then IP(Cn)| < E.
Proof:

[- -} o
Part (1). Suppose that s ¢ M Cn' Since s ¢ N Cn and ifn>1
n=] n=1

is an integer, then s € C 0’ Let n > 1 be an integer. Since s ¢ Cn,

then there is an Xy Xy g € Dn where l)n is the same as in Lemma 3.1

such that t - x < Tz(s) 2t- Xy Tl(s) + Tz(s) >t or 'I‘l(s) +

i+l

T,(s) < t, and x; < 'rl(s) <x

i i+l’

Suppose that Tl(s) + Tz(s) > t. Then, there exists a positive
number N such that Tl(a) + Tz(a) = t+ N and Tl(s) -~ N+ Tz(s) = t,

Since D is a refinement of D, where n ¢ {1,2,3,...} such that if

n+l
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e R T
Xip X € Dn' then there is a number ———¢D and since

Tl(s) - N < Tl(s), then there exist integers k > 1 and p where

k
0<p<2 -1 such that Xr Xyl € D, and Tl(s) -N< x, < Tl(s).g

X

p+1'£ *

141" Since t = Tz(s) + Tl(s) - N and Tl(s) - N < xp, then

t < Tz(s) + xp. Thus, Tz(s) >t - xp. Since xp < Tl(s) 5,xp+1 and

Tz(s) >t - X5 then s § C.. Since k > 1 is an integer and s ¢ Cyo

(- -] ®
then s ¢ n Cn. Hence, the assumption that n Cn is nonempty is
n=1 n=l

o
false and N Cn = ¢, If we consider the case where Tl(s) + Tz(a) <t,
n=1

[ ]
then a similar proof will show that N C, = ¢
n=1

Part (2). Let € > 0, Since Cl’ C,» C3, +++ 18 a sequence of sets,

each of which belongs to R, C

atl S Ca for each integer n > 1, and

£ > 0, then there is a positive number N such that if n is an

integer and n > N, then £ > IP(Cn) - B(®)| = [pc)].

THEOREM 3.1, 1If T1 and T2 are independently distributed chance

variables, F1 and Fz are the distribution functions for Tl and Tz.

®
and t is a real number, then P(T1+T2 Lt) = f Fz(t-x)dFl(x).
=00
Proof:
Let t be a real number, £ > 0, and let A be a positive integer.

- = iA
For each positive integer n, define D = {a , = -A + 2n_ll ie
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{0,1,2,3,...,2n}}. Also, let Arl denote the set such that An =

21
131 (t-A < T2 2 t-ani’ ay < Tl < ani+l)' Since Al’ Az, A3, e 18

a sequence of sets, each of which belongs to R, An +1£ An for

n e {1,2,3,.00}, and 5'

3> 0, then there is a positive number N such

that if m is an integer and m > N, then IP(Am) - P(n An)l < -g-.
n=1

Since (-A,A) is a real number interval and Fl and F2 are dis-
tribution functions, then by Theorem 2.6 Fl is quasi-continuous on
[-A,A] and F, is of bounded variation on [-A,A].

Since Fy is quasi-continuous on [-A,A] and F, is of bounded

A
variation on [-A;A], then by Theorem 2.7 f [l?‘2 (t=x) - Fz (t-a) ]dFl(x)
-A

exists.
A
Since f [Fz(t-x) - Fz(t-A)]dFI(x) exists and §- > 0, then there
-A

is a subdivision D, of [-A,A] such that if El is a refinement of Dl’

1

A
then | I[Fz(t-x) - Fz(t-A)]dFl(x) - Z%[Fz(t-x“_l) - Fz(t-A) + Fz(t—xi) -
-A E
1
Fz(t-A)]EAFl(xi)]] < g-.

Since [-A,A] is a real number interval and -g- > 0, then by Lemma 3.7

there is a subdivision D, of [-A,A] such that if a;, a € D,, then

i+l

IP('J:l <a - (T, s8]} < §-

141)



23

2841
Let Cn = U (t=-x
1=0

c
<T, < 1:--::1)r\('r:'.+r2 = t) r‘\(xi <T

i1 < M2 1S %)

Since % > 0, then by Lemma 3.8 there is a positive number N such that

if n is an integer and n > N, then |P(Cn)| < £, Let p be an integer

such that p > N, and let Dp denote the subdivision defined by p.
LetE=DmUD ubp UDp.

1 2
We must next consider the following absolute value:

1
| Jory(eox) - By (e-m) 1ok (xy) - ] LR (Eomyyg) - Bp(eoh) 4+ By(eoxy) -

- |é P, (t-x,) 8F, (x,) - é% [F,(t=x, ) + F,(t-x,) 14F, (x,) |
= IZ Fp(t-x,)4F, (x,) - %;Z; F,(t-x, ) OF, (x,) = %IZ; F,(t=x,) 8F, (x,) |
- I%E: P, (t-x,)AF (x,) - -;-g F,(t-x,  )AF, (x,) |

1
=5 é B, (t-x)0F, (x,) - g By (t-x,, 1 )4F, (x,) |
1
=gl L IRy (em) - Fp(emxy ) 10F (xyyg) = Fy(xp]|

’%’ Z P(t=%;,9 < Ty < t-x,)P(x; < T )| by Lemma 3.2,

1= %441

<Ty St-x, % <T 5xi+1)| by Lemma 3.3,

1

1
= 3l é Ple=xiy

1 = t)¢
2] ép{[(t"‘iﬂ <Ty S tx )N(Ty#T, = £) N(xy, < Ty <x,, )0

[(t-xi+1 < T2 < t—xi)ﬁ(Tl+'1‘2 - t)ﬁ(xi < Tl -<'x:l.+l)]}|

- —;-l %{P[(:-xi+1 <T, S tx)N(TH, = 0N, <1 <%, )]+

PL(t=x; 0 < Ty £t =% )N(T+T, = ) N(x, < T )1}| because

1=<%4
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the two sets in brackets are disjoint,

1 = t)°
=3l é PL(t-x, .y < Ty S t=x IN(T#T, = t) " N(x, <T; <x, )]+

PL(t-x < T2 < t—xi) n(T1+T2 = t) n(xi < Tl < xi‘i’l)]'

i+l

Nll—- e~

g PL(t=%,, < Ty < =X ) N(THT, = ©)°N(x; < Ty < x.,.)]]

%"z[(tx <T, < tx)N(TH, = DA, < T <x,,0]|

<]

c
-2-| Z PL(t-x, 5 < T, < t=x, ) A(T 4T, = ©)°N(x; < T) < x,..)]

+ 3| Z P(t-x,; < T, < t-x)B(T;#T, = B(x, < T, <x.,.)]
1 1
<z @ +F g |P(tx,,; < T, < t=x) | [P(T+T, = ©)|[P(x,< T, <

xi+1)| from Lemma 3.8,

1
< %* F 1 Ptx < T, < tx ) ||P(T4T, = t)] § by Lemma 3.7,

E 2

< % + %(-g'-) because P is a probability function,
£
3

Since IP(A ) - P(n A )| <% 3> then by Lemma 3.4 | Z [Fz(t_ami) -
D

n=]l
m

FZ(t-A)][Fl(amHl) - Fl(ami)] - P(il An)l < g-. Since E is a refinement

of D , then by Lemma 3.5 ’ZS [F,(t-x,) - Fy(t-A)I[F (x, ) - Fi(x)] <

) [Fy(t-a ;) - F,(t-A)](F,(a ) - Fi(a_)]. Since E is a subdivision

D
m
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of [-A,A), then by Lemma 3.6 Z [Fz(t-xi) - Fz(t-A)][Fl(x:H_l) - Fl(xi)]
E

2B(N A). since | g [F,(t-a_,) - F,(t-A)1oF,(a ;) - P(:_lAn)| <% and

n=1
n

12) [F,(t-a ;) - F,(t-A)JAF,(a ;) > % [F,(t-x,) - F,(t-A)IoF,(x,)

N Al <-§-.

> p(N A), then | g [F,(t-x,) - F,(t-A) JAF, (x,) - P(‘n=l

n=1
A

Since E is a refinement of Dl’ then | f [Fz(t-x) - Fz(t-A) ]dFl(x) -
-A

1
lzg-i-[Fz(t-xi 1) - Fp(t-8) + Fy(t-x,) - Fp(t-A)1AF, (x,)| < 5. Since

o~

[F,(t-x,) - F,(t-) JAF, (x,) - B( :llAn)I <% | %%—[Fz(t-xﬂl) -

Fy(t-A) + Fy(t-x,) - B,(t-A)JAF, (%) - [ [F,(t-x,) - F,(t-)1aF (x| <3,

A
and | [LE)(t=%) = B,(t-A)MF, (x) - [ § [Fy(t-x,,1) + F,(t-x,) = 2'F,(t-A)]
-A E

A ™
AF, (x| < %, then |_{[F2(t-x) - B,(t-A)JF, (x) - P( :llAn)l < £. Since
A ®
E >0 and | f[Fz(:-x) - Fz(t-A) ]dFl(x) - P(ﬁ An)l < £, then by Theorem
-A n=1
R R = -
1An). Since P( An) P(t-2A <

A
2.10 [ [Fy(t~x) - F,(t-A)IdF, (x) = P(

A
T1+'1‘2 <t, Tl > <A, '1‘2 > t-A), then-t{ [Fz(t-x) - Fz(t-A)Jdrl(x) =
P(t-2A < '1.‘:|'+T2 <t, Tl > =A, 'I.'2 > t-A).
lim
We must next prove that the Ao P(t=2A < T1+T2 <t, Tl > -A,

T, > t=A) = P('1'1+'1‘2 £t). Let & >0 and BA denote the set such that

2
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BA = (t-2A < '1‘1+T2

Let x ¢ U B,. Thus, there is an integer n > 1 such that x ¢ Bn’
A=1

<t, T, ><-A, T, > t-A) where A ¢ {1,2,3,...}.

1 2

Since x ¢ Bn’ then Tl(x) + Tz(x) < t. Therefore, x ¢ ('1'1+’1‘2 < t) and
o

U B, € (T,+T, < t).

gap 17 12

If x¢ ('I.'1+'1‘2 < t), then Tl(x) + Tz(x) < t. Since Tl(x) and
T2 (x) are real numbers, then there are positive integers p and q
such that Tl(x) > -p and Tz(x) >t = q. Let r be the larger of p and
q. Hence, 'rl(x) > -1, Tz(x) >t - r and Tl(x) + Tz(x) >t - 2r, There-

fore, x ¢ (t-2r < T +’1‘2 2t T

1 >-r, T, > t=-r). Since there is an

1

integer r > 1 such that x € (t-2r < T1+T2 2t T, > -x, '1‘2 > t-r), then

1
o0 -] (- ]
xe¢ U B,, Thus,(T.+T, <t) € U B,. Since (T.+T, <t) € U B
aml A 172 Al A 12 Al A
L [ -]
and U B, € (T1+T2 Xt), then U B, = ('I']_+'I‘2 < t). From Theorem 2.2
A=1 A=]
o o
c_ N c c c c
it follows that ( U BA) BA . Since Bl , Bz , B3 s s 18 a
A=1 A=l
sequence of sets, each of which belongs to R, BA+1c < BAc for

Ae {1,2,3,...}, and &€ > 0, then there is a positive number N such

that if n is an integer and n > N, then
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£> |p(e%) - P(£‘1 B,

|p(B %) - 1+ P(a B,%)¢|
n n=l A

- cc _ ;; c.c
|1 P(B_ ") 1+1=(A‘1 BA)I

IP(ALJI B,) - P(Bn)|

IP(TI"'TZ <t) - P(B)|. Since P(B,) where A ¢ {1,2,3,...}

is a sequence of numbers, £ >0,and there is a number N such that if

lim

n 2 N, then [P(B ) ~ B(T,+T, < t)| < &, then

P(B,) = P(T,+I, < t).

A
Since f [Fz(t-x) - Fz(t-A) ]dFl(x) = P(BA) for every positive integer A
-A

lim

Ao

lim

and Ao

A
P(B,) exists, then o0 .£[F2(t-x) - F,(t-A) JF, (x) = 1om P(B,).

A @
Since i_j;: _1{ [Fz(t-x) - Fz(t-A) ]dFl(x) = J: [Fz(t-x) - Fz(-w)JdFl(x)

and Fy(-=) = 0, then P(T,+T, < t) = -0{ Fz(t-x)dFl(x) for every real

number t,



CHAPTER IV
THE MOMENT-GENERATING FUNCTION FOR THE DISTRIBUTION
FUNCTION OF AN N-TERM SEQUENCE OF INDEPENDENTLY

DISTRIBUTED CHANCE VARIABLES
LEMMA 4,1. Suppose that (R,P) is a probability distribution, and Fl and

Fz are the distribution functions for the independent chance variables

(-]
T, and T,. If z is a real number such that | e2ta [ F, (t-x)dF, (x)
-0 -00

exists and £ > 0, then there is an interval [a,b] such that if A < a

db<B, th |j°‘“dfwr(-)dr() IZB'“dIBF (t-x)dF, (x) |
and b < B, then J e ER t-x)dF, (x) - ” e R x)dF, (x
< E.

Proof:

-
Let z be a real number such that [ et q / F,(t-x)dF, (x) exists,
-0

-0
«® o

and let £ > 0. Since f e-Zt d f Fz(t-x)dFl(x) exists and~£

2
-0 -l

> 0, then
there is an interval {j,k] such that if J < j and k < K, then
® -zt ° K zt * g
| f e d f Fz(t-x)dFl(x) - f e d f Fz(t-x)dFl(x)l < Let
-t Bl J -0
[J,K] be an interval such that J < j and k < K.

t and

Let Q denote the set such that q € Q if and only if q = e 2
J <t <K. Since Q is bounded above, then Q has a least upper bound.

Let M be the least upper bound of Q.
28
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£ £
Since £ > 0 and M > 0, then A7k 0. Since XTie 0 and Fl is a

distribution function, then by Theorem 2,5 there exists real numbers

c and d such that if C < c and D > d, then F,(C) < ff-

L
Mancl 3

M > 1 - Fl(D)o

_—e 2 K e, [P
Thus, | [ e~ d sz(t-x)dFl(x) - [ e a4 [ Fy(t-x)dF, (x) |
-l =00 J C
. ® _ ] K - L]
= | [ e a [ R (t0ar @ - [ 7" a [ Fy(t-x)dF () +
-00 -0 J -0
K e  [C K 2t , [
[ %" a [ By(t=x)dF (x) + [ 4 [ Fy(t=x)dF, (x)|
J - J D
o © K ©
< [ e %t 4 / Fz(t—x)dFl(x) - f et 4 / Fz(t-x)dFl(x)l
-0 -0 J -0
K ot c K -zt .
+ | fedf F(t=x)dF, ()| + | [ e~ d [ Fy(t=x)dF, (x)]
J -0 J D
& K -zt C : K -zt ®
<3+ ge d [ Be-nar (| + | £e a £ F, (t-x)dF, (x) |
because J < j and k < K,
=54 fK "2t ICF (t-x)dF, (x) + [K 2t g f“F (t-x)dF, (x)
2 i e R x)dF, (x ! e . o (t-x)dF, (x
because the integrals above are nonnegative,
5 K C K o
<3+ £ M d_£ F, (t-x)dF, (x) + £ Md { F, (t-x)dF, (x)
E K C K ©
=3+ M £ d-i F,(t-x)dF, (x) + M g d £ F, (t-x)dF, (x)
C c
= 3+ UL [ B (K0, 04F (0 - [ F-dr ()] +

M[ [ F,(K~x)dF; (x) - [ B,(J-x)dF,(x)]
D D

C «®
= -§'+ M_e{ [Fz (K-x) - FZ(J-x) ]dFl(x) + M ]J; [FZ(K-X) - FZ(J-x) ]dFl(x)
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[

C
< -g--f- M f dFl(x) + M f dFl(x) because F, is a distribution
=00 D

2

function,

=% +MF(C) - F)(~)] + M[F (=) - F,(D)]

]
b

+ MFI(C) + M[l—Fl(D)]

£ . 5 . L
<2 + M 4M+M ZM
=£'

o K D
Therefore, | fe-zt d.!: F, (t-x)dF, (x) - £ e 2t g £ Fz(t-x)dFl(x)l < £,

Choose [a,b] to be a real number interval such that a <0, a < J, a < C,

b>0, K<b,and D < b, Let [A,B] be a real number interval such that

- -]
A<aand b <B., Since e t. 0 for every real number t, [ F, (t-x)dF, (x)
-00

is nondecreasing as t increases, 2B > K, B > D, 2A < J,and A < C, then

2B -zt B K -zt D
f e d f Fz(t-x)dFl(x) > f e d f Fz(t-x)dFl(x). Likewise,
2A A J C

j“ “2t 4 ij (t-x)dF, (x) jzn’z‘ d jBr (t-x)dF. (x). Si
e _wz-x 1(x_>_2Ae Az-x 1(0). nce

oo- -] K_ D
|_£ e %t d-£ F, (t-x)dF; (x) - £ e %t a é F,(t-x)dF, ()| < £ and

® o B _ B K _ D
[e 2t 4 ) Fz(t-x)dFl(x) > ?e 2t 4 / F, (t~x)dF, (x) > [e 2t 4 /
-0 e 2A A J C
2 -x)dFl(x), then | [ e~ d [ F,(t-x)dF, (x) - \ £ e " d { F,(t-x)

dFl(x)I < E.
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n

THEOREM 4.1, Suppose (R,P) is a probability distribution, {Ti}i=l

is an n-term sequence of independently distributed chance variables
with the distribution functions Fl’ Fz, F3, ey Fn,and Tl + TZ + ves
+ 'I'n is the chance variable for the distribution function F. Gl’

Gys vees Gd,and G are the moment-generating functions for the dis-

tribution functions, Fl’ Fz. ieey Fh?and F respectively.

If z belongs to the domain of Gl’ G2, oy Gn?and G such that
each of the moment-generating functions exists, then G(z) =
Gl(z) . Gz(z) (P Gn(z).
Proof:

Let £ > 0, and let z belong to the domain of Gl’ GZ’ G3, ey
Gh?and G such that each moment-generating function exists.

Consider the case where n = 2. Since F(t) = P(T1+T2'5 t) for
o0

every real number t and from Theorem 3.1 P(T,+T, < t) = f F, (t-x)dF, (x),
-l

then F(t) = [ P,(t-x)dF,(x). Since G(z) exists and G(z) = [ e " dF(t),

then [ et 4 .:{ F,(t-x)dF, (x) exists. Since [ e = d _;C F, (t-x)dF, (x)

-Q0 -00

exists and §'> 0, then from Lemma 4.1 there is a real number interval
* -zt > 2B—zt
[a,b] such that if A <aand b <B, then | [ e~ d [ Fy(t-x)dF, (x)-] e

B
d { Fz(t-x)dFl(x)I < %u Since Gl(z) >0 and'% > 0, then ETEI%;T:TT > 0,
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L
Since [ e'zdez(y) exists and m > 0, then there is an interval
1 L

% D
[c,d] such that if C < c and d < D, then | [ e_zdez(y) -/ e-zdez(y)I 7

S . £
< 616, (2)+11° Since Gy (z) * G,(z) exists and g > 0, then there is an

interval [w,v] such that if W <w and v < V, then IGl(z)'Gz(z) -

v
Gz(z) f e-zxdl?l(x)| < -g' Let [A,B] be an interval such that A is less
W

than or equal to a, ¢,and w; and B is greater than or equal to b, d, and
v. Consequently, the following statements are true:
- ? Zth B 4
) | [fe® a[F (t-x)dF (x) - [e“" d [ F (t-x)dF (x)]| < 2 ;
2 1 2 2 1 6
=00 -0 A A
© B
-2y - [o2 S SR
(2) I_c{ e WdF,(y) {e 532(}')' < 6[Gl(z)+1] 3 and

B
(3) 6,(2) * 6,(2) - 6,(2) { e "¥ar ()| < %.

2B B
Since f e-“ d f Fz(t-x)dFl(x) exists and % > 0, then there is a
24 A

subdivision D. of [2A,2B] such that if El is a refinement of Dl’ then

1
ZB-zt B -zt
| J e  a [ By(t-x)ar,(x) -] 3 (e
2A A El
28, B L
and | [ &7 d [ Fy(t-x)dF (x) = [ ] 5 (e
2A A A El

-zt

B
e [ary (e ] < £
A

N

B -zt -zt
141, o 1)AF2(ti-x)dFl(x)|

E ® -z B (t=x)
<& Let x ¢ [A,B]. Since f e dez(y) exists, then f e sz(t-x)

2B
exists. Since f e-z(t-x) sz(t-x) exists and G—U;-%)--l-ﬁ > 0, then there
2A 1
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is a subdivision Dx of [2A,2B] such that if Ex is a refinement of

2B -z(t, ,=x)  -z(t ,~x)
D,» then | [ e -z (t- x)dF (t-x) - | %'[e 1+l + e 1 ]AFz(ti-x)l
2A E
X
— =
< 6[Gl(z)+lj' Let D Dl U Dx where A < x < B. Then,
2B -z(t ) ~z(t,~x)
lzf e ENap () - J 2 le T e 1 T nR (e,
A D
—_—
© 86, (2y+13 *™
2B B -2t -zt
) ] [ e a [ Fy(t-x)dF () - [ 2% e Mie 1
2A A AD
AF, (t,-x)dF, (x) | < 3.
2B
Since y = t - x, then by Theorem 2.8 f e-z(t-x)sz(t-x) -
2A
2B-x

ZAI e_zdez(y). Since x ¢ [A,B], then 2B - x > B and 2A - x < A.
-X

Therefore, since e % is positive for every real number y and Fz is

- -]
nondecreasing, then [ e-zydrz(y) > f e zde (y) > f e zde ().
- 2A-x

© B
Hence, since I_i e-zdez(y) - { e-zdez(y)l < ETEITET:IT' then

2B-x B
I2A£x e ar,(y) - f e Var,(y)| < ——5-—6[G1(z)+1] and | {e “Yar, (y) -
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2B
B
~z(t=-x) £ -2zy
2{ e dF, (t-x) | < 516, (213" Since | ‘{e dF,(y) -
IZB-Z(t—x)dF ( )' < ____§___ d I }B 'Z(t"X)dF ( )
o e p (t-x 1C; (2)71] an " e ,(t-%) -
1 -z(ti+1-x) —z(ti—x)
L 3 [e + e JAFz(ti-x)l < m%-:ﬁ, then
B -z(t, . ~x) =z(t, -x)
-2y 1 1+1 1 ) 2
I ‘{e sz(y) - ]Z) 2 e + e ]AFz(ti x)| < 6—1:(;?5-)-:1-3-.
© B
Since |-£ e zdez(y) ~ { e zdez(y)[ < gfazzfjxiiu then
_— 1, 2 -z(x) —3h
| [ e™arm - 17t te 1k, (e | < g5 T

Therefore, since_£ e-zdez(y) - Gz(z), then -'ZEEI?§3;TT < Gz(z) -

p . "Eleg ) -z(t-x) 3¢ -zx
% > [e + e JAF, (t,-x) < T8, (" Since e X > 0
for each x such that A < x < B, then - EEEI%&??IT e ¥ < GZ(Z)e-zx -

-Zt -zt

1 i+l i 3E -zX
]z)f (e + e )AFZ(ti-x) < 6[G1(z)+1] e

Therefore, since

B B
_ 3 -ZX -ZX _
F, is nondecreasing, then 6[G1(z)+1] { e dFl(x) j_Gz(z) { e dFl(x)

B -zt -zt B
[1 3 ™Mae hur, e -xdrm < Fra ey [ e am, (0.
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B ®
- —3f -ZX - —— 3E -2X
Since 606, (2)+1] { e Tdr (x) 2 6[c1(z)+13_f e "TdF, (x)

3¢
~ 876, (2)#1] 6,(2)

_ 3k [6,(2)41]
6[¢, (2)+1]

v

14
3 and

B 3

k14 =2X £ * -ZX
6[G1(z)+1] {e dFl(x) -56[61(z)+1] -e{ e d Fl(x)

-
= 815, (2)+1] G, (2)

R |
< 16, (23413 (6, (2)+1]

= %-, then
B B -zt -zt
() [6,(2) { e **dF, (x) - { % $e e har (e, wdr ]

<X,

Hence, from inequalities 1, 4, 5, and 3 it follows that |G1(z)'G2(z)
- G(z)| <& . Since £ > 0 and lGl(z)'Gz(z)-G(z)I < £, then from Theorem
2.10 Gl(z)'Gz(z) = G(z).

If n is an integer such that n > 2, then by mathematical induction

we can show that Gl(z)°G2(z)°...°Gn(z) = G(z).
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