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ABSTRACT 

Falls in older adults can have many lasting health and financial problems if not handled 

properly or swiftly. The WHO estimates that, on average, 35% of older adults over the age of 60 

face a fall during the year, and this number only increases with older age groups (World Health 

Organization, 2008). Addressing this critical concern, this research ventures into augmenting fall 

detection mechanisms by harnessing the capabilities of Time2Vec alongside Transformer 

models. Our goal is to aim for accurate detection of falls so that needed help can be rendered as 

soon as possible.  Drawing upon established machine learning paradigms, we performed 

extensive experiments employing transformer encoder layers on different data types and sensors.  

Time2Vec was incorporated as a vectorization layer to address the limitation of 

transformers in dealing with sequencing in the absence of a positional encoder. Examining 

various feature subsets, we established that vectorizing the x-axis of the accelerometer data using 

Time2Vec significantly enhances the stacked encoder model’s performance, creating a robust 

mechanism for fall detection. This adjustment led to an optimized model capable of efficiently 

identifying falls, thereby holding substantial promise in mitigating the adverse impacts 

associated with falls in the elderly population. Our endeavors resulted in an overall improvement 

of 12% in F1 scores, especially in larger datasets compared to previous architectures. The 

findings from this research contribute to the ongoing efforts in enhancing fall detection and 

underscore the potential of Time2Vec and Transformer models for monitoring other health 

conditions when time series data are involved. 



 

1 

 

1. INTRODUCTION 

Falls in elderly adults cause severe harm and financial burdens on both the patients and 

their families. The Centers for Disease Control (CDC) reports that falls can cause traumatic hip 

and brain injuries and even double the chance of falling again after the initial fall. These falls 

have caused $50 billion in medical costs in the US alone in 2015 (Centers for Disease Control 

and Prevention, 2023). Falls can happen anywhere at any time and can be detrimental if incidents 

are not promptly handled. This is why more research has gone into fall prevention, fall risk 

assessment, and fall detection over the years.  

Research over the past two decades has been focused on the best ways to detect and 

prevent falls from happening, especially fall detection. We see this in comprehensive review 

papers, applications in smart devices, prevention protocols (Centers for Disease Control and 

Prevention, 2023), and other places. In terms of applying fall detection, we have seen results 

from many different methodologies, including traditional machine learning like Naïve Bayes and 

support vector machines (SVMs) to deep learning methods like long-short term memory models 

(LSTM) and convolutional neural networks (CNNs).  

We have also seen many datasets used in training and testing methods, such as 

acceleration and gyroscope datasets to skeletal and images that capture falls and activities of 

daily life (ADLs). Some papers show that traditional machine learning methodologies, like 

SVMs, do well in a simulated environment (Liu & Cheng, 2012).  In recent years, fall detection 

has turned to more deep learning approaches, with Smartfall (Mauldin et al., 2018) and 

CNN+LSTM (Ordóñez & Roggen, 2016) being examples of deep learning architectures used for 

detection that have improved on results of traditional machine learning. 

Currently, work is being done to improve the capabilities of mobile fall applications. This 
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is because previous body sensors or specialized equipment methods have been noted to have 

spatial limitations, are obtrusive, and are expensive to acquire and maintain. With the 

development of phone or watch applications (RightMinder, 2017), we can use the acceleration 

and gyroscope sensors that are already within these devices, like the Apple Watch 9 (Apple, 

2023) or Pixel Watch (Google, 2022), to provide training and testing data to create deep learning 

models that can generalize better, detect falls and ADLs more efficiently, and can still be used 

with mobile hardware despite hardware limitations on these devices. Previously, Smartfall 

(Mauldin et al., 2018) was developed and trained using a smartwatch to demonstrate the 

capabilities of LSTM methods, more specifically, Gated recurrent units (GRUs) networks. 

Although GRU networks are computationally heavier than SVMs or Naïve Bayes models, they 

perform significantly better in detecting falls on a smartwatch.  

In this paper, we focus on the use of the transformer encoder model within the aspect of 

fall detection and how we can use the transformer to ingest both acceleration and gyroscopic data 

to detect falls that occur. Initially developed for natural language processing, transformers offer a 

transformative approach to analyzing sequential data. They leverage a self-attention mechanism 

for holistic data processing, capturing intricate relationships between elements without relying on 

their relative positions. Transformers play a pivotal role by enabling the practical analysis of 

time series data from accelerometers and gyroscopes. Their strength lies in modeling long-range 

dependencies within the data, which is crucial for detecting falls. 

Given that fall detection requires analysis of time-series data, which is sequential 

information in nature, it is imperative to find effective methods for managing time-series data 

without sacrificing the temporal context. One promising solution is Time2Vec (Kazemi et al., 

2019), a vectorization layer designed to enhance data readability within the primary transformer 
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architecture. Time2Vec achieves this by translating accelerometer or gyroscope data into vectors. 

What sets Time2Vec apart is its ability to enable the transformer to learn from acceleration and 

gyroscope sequences while remaining invariant to unit conversions. Importantly, Time2Vec 

excels in handling non-periodic events, making it an ideal choice for enhancing the attention 

mechanisms of the encoder layers. 

The effectiveness of Time2Vec has been demonstrated in various domains, showcasing 

its versatility and potential. For instance, it has been pivotal in accurately predicting energy 

consumption when integrated into a hybrid architecture that combines a Transformer model with 

Stationary Wavelet Transform (SWT) (Saoud et al., 2022). This combination, featuring 

Time2Vec, achieved remarkably low Root Mean Squared Error (RMSE) values compared to 

traditional LSTM models and standard transformers. Such successes underscore the 

transformative impact of Time2Vec in enhancing the understanding of sequential data patterns, a 

capability of paramount importance in fall detection. 

Within our proposed architecture, the integration of Time2Vec embeddings—a technique 

that enhances input readability and empowers transformers to extract meaningful features from 

sensor data efficiently is highlighted.  By using transformers with Time2Vec embeddings, our 

research aims to advance fall detection methodologies, offering a versatile and robust solution 

that can revolutionize the field. The main contributions of this thesis are: 

• Improving the methodologies of the transformer using Time2Vec as a vectorization 

machine to improve input readability for better results. 

• Explore different datasets to verify the performance of the transformer with Time 2Vec 

embedding. 

The remainder of this article is organized as follows: Section II provides related works to 
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provide a more thorough background on transformers, Time2Vec, and fall detection. Section III 

describes the proposed methodologies and provides the framework for experimentation. Section 

IV offers data collection, experimental parameters, and other aspects of the experiments. Section 

V provides the experimental results, and Sections VI and VII offer final thoughts and future 

directions. 
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2. RELATED WORKS 

Fall detection has witnessed extensive exploration through numerous studies, employing 

various devices, methodologies, and machine learning approaches. 

Smartfall (Mauldin et al., 2018) begins with collecting triaxial acceleration data, an 

Internet of Things (IoT) software infrastructure, a machine learning model, and a SmartFall App. 

The LSTM network, a key component of Smartfall's machine learning framework, has an input 

layer, a core LSTM layer with twenty cells, and two dense layers for output generation. This 

neural network is adept at processing sequential data, a fundamental requirement for accurate fall 

detection. A distinctive feature of Smartfall is its adoption of the sliding window approach for 

data processing of the streaming accelerometer data. This mechanism accumulates a specified 

number of data points before subjecting them to the LSTM’s prediction, ensuring contextual 

analysis that enhances fall detection accuracy.  

The Smartfall system uses a three-layer flexible software architecture that works with 

various commodity smartwatches (Microsoft Band, Huawei Watch, and TipWatch). Moreover, it 

has developed an App that can trigger alerts to carers or local emergency services when a fall is 

detected and the user needs help. The SmartFall system eliminates the need for expensive and 

cumbersome devices, such as cameras and intrusive body sensors, achieving results with just a 

phone and a smartwatch, which are pervasive and commonly used by older adults. 

The results from Smartfall's Deep Learning model showed that it outperformed 

traditional machine learning models across three datasets due to its ability to learn subtle features 

from the raw accelerometer data, which were unavailable to Naive Bayes and Support Vector 

Machine models. The fall detection model showed better accuracy in predicting falls based on 

live wrist-worn acceleration data in offline and online/real-time experiments. While LSTM 



 

6 

 

networks are the most optimal for fall detection, transformers can be used in place to shorten 

training time, recognize both short- and long-term patterns, and, in theory, scale effectively to 

large datasets.  

In “A Study of the Use of Gyroscope Measurements in Wearable Fall Detection 

Systems” (Casilari et al., 2020, p. 649), researchers delved into the realm of Fall Detection 

Systems (FDS), probing the integration of gyroscope data with Convolutional Neural Networks 

(CNN). Traditionally heralded for image analysis, CNNs, when tailored for 1D convolution, 

exhibit prowess in processing time-series data. This makes them suitable for analyzing sequences 

of gyroscope measurements over time, especially when dealing with multi-channel input from 

3D sensors like gyroscopes and accelerometers. The central aim of their paper was to gauge the 

efficacy of CNNs in discerning falls from non-fall events. By harnessing data from gyroscope 

sensors, the study accentuated the importance of angular velocity measurements in fall detection, 

owing to their capability to encapsulate rapid directional changes during falls. 

Employing a CNN architecture optimized for 1D convolution and capable of handling 

multi-channel input, the researchers trained the model using both gyroscope and accelerometer 

data, each providing three channels of input corresponding to the three spatial dimensions 

(Ordóñez & Roggen, 2016). This approach allowed for a more comprehensive analysis of motion 

patterns indicative of falls. The effort succeeded, with the CNN model attaining a 91.9% F1-

score, showcasing its accuracy in fall detection. However, the lack of Activities of Daily Living 

(ADLs) in the training phase may affect the score's representativeness. This precision outstripped 

other traditional methodologies, thus spotlighting the promise held by CNN architectures in this 

domain. Moreover, the paper shed light on the inherent advantages of CNN architectures, 

particularly their ability to automatically learn hierarchical features from raw sensor data, 
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obviating the need for manual feature extraction. While CNNs are helpful in extracting features 

from data and can process temporal information well, they also have a bias towards processing 

local points in data and learning those patterns rather than understanding the global context of 

data.  

This CNN approach showcases the fusion of modern machine learning techniques like 

CNN with precise sensor data for enhanced fall detection. It reverberates a broader narrative in 

Human Activity Recognition (HAR) and Fall Detection Systems (FDS), nudging open avenues 

for further exploration on the amalgamation of CNN algorithms and time-series sensor data to 

cultivate robust, real-time monitoring systems aimed at safeguarding the well-being of 

vulnerable populations.  

CNNs and LSTMs both have their strengths and weaknesses. CNNs are often utilized in 

scenarios where feature extraction from data is challenging, real-time processing is crucial, and 

multi-channel data is involved. In situations such as fall detection, where the length of datasets 

varies and retaining information while learning from time-based data is necessary, LSTMs are 

the ideal choice. While LSTM is optimal for fall detection, we find in research (Ordóñez & 

Roggen, 2016) that combining both LSTM and CNN networks to create architecture that takes 

advantage of their strengths and can process acceleration data effectively.  

Introduced in the reference (Ordóñez & Roggen, 2016), DeepConvLSTM presents a 

pioneering approach towards Human Activity Recognition (HAR), epitomizing the synergy 

between Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) layers. 

This fusion manifests a robust framework for nuanced activity recognition tasks, particularly 

leveraging multimodal wearable sensor data. 

At the outset, a layer of one-dimensional convolution scours through the sensor data. This 
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initial phase is instrumental in filtering anomalies or outliers while concurrently encapsulating 

crucial temporal information. The essence of this convolutional layer lies in its ability to 

automate the feature extraction process, reducing the dependency on manual, heuristic feature 

engineering, a common practice in traditional HAR approaches. 

Following the CNN layer, the processed data is passed into an LSTM network. LSTMs 

analyze the temporal dynamics of the filtered sensor data, enabling precise activity recognition. 

The LSTM network predicts the user's activity, highlighting the subtle nuances that differentiate 

one activity from another. 

The orchestrated combination of CNNs and LSTMs within the DeepConvLSTM 

framework amplifies the model's prowess in distinguishing between closely related activities. 

Upon evaluation, the DeepConvLSTM framework exhibited a remarkable performance, 

outperforming competing deep non-recurrent networks on a public activity recognition challenge 

dataset by an average of 4% and transcending some of the previously reported results by up to 

9%. This notable performance underscores the model’s efficacy in leveraging spatial and 

temporal data for accurate activity recognition. 

The novel architecture of DeepConvLSTM not only enhances the granularity of activity 

recognition but also broadens the horizons of HAR, making it more accessible. It obviates the 

need for specialized expertise in feature engineering, thereby paving the way for more intuitive, 

real-time activity recognition systems. The success of DeepConvLSTM, as delineated in 

(Ordóñez & Roggen, 2016), heralds a significant stride in harnessing deep learning for real-time, 

accurate, and robust HAR, especially in the realm of wearable technologies. 

In the narrative of neural network architectures for Human Activity Recognition (HAR), 

the work of (Katrompas et al., 2022) presents another pivotal exploration. Their study unveils a 
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harmonized meld of Long Short-Term Memory (LSTM) networks and self-attention mechanisms 

tailored for discerning human activities over time. The architecture entails an LSTM network 

trailed by a self-attention layer, a confluence aiming to dissect temporal sequences inherent in 

human activity data. The self-attention mechanism is pivotal in assigning differential 

significance to various segments of the data sequences based on their temporal relationships, 

thereby amplifying segments that resonate strongly with the memory states of the LSTM layers. 

The ability to preserve the order in time-series data, especially in the context of HAR, is 

essential. The self-attention mechanism honors this temporal order, attending to different 

segments of the sequence based on their temporal relationships. This adherence to temporal order 

enhances the LSTM's prowess in capturing long-term dependencies, a crucial facet for accurate 

human activity recognition. 

A. Katrompas et al. also used a transformer model with stacked encoders, a method 

revered for its adeptness in handling sequential data. The evaluation uses datasets like MobiAct 

and Carbon Monoxide, wherein acceleration values serve as unique sequential identifications, 

defining the sequential order of the data. This setup orchestrates an evaluative framework, 

enabling a comparative performance analysis of the LSTM-self-attention ensemble against the 

transformer model in HAR. 

Katrompas performed a comparative analysis between LSTM with self-attention and 

transformer mode, and the results articulated by the study highlight that the LSTM with self-

attention architecture accentuates performance in human activity recognition tasks, particularly 

in fall detection and other classification tasks. This revelation underscores the indispensable role 

of melding recurrence (via LSTM) with self-attention in navigating the spatial and temporal 

intricacies embedded in human activity data, thereby potentiating enhanced classification 
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accuracy. 

In our research, we are inspired to adopt the transformer model as the baseline for 

dissecting the effects of Time2Vec. The comparative insights harvested from A. Katrompas et 

al.'s endeavor serve as a valuable lens, illuminating the potential merits and challenges of diverse 

architectures in human activity recognition. This enriched narrative bolsters our comprehension 

and nurtures a more nuanced exploration of the architectural dynamics between different neural 

network architectures and time-series data, thereby fostering a more profound understanding of 

human activity recognition. 

In the domain of real-time health monitoring, the work of (Jiang et al., 2022) stands as a 

notable contribution, particularly in the context of forecasting exercise-induced fatigue using 

wearable sensors. Their framework hinges on a Transformer model, embodying the generator, 

which adheres to the conventional encoder-decoder Transformer architecture. A pivotal aspect of 

this architecture is the utilization of Time2Vec for positional encoding within the encoder. 

Time2Vec morphs time into a vector representation by employing sine and linear activation 

functions, generating linear and periodic time features. These features are fed as additional inputs 

into the encoder, enriching the temporal comprehension of the model. 

The generator is structured with three identical encoder layers, each comprising a 

spatiotemporal self-attention sub-layer and a fully connected feed-forward sub-layer, 

interspersed with residual connections and normalization layers to ensure stable and effective 

learning. This design is instrumental in capturing and scrutinizing the temporal dynamics 

inherent in wearable sensor data, laying a solid foundation for precise real-time forecasting of 

exercise-induced fatigue. 

Furthermore, an auxiliary critic network is integrated into the framework, serving as an 
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evaluative mechanism for the forecasts generated by the transformer. This critic network 

quantifies the loss between the genuine sensor signals and the signals propagated by the 

transformer, thereby providing a measure of accuracy and reliability for the forecasted fatigue 

levels. This evaluative facet is essential for ensuring the robustness and credibility of the fatigue 

forecasting model. 

The findings from Jiang et al.'s study underscore the performance of their model in real-

time fatigue recognition, showcasing an advancement over the state-of-the-art. The fusion of 

Time2Vec with the Transformer architecture, coupled with the evaluative prowess of the 

auxiliary critic network, manifests as a promising avenue for real-time fatigue forecasting. This 

endeavor illuminates the potential of melding advanced encoding schemes with transformer 

architectures for bolstering time-series analysis, particularly in real-time health monitoring and 

forecasting scenarios, thus contributing significantly to the broader discourse on enhancing 

health monitoring systems through advanced machine learning methodologies. 

(Zhang et al., 2023) pioneered a framework to adeptly manage the irregularities in 

multimodal Electronic Health Records (EHRs) from Intensive Care Units (ICUs). Their work 

spotlighted the complexities of irregular time series and clinical note sequences. A key 

component of their approach is utilizing a discretized multi-time attention (mTAND) module 

alongside Time2Vec. 

Time2Vec is employed to transform each value in a continuous list of time points into a 

vector, yielding a series of time embeddings. This method captures periodic and non-periodic 

time behaviors through sine and linear functions, providing a nuanced understanding of time 

progression within the data. 

The mTAND module operates with multiple instances of Time2Vec to produce 
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interpolation embeddings. This is orchestrated through a time attention mechanism, akin to 

multi-head attention, simultaneously embedding all time points into different dimensional hidden 

spaces. This mechanism captures various characteristics of different time points concerning the 

overall time information in different time subspaces. 

Their methods consistently outperformed state-of-the-art baselines across two medical 

prediction tasks. They reported relative improvements of 6.5%, 3.6%, and 4.3% in F1 scores for 

time series, clinical notes, and multimodal fusion scenarios, respectively. These findings 

underscore the effectiveness of their methods and the critical importance of addressing 

irregularities in multimodal EHRs for advancing medical predictions. 

In the study by (Wu et al., 2020), the researchers aimed to leverage Transformer-based 

models for forecasting the Influenza-Like Illness (ILI) rate using historical ILI data from the 

CDC. They employed a sliding window methodology to create supervised learning samples, 

facilitating their models' effective training. The performance of the models was evaluated using 

Root-mean-square errors (RMSE) to compare the actual and forecasted ILI rates. 

A significant aspect of the study was the comparative analysis between the Transformer 

model and several benchmark models, including the traditional ARIMA, LSTM, and Seq2Seq 

models. The ARIMA model, known for its efficiency in time series forecasting; the LSTM 

model, recognized for handling sequence prediction challenges; and the Seq2Seq model, a deep 

learning paradigm with an encoder-decoder architecture, were explored to provide a 

comprehensive understanding of the Transformer model's performance in this domain. 

The results revealed that the Transformer model outperformed the benchmark models in 

forecasting the ILI rate, showcasing its potential as a robust model for time series forecasting in 

the medical domain. This finding underscores the model's capacity to handle sequential data 
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effectively, providing insights into its application beyond natural language processing tasks into 

areas like healthcare analytics. 

The literature we have reviewed reveals a broadly favorable trend in employing 

Time2Vec for embedding time as a vector. Utilizing this algorithm enhances the readability and 

scale-invariance of features, thereby bolstering the effectiveness of human activity recognition. 

Nonetheless, there are certain drawbacks to be noted, which were not evident in the experiments 

utilizing Time2Vec. It is an algorithm that demands expertise for effective implementation and 

entails a higher computational resource requirement than a standard transformer.  

Building upon these findings, the subsequent sections will delve into the utilization of 

Time2Vec within the Human Activity Recognition (HAR) context, discussing the models and 

methodologies employed and proposing the integration of the transformer with Time2Vec to 

encode acceleration values, thus expanding the horizon of time series analysis and forecasting. 
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3. METHODOLOGIES 

3.1. ARCHITECTURE 

In recent years, the application of transformer models has revolutionized various fields, 

including natural language processing, image processing, language translation, and computer 

vision. Within fall detection, transformers have emerged as a powerful tool for analyzing fall 

patterns using diverse sensor data and enabling innovative approaches to address this critical 

challenge. The core of a transformer model is its fundamental components, which include self-

attention mechanisms and feedforward layers. These components form the building blocks of the 

encoder and decoder, each playing a crucial role in processing and extracting meaningful 

information from the input data. 

The self-attention mechanism is the cornerstone of a transformer’s ability to capture 

intricate relationships within data. Its basic form consists of attention heads that operate in 

parallel, allowing the model to focus on different parts of the dataset simultaneously. Each 

attention head computes attention scores by first performing matrix multiplication between query 

(Q) and key (K) vectors. The product of the query and key is then scaled using the square root of 

the key’s dimensionality (dk), and attention scores for query-key pairs are obtained by applying a 

SoftMax function. These attention scores are subsequently multiplied by the corresponding value 

(V) vectors, as seen in Equation 1. This process, executed for each head, enables the model to 

capture diverse dependencies within the data. Attention heads’ outputs are then concatenated and 

linearized, as shown in Equation 3, to create a comprehensive representation of the data. This 

multi-headed self-attention mechanism allows transformers to capture local and global patterns, 

facilitating the modeling of intricate relationships within the input data. 
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𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉)  =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉    [1] 

Following the multi-head self-attention layers, the transformer employs an add and 

normalize layer in which the output from the multi-head self-attention sub-layer is added 

elementwise to the original input of the attention layer to preserve information. Once adding 

occurs, we use layer normalization on the sum(x) by first computing the mean (μ) and standard 

deviation (σ), learning the scale (γ) and shift (β) parameters from data, adding a very small 

number to avoid dividing by zero (ϵ), and using these in Equation 2.  

𝑦 =  
𝑥− 𝜇

√𝜎2+𝜖
∗ 𝛾 + 𝛽     [2] 

Feed Forward layers that follow add and normalize consist of a linear transformation 

followed by a Rectified Linear Unit (ReLU) activation and another linear transformation. The 

purpose of this feedforward layer is to enable the model to learn complex non-linear 

relationships within the data and capture information about the relative positioning of different 

data points. This is particularly relevant in fall detection, where understanding data’s temporal 

and spatial aspects is crucial. 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑𝑥)𝑊𝑂      [3] 

𝑤ℎ𝑒𝑟𝑒 ℎ𝑒𝑎𝑑𝑥 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) 

Where the projections are matrices 𝑊𝑖
𝑄  ∈  ℝ𝑑𝑚𝑜𝑑𝑒𝑙∗𝑑𝑘 , 𝑊𝑖

𝐾  ∈  ℝ𝑑𝑚𝑜𝑑𝑒𝑙∗𝑑𝑘 , 𝑊𝑖
𝑉  ∈  ℝ𝑑𝑚𝑜𝑑𝑒𝑙∗𝑑𝑣  

Combining the multi-headed self-attention and position-wise feedforward layers forms 

the encoder’s core in a transformer model. The encoder is responsible for processing and 

encoding the input data, creating rich representations that capture essential features and 

dependencies. 

The decoder typically begins with a masked multi-headed attention layer as its first sub-

layer, allowing it to attend to different parts of the input sequence while preventing information 
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leakage from future data points. A residual connection from the encoder to the second multi-head 

attention layer enables the decoder to leverage the encoded features and attention mechanisms to 

generate meaningful outputs. The decoder then concludes with a position-wise feedforward layer 

to produce the final predictions or classifications. The entire architecture is shown in Figure 1.  

 
Figure 1. Transformer Architecture (Vaswani et al., 2017) 

Our experiments only use stacked encoders to classify if a particular data point or group 

of data points is a “fall” or “non-fall” activity. This is because encoders are used to encode data 

and pass it to a decoder, where it is re-sequenced and then can be used to predict a possible 

outcome after the sequence. However, encoders can still provide probabilities for a classification 

when a SoftMax or Linear layer is applied directly to the concatenation after stacked encoders. 

Since stacked encoders are still classified as using a transformer model, we use the terms 



 

17 

 

interchangeably.  

The focus of our research is to see how much Time2Vec affected the performance of a 

standard transformer while using it for fall detection. Time2Vec is a vectorization layer that uses 

periodic and linear functions to embed time-related features such as UNIX timestamps and 

DateTime data. Once a periodic function (Ƒ) is chosen, we use two learnable parameters (ωi , φi) 

to capture information from the time-related features over the vector of size k + 1 using Equation 

4. 

𝑡2𝑣(𝜏)[𝑖] =  {
𝜔𝑖𝜏 +  𝜑𝑖𝜏, 𝑖𝑓 𝑖 = 0 

 Ƒ(𝜔𝑖𝜏 +  𝜑𝑖𝜏), 𝑖𝑓 1 ≤ 𝑖 ≤ 𝑘
    [4] 

We use Time2Vec to produce more readable and interpretable vectors by the transformer, 

which uses sequential information to support its attention mechanism. It is also invariant to 

scaling to different units, and because of the trainable parameters, it can correct embeddings 

when more loss occurs due to the wrong embedding results. Using time2Vec vectorization 

layers, we were able to avoid feature engineering acceleration and gyroscope features that would 

otherwise create a heavier pre-processing stage. While acceleration and gyroscope data do not 

necessarily need to be embedded, these two types of sensors would not be enough to establish a 

robust model that can be generalized to any device. 

The vectors generated by Time2Vec are subsequently fed into the stacked encoders for 

examination and analysis. As illustrated by Figure 2, it is evident that the datapoint marked as a 

fall (Label 1) is more pronounced compared to the vector denoted as an ADL (Lable 0). This 
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assists the stacked encoder model in better capturing and assimilating the data. 

To ensure compatibility with the stacked encoders, we performed data trimming by 

removing surplus data points from both the beginning and end of the datasets. This trimming 

process ensured that the dataset’s length became divisible by the chosen window size. The 

architecture adopted for this research capitalizes on the Time2Vec technique, employed to 

embed x-axis acceleration values effectively. Notably, Time2Vec can also be extended to embed 

y and z-axis acceleration values if the application warrants it. These resulting embeddings serve 

as the additional input to our transformer module. 

At the core of our architecture lies the transformer module, which comprises several 

encoder layers in series. Each encoder layer processes the input data individually, with the final 

output of the encoders being concatenated together. This stacked mechanism empowers the 

model to capture increasingly intricate temporal patterns within the data. For the experiments, we 

used a varying number of encoders depending on the number of features, data points, and other 

Figure 2. Vectorization Output of Fall and ADL Data Points using Time2Vec Layer 
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factors. 

The final output of the transformer module, having concatenated the output of the stacked 

encoders, is then passed through a linear layer followed by a sigmoid activation layer. This 

architectural choice is deliberate, as it generates probabilities requisite for fall event 

classification. The sigmoid activation function ensures that the output values fall within the range 

[0, 1], with higher values indicating a greater likelihood of a fall event. The architecture is shown 

in Figure 3.  

In summary, our architecture, shown in Figure 4, seamlessly integrates Time2Vec 

embeddings, a stacked encoder module, and a sigmoid-based classification layer. This approach 

seamlessly merges transformer capabilities with specific adaptations for the nuances of fall 

detection tasks, resulting in a versatile and practical architecture. Furthermore, while our 

Figure 3. Architecture Diagram 
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architecture bears similarities to that of (Katrompas et al., 2022), we have innovatively  

incorporated Time2Vec layers and expanded its capacity to process gyroscope data, further 

enhancing its suitability for fall detection applications.  

3.2. EVALUATION 

To comprehensively evaluate the performance of our model and facilitate comparisons 

with existing research, we employed a set of five essential metrics along with a shuffled 60/20/20 

validation technique. This technique utilizes 60% of the available dataset for training, 20% of the 

dataset for training episode validation, and 20% for final testing. These metrics offer a well-

rounded perspective on architecture’s effectiveness in fall detection. 

A. BINARY CROSS ENTROPY 

Binary Cross Entropy is a fundamental metric for determining the amount of loss. They 

provide a quick and straightforward means of comparing our model’s performance with baseline 

models. However, they alone may not offer a nuanced view of the model’s capabilities. We 

describe BCE as the sum of the predicted label’s (yi) probability p(yi) of being true positive or 

true negative vs the total number of predicted labels. We refer to Equation 5 to calculate BCE 

loss.  

𝐵𝐶𝐸 =  −
1

𝑁
∑ 𝑦𝑖 ∙ 𝑙𝑜𝑔(𝑝(𝑦𝑖))𝑁

𝑖=1 + (1 − 𝑦𝑖) ∙ 𝑙𝑜𝑔(1 − 𝑝(𝑦𝑖))  [5] 

B. ACCURACY  

Accuracy is described as the total number of positive cases that are labeled as positive 

cases by the architecture, known as true positives (TP), and the negative cases that are labeled as 

Figure 4. Simplified Model Showing Stacked Encoders 
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true negatives (TN) by the architecture divided by the total number of predictions which also 

include false positives and false negatives. The mathematical equation is shown in Equation 6.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
     [6] 

C. PRECISION AND RECALL 

Precision and Recall are crucial metrics for understanding the model’s classification 

behavior. They shed light on the classifications being made and, more importantly, which 

classifications are correctly identified. These metrics are particularly valuable in fall detection 

scenarios where distinguishing between false alarms and genuine fall events is essential. 

Precision, as described in Equation 7, is the true positive rate at which the model correctly 

identifies positive cases out of all the predicted positive cases. In other words, a higher precision 

means fewer false alarms caused by the model. Recall, described by Equation 8, measures the 

rate at which positive cases are correctly identified out of all actual positive cases. This rate is 

crucial because it shows the number of true positive falls missed by the model, which can cause a 

fall to go unnoticed.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
           [7] 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
        [8] 

D. F1 SCORE 

Recognizing the inherent class imbalance in fall detection datasets, we utilized the F1 

Score, shown in Equation 9, to evaluate the binary model independently. The F1 Score balances 

Precision and Recall, making it especially relevant for imbalanced datasets. It provides a 

comprehensive measure of the model’s performance, accounting for false positives and false 

negatives. We describe the F1 Score (F1) as the harmonic mean between the precision and recall 

scores. 
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𝐹1 = 2 ×
(𝑃 ×𝑅)

(𝑃+𝑅)
     [9] 

By incorporating this diverse set of metrics, we ensured a thorough assessment of our 

architecture’s capabilities. Collectively, these metrics offer insights into the model’s 

classification accuracy, ability to identify fall events correctly, and robustness in handling 

imbalanced data distributions. This multifaceted evaluation approach allows us to gauge 

architecture’s effectiveness comprehensively and make meaningful comparisons with other 

studies in the field. 
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4. EXPERIMENTS 

4.1. DATA COLLECTION 

To facilitate proper experimentation, we selected datasets from various sources and 

mediums based on several criteria. These included the types of sensors and sensor placement, 

available features, data volume, the variety of activities of daily living (ADLs) and falls, and the 

number of available trials on ADLs and falls. 

One dataset we utilized was the MobiAct Second Release (Vavoulas et al., 2016), 

consisting of 3,200 trials collected using a Samsung S3 device with an LSM330DLC module 

capturing acceleration and gyroscope data. The device was placed in the subject's pocket, 

allowing for the simulation of falls using a smartphone's sensors positioned near the waistline. 

This dataset contains 12 unique ADLs and four different fall types, gathered from 66 subjects 

ranging from 20 to 50 years old with varying heights, weights, and genders. Due to the 

substantial size of the MobiAct dataset, we opted to work with a subset comprising four falls and 

four ADLs, which contained 767 total fall trials and 1095 total ADL trials. We list the subsets 

used and their abbreviations in Table 1 below.  

Table 1. MobiAct Subsets Used (Vavoulas et al., 2016) 

Abbreviation Activity Type Subset Description 

JUM ADL Jumping  

JOG ADL Jogging 

SDL Fall Sideways Fall while bending knees 

STU ADL Going Up the Stairs 

STN ADL Going Down the Stairs 

BSC Fall Falling backwards 

FOL Fall Falling forwards, using hands to dampen fall 

FKL Fall Falling forwards, first impact on knees 
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SisFall (Sucerquia et al., 2017) was another dataset under consideration, even though it is 

smaller than MobiAct. SisFall collected data from 38 participants, including 15 individuals over 

the age of 60. It comprises 19 ADLs and 15 fall types, with over 4,000 independent trials. The 

data was recorded from various sensors connected to a microcontroller, focusing on acceleration 

features from the MMA8451Q sensor and gyroscope features from the ITG3200 sensor.  

For experiments with smaller datasets, we turned to UniMiB SHAR (Micucci et al., 

2017). This dataset provided an opportunity to explore the impact of the Time2Vec layer on a 

transformer with a smaller dataset. The dataset featured nine different ADLs and eight unique 

fall types, and it was recorded using a Samsung Galaxy Nexus i9250 equipped with a Bosh 

BMA220 triaxial acceleration sensor. The dataset's participants are male and female, ranging 

from 19 to 75 years of age, are 1.49 meters to 1.83 meters, and weigh between 42 kilograms and 

102 kilograms.  

To check the performance of the Transformer + Time2Vec model on a smartwatch, we 

also ran experiments using data collected using a Huawei Watch 2 watch sampled at 32 Hz. 

Participants ranged from 21 to 35 years of age and weighed between 100 and 150 pounds. The 

dataset contains five unique falls – front, back, right, left, and a rotating fall. The participants 

were also requested to perform six unique ADLs. The data was trimmed to eliminate unusable or 

resting data points before and after each activity trial.  

Another watch dataset collected using MSBAND watch is also used for our experiments.  

The dataset contains four unique ADLs and four different types of falls. The subjects ranged 

from 21 to 55 years of age and were between 150 and 200 centimeters tall. Each participant was 

asked to wear the watch on their left hand while performing the ADLs and the falls. Data was 

collected at a sampling frequency of 31.25 Hz. Table 2 summarizes the data set details.
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Table 2.  Dataset Statistics 

Dataset Name Num. of ADLS 

type 

Num. of 

Fall type 

Num. of 

Subjects  

Sampling 

Frequency 

Types of 

Devices 

Device Position Environment 

MobiAct v2 4 4 66 100Hz Smartphone Left/Right Pants 

Pocket 

Lab 

SisFall 19 15 38 200Hz Smartphone Center Waist Lab 

UniMiB SHAR 9 8 30 50 Hz Smartphone Left/Right Pants 

Pocket 

Lab 

MSBand (Smartfall) 4 4 7 32 Hz Smartwatch – 

MSBand 

Left Wrist Lab 

Huawei (Smartfall) 6 5 12 32 Hz Smartwatch –

Huawei Watch 

2 

Left wrist Lab 
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4.2. DATA PREPROCESSING 

Data must be split into training, testing, and validation sequences for all experiments.  

The transformer can only read a single .csv file, so most datasets must be combined into a single 

sheet. To randomize and combine the dataset into one .csv file, we used a process that read all 

the .csv files from a directory into a list of data frames, shuffled the list, and concatenated the 

data frames together. Once combined, we used 60% training, 20% validation, and 20% testing 

split after randomizing the dataset. This approach offered a good balance between training the 

transformer, using unseen data to test the transformer, and correcting and evaluating the model at 

the end of each epoch. Figure 5 shows the process of combining and splitting the dataset into 

appropriate sets for the model. Once the data was divided into training test and validation 

subsets, we had to trim from the beginning and end of the set, shown in Figure 6, so that the 

transformer was trained based on stagnant windows of a set size. Importantly, no features were 

extracted or created during preprocessing since fall detection requires real-time processing of 

raw data and optimizing detection. 
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Figure 5. Data preprocessing from directory to training, validation, and testing sets 



 

28 

4.3. HYPOTHESIS 

Our primary objective is to use Time2Vec as a vectorizing input layer to encoders in 

series to show that vectorizing and expanding on the given acceleration data can improve 

detection accuracy. Time2Vec allows the encoders to evaluate sequence-dependent features and 

provides a way to let the model reliably embed features that are necessary to capture sequences 

within the data for us. By embedding axis acceleration values, we can expand the values into 

vectors, which the encoder will read using attention to extract meaningful information.  

Our secondary objective is to explore different datasets to understand how different sets 

of features and data volumes impact the stacked encoders' performance. This involves 

considering the inclusion of gyroscope data collected from different body regions for improved 

motion understanding. 

4.4. EXPERIMENTATION APPROACH 

Experiment 1 – Baseline versus Time2Vec: To validate the effectiveness of Time2Vec, 

we used a baseline encoder model and tested that model using a MobiAct subset of four ADLs 

Figure 6. Data Trimming Process 
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and four falls. The baseline and Time2Vec models were tested with the same hyperparameters, 

except for Time2Vec dimensions and vectorized features, across eight data subsets. We tested 

each model twice with different number of encoders on eight data subsets. The hyperparameters 

are listed in Table 4, and their definitions are listed in Table 3. 

Table 3. Parameter Definitions 

Parameter Definition  

SEQLENGTH Continuous window length that would be fed as input. For 

example, if the window size is 35, we will provide 35x3 

acceleration values for 35 classifications representing a 

single sample of data.  

NUM_ATTN_LAYERS Number of stacked encoders within the module. The first 

encoder’s output is input to the second encoder, and so on.  

TIME_2_VECT_OUT_DIM Time2Vec Output dimension. This hyperparameter will allow 

us to expand a scalar value to a vector by the specified 

amount. For example, given a single x-axis value and using 

16 as the value of the parameter, it will expand that single 

value to 1x32 

VECTOR_FEAT 

 

 

The feature to expand. Each feature has an index depending 

on the data. For most datasets, x-axis values are on the 0 

index, the y-axis on the one index, and the z-axis on the two 

index. 

NUM_HEADS Number of attention heads within each encoder. This will 

split the data from each window into the parameters specified 

number of chunks processed per pass. For example, if the 

parameter equals eight, an encoder can simultaneously 

process eight chunks.  

HEAD_SIZE Number of rows to be processed per head.  

DROPOUT Percentage of attention scores to drop out during the current 

training epoch. Attention scores are calculated based on the 

query key and value matrix multiplication. Some of these 

scores will then be randomly set to zero in the following 

training episode to help generalize the architecture. 
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Table 4. Experiment 1 Parameters 

Experiment 2 – Axis Vectorizations: As the x-axis values can be effectively vectorized 

using Time2Vec, we can extend our investigation to include the vectorization of the y and z-axes 

or even explore combinations of all three axes. This approach will assist us in identifying the 

most suitable axis for vectorization. Leveraging the fall subsets from MobiAct v2, we can 

conduct experiments involving the Time2Vec input layer and fine-tune it to enhance the 

transformer’s performance. We use the parameters in Table 5 to run the experiment.  

Table 5. Experiment 2 Training Parameters using MobiAct v2 

As mentioned before, within the VECTOR_FEAT parameter definition, we can use this 

parameter to change which axis within the acceleration data is vectorized by the Time2Vec layer.  

Experiment 3 – Acceleration Data versus Acceleration Plus Gyroscope Data: Further 

experimentation involved using acceleration and gyroscope features together, with the number of 

encoder layers maintained at three. Using the MobiAct v2 data set, we preprocessed the data 

with the gyroscope data included and used the parameters in Table 6 to test. 

Parameters Parameters for Baseline Parameters for Time2Vec 

SEQLENGTH 100 100 

NUM_ATTN_LAYERS 2 (MobiAct testing with two 

encoders) 

2 (MobiAct testing with 

two encoders) 

3 (MobiAct testing with three 

encoders) 

3 (MobiAct testing with 

three encoders) 

TIME_2_VECT_OUT_DIM (N/A) 64 

VECTOR_FEAT (N/A) 0 

NUM_HEADS 4 4 

HEAD_SIZE 128 128 

DROPOUT .05 .05 

Parameters x-axis  y-axis z-axis x, y x, z y, z x, y, z 

SEQLENGTH 100 100 100 100 100 100 100 

NUM_ATTN_LAYERS 3 3 3 3 3 3 3 

TIME_2_VECT_OUT_DIM 64 64 64 64 64 64 64 

VECTOR_FEAT 0 1 2 0,1 1,2 0,2 0,1,2 

NUM_HEADS 4 4 4 4 4 4 4 

DROPOUT .25 .25 .25 .25 .25 .25 .25 
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Table 6. Experiment 3 Training Parameters using MobiAct v2 

Experiment 4 – Model Performance using Other Datasets: To validate and 

corroborate the findings obtained in MobiAct v2, it became necessary to conduct testing on 

additional datasets. Utilizing larger datasets such as SisFall (Sucerquia et al., 2017) allows us to 

assess whether the model encounters challenges when dealing with more evenly distributed 

datasets or when handling diverse types of falls not present in MobiAct. Since SisFall represents 

falls and ADL events differently and boasts a substantial dataset size, replicating the experiments 

from MobiAct v2 using identical parameters is expected to yield valuable insights. We test using 

parameters comparable to those used in MobiAct, as listed in Table 7. 

Table 7. Training Parameters for SisFall Testing 

 Utilizing the UniMiB SHAR dataset (Micucci et al., 2017), which comprises a limited 

number of data points related to smartphone activities, we can gain insights into how Time2Vec 

performs under conditions with insufficient data to train and test transformer models. However, 

despite its limited size, we can still leverage this dataset to understand how Time2Vec behaves in 

such scenarios. The parameters used for UniMiB testing are in Table 8. 

 

 

Parameters for MobiAct v2 Acceleration Only  Acceleration + Gyroscope  

SEQLENGTH 100 100 

NUM_ATTN_LAYERS 3 3 

TIME_2_VECT_OUT_DIM 64 64 

VECTOR_FEAT 0 0 

NUM_HEADS 4 4 

DROPOUT .25 .25 

Parameters for SisFall Baseline Time2Vec 

SEQLENGTH 100 100 

NUM_ATTN_LAYERS 3 3 

TIME_2_VECT_OUT_DIM N/A 64 

VECTOR_FEAT N/A 0 

NUM_HEADS 4 4 

DROPOUT .25 .25 
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Table 8. Training Parameters for UniMiB 

Experiment 5 – Model Performance using Smartwatch Data: During smartwatch 

training, we reduced the amount of DROPOUT to .05 since both Smartfall datasets were smaller 

than the other datasets acquired. All the hyperparameters for the acceleration testing are in Table 

9. 

Table 9. Training Parameters for SmartFall Datasets 

Various other considerations, including using 1D convolutional layers, activation 

functions, optimizers, and feedforward dimensions, remained consistent across baseline and 

Time2Vec models. The final output layers followed the same structure in both architectures, 

consisting of a single Dense layer with a sigmoid activation function.  

The architectures were built using TensorFlow (v2.12) as the neural network open-source 

library and Python (v3.11) as the scripting language. After building the architecture, we trained 

the transformer for 100 training episodes or epochs, but the script was allowed to stop early if the 

model did not see any improvement after 20 epochs. Once testing was done, we compared the 

results and analyzed them to conclude. 

 

 

Parameters for UniMiB  Baseline  Time2Vec 

SEQLENGTH 100 100 

NUM_ATTN_LAYERS 3 3 

TIME_2_VECT_OUT_DIM N/A 64 

VECTOR_FEAT N/A 0 

NUM_HEADS 4 4 

DROPOUT .05 .05 

Parameters for Smartwatch Sets Baseline 

(Huawei) 

Time2Vec 

(Huawei) 

Baseline 

(MSBand) 

Time2Vec 

(MSBand) 

SEQLENGTH 100 100 100 100 

NUM_ATTN_LAYERS 2 2 3 3 

TIME_2_VECT_OUT_DIM N/A 64 N/A 64 

VECTOR_FEAT N/A 0 N/A 0 

NUM_HEADS 4 4 4 4 

DROPOUT .05 .05 .05 .05 
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5. RESULTS 

In this section, we present the results of all the experiments conducted to demonstrate the value 

of Time2Vec and the use of gyroscope data. We use MobiAct to illustrate the model’s 

capabilities on a large dataset collected using a mobile phone. On the other end of the spectrum, 

we use Smartfall’s datasets to demonstrate the model’s capabilities on smaller-scale datasets 

from smartwatches.  

5.1. BASELINE VERSUS TIME2VEC – ACCELERATION ONLY 

In this initial experiment, we aimed to evaluate the comparative performance of the 

baseline model and the Time2Vec model using the MobiAct v2 datasets. It is essential to note 

that higher values for accuracy, precision, F1 Score, and Recall indicate superior performance, 

while lower loss values are considered desirable. The results of running MobiAct v2 with the 

baseline and Time2Vec models are summarized in Table 10. Table 10 reveals significant 

improvements in loss and recall metrics for the Time2Vec model compared to the baseline 

model. Notably, loss has decreased by approximately 10%, and recall has increased by over 

15%.  
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Table 10. All MobiAct v2 Subsets – Time2Vec versus Baseline using two encoders 

  Baseline Model (2 Encoders) Time2Vect (2 Encoders) 

  Binary 

Loss 

Accuracy Precision Recall  F1-Score Binary 

Loss 

Accuracy Precision Recall  F1-Score 

JOG 0.034 0.988 0.992 0.996 0.994 0.029 0.988 0.994 0.993 0.994 

JUM 0.022 0.991 0.997 0.993 0.995 0.015 0.993 0.998 0.995 0.996 

FOL 0.329 0.839 0.690 0.377 0.488 0.169 0.932 0.825 0.842 0.834 

FKL 0.256 0.895 0.911 0.610 0.730 0.133 0.952 0.906 0.888 0.897 

BSC 0.383 0.838 0.970 0.470 0.633 0.187 0.926 0.940 0.803 0.866 

STU 0.213 0.929 0.962 0.947 0.954 0.169 0.939 0.981 0.941 0.960 

STN 0.306 0.848 0.976 0.808 0.884 0.243 0.883 0.990 0.846 0.912 

SDL 0.357 0.868 0.801 0.624 0.701 0.169 0.945 0.897 0.877 0.887 

Average 0.238 0.899 0.912 0.728 0.797 0.139 0.945 0.941 0.898 0.918 
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Table 11. All MobiAct v2 Subsets – Time2Vec versus Baseline using three encoders 

  Baseline Model (3 Encoders) Time2Vect (3 Encoders) 

  Binary 

Loss 

Accuracy Precision Recall  F1-Score Binary 

Loss 

Accuracy Precision Recall  F1-Score 

JOG 0.045 0.981 0.982 0.999 0.991 0.026 0.990 0.996 0.994 0.995 

JUM 0.022 0.991 0.996 0.995 0.995 0.013 0.994 0.999 0.995 0.997 

FOL 0.388 0.836 0.781 0.268 0.399 0.162 0.834 0.893 0.813 0.851 

FKL 0.232 0.902 0.903 0.649 0.755 0.141 0.948 0.948 0.821 0.880 

BSC 0.333 0.869 0.929 0.604 0.732 0.196 0.922 0.944 0.785 0.857 

STU 0.195 0.925 0.950 0.954 0.952 0.156 0.942 0.965 0.961 0.963 

STN 0.345 0.833 0.963 0.798 0.872 0.161 0.930 0.982 0.920 0.950 

SDL 0.364 0.859 0.894 0.488 0.631 0.172 0.942 0.892 0.872 0.882 

Average 0.240 0.899 0.925 0.719 0.791 0.128 0.938 0.952 0.895 0.922 
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However, it is worth mentioning that transitioning from a 2-encoder-layer model to one 

with three encoder layers had a minor impact on performance metrics, as seen in Table 11. 

Although recall demonstrated significant improvement, precision increased only by 

approximately 3%. This balance suggests that a 2-encoder-layer model performed optimally 

while achieving high precision, which is especially crucial in handling imbalanced datasets. 

Figures 7 and 8 show the loss trends over epoch training episodes for the baseline and Time2Vec 

models using two encoder layers. 

It is important to note that our research focuses on fall detection and explores the 

recognition of Activities of Daily Living (ADLs). The results of including ADLs in our overall 

analysis demonstrate that Time2Vec does not hinder overall performance. Moreover, the model 

remains robust and unaffected when handling a combination of ADLs and falls according to 

average F1 Scores in Tables 9 and 10.  

The outcomes observed in the MobiAct experiments demonstrate that Time2Vec 

contributes to enhanced fall detection performance and an overall improvement in model 

performance. Nevertheless, the evaluations conducted on the SisFall and UniMiB datasets 

highlight the model's distinct capabilities in diverse contexts. 

Figure 8. Loss over Epochs for Time2Vec Figure 7. Loss over Epochs for Baseline 
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5.2. AXIS VECTORIZATION  

Time2Vec’s approach to converting scalar values into vector representations through 

periodic wave transformations holds promise for fall detection applications. This vectorization 

process can be applied to any of the three-axis acceleration values (and gyroscope values if they 

are part of the features). This significantly enhances the model’s ability to interpret input data. 

Depending on the specific problem, we have the flexibility to vectorize the x-axis, y-axis, 

z-axis, or even combinations thereof. This allows us to gain a more comprehensive 

understanding of the dataset. We employed the VECTOR_FEAT index to vectorize a specific 

axis in our experiments. We conducted tests to determine the optimal single axis for 

vectorization or assess the potential benefits of combining multiple axes. Table 12 represents the 

overall testing average using MobiAct v2 Falls subsets. 

Table 12. Results for Axis Vectorization on MobiAct v2 Fall only Subsets 

MobiAct v2 Fall Subsets Loss Accuracy Precision Recall F1 Score 

Time2Vec – x-axis .184 .935 .938 .829 .880 

Time2Vec – y-axis .195 .928 .946 .795 .864 

Time2Vec – z-axis .321 .863 .951 .551 .698 

Time2Vec – x-axis, y-axis .206 .916 .967 .734 .834 

Time2Vec – x-axis, z-axis .264 .903 .921 .727 .813 

Time2Vec – y-axis, z-axis .192 .930 .974 .777 .865 

Time2Vec – x, y and z .218 .919 .977 .724 .832 
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The findings indicate that prioritizing the vectorization of the x-axis yields favorable 

results in terms of the F1 Score when considered within the model. Nevertheless, it is noteworthy 

that combining all three axes results in the highest precision while also leading to a slightly lower 

recall. For a better visualization of the results, we plotted the result using Figure 9.  

We have focused on vectorizing the x-axis for the subsequent experiments to ensure a 

well-balanced input data representation. For reference, Figures 10 through 13 depict the training 

results across epochs. These visual representations illustrate precision, recall, accuracy, and loss, 

providing a clear basis for direct comparisons between the vectorizations of different axes. 

 

 

Figure 9. Summary of Vectorization Results using MobiAct v2 
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5.3. ACCELERATION VERSUS ACCELERATION PLUS GYROSCOPE 

In this experiment, we sought to compare two subsets of the MobiAct dataset: one with 

acceleration data alone (previously used for baseline comparison) and another with the addition 

of gyroscope features. Performance metrics for these two subsets are presented in Table 13.  

Table 13. Acceleration versus Acceleration plus Gyroscope using MobiAct Fall Subsets only 

Average Fall Performance Loss  Accuracy Precision Recall F1 Score 

Time2Vec Acc. Only .168 .911 .919 .823 .867 

Time2Vec Acc + Gyro .153 .941 .914 .830 .870 

The results highlight that while adding gyroscope data led to a marginal performance 

enhancement, it simultaneously increased the model's complexity. This complexity is primarily 

due to the inclusion of three gyroscope features, which results in additional matrix 

Figure 11. Accuracy over Epochs for X-Axis 

Vectorization 

Figure 12. Precision over Epochs for X-Axis 

Vectorization 

Figure 10. Loss over Epochs for X-Axis Vectorization 

Figure 13. Recall over Epochs for X-Axis Vectorization 



 

40 

multiplications and neuronal connections. This prompts us to consider the trade-off between 

performance, generality, and efficiency. The data suggests that acceleration features, when 

subject to fine-tuning, often deliver strong results, emphasizing the potential of these features. 

5.4. MODEL PERFORMANCE USING OTHER DATASETS 

SisFall(Sucerquia et al., 2017), being a larger dataset and featuring a more balanced 

distribution compared to MobiAct v2 (Vavoulas et al., 2016), provides valuable insights into the 

model's adaptability within an atypical fall detection dataset. Fall detection datasets exhibit an 

imbalance due to the infrequent occurrence of falls in real-world scenarios. 

On the other hand, UniMiB, characterized by its limited dataset size, offers a unique 

opportunity to assess the transformer's capacity to learn effectively when confronted with limited 

data. This analysis sheds light on the model's performance under data-scarce conditions. The 

results for both experiments are shown in Tables 14 and 15: 

Table 14. Results for SisFall Testing 

SisFall Average Performance Loss Accuracy Precision Recall F1 Score 

Baseline – 3 Encoders .504 .800 .768 .556 .645 

Time2Vec – 3 Encoders .457 .811 .818 .542 .652 

 

Table 15. Results for UniMiB SHAR Testing 

UniMiB Average Performance Loss Accuracy Precision Recall F1 Score 

Baseline – 3 Encoders .571 .701 .710 .821 .762 

Time2Vec – 3 Encoders .501 .787 .836 .787 .811 

In our evaluation of both datasets, when comparing the results with Time2Vec to the 

baseline results without Time2Vec, we observe a modest but notable improvement in the F1-

Score. This improvement is evident in both the SisFall dataset and the UniMiB dataset. 

The enhancement in the F1-Score for both SisFall and UniMiB datasets primarily stems 

from increased precision measurements. This signifies that the model's ability to identify true 

positive cases or falls correctly has been notably strengthened with the incorporation of 
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Time2Vec. 

5.5. MODEL PERFORMANCE USING SMARTWATCH DATA 

The final experiment involved training and testing using the Huawei and MSBAND 

datasets from Smartfall, using the baseline and Time2Vec models with two encoder layers. The 

results of this experiment are summarized in Table 16. 

Table 16. Overall Performance Time2Vec versus Baseline using Huawei Dataset 

Smartfall Huawei  Loss  Accuracy Precision Recall F1 Score 

Baseline – 2 Encoders .599 .667 .868 .406 .553 

Time2Vec – 2 Encoders .568 .731 .832 .590 .690 

As observed earlier, the Time2Vec model led to significant improvements in loss and 

recall. Additionally, the model's accuracy increased by approximately 6%. While the overall 

performance in this experiment was not optimal, it is evident in both Tables 16 and 17 that 

Time2Vec equipped the model with a better understanding of its limited data, demonstrating its 

value as an input layer, especially in scenarios involving smaller datasets. Due to the limited data 

presented to the models, we can observe some overfitting in Figures 14 through 17, especially in 

the Time2Vec models. 

Table 17. Overall Performance using MSBand 

 Smartfall MSBand  Loss  Accuracy Precision Recall F1 Score 

Baseline – 3 Encoders .300 .872 .705 .185 .197 

Time2Vec – 3 Encoders .281 .896 .664 .472 .365 
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The trends observed in the Huawei dataset are like the ones in the MSBand dataset, 

which, being considerably smaller, is not well-suited for transformer models. Despite achieving 

notable enhancements in recall and loss reduction, it is worth noting that over half of the 

predictions made in this context were erroneously categorized as ADL cases. We summarize the 

smartwatch results in Figure 18. 

  

Figure 14. Loss over Epochs for Baseline testing using 

Huawei 

Figure 15. Loss over Epochs for Time2Vec testing using 

Huawei 

Figure 16. Loss over Epochs for Baseline using 

MSBand 
Figure 17. Loss over Epochs for Time2Vec Using 

MSBand 
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Figure 18. Summary of all Smartwatch Testing 
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6. CONCLUSION  

The exploration of Time2Vec within this study under the context of fall detection has led 

to valuable insights. The study's primary objective was to explore Time2Vec’s efficacy using 

stacked encoder models and comparing models trained with Tim2Vec to see how it improves the 

stacked encoder model’s performance. The first step to gaining insight into this objective was to 

tune the model correctly to take full advantage of the available data while training the model.  

Once we experimented with various combinations of axes as input for Time2Vec, we 

could derive the suitable Time2Vec model and the baseline model and compare the two. Settling 

on the x-axis for vectorization, based on the F1 scores, we were able to correctly predict more 

positive fall cases, achieve a low loss result, and show more than a 10% increase in recall over 

the previous fall detection transformer models.  

Tests were conducted across a spectrum of datasets and different sets of features to 

deduce reliable outcomes. For instance, the SisFall dataset, comparable in size to MobiAct v2, 

was used to verify the impact of Time2Vec on fall detection accuracy. We see a marginal 

improvement using Time2Vec within the same models, about 1% to 5% improvement in all the 

metrics. Furthermore, UniMiB, a smaller dataset, also reflected improvement compared to the 

baseline encoder model of approximately 5% according to tested F1 scores. Depending on the 

situation, we can see that both precision and recall are affected by applying Time2Vec, but 

overall, we see an improvement in F1 Scores and a minimization of loss.  

We anticipated that the model would be more effective when classifying falls within the 

MobiAct v2 subsets by adding gyroscope features to the dataset for the model to learn from 

angular motion. During testing, results indicated an increase in training times and an increase in 

performance. However, the insights also revealed that over-complicating the model is not 
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beneficial. Adding the gyroscope data improved results by 5% or less across most metrics while 

observing a decrease in recall. The additional features caused the model training times to 

increase by 5 seconds for each epoch episode. For reference, a model can be trained for 

anywhere between 20 to 100 epochs, so we added a maximum of 500 seconds by adding more 

features to analyze. We concluded that adding more features would not merit the extra 

computational complexity.  

We have already seen results from a multitude of smartphone datasets mentioned above. 

However, ultimately, the model should run on a smartwatch. The datasets from Huawei and 

MSBand smartwatches are used to train watch models. These two datasets are much smaller than 

MobiActV2 and SisFall.  

The limited data restricts the models' capabilities and shows the weakness of 

transformers: the quantity of data required to train these models appropriately.  Using the 

datasets representing smartwatch devices, we tested the baseline against the Time2Vec model 

and gained a considerable advantage in recall measurements. Conclusively speaking, Time2Vec 

has also improved the performance of a watch-based mode. 

The conclusion from these findings is the affirmation of Time2Vec's role in fall detection 

when synergized with stacked encoder transformers. The algorithm has significantly elevated the 

interpretability and enabled transformer models to accentuate crucial events like falls. However, 

it is imperative to acknowledge that the magnitude of improvements exhibited a variance across 

different mediums and datasets. 
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7. FUTURE WORKS 

While we explored Time2Vec while classifying falls, we believe that further experiments 

and research can be done. One of the aspects mentioned in the Time2Vec literature is that the 

algorithm is model agnostic, which can enhance the performance of any architecture when 

applied correctly (Kazemi et al., 2019). The research was conducted primarily on transformer 

encoders in series because these models take advantage of abundant available data and the 

generally unique approach to learning self-attention.  However, different architectures can take 

advantage of smaller datasets and window sizes because they perform analysis locally rather than 

simultaneously looking at the entire window. Time2Vec allows any model to read focus points 

and discern between fall and ADL events while still allowing them to analyze the data in much 

smaller window sizes, making the model more efficient.  

The central aspect of the research was to study the use of Time2Vec with the transformer 

model to improve how the transformer reads the input data. However, modifying the transformer 

to use either a sliding window or a hybrid form of attention mechanisms like local analysis plus a 

sliding window (Beltagy et al., 2020) can be studied to determine the best architecture. This will 

help the transformer create relationships between windows to better analyze the input. We can 

vectorize continuous data frames instead of individual timesteps to study Time2Vec further. This 

advantage will allow the transformer to see a broader picture of the data. 

Our last direction is the use of the model on smartwatch data. We have certainly 

improved the performance of the transformer trained on smartwatch datasets. However, the 

scarcity of this type of data is a disadvantage to the transformer model. The intention in the 

future is to collect more data of this type to get a model capable of effectively classifying a fall 

and to test the generated model using the SmartFall App for real-world tests. 
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