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ABSTRACT

POWER DOMINATION ON PERMUTATION GRAPHS

by

Samuel Nathan Wilson, BA.

Texas State University-San Marcos 

May 2013

SUPERVISING PROFESSOR: DANIELA FERRERO 

For the purposes of monitoring power networks, power companies use devices 

known as phase measurement units (PMUs); these monitor the waveform of the various 

nodes in a network. The cost of these units makes it worthwhile to minimize the number 

required. When a power network is modeled by a graph, the question of precisely how 

many are necessary to observe a given network, and of where they should be placed, is 

known as the power domination problem. We will consider this problem as it relates to 

permutation graphs on cycles, and suggest upper bounds for the power domination 

numbers on such graphs.
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I. INTRODUCTION

In order to maintain effective and efficient service, it is necessary for power 

companies to monitor their power networks so as to react to changing conditions in usage 

and availability. Without real-time data, networks must be given settings that err on the 

side of caution, and which are therefore inefficient; otherwise, momentary spikes and 

shifts could cause major problems. As such, many power companies make use of devices 

known as phase measurement units -  PMUs -  to provide real-time analysis of their power 

networks. Whereas older solutions could only poll a network infrequently, and took 

several seconds to do so, PMUs can collect data continuously and simultaneously, 

allowing networks to react to short-lived phenomena as they appear.

However, these PMUs were and are prohibitively expensive, and it is both 

inefficient and unnecessary to install one on every bus in a network. Instead, by making 

use of a PMU’s ability to monitor not only the waveform of its own bus, but of all lines 

connected to that bus, and applying Kirchhoff’s law (which states that the sum of the 

currents entering a node is equivalent to the sum of the currents leaving) to calculate 

others, an entire network may be monitored by only a handful of units. This has given rise 

to the graph theoretic problem of power domination: how many PMUs are needed to 

observe every node in a given network, and where should they be placed? In this thesis we 

will consider the power domination problem as it pertains to permutation graphs on cycles.
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II. DEFINITIONS

The graphs we consider in this thesis are connected, simple graphs -  i.e. those 

which have only a single component, are undirected, and contain no loops. We call the set 

of neighbors of S the open neighborhood of S, N{S), and N(S) !J S the dosed 

neighborhood of S, N[S].

Given a simple graph G =  (F, E) and S C F(G), we say that S dominates each 

vertex in Ag[S]; i.e. a vertex v 6 F(G) is dominated if it lies in S, or is adjacent to some 

vertex in S. We say that S is a dominating set for G if S dominates every vertex in G, and 

thus F(G) =  Wg[S]. The domination number y(G) is the minimal cardinality amongst 

subsets with this property.

As an extension of domination, we can consider the vertices observed by S:

• Any vertex in S is observed.

• Any vertex adjacent to S is observed.

• If a vertex v with deg(y) > 1 is observed, and all but one of the vertices adjacent to 

v are also observed, then the remaining vertex adjacent to v becomes observed. This 

rule is applied until no such vertex v exists.

In Figure 1, the two vertices marked with diamonds represet the set S; we can 

immediately say that they observe themselves as well as their neighbors. Then the vertex
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a is observed, and has three neighbors, two of which are observed. Thus, a observes b. 

However, c remains unobserved, as its only neighbor, d, fails to meet the criteria of the 

propagation rule (it has two unobserved neighbors).

3

Figure 1: Power domination

Following the same pattern used for domination, we say that S is a power 

dominating set (PDS) for G, or simply that S observes G, if it observes every vertex in 

V(G), and the power domination number yP(G) is the minimal cardinality among power 

dominating sets for G. The question, called the power dominating set (PDS) problem, of 

whether a given graph has a power dominating set of size k  has been shown to be 

NP-complete, even on certain classes of graphs, such as split and bipartite graphs; 

however, linear-time algorithms exist for finding minimal PDSs of several specific types 

of graphs.

This thesis focuses on a class of graphs known as permutation graphs; some 

examples of this class are shown in Figure 2. Given a graph G and a permutation 

/ :  F(G) —> V(G), the permutation graph o f/on  G, written P(G,f), is constructed by 

taking two copies, Gi and G2, of G, and then adding an edge from each vertex u in Gi to
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its image/(m) in G2.

In other words, P{G,f) =  Gj (J G2 1J {(«, v) | u € Gi, v 6 G2, and J[u) — v}. 

The graph G is called the underlying graph of P(G,f).

Figure 2: Permutation graphs: P(Kyi, id) and P(C$, (1 2)(3 4)(5 6)(7 8))

In particular, we will consider permutation graphs whose underlying graphs are 

cycles; these have the form P(C„,f),f € S„, where n > 3. This type of graph is notable in 

that each such graph is cubic: each vertex u is adjacent only to the two vertices adjacent to 

it in its cycle and to the single vertex/(w). In the context of the power domination 

problem, any vertex of degree 1 or 2 is effectively “unnecessary” in the sense that no 

PMU need ever be placed there so long as a vertex of degree three or higher exists in the 

same connected component; thus, cubic graphs are of particular interest. The generalized 

Petersen graphs are a subset of permutation graphs on cycles; for example, the original 

Petersen graph G(5,2) is isomorphic to the permutation graph P(C5, (1 3 5 2 4)).



ffl. LITERARY REVIEW

The first prototypes of PMUs were constructed in the 1970s at Virginia Tech, and 

production models began to appear in the mid-1980s. They were constructed to solve a 

serious flaw in the power systems of the day: individual nodes in the network can alter 

their voltages to fit a given voltage profile, but without accurate real-time data on the state 

of the network, it is difficult to set a profile which is both safe and efficient. Existing 

systems only checked the status of the network every few minutes, and it took several 

seconds for data from all the nodes to be recorded. This level of precision proved 

insufficient to set the profile in real-time, so instead the optimal settings were generally 

calculated ahead of time and then fixed. Engineers were thus forced to trade efficiency for 

stability, as the system was unable to react to short-term changes and voltage spikes (Mili 

etal., 1990).

Power domination as a graph theoretic problem seems to have been first 

considered by Mili, Baldwin, and Adapa in a 1990 paper titled Phasor Measurement 

Placement for Voltage Stability Analysis o f Power Systems. At this point in time, 

monitoring schemes involving PMUs were already in place in several locations, notably 

France and Italy. Mili et al. (1990) note that the problem of where to place them had 

already been considered by several previous authors, and describe solutions created by 

Begovic and Phadke, Schleuter, and Ilic, all based around the idea of dividing the network 

into “coherent regions.” These would be areas whose nodes had similar reactions to 

changes in the state of the system, and which could therefore be effectively monitored 

simply by assigning to each region a single PMU. The various approaches differ primarily
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on how to define the coherent regions of a network, and which point within each region 

should have a PMU (Mili et al., 1990).

This design suffers from a few flaws, however. Most importantly, it assumes that 

coherent regions can be found, and that they are large enough that the scheme is efficient; 

in reality, regions can be veiy small and are not necessarily stable over time. Also, the 

given definitions of coherency require only that nodes in a certain region have similar 

phase angles -  they can differ substantially in magnitude, which poses problems in 

constructing the voltage profile (Mili et al., 1990).

The alternative to this approach is to install PMUs on various nodes in the network 

such that every edge’s current is either directly observed by some PMU, or can be 

accurately calculated. Mili et al. (1990) give two rules used to determine which parts of 

the network are monitored by a set of PMUs:

• Assign a current phasor measurement to all the branches incident to a bus provided 

with a PMU,

• Assign a calculated current phasor to any branch connecting two buses with known 

voltages.

Power networks are usually modeled by graphs where the generators, substations, 

and consumers are represented as vertices, and the power lines as edges (Jenelius, E., 

2004). Note that, in this context, finding a minimal set of locations where PMUs should 

be placed in order to monitor the entire network according to the two above rules is, in 

fact, the standard domination problem; without the use of Kirchhoff’s law, observation 

does not spread beyond the closed neighborhoods of the PMUs. Also interesting is the
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fact that this early definition focuses on observation of the edges of the graph, rather than 

the vertices; Brueni and Heath (2005) showed that the more modem vertex-based 

definition is equivalent and edges can thus be ignored.

The solution given to this problem by Mili et al. (1990) is an algorithm which finds 

a minimal dominating tree:

1. Place a PMU at an arbitrarily chosen root node;

2. Expand the tree by placing a PMU on a node which (a) is adjacent to a node which 

already has a PMU, and (b) has the greatest number of unobserved neighbors;

3. Repeat until the whole graph is observed (note that the nodes with PMUs form a 

tree);

4. Try to improve this solution by a binary search approach: take the first f  of the m 

nodes in your solution, reallocate them using a probabilistic process called 

simulated annealing, then repeat with j  or ^  nodes as appropriate and so on.

Power domination diverged from standard graph domination, and thus reached its 

present form, with the application of Kirchhoff’s law to the process. Kirchhoff’s first law 

states that, at any given node, the sum of the incoming currents is equal to the sum of the 

outgoing currents; when we know the currents of all but one of the edges incident to a 

given node, and the total current at the node itself, this law gives us immediately the 

current on the one remaining edge. Thus we have the third rule given in the standard 

power domination problem, sometimes referred to as the “propagation rule”:

Whenever there exists an observed node v such that deg(v) > 1, and all but one of



the nodes adjacent to v are observed, the remaining node adjacent to v becomes 

observed.

8

This allows PMUs to observe nodes at arbitrarily long distances under the right 

conditions, and gives rise to the power dominating set problem (Baldwin et al., 1993).

Kirchhoff’s law is first referenced with regards to PMU placement in 1993, by 

Baldwin et al. Where Mili et al. (1990) place the PMUs in such a way as to form a 

spanning tree, Baldwin et al. (1993) note that we do not need this restriction, and can use 

any arbitrary subset; they present a modification of the earlier algorithm which simply 

chooses at each step the node with the largest number of unobserved neighbors, regardless 

of its position in the graph. Several statistics about the problem are given as well, such as 

the fact that the power domination number of a graph is generally between %20 and %30 

of the graph’s size, as shown by several test cases on real-world networks. More 

applicable to graph theory is the conjecture that, for any graph G, yp(G) <

(Baldwin et al., 1993). This bound is supported by a worst-case example, shown in Figure 

3; as the size of the graph grows, the power domination number approaches

V(G)+E(G)/2
3

— O — O — o — Q — o -

Ô Ô Ô Ô Ô

Figure 3: A graph illustrating the worst case for power domination

Over the next decade, power domination came to be studied more and more from a 

graph theoretical perspective. One of the landmark papers in the development of the
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problem is Domination in Graphs Applied to Electric Power Networks (Haynes et al., 

2002), a paper which provides the groundwork for much of the work that has been done 

since. Among other results, it provides a number of basic, and highly useful, facts about 

power domination numbers (PDNs):

• Any dominating set is also a power dominating set, and thus, for any graph G,

1 < y,(G) < y(G).

• If G is complete, a path, a cycle, or bipartite with one of the partitions containing 

only two vertices, then yP(G) = 1.

• There exist graphs for which y(G) =  yP(G) (e. g. the corona (P„ o Kn)), as well as 

graphs where y(G) — yp(G) is arbitrarily large: as above, any path Pn has a PDN of 

exactly 1, but domination number [ .  Further, there is no forbidden subgraph for 

graphs which have y(G) — yP(G).

• For any graph with at least one node of degree 3 or higher, there must exist a 

minimal PDS S such that deg(s) > 3 for all s € S; essentially, having any node of 

degree two or less in a PDS is pointless, as any such node can always be dominated 

by a node of degree 3 or higher. Conversely, nodes of low degree are extremely 

important to the problem as a whole; subdividing a single edge is often enough to 

change the PDN of a graph significantly.

Further, it is shown that the power domination problem -  specifically, the question 

of whether a given graph has a PDS of a given size -  is NP-complete. This is done by 

converting it into the famous NP-complete problem 3 SAT, which involves finding a truth 

assignment which satisfies a number of clauses. This result was later clarified and 

expanded by several other papers; one noted that the original proof was flawed, and
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constructed a new proof based on split graphs (Liao and Lee, 2005), while another 

provided an improved algorithm for finding power dominating sets on trees (Guo et al., 

2005). Kneis et al. described the problem in terms of “parametrized complexity,” showing 

that it is at least W[2] hard, but is definitely within W[P\. They note, however, that this is 

still not very exact: the same result is true of standard domination (Kneis et al., 2006).

Haynes et al. (2002) also began the process of finding bounds on the PDN of 

various classes of graph, specifically by considering trees. The PDN of a tree is 1 if and 

only if the tree is a spider, and in fact any tree has PDN precisely equal to its spider 

number (Haynes et al., 2002). A linear time algorithm for finding a minimal PDS on a tree 

is given; this was expanded to cover graphs of finite treewidth by Kneis et al. (2006)

Results for many different types of graphs followed: Dorfling and Henning (2006) 

considered the bounds of the PDN of grid graphs -  the Cartesian product of two cycles -  

and their work inspired studies on cylinders and tori (Barrera and Ferrero, 2011), as well 

as the direct, strong, and lexicographic products of two cycles (Dorbec et al., 2008). Liao 

and Lee (2005) focused on split graphs, as well as on interval graphs and circular-arc 

graphs; the PDS problem is NP-complete on the former, but linear time algorithms are 

given for the latter two.

Barrera and Ferrero (2011) also considered generalized Petersen graphs, and as 

these are a subset of permutation graphs on cycles, these results are the most directly 

relevant to this thesis. They showed that, for a generalized Petersen graph P(m, k), 

yp{P{m, k)) < k; taking a k-length path on one cycle and placing a PMU on each vertex of 

the second cycle adjacent to that path will observe the entire graph (Barrera and Ferrero, 

2011). In particular, this shows that there are arbitrarily large generalized Petersen graphs 

having a PDN of 2: for m > 5, yp(P(m, 2)) =  2.
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We finally note that the basic power dominating set problem has been generalized 

in several different ways. One such extension is known as A-power domination; here the 

propagation rule is to read, “If there exists an observed node v such that deg(v) > k, and 

all but k of the nodes adjacent to v are observed, tire remaining adjacent nodes of v become 

observed” (Chang et al., 2012). This is equivalent to power domination for k =  1 and to 

domination for k = 0 ,  and thus represents a way to connect the two, allowing us to 

generalize some results about domination (which has been more widely studied) to power 

domination. For example, barring graphs with maximum degree < k +  1, any vertex in a 

minimal &-PDS with degree < k +  1 can be replaced with one of higher degree, and there 

always exists a minimal &-PDS such that every vertex has degree > k -  2 and at least 

k +  1 private neighbors.

Several other authors created generalizations designed with real-world 

considerations in mind. Nuqui and Phadke (2005) suggested that the number of PMU’s 

required to monitor the network could be kept low by allowing some small subset of the 

graph to go unobserved; unobserved vertices’ waveforms can be estimated from the data 

of those of their neighbors which are observed. This could be useful in particular when the 

PMUs are being installed incrementally, as small numbers of units could be added in 

stages, gradually decreasing the depth of unobservability until the whole graph is observed 

(Nuqui and Phadke, 2005).

The same paper poses the question of what can be done when some vertices are 

restricted from receiving PMUs, for example because they lack communications lines. 

This inspired the creation of another generalization: for a subset Z of G, a Z-restricted 

PDS of G is defined as a PDS of G which contains no vertex of Z (Pai et al., 2010). It is 

of course perfectly possible that no such set exists, such as in the degenerate case that 

Z =  G. Related to this is a fault-tolerant variant, which requires that a set continue to
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observe all vertices even if k of the PMUs fail. Both of these subsume the standard PDS 

problem, when Z is empty or k = 0 respectively.



IV. PRELIMINARY RESULTS

We first present some basic results about permutation graphs on cycles. Let 

G =  P(C„,fj be any such graph, where/is the related permutation, n the cardinality of the 

underlying cycle (so that the order of G is 2n), and Gi and G2 the two images of C„ 

contained in P. We say V(G\) =  {m0, u\, «2, w„_i} and V(G2) = {vo, Vi, v2, v„_i}, where 

Uk is adjacent to i</, .. \ and Uk \ \ where the sum is modulo n; similarly, v* is adjacent to v*_ 1 

and Vk+\ where the sum is modulo n.

Proposition 1. There exist arbitrarily large permutation graphs on cycles with 

power domination number equal to 2.

This follows immediately from the same result about generalized Petersen graphs 

(Barrera and Ferrero, 2011). One notable example of this type of graph is the case where /  

is the identity permutation, as shown in Figure 4.

In this case, simply placing one PMU at any node Uk and a second at /(w/;) =  v* is 

sufficient to observe every vertex: Uk+1 is observed, and has two observed neighbors («/( 

and Vk+1), so it observes 2, and similarly v*+i observes v*+2- Then Uk+2 is observed, and 

has two observed neighbors, so it observes Uk+3, and similarly v*+2 observes v*+3. This 

continues until the entire graph is observed.

Proposition 2. If a set S observes every vertex in Gi or every vertex in G2, then S 

observes G.

13
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Figure 4: P(C8, id), and a minimal PDS thereon

Suppose without loss of generality that S observes Gi, and let p  be any vertex in 

G2. Then say f~ l (v) =  uk, and note that S observes uk as well as uk-i and «¿+1. Then uk 

observes p. Thus S observes every vertex of G.

Proposition 3. yP{G) < [f ], and yP(G) =  1 if and only if n = 3.

Let S =  u\ , «4, uy, «1+3* where k = • Then each vertex in Gi is either in S, or

adjacent to an element of S. Thus S observes all of Gi and thus all of G. For the second 

part, note that if n = 3, any single vertex will dominate its entire cycle, and thus the whole 

graph. Conversely, suppose n > 4  and jS[ =  1; then none of the neighbors of the single 

PMU will be adjacent, so no vertices beyond N(S) will be observed. Since |JV(S)| =  4 and 

|G| > 8, S cannot observe all of G.



V. MAIN RESULT

We will attempt to prove the following conjecture:

Conjecture. Given any permutation graph G =  P(C„,f) for some cycle C„ and a 

permutation f  E S„:

JP{ G) =  1, n =  3

yP(G) =  2, 4 < n < 8

^ ( G ) < [ f ] ,  n > 9

Further, we will show that the bound given for n > 9  is sharp, at least whenever 

n f  1 (mod 4).

The first case, when n = 3, was proven in Proposition 3. The cases where 

4 < n < 6 are similarly immediate, since 2 < y P( G ) <  [fl = 2 .

Thus, we proceed to prove the cases where n = 7 or n =  8. For these, we will need 

the following lemma:

Lemma 1. If S observes all but one vertex of Gj and all but two vertices of G2, or 

vice versa, then S observes all of G.

Proof: Assume to the contrary that S observes all but one vertex of Gi and all but 

one of G2, but fails to observe the remaining three vertices (the reverse follows

15
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symmetrically). Note that this implies that n > 4, as any smaller graph will be completely 

observed by the first PMU placed. Call the unobserved vertex in Gi uk.

First, suppose/(«¿-i ) is observed. Then uk-\ is observed, and so are/(«£_]) and 

uk~2- But then uk-\ has two observed neighbors, and therefore observes uk, a 

contradiction. A similar argument holds for/[///l+i). Thus it must be that the two 

unobserved vertices in G2 are/(u*_i) and/fw^i), and in particular/(«¿) is observed.

Now, consider the two neighbors of J[uk) in G2. If both are observed, then /(r^) 

observes uk, contradicting the hypothesis. On the other hand, if neither are observed, then 

J{uk) is an observed vertex which has only unobserved neighbors, which is clearly an 

impossibility. Thus it must be that precisely one is observed.

As such, we assume without loss of generality that j{iik-\ ) is not adjacent to f(uk), 

and consider the neighbors p  and q in G2 off(uk-\); see Figure 5. If one of them is/(w*+i), 

then the other is an observed vertex with two observed neighbors (its pre-image in Gi 

cannot be uk and is thus observed, and its other neighbor in G2 cannot be f(uk+\) since

P

Figure 5: Lemma 1
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n > 4), and thus observes/(w* i), which is a contradiction since f{uk-\) was assumed to 

be unobserved. So both p  and q must be observed. Note that they cannot both be adjacent 

Xo fluk. i ), as the only way this could occur would be if n — 4, and then^w*) would have 

to be one o f po r q  and thus adjacent t o f i q .  i).

We can therefore see that the only remaining case is when at least one o f porq  is 

observed, but not adjacent tof(uk+i); that one has two observed neighbors and observes 

J[uh-1). This is again a contradiction, so it must be the case that S observes all of G.

□

Theorem. yP(P(C7,f)) = 2 for any permutation/ €  S7.

Proof: First note that, by Proposition 3, 2 < yP(G) < 3 . So it suffices to show that 

7/>(G) < 3.

Suppose G =  P(C7,f) for some/ €  S7. Then let S =  u\ , «4. Note that u7 and «3 are 

observed, and each has two observed neighbors, so then /( 112) and /i »3) are observed. As 

f{u\) and/(w4) are also observed, there are at least four observed vertices in G2. Since G2 

consists of only seven vertices, at least two of those four must be adjacent, and assuming 

not every vertex in G2 is observed, some vertex p  in this block of observed vertices must 

be adjacent to some as-yet unobserved vertex q, as shown in Figure 6.

Then p  is the image of one of {u\, «2, «3, «4}, all of which are observed, and p  is 

adjacent to some other observed vertex. Thus p  observes q. Then all but one vertex in Gi 

and all but two vertices in G2 are observed, so by the lemma S observes G.

□
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Figure 6: P(C7<f)

For the case where n = 8, we need a second lemma:

Lemma 2. Consider the following graphs, as in Figure 7:

D4 =  P{Pa, (1 2)(3 4))

D; =  P(i>4,(13)(2 4))

Ds =P{P5,{\2)(4  5))

D'5 =P{P5,{ 1 4)(2 5))

Let G be a permutation graph on a cycle such that one of the above graphs appears 

in G as an induced subgraph, and let D be that subgraph. Then any set that observes G 

must include at least one vertex of D.



19

D 4

D i

°5 y  y

Figure 7: Subgraphs D4, D5? and D5
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Proof. To show this, let S C G be a subset such that S fj D = 0, and consider the 

vertices of G observed by S. In each case, S can dominate at most the outer vertices of D 

(labeled a, b, c, and d  in Figure 5): even if S consists of every vertex of G not in D, a, b, c, 

and d  will each still have two unobserved vertices, and the inner vertices of D will remain 

unobserved. Thus S cannot observe G, and the lemma holds.

□

Theorem. yP(P(C&,f)) =  2 for any permutation/ G Sg.

Proof: Let G =  P(Cg,f) for some/ E S%, and again let S =  u\, w4. As before, there
r

are at least four observed vertices in G2. Unfortunately, unlike the case where « =  7, the 

distribution of these vertices is relevant, so we let T =  {ii\ . ih -1<3- w4} and consider the 

possible cases. There are six possible configurations, shown in Figure 8.

In the following proofs, when we mention a “block” of vertices in T, we mean a 

subset of T such that each vertex in the block is adjacent to another vertex in the block, 

and none is adjacent to a vertex of T not in the block. Note that a block of two or more 

vertices in T must have two currently unobserved neighbors p  and q. Since each vertex in 

that block has two observed neighbors -  its preimage in Gi and another vertex in the 

block -  the block must observe p  and q.

1. No two vertices in T are adjacent; i.e. the vertices in G2 alternate between observed 

and unobserved. In this case we redefine S as «2, «5; this will still observe/^ ), 

f{uf), and/(w4), as well as f[u5) f f ( u \ ) .  Then, since in the previous attempt each 

unobserved vertex in G2 was adjacent to one off[u2),f{uf), dXïàfuf) , f iuf  must be 

adjacent to one of them. This leads us to one of the other cases -  for ease of 

description we rotate the vertex labels so that the elements of S are u\ and w4 again.



21

Figure 8: Possible configurations for G2 in
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2. T consists of three blocks of vertices; then precisely one of the blocks contains two 

vertices. This block observes its two neighbors in G2, and due to the fact that the 

other two vertices of T cannot be adjacent to each other, one must be adjacent to one 

of the newly observed vertices. Then it observes its other neighbor, giving us seven 

observed vertices in G2 and six in G1? so Lemma 1 applies and we are done.

3. T consists of two blocks of vertices (either two and two, or three and one) with a 

single vertex not in T between them. In this case the vertices of T observe all three 

of T s neighbors in G2; then we have seven observed vertices in G2 and six in Gj, so 

we are done again.

4. T consists of two blocks of two vertices each such that there are two vertices not in 

T between them (in each direction). Then T observes all of G2 and thus all of G.

5. T consists of two blocks, one with three vertices and one with a single vertex, such 

that there are two vertices not in T between them (in each direction). In this case we 

redefine S to be the set (w5? wg}. This adjustment means that the new S observes 

precisely those vertices of G2 which are not in T; these form two blocks of two with 

a single vertex between them, so we end up in case 3 and are done.

6. The final case is when T consists of only a single block. In this case, let p  and q be

the vertices of G2 adjacent to T9 and consider the preimages (p) and f ~ l (q)-

Suppose one of these is actually ¿/5; then n5 observes Similarly, if one of the 

preimages is uq = it will observe uj. In either case, we have six observed 

vertices in G2 and seven in Gi, so by Lemma 1 S observes G. So assume that

{f~x ip) 5/”1 (#)} =  {^5,^7}. Then the four vertices in G2 — T form a path with p  and

q as its endpoints, and each point is connected to its preimage on the path

(w5, «6, W7,1/8}; thus, this is a permutation graph on P4. In fact, since

{f~l (p) {$)} — {u6j w7}, we can see that it is actually either D4 or D4. Finally,

redefine S as {w5j u%}\ as in case 5 this will cause S to observe G2 — T. Since this is
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of course again a single block, we are in case 6 again; repeating the above argument 

will show that, if S still fails to observe G, the second half of G must consist of a 

second copy of Z)4 or D\. Then G is one of the graphs shown in Figure 9, and since 

each has a power dominating set of order 2, we are again done.

□

For the case where n > 9, we will proceed by induction, so we first need the 

following:

Definition. Let G be a permutation graph on a cycle of length n, where n > l , and 

let €  be a path of length 3 in one of the two cycles Gi and G2. We define G -E C to be the 

graph obtained by the following procedure (see Figure 10):

• Delete from G each of the edges (c,/(c)), where c E F(C).

• Smooth out each of the eight vertices that were adjacent to those edges -  each of 

these vertices has lost one incident edge, and thus degree 2, so we replace it with a 

edge connecting its neighbors. Call w the single edge in G -E C produced by 

smoothing out C.

Then G e C consists of two cycles, G -E Ci and G -E C2? each of length n — 4 

(each of the cycles in G lost four vertices), plus edges such that each vertex in G -e C i is 

connected to precisely one vertex in G -E C2. Thus G 4- C is a permutation graph on a 

cycle of length n — 4.

Finally, we need the following conjecture; it is surmised that it holds for every 

permutation graph on a cycle.
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Figure 9: Case 6 forP(C8,/)
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c

\

Figure 10: Deleting vertices to generate G - r C

Conjecture. Given any permutation graph on a cycle of length n, where n > 9 ,  

there exists some path C of length 3 in one of the two cycles Gi and G2 such that G C 

has a minimal power dominating set S including a vertex incident to w.

In support of this claim, we provide an example. Consider the graphs 

K„ = P(C„, (1 2)(3 4) (5 6)) for n > 7 -  i.e. graphs based on a permutation which maps 

all but six of the elements of the underlying cycle to themselves, and the remaining six in 

such a way as to form two overlapping instances of DA, as defined in Lemma 2. These 

graphs have the structure illustrated in Figure 11.

These graphs are a particularly bad case: if n > 12, choosing C such that no vertex 

of C is adjacent to any of the vertices in the instances of D4 -  note that, for large n, this 

makes up the vast majority of possible Cs -  gives us K„ C =  K„_4. The set {U2, V5} is a
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power dominating set for every K„, and as it has size 2 it must be minimal. Now, if there 

existed some minimal power dominating set S on K„ -f- C such that a vertex of S were 

incident to w, that vertex would lie in neither of the instances of £>4. Then, in order to have 

a vertex in each instance of £>4, as required by Lemma 2, the second vertex must be one of 

«3, V3, V4, and v4; none of these possibilities allows S to observe K„ -f- C, so this cannot 

occur, and there are indeed no minimal power dominating sets of the type we hoped for.

Figure 11: An example of the class of graphs K„

However, despite the existence of arbitrarily many possible Cs for which the 

above occurs, the conjecture is nonetheless true for K„. Choosing C to be the path from u\ 

to U4 gives us K„ -i- C =  £(C„_4, (1 2)); {u\ , V]} is a minimal power dominating set for 

this graph, and u\ is incident to w in K„ C, which is what we needed.

Theorem. yP{P{C„,f)) < [f] for any n > 9  and any/ e S„ such that the above 

conjecture holds.

Proof: Let n > 5 and say n a ! 4m, where a 6 {5,6,7,8} and m € Z+. We 

proceed by induction on m.

The base case is when m — 0. In this case, 5 < n < 8, so by the previous theorems 

7p (G) — 2 — ["-]. Thus, the inductive hypothesis applies.
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Now let G be any permutation graph on a cycle of length n > 9. By the inductive 

hypothesis, we can assume that, for any permutation graph on a cycle of size n — 4, there 

exists a power dominating set of size at most | " =  [ ^ ] ---- 1.

By the conjecture, there exists some path C =  {c\, c2. C3, C4) in either Gj or G2 

such that G v C  has a minimal power dominating set S containing a vertex incident to the 

edge w. Without loss of generality, we assume C lies in Gj. Call S' the set of vertices in G 

which were mapped to S by the deletion of C (the mapping was of course bijective).

Obviously S' is disjoint from C, and |S'| =  |S| < [ ~ \ ---- 1. We claim that there exists a

vertex a £ C such that the set S' (J{a} observes all of G.

Since S contained a vertex incident to w in G -j- C, S' contains some vertex s 

adjacent to one of the endpoints of C; suppose without loss of generality that s is adjacent 

to Ci. Then let a = c2, the point in C that lies at distance 3 from s. Then S' U (a} observes 

s, ci, C2, C3, C4, and the images of all of these except C4. It may seem possible to 

immediately make use of Lemma 1, but we must first consider the possibility that the edge 

in G -f- C that resulted from the smoothing out office) was part of a path that observed 

some other vertices.

At this point we will need the following fact: if G is any graph with power 

dominating set S, and we subdivide any edge a of G, it may be that S fails to observe all of 

G. If, however, we can observe (say, by adding vertices to S) the vertex x created by the 

subdivision, as well as any neighbors of x not incident to u, S will indeed observe G -  

vertices that were observed via the first or second rules will remain the same, while if the 

third rule allowed one vertex incident to u to observe the other, it will instead allow x to 

observe the second vertex, due to x and all but one of its neighbors being observed.
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Using this fact, pick any vertexy  in G : C and consider any path starting withy 

whose last edge is vv. Then compare this with the respective path in G that starts from y’s 

preimage and ends at _/(c4). Note that the second can be formed from the first via 

subdivision, but that every vertex thus added is observed -  it must be either in C or be the 

image of some vertex in C, and cannot be/(c4).

Thus, if in G T- C any vertex in the path observed any other vertex (except for 

_/(c4)) via an edge of the path, it will still do so in G. Since this is true of every vertex y  

and every path, and since in fact each vertex in G ■— C was observed by S, we can see that 

every vertex other than/(c4) in G —■ C is observed by S' (J{a}. Then we can indeed apply 

Lemma 1, and S' (J{a} observes G.

□

Finally, we show that the bound given for n > 9 is sharp, at least in the cases 

where n ^  1 (mod 4). To prove this, we construct permutation graphs on cycles which 

require precisely [  ̂| PMUs.

First, consider the following graphs, each with power domination number exactly 

2: Bs =  P(CS, (1 2)(3 4)(5)), B6 = P(C6, (1 2)(3 4)(5 6)), B1 = P{C7, (1 2)(3 4)(5 6)), 

Bs = P(Cg, (1 2) (3 4)(5 6)(7 8)),; see Figure 12.

To extend this, we use the graphs Z)4 and Ds, as defined in Lemma 2: let n > 10, 

and write n =  a +  Am, where a € {6,7,8,9} and m € Z+. Then take Ba and insert m 

copies of Z)4, replacing the edges (ua, u\) and (va, vi); call this new graph Bn.

This new graph is a permutation graph on a cycle of length n; we want to show that 

it requires 2 + m =  [ PMUs.  So suppose S were a power dominating set for B„ with
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Figure 12: Worst-case graphs and minimal power dominating sets thereon



|«Sj < 1 + m. By the lemma, every time Du or D5 appears as in induced subgraph of Bn, it 

must contain an element of S. However, there are a total of [|J  distinct (though not 

disjoint) occurrances of D4 and D$. Further, any vertex of B„ can lie in at most two distinct 

occurances. Thus, to ensure every copy of D4 or D5 contains at least one element of S, at
I ” Ileast ■Lj L > 1 + m elements are needed. Thus it must be that any power dominating set on 

such a graph must have at least [ elements.
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VI. EXTENSIONS

Of course, an immediate extension of the work done above would be a proof of the 

conjecture regarding G -t- C. Such a proof might be combinatorial in nature, as the sheer 

number of possible configurations for C may prove sufficient to ensure that at least one 

has the desired property.

In addition, we note that the reason for the exclusion of'// ^  1 (mod 4) in the 

sharpness proof is that it appears, in fact, that yP[Cg,f) — 2 < ; vis the graph

Bg =  P(Cg, (1 2)(3 4)(5 6)(7 8)), which would otherwise be the obvious continuation of 

the pattern, but which has a PDN of 2. This case warrants further study; we surmise that 

perhaps our upper bound for yP(C„,f), n >  9, could be improved from \^\ to [^ ~ | .

Finally, there are several interesting classes of graphs (including, as already 

mentioned, the generalized Petersen graphs) which are sub- or supersets of, or closely 

related to, the class of graph considered in this paper; the results given here could perhaps 

be extended to these other types. For example, general permutation graphs can have 

significantly more complex structures, but the inductive process used here is possible for 

other permutation graphs so long as their underlying graphs contain vertices of degree 2, 

and could perhaps be adapted to fit other situations.

In addition, consider the class of graph produced by constructing a permutation 

graph on a cycle, deleting^ > 1 edges in G2, and then reconnecting the vertices of G2 so 

as to form j  smaller cycles. The resulting graph remains cubic, and most of the vertices
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retain their original neighbors; thus, it presumably shares many of the properties of the 

graph from which it was constructed.

An analysis of the power domination numbers of such graphs, and how they relate 

to those of the original permutation graph, could produce interesting results.
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