
AN APPROACH TO INDENTIFYING COMPONENTS

FOR SOFTWARE REENGINEERING

THESIS

Presented to the Graduate Council of

Southwest Texas State University

in Partial Fulfillment of

the Requirements

For the Degree

Master of Science

By

Sidharth J. kodikal

San Marcos, Texas

December, 2000

Dedication

This work 1s dedicated to my wonderful farmly.

Acknowledgements

I am thankful to Dr. Hall for the patient gmdance and unlnnited support that he gave

me. Thanks to Mr. Davis and Dr. Hazlewood for bemg on the committee and for

supportmg tins work.

11

CONTENTS

Dedication .. i

Acknowledgements .. ii

Chapter 1 ... 1

IN"TRODUCTION .. 1

Organization of the Thesis .. 7

Chapter 2 ... 9

MATHEMATICAL CONCEPT ANALYSIS PRIMER .. 9

Introduction .. 9

Basic Notions of Concept Analysis ... 10

Constructing the concept lattice .. 15

Properties of a Concept Lattice ... 21

Summary .. 21

Chapter 3 ... 23

MODULARIZATION OF SOFTWARE USIN"G CONCEPT ANALYSIS 23

Introduction .. 23

Objects and Attnbutes ... 23

A generic hash table package .. 25

Patterns in a concept latt:Ice ... 29

Algorithm for the horizontal decomposition of a concept lattice 31

Horizontally Decomposable Lattice ... 31

Summary .. 39

Chapter 4 ... 40

IMPLEMENTATION AND RESULTS .. 40

111

Introduction .. 40

Case Study: voronoi 43

Chapter 5 ... 51

CONCLUSION .. 51

Related Work .. 51

Chapter 6 ... 56

DIRECTIONS FOR FUTURE RESEARCH ... 56

Identification of class lnerarclnes .. 56

Data Organization Metric .. 60

BIBLIOGRAPHY ... 61

APPENDICES ... 66

Appendix A2.1 .. 67

Appendix A3.41 .. 71

Appendix A6.1 .. 73

Appendix A6.4 .. 75

Appendix Bl ... 76

Appendix B2 ... 99

lV

Table of Figures

Figure 2.12: Abstraction of the classification in figure 2.11 11

Figure 2.13: Computing the atomic concepts m the vehicle classification 16

Figure 2.14: Atomic concepts in the vehicle classification 16

Figure 3.21: Context table for the Hash table package .. 26

Figure 3.22: Concept lattice for the hash table package .. 27

Figure 3.31: Patterns of interest in a lattice .. 29

a) Chain (b) Anti.chain (c) Infima, Suprema .. 29

Figure 3.42: Context table for the tangled hash table .. 32

Figure 3.43a: Concept lattice for the "tangled" hash table .. 33

Figure 3.44b. Lattice after the suppression of the node representing concept C6 35

Figure 3.43c: The concept lattice after the elimination of concept C3 36

Figure 3.43d: The final honzontally decomposable lattice 37

Figure 3 .41: The outline design of our modularization tool 41

Figure 4.21: The context table relating functions with the structures and44

their global instances ... 44

Figure 4.23: The first concept lattice for voronoi ... 45

Figure 4.24: horizontally decomposable lattice suggesting eight modules 45

Figure 4.25: Context table considering global variables ... 47

Figure 4.26: The second concept lattice for voronoi ... 48

Figure 4.28: The modules identified in voronoi49

Figure 5.31: Example C code that manipulates strings ... 52

Figure 5.32: The translation to object-oriented C++ using plan recognition 53

Figure 6.12: Context table for Shapes .. 57

V

Figure 6.13: Concept lattice for "shapes" ... 58

Figure 6.2: New context table for "shapes" .. 59

Figure 6.22: The new concept lattice for "shapes" .. 59

Vl

Chapter 1

INTRODUCTION

Software mamtenance involves makmg evolutionary updates to an existing

program. Increasmg expectations for functionality, flexibility, and ease of use have

driven software proJects to become larger. Moreover, modem busmess demands more

mformation. Increased project size, coupled with this need for more information, can

make mamtenance difficult. Larger, more complex software systems, geographically

distnbuted computing, and a consistently growmg need for additional functionality

have created a complex computing world. Miller observed that "maintenance is the

logical consequence of establishing this critical mass of technology. When a cntical

mass of technology is reached, it is logical to build on that base. Throwing out

technology and startmg over agam without a clear fmancial return does not make

good business sense" [pg. vii, Miller 98]. An ever-mcreasmg proportion of software

development labor is expended on maintammg prev10usly developed software.

Maintenance and reengineering tasks cannot be performed without understanding the

code that is being modified. Studies show that programmers spend as much as 80% of

their time in understanding the program they are maintaining [Brooks 95],

[Sommerville '96]. Considenng that as much as 75% of the software lifecycle is

devoted to maintenance [Fairly '85], this suggests that a tremendous amount of

software engmeenng resource are spent on code understandmg. If automated tools

could reduce this percentage, the economic impact could be staggering [Woods,

Quilici, Yang 98].

2

It is the goal of this research to present techniques for automatic program

comprehension and software restructuring. This research has also led to

nnplementation of a prototype for such an automatic program-restructuring tool based

on the techniques to be proposed in this thesis.

This research aims particularly at

• Reverse engineering a legacy system with structured, architecture into a conceptual

model that contains the system information required for effectively reengineenng

1t.

• Restructuring the conceptual model into an equivalent system with object-oriented

architecture.

While some aspects of this research apply specifically to the problem of

restructuring legacy C programs, the general techniques described in this thesis focus

on modularizat10n and subclassing. Modularization is the identification and extraction

of modules with high cohesion and low coupling. We define a module as a unit that is

directly usable, discrete, and ideally separable from its original context and usable in

other contexts. As such, a module should combine data representation and methods

for manipulating that data as a neat encapsulated package. Subclassing is the

identification of hierarchies amongst modules with the intent of promoting code reuse

by way of mheritance.

The motivation for focusing on the structured to object-oriented architecture

reengineering problem may be summarized as practical needs,

encapsulation/abstraction, and reuse.

3

Practical needs: The systems built by object-oriented programming are more flexible

than traditional systems [Fayad, Laitinen 98]. Practitioners find that adoption of

object-oriented programming is beneficial. With companies recognizing the

superiority of object-oriented programming languages for large system

implementation and mamtenance activities, object-onented development is becoming

standard [Brooks 95]. Maintenance tasks are often carried out by new software

engineers who are trained primarily m object-onented languages [Siff 98]. There is

therefore a practical need to transform traditional systems to object-oriented systems.

Encapsulation/ Abstraction: Object-oriented programming aids encapsulation.

Encapsulation involves enclosing related data, routines and definitions in a capsule.

Implementation hiding is a concept that is possible because of encapsulation. In a

class, both data and routines are classified accordmg to their role as interface or

implementation. Encapsulation enhances localization by providing the means to

separate the abstract interface of a class from its implementation: the interf~ce being

the visible surface of the capsule with the implementation hidden in the capsule

[Joyner 96]. Encapsulation effectively reduces coupling by reducmg implementation

interdependence between modules and reduces the impact of correction. By making

modules maximally cohe,sive and minimally coupled, encapsulation makes the system

less brittle to change. Structured programs on the other hand keep data separate from

the operations on those data. The structured programming paradigm also suggests that

4

isolation of variables and procedures is good; too much flow of information across

boundaries (interfaces) is bad; the flow of values from one procedure to another

should be minimized; the clustenng of funct10nahty within a procedure or module

should be maximized [Lewis 95]. However the procedure-oriented paradigm offers no

support for data hiding, as does the object-oriented paradigm. McConnell states that

"with older languages, any information hiding counts on voluntary compliance" [pg.

150, McConnell 99]. This often leads to the formation of modules that display high

coupling and low cohes10n.

"Abstraction affords ignoring irrelevant details and concentrating on

relevant characteristics. Object-onented design is especially good at

abstraction because it uses bigger intellectual building blocks than do

functional approaches such as structured design. In structured design,

the unit of abstraction is a function. In object-oriented design, the unit

of abstraction is an object. Since an object includes both functions and

the data that's affected by them, it's possible to work with chunks of a

problem that are bigger than functions. Such ability increases the level

of abstraction at which one can think about a problem" [pg. 150,

McConnell 99].

Reuse: Software development 1s expensive. Software developers strive to get results

in less time and for lower costs. The ultimate dream, however, has been to avoid

programming altogether. A very good way to not program is to reuse existing code. A

key part of the attraction of object-oriented technology is that a class once created and

tested can be reused. Reuse also allows substantial reduction m mistakes.

Construction of an application from tested, reused parts lessens the possibility of

errors in the parts and relegates testing to the design and assembly of the correct

objects [Miller 98]. Reuse of code is a desirable feature that object-oriented

programming languages and tools have taken to new levels.

5

Inheritance is an object-oriented feature whereby a programmer can model

relationships between objects. Inheritance promotes code reuse: the inheriting objects

reuse the code of the parent object and may also add new features to it. Miller states

that "inheritance is a benefit for programmers because it reduces the amount of code

that goes toward duplicating what went before. This reduces errors and may result in

faster operations" [pg. 175, Miller 98]. The need to define classes and subclasses of

objects, the objects themselves and the attributes, methods, messages and

interrelationships of objects, forces a better model of the system to be developed. The

ability to model real world objects and their inheritance at multiple levels can be said

to be the basis for object-oriented technology's real value [Fayad, Laitinen 98].

Systems built on object-oriented techniques lend themselves to distribution,

integration, and faster, error-free application development. They allow systems to

evolve and to be reengineered, as business, human and technological factors change.

Existing software development practice has produced monolithic applications that are

hard to evolve and harder yet to evaluate m terms of cost and value. Functionality of

such systems is not easy to extract, making it unavailable for next generation

products. With object-oriented technology, functionality can be easily found,

extracted and reused. Object-onented technology places greater emphasis on the

analysis and design of the system rather than on the system integration and integration

testing. This shifted emphasis gives both the customer and the development team a

6

better understanding of the product being built. Using functional decomposition, only

the high level analysis is accessible to customers and management. They must take on

faith the connection between the analysis (in terms of application objectives) and the

more detailed analysis and design (in terms of programming constructs). Object

oriented analysis and design allows a deeper view: obJects model known entities

[Fayad, Laitinen 98].

Software is inherently complex. Brooks observers that "software artifacts are

more complex for their size than perhaps any other human construct, and the

complexity of software is an essential property, not an accidental one" [Brooks 95].

Understanding software is consequently difficult, not only because the software itself

is complex, but also because the process of understanding requires knowledge from a

variety of sources. Studies of expert programmers for conventional languages have

shown that knowledge is not organized simply around syntax, but in larger conceptual

structures such as algorithms, data structures and idioms and also in plans that

indicate steps necessary to fulfill a particular goal. Reengineering of software is not

normally effective unless some automated tool support can be deployed to support the

process [Sommerville '96]. It is the purpose of this research to propose and implement

techniques that can be used for automating the program comprehension and

reengineering process. Although it is unlikely that such architectural restructuring

activity can ever be completely automated, it is the goal of this research to aid assisted

program reengineering by designing a tool that can suggest the potential modules and

the hierarchical arrangement between them for the restructurer to verify. Although the

techniques described herein may be used generally for the stated purpose with a

7

variety of source and target languages1, we will particularly aim at the problem of

transforming the structured architecture of legacy C code into object-oriented

architecture because there is a plethora of large-scale legacy systems written in C that

are actively being used [Siff 98].

Organization of the Thesis

The remaining chapters of this thesis are organized as follows:

In chapter 2, we present a primer for mathematical concept analysis by discussing

the notions of concept and concept lattice. We introduce a bottom-up algorithm for

constructing a concept lattice, and demonstrate how a concept lattice can be used to

visualize a system.

In chapter 3, we discuss in detail the application of concept analysis to the

structured to object-oriented restructuring problem. We demonstrate how a concept

lattice can be used to visualize a software system, and we also present an algorithm to

partition such a concept lattice into modules (or classes).

Chapter 4 discusses methods to identify class hierarchies in a structured software

system. We introduce some programming idioms commonly used to emulate object

oriented features such as inheritance and dynamic method lookup. We also present

inference rules used m capturing these idioms.

1 Source language that supports structured programmmg and target language that supports object
onented programmmg

Chapter 5 presents a survey of some of the related work done in the field of

software reengineering. Here we compare our work with the others, and identify our

contribution to automatic program understandmg and software reengineering.

Chapter 6 chscusses the future directions that this research may take.

Chapter 7 summarizes this thesis and presents some conclusions.

8

Chapter 2

MA THEMA TI CAL CONCEPT ANALYSIS PRIMER

Introduction

Garrett Birkhoff [Birkhoff 73], who proved that for every binary relation between

certain objects and attributes a lattice could be constructed, laid the mathematical

foundation for concept lattices. Based on his work, Rudolph Wille and Bernhard

Ganter presented techniques for data analysis [Ganter, Wille 96], [Snelting 96]. In this

chapter, we will show that this theory of concept lattices offers promising approaches,

not only to the visualization of old software, but also to its automatic restructuring.

Using concept analysis, data can be visualized as a conceptual model that offers

meaningful and comprehensible interpretation of the system. This conceptual model

can be reengineered into units that represent formal abstractions of the concepts of

human thought. The mathematics required for the concept analysis has been taken

directly from lattice theory [Ganter, Wille 96], [Szasz 64]. Our goal is to apply this

theory to the modeling and reengineering of software. This chapter will introduce the

notions of concept analysis and lattice theory to better understand its application to

the structured to object-oriented reengineering problem.

9

10

Basic Notions of Concept Analysis

This section lays a primer for concept analysis using the example classification

shown in figure 2.11. The table in figure 2.11 relates some vehicles of interest with

some features of interest. For instance, from the first entry in the table, we can see that

Camry is a sedan, is 2WD, and Japanese.

Sedan Sports SUV 2WD 4WD Luxury Japanese

Camry X X X

740iL X X X

Passat X X X

XS X X X

A6 X X X

CCarl X X X

CCcar2 X X X

ML320 X X X

Maxima X X X

Figure 2.11: Classification off ew vehicle models

In other words, this context defines a relationship between the set of vehicles (objects)

O={Camry,740iL,Passat,X5,A6,CCarl,CCar2,ML320,Maxima},

and the set of features (attributes)

A={Sedan,Sports,SUV,2WD,4WD,Luxury,Japanese}.

The corresponding visualization of the classification is shown in figure 2.12.

Figure 2.12: Abstraction of the classification in figure 2.11

As we will see later, the lattice offers insight that is not obvious from the table like:

1. A6 and ML320, are both 4WD

2. Any vehicle that is 4WD is also a luxury vehicle.

3. Any vehicle that is a 2WD is a sedan.

To understand the basics of concept analysis a few definitions are in order. A triple

(O,A,R) is called a context if O and A are finite sets of objects and attributes

respectively, and, R ~ Ox A is a binary relation between O and A.

For a set of objects X ~ 0, the set of common attributes is denoted by

a(X)={aE Aj'v'oE X:(o,a)E R}

11

As an instance from the classification m figure 2.11, for a set of objects

X= {Camry, 740iL, Passat, Maxima}, the set of common attributes is

a(X)= {Sedan, 2WD}.

Similarly, for a set of attributes Y ~ A, the set of common objects is denoted by

i-(Y)={oe OIVae A:(o,a)e R}

For example, for the set of attnbutes Y={4WD, Luxury}, the set of common objects

isi-(Y)= {XS, A6, CCarl, CCar2}.

These operators, a and i-, satisfy the following rules:

For all A, Al, A2 ~ 0, and all B, Bl, B2 ~ A

1 Al~ A2 => a(A2) ~ a(Al) and

Bl ~ B2 => i-(B2) ~ i-(Bl)

For example, for the followmg two object sets from the vehicle classification

example:

Al={Camry},and A2={Camry,740iL,Passat},with

Al~A2,

a(A2) ~ a(Al), as a(A2)={ Sedan, 2WD}, and

a(AI)= {Sedan, 2WD, Japanese}

Conversely, for the followmg two attribute sets

Bl={Sedan, 2WD}, andB2={Sedan, 2WD, Japanese} with

Bl~ B2, i-(B2) ~ i-(Bl), as i-(B2)= {Camry, Maxima}, and

i-(Bl) = {Camry, 740iL, Pas sat, Maxima}

2_ A~ i-(a(A)) and a(A)= a(i-(a(A))), and

B~a(i-(B)) and i-(B)=i-(a(i-(B)))

12

3.

For example, for A={Camry},

a(A)= {Sedan, 2WD,Japanese}, and

_r(a(A))= {Camry, Maxima}

And, A!:;;;; r(a(A)) as required.

And since, a(r(a(A)))={Sedan, 2WD, Japanese}, a(A)= a(r(a(A)))

With similar examples, we can illustrate the converse: B !:;;;; a(r(B)) and

r(B) = r(a(r(B)))

A!:;;;; r(B)~ B !:;;;; a(A)

For A={740iL, Passat}, B={Luxury}, since

r(B) = {740iL, Passat, XS, A6, CCarl, CCar2}, we have, A!:;;;; r(B).

And also, with a(A)={Sedan, 2WD, Luxury}, we have, B !:;;;; a(A).

Galois Connection

For two sets Sand T, if there exists a single valued mapping a of S into T, and a

single valued mapping r of Tinto S, it is said that the pair of mappings a and r

establish a Galois connection between the sets S and T.

The mappings

a:2° ➔ 2A and r:2A ➔ 2°

form a galois connection and can be characterized by the condition:

for all A, AI, A2 !:;;;; 0, and all B, BI, B2 !:;;;; A

Al!:;;;; A2 ⇒ a(A2) !:;;;; a(AI)

and

Bl!:;;;; B2 ⇒ r(B2) !:;;;; r(Bl)

13

Concept

A pair (X, }? is a concept of the context (0, A, R), if and only if

x~o. Y~A. X=i-(Y) and Y=u(x)

For instance, the pair

X={Camry,740iL,Passat,Maxirna}and

Y= {Sedan, 2WD} form a concept.

14

For such a context (X, }?, Xis called the extent of the concept and Y is called its

intent. In other words, the extent covers all the objects (or entities) for the concept,

and the intent covers all the attnbutes (or properties) of the objects under

consideration. For any given context c, we define the operators ext(c) which gives the

extent of the concept c, and int(c), which gives the intent of the concept c.

The concepts of a given context are naturally ordered by the subconcept-superconcept

relation defined by

(Al,Bl)~ (A2,B2)<=> Al~ A2,

or equivalently,

(Al,Bl) ~ (A2,B2) <=> B2 ~ Bl

With these notions defined, we can proceed to define the concept lattice as an ordered

set of all formal concepts of { 0, A, R). Other notions of interest are infimum and

supremum, given formally by:

~Crz,Yi~[!/"'{ {~Yi]]] md

~(Xi,Yi)~[{ {~x,]ht,]

15

Informally, the infinum of two concepts is the greatest common subconcept of those

concepts, and is found by intersecting their extents and joining the intents of the

objects of the mtersection. Consider the lattice in figure 2.12. Those nodes that factor

out the common objects are the infima. Thus, the fact that A6 is both a sedan and

4WD, is denoted by the node labeled A6.

Analogously, the supremum of two concepts is the smallest common superconcept of

those concepts, and is found by intersecting their intents and joining the objects that

have the attributes found in the intersection [Snelting 96]. In the lattice in figure 2.12,

the nodes that factor out the common attributes are the suprema. For example, both

A6 and ML320 are 4WDs.

Constructing the concept lattice

For constructing the lattice, a standard lattice construction algorithm can be

used [Godin, Alaoui 95], [Snelting 96], [S1ff98]. The algonthm may employ a bottom

up or a top down approach. The algonthm we employ uses a bottom-up approach, in

that the atoms (or the smallest concepts of the lattice) are computed first, and then the

others are computed as the suprema of the existmg ones, this bemg an iterative

process. The concepts represent the nodes in the lattice.

Remember that for a concept (X, J], Y = a(X) and X = i-(Y).

Hence, the algorithm can iterate over 0, and for each o E O, it can compute an

atomic concept c such that int(c) is cr(o), and ext(c) is then t(int(c)) or i-(a(o)). Figure

2.13 shows the computation of all the atomic concepts in the vehicle classification.

Figure 2.14 lists the atomic concepts computed.

-r(a({camry })) = -r({sedan, 2WD ,Japanese})= ({Camry, Maxima})

-r(a({740iL})) = -r({sedan, 2WD,Luxury})= ({740iL,Passat})

-r(a({Passat})) = -r({sedan, 2WD ,Luxury})= ({7 40iL ,Passat})

-r(a{{xs})) = -r({suv, 4WD ,Luxury})= ({xs ,ML32 o})

-r(a{{ML320}))= -r({suv, 4WD,Luxury}) = ({xs ,ML320})

-r(a({ccarl})) = -r({sports, 4WD,Luxury}) = ({ccarl ,ccar2})

-r(a({ccar2})) = -r({sports, 4WD,Luxury}) = ({ccarl ,ccar2})

-r(a({A6 })) = -r({sedan, 4WD ,Luxury})= ({A6})

Figure 2.13: Computing the atomic concepts in the vehicle classification

Concept CO = ({Camry ,Maxima}, {sedan, 2WD ,Japanese})

Concept Cl = ({7 4 0 iL, Pass at}), ({2WD ,Luxury ,Sedan})

Concept C2 = ({ML320 ,xs}),({suv, 4WD, Luxury})

Concept C3 = ({ccarl ,ccar2}),({sports, 4WD,Luxury})

Concept C4 = ({A6}),({sedan, 4WD, Luxury})

Figure 2.14: Atomic concepts in the vehicle classification

16

For a concept c, operation int(c) requires O(IAI) time. We can therefore compute the

intents of all the atoms in O(I OI x IA I) time. The next step is to compute the extents for

these concepts. Computing the extent involves applying the 't operator. The time

complexity for that is O (IOlxlAU. For a context of size nxn, the worst-case number

of elements in the lattice will be polynomial inn: i.e. 0(n3). Typically, however,

lattices with contexts of size nxn have O(n 2) or even 0(n) elements. Hence, the

typical run-time for the construction of the entire lattice is O(n 3) [Snelting 96].

17

A queue may be used as a worklist for building the lattice upon these atoms. Inittally,

the queue is populated with pairs of atomic concepts, such that, in no pair of concepts

{Cl, C2), is Cl:::;; C2 or C2:?:: Cl; 1.e. no concept in a pair is a subconcept of the other.

For the vehicle classification, the initial queue will be:

Queue = { (C0,Cl), (C0,C2), (C0,C3), (C0,C4), (Cl,C2),

(Cl,C3), (Cl,C4), (C2,C3), (C2,C4), (C3,C4)

}

By dequeuing a pair in the queue at a time, the supremum of the two concepts is

created. For example, the pair (Cl, C2) yields the supremum computed as:

co V Cl = (r (int{C0) n int{Cl)), int{C0) n int{Cl))

= (r (2WD,Sedan),{2WD,Sedan})

= ({740iL,Camry,Maxima,Passat},{2WD,Sedan})

If this new concept does not already exist, new pairs are generated by pairing the

existing concepts with this newly generated supremum, again seeing that there is no

subconcept-superconcept relationship between the two concepts in a pair. This

iterative process is contlnued untll the queue is empty. Figure 2.15 shows the

computation of the concept lattice for the vehicles classification.

co =
Cl =
C2 =
C3

C4 =
Queue =

{{Camry,Maxima},{2WD,Sedan,Japanese})

{{740iL,Passat},{2WD,Luxury,Sedan})

({ML320,X5},{SUV,4WD,Luxury})

({CCarl,CCar2},{Sports,4WD,Luxury})

({A6},{Sedan,4WD,Luxury})

{ (C0,Cl), (C0,C2), (C0,C3), (C0,C4), (Cl,C2),

(C2,C3),(C2,C4), (C3, C4)

}

18

(Cl,C3), (Cl,C4),

We dequeue the first parr from the queue and compute a supremum for the

concepts m that pair

C0VCl = C5 = ({740iL,Camry,Maxima,Passat},{2WD,Sedan})

This new concept CS is now paired with those others with which CS does not form a

subconcept or superconcept relation. All such pairs are added to the queue.

Queue = { (C0,C2), (C0,C3), (C0,C4), (Cl,C2), (Cl,C3), (Cl,C4), (C2,C3),

(C2,C4), (C3,C4), (C2,C5), (C3,C5), (C4,C5)

}

C0VC2 ({all objects}, ¢n

This pair yields a concept with an obJect setX=O, and an empty attribute set. This

corresponds to the highest concept in the lattice. This concept can not have any

superconcept, and hence cannot yield a supremum when paired with any other

concept. Therefore, no new parrs are formed.

Queue = { (C0,C3), (C0,C4), (Cl,C2), (Cl,C3), (Cl,C4), (C2,C3),

(C2,C4), (C3,C4), (C2,C5), (C3,C5), (C4,C5)

}

C0VC3 ({all obJects}, ¢n

The pair (CO , C 3) also yields the highest node as therr supremum. Note that this is

the unique least common upper bound for the concepts in the pair.

Queue = { (C0,C4), (Cl,C2), (Cl,C3), (Cl,C4), (C2,C3), (C2,C4),

(C3,C4), (C2,C5), (C3,C5), (C4,C5)

}

19

C0VC4 = C6 = ({Carnry,Maxima,740iL,Passat,A6},{Sedan})

C6 represents the umque least upper bound for the concepts CO and C4. C6 is now

paired with those that are not ordered with respect to C 6, and all such pairs are added

to the queue. This iterative process IS contmued until the queue IS empty.

Queue= {(Cl,C2), (Cl,C3), (Cl,C4), (C2,C3), (C2,C4),

(C3,C4), (C2,C5), (C3,C5), (C4,C5), (C2,C6), (C3,C6)

}

ClVC2 = C7 = ({740iL,A6,CCarl,CCar2,ML320,Passat,X5},{Luxury})

Queue = { (Cl,C3), (Cl,C4), (C2,C3), (C2,C4), (C3,C4), (C2,C5),

(C3,C5), (C4,C5), (C2,C6), (C3,C6), (C0,C7), (C5,C7), (C6,C7)

}

Cl VC3 = C7

Queue= {(Cl,C4), (C2,C3), (C2,C4), (C3,C4), (C2,C5),

(C3,C5), (C4,C5), (C2,C6), (C3,C6), (C0,C7), (C5,C7), (C6,C7)

}

Cl VC4 = C7

Queue = { (C2,C3), (C2,C4), (C3,C4), (C2,C5),

(C3,C5), (C4,C5), (C2,C6), (C3,C6), (C0,C7), (C5,C7), (C6,C7)

}

C2VC3 = C8 = ({A6,CCarl,CCar2,ML320,X5},{4WD,Luxury})

Queue = { (C2,C4), (C3,C4), (C2,C5), (C3,C5), (C4,C5),

(C2,C6), (C3,C6), (C0,C7), (C5,C7), (C6,C7), (C0,C8),

(Cl,C8), (C5,C8), (C6,C8), (C7 ,C8)

}

C2 VC4 = C8

Queue = { (C3,C4), (C2,C5), (C3,C5), (C4,C5), (C2,C6), (C3,C6),

(C0,C7), (C5,C7), (C6,C7), (C0,C8), (Cl,C8), (C5,C8),

(C6,C8), (C7 ,C8)

}

C3 VC4 = C8

Queue = { (C2,C5), (C3,C5), (C4,C5), (C2,C6), (C3,C6),

(C0,C7), (C5,C7), (C6,C7), (C0,C8), (Cl,C8),

(CS,CB), (C6,CB), (C7 ,CB)

}

C2VC5 = ({all objects}, (/J}

Queue = { (C3,C5), (C4,C5), (C2,C6), (C3,C6), (C0,C7), (C5,C7),

(C6,C7) (C0,CB), (Cl,CB), (C5,CB), (C6,CB), (C7,CB)

}

C3VC5 = ({all objects}, (/J}

Queue = { (C4,C5), (C2,C6), (C3,C6), (C0,C7), (C5,C7), (C6,C7)

(C0,CB), (Cl,CB), (C5,CB), (C6,CB), (C7 ,CB)}

C4VC5 = C6

Queue { (C2,C6), (C3,C6), (CO,C7), (C5,C7), (C6,C7)

(CO,C8), (Cl,C8), (C5,C8), (C6,C8), (C7 ,C8)}

C2 YC6 = ({all objects}, (/n

Queue { (C3,C6), (CO,C7), (C5,C7), (C6,C7)

(CO,C8), (Cl,C8), (C5,C8), (C6,C8), (C7 ,C8)}

C3 YC6 = ({all ObJects}, </n
Queue= {(CO,C7), (C5,C7), (C6,C7)

(CO,C8), (Cl,C8), (C5,C8), (C6,C8), (C7 ,C8)}

co v C7 = ({ all objects}, </n
Queue= {(C5,C7), (C6,C7)

(CO,C8), (Cl,C8), (C5,C8), (C6,C8), (C7 ,C8)}

C5YC7 = ({all objects}, </J}

Queue = { (C6,C7)

(CO,C8), (Cl,C8), (C5,C8), (C6,C8), (C7 ,C8)}

C6 V C7 = ({ all objects}, (/J}

Queue = { (CO,C8), (Cl,C8), (C5,C8), (C6,C8), (C7 ,C8)}

CO YC8 = ({all objects}, </J}

Queue = { (Cl,C8), (C5,C8), (C6,C8), (C7 ,C8)}

Cl YC8 = C7

Queue = { (C5,C8), (C6,C8), (C7 ,C8)}

C5YC8 = ({all objects}, (/n

Queue= {(C5,C8), (C6,C8), (C7,C8)}

C6YC8 = ({all obJects}, </J}

Queue= {(C7,C8)}

C7 YC8 = C7

Queue = { </J}

Concept lattices can be represented as usual lattice diagrams, but for large

lattices it would be messy to label each concept by its extent and mtent. Hence, the

idea of reduced labeling is used [Ganter, Wille 96]. With reduced labeling, each

attribute and each object is entered exactly once in the lattice diagram. A concept is

labeled with an object if 1t is the smallest concept subsuming that object, and

analogously, a concept is labeled with an attribute if it is the largest concept

subsuming that attribute. Consequently, for a concept in a lattice, the set of attributes

is the union of all the attributes occurring in the labels for its superconcepts and

20

21

similarly, the objects set is the union of all the objects occurring in the labels for its

subconcepts. For instance, m the lattice for the vehicle classification, the node labeled

2WD, is the concept:

({Camry,740iL,Passat,Maxima}, {2WD,Sedan})

Sedan, being upwards from 2WD and {Camry, 740iL, Passat, Maxima},

being downwards from 2WD.

Properties of a Concept Lattice

1. The lattice is the smallest lattice compatible with the context table and can thus be

order embedded mto any other lattice compatible with the table. A concept lattice

is minimal.

2. Attributes for a given concept occur upwards (in the superconcepts) in the lattice.

Common attributes are thus maximally factored out. Similarly, objects occur

downwards (in the subconcepts) in the lattice and are thus maximally factored out.

Hence a concept lattice can be said to be maximally factorized [Wille, Ganter 96].

Summary

In this chapter, we have introduced lattice theory and concept analysis. We

have discussed how a concept lattice can be used to model a context with a binary

relation between a set of objects and a set of attributes. In the following chapter, we

will discuss the application of concept analysis in modeling a software system.

We will,

1. Make a conceptual model of a structured program into a concept lattice with

reduced labeling,

22

2. Decompose that lattice mto potential modules based on the data extracted from the

source program.

Chapter 3

MODULARIZATION OF SOFTWARE USING CONCEPT
ANALYSIS

Introduction

In the previous chapter, we showed how a concept lattice could be used to

model a system that exhibits a binary relationship between a set of objects and a set of

attributes. In this chapter, we demonstrate how concept analysis can be used to

visualize a software system as a concept lattice. A concept lattice provides a

conceptual model that offers a meaningful and comprehensible interpretation of the

system. We present techmques for the analyses and automatic modularization of

software based on this model and some semantic information extracted from the

system.

Objects and Attributes

We define a module as a unit that is directly usable, discrete, and ideally separable

from its original context and usable in other contexts. A component may be viewed as

a "static abstraction with plugs" [Nierstrasz 95]. By static we mean that a

23

software module is independent of applications. By abstraction we mean that a

module encapsulates software and only provides "plugs" as well-defined ways of

interaction. We should therefore think about the data not only in terms of how to

represent it, but also in terms of how it is to be used. As such, a module should

combine data representation and methods for manipulating that data as a neat

package. The methods should provide the "plugs," the data being hidden otherwise.

24

A program Pin the C language (and m most languages) can be divided into the

following domains: Global-variable, User-defmed-data-type, Macro, Function, and

file domain [Chen, Nishimoto, Ramamoorthy 90]. Of these, global variables represent

data (local variables are not of Importance to us); functions and macros represent the

operations on the data. Functions and the macros may collectively represent objects,

0, and data may represent attributes, A. The relation R is as expected: a procedure

o E O , is related with a data element a E A , if and only if it uses that element. By

building a concept lattice, we can thus create a conceptual model for a given software

system m terms of the procedures as objects and data elements as attributes, and relate

an object to a data element if and only 1f it uses that data element. We will

demonstrate that this conceptual model can be effectively used to identify interference

caused due to coupling, eliminate such interference, and decompose the lattice into

meaningful modules.

User defmed compound data types provide a good starting point in the detection of

modules. In the C programming language, a structure provides a convenient means of

keeping related information together. A structure is thus a "module" of data.

Functions accessing the fields of such aggregate types are thus potential members of

these structures. We therefore consider a relationship of the form

"uses_struct_x_fields" for a function f accessing the fields of struct x.

25

Global variables can be used by any piece of code and, as such, are a source of

coupling amongst functions. With our definition of a module, it is reasonable to have

objects correspond to procedures and attnbutes correspond to the usage of global

variables and user defined data-type fields by these procedures. A relationship

capturing this information might therefore be of the form

"uses_global_variable_a" or "uses_struct_x_fields". Many sets of

functions being related to a set of attributes represents coupling between the sets of

functions and is displayed as such in the concept lattice. Analogously, one function

set being related to different attribute sets is a source of interference and is also visible

in a concept lattice. The identification and elimination of such sources of coupling and

interference 1s an important step in the formation of modules. As will be demonstrated

later, the information requrred to resolve such sources can be extracted to a large

extent from the program source. If needed, more information may be obtained with

user assistance. The choice of objects and attributes in visualizing a SY,stem as a .
concept lattice may vary. Some legacy systems are monolithic in nature: they lack

structure, all tasks being contained within one function. In such a case objects may

correspond to program slices rather than procedures [Siff 98].

A generic hash table package

Appendix A3 .21 is the C code for a generic hash table package, the user of which

is expected to type defme Record and to provide a function Equal () to check

equality of two Records. It has twelve functions and four user defined compound

data types (structs). The functions form the object set 0, and the struct field usage

information forms the attribute set A. Therefore,

O={equal,print_data,initnode,initlist,list_head_insert,

find_element,size,print,inithashtable,find_record,

insert_record}

A={uses_record_fields,uses_node_fields,uses_list_fields,

uses_hashtable}

The relation R is as expected: a function o E O , is related with attribute

a E A, if and only if it uses the fields of that structure. Figure 3 .21 is the

corresponding context table and figure 3.22 is the resultant concept lattice.

Uses node fields Uses list fields U ses_table_fields
InitNode X

InitList X

List_head_insert X X

Find_element X X

Delete_element X X

Size X

Print X X

Destroy _list X X

InitHashtable X
Lookup X
Insert X
Destroy _table X

Figure 3.21: Context table for the Hash table package

26

Find element
Delete_elemen

Destroy_hst
Print

Figure 3.22: Concept lattice for the hash table package

The atomic concepts are computed as follows:

i-{o-({ImtNode})) = -r({uses_ node_ fields})

= {Imtnode, List_ head_ msert, Fmd _ element, Delete_ element, Pr mt, Destroy_ hst}

-r(o-({ImtList })) = -r({uses_ hst _fields})

= {ImtList, List_ head_ msert, Fmd _ element, Delete_ element, Size, Pr mt, Destroy_ hst}

-r(o-({List _head_msert })) = -r({uses _node_ fields, uses_hst_ fields})

= {List _head_ msert, Fmd _ element, Delete_ element, Pr mt, Destroy_ hst}

-r(o-(Fmd _element)) = -r({uses _node_ fields, uses_ list_ fields})

= {List_ head_ msert, Fmd _ element, Delete_ element, Pr mt, Destroy_ hst}

-r(o-({Delete_ element}))= -r{{uses_node_ fields, uses_hst_ fields})

={List_ head_ msert, Fmd _ element, Delete_ element, Pr mt, Destroy_ hst}

-r(o-({size})) = -r({uses_ node_ fields})

= {Imtnode, List_ head_ msert, Fmd _ element, Delete_ element, Pr mt, Destroy_ hst}

-r(o-(Pr mt))= -r({uses_node_fields, uses_hst_fields})

={List_ head_ insert, Find_ element, Delete_ element, Pr mt, Destroy_ hst}

27

i-(u({Destroy _hst}))= i-({uses_node_fields, uses_hst_fields})

= {List _head_ msert, Fmd _ element, Delete_ element, Pr mt, Destroy_ hst}

i-(u({ImtHashtable})) = i-({uses_ table_ fields})

= {ImtHashtable, Lookup, Insert, Destroy_ table}

i-(u({Lookup }))= i-({uses_ table_fields})

= {In1tHashtable, Lookup, Insert, Destroy_ table}

i-{u({Insert })) = i-({uses _table_ fields})

= {In1tHashtable, Lookup, Insert, Destroy_ table}

i-(u({Destroy _table}))= i-({uses_ table_fields})

= {In1tHashtable, Lookup, Insert, Destroy_ table}

We have thus identified the following atomic concepts:

Concept 0= ({InitNode, List_head_insert, Find_element,Delete_element,
Print, Destroy_list}, {uses_node_fields})

Concept!= {{Initlist, List_head_insert, Find_element, Delete_element,
Destroy_list, Print, Size},{uses_list_fields})

Concept 2= ({List_head_insert, Find_element, Delete_element, Print,
Destroy_list}, {uses_node_fields, uses_list_fields})

Concept 3={{InitHashtable, Lookup, Insert, Destroy_table},
{uses_table_fields})

28

Note that C2:,::;CO (C2 is a subconcept of CO) and C2::;;;Cl (C2 is a subconcept of Cl).

Hence our queue will look like:

{ (CO, Cl), (CO,C3), (Cl,C3), (C2,C3)}

None of these pairs yields a new concept. Hence the resultant lattice in figure 3.2

contains only the four atomic concepts.

29

Patterns in a concept lattice

Before we devise an algorithm to identify sources of coupling and interference and

to decompose a concept lattice into modules, the patterns in a lattice that are of

interest to us need to be introduced. These patterns are illustrated in figures 3.31(a-c).

0

(a) (b)

s

(c)

Figure 3 .31: Patterns of interest in a lattice
a) Chain (b) Antichain (c) Infima, Suprema

Chain: a sequence of concepts in which a concept is a subconcept of the next

one in the sequence. Such concepts run as a chamjoining the bottom of a

lattice to its top. Figure 3.3 la shows such a chain of concepts

Anti-chain: a set of distinct chains. Figure 3 .31 b shows an anti-chain.

The patterns of interest in addition to these are suprema and infima, which we have

already seen. Figure 3.31c shows pas the supremum of q and r, and r as, the infimum

of q ands.

30

We will also need to introduce some terminology from graph theory [Temperley 81]

[Cormen, Leiserson, Rivest 90], [Tarjan 83], [Even 79]. An articulation point is a

point in a graph, the removal of which, with all its mcident lines, causes a graph to fall

into two or more disconnected pieces. Infima in a lattice are normally these

articulation points that need to be identified and resolved in order to have a

horizontally decomposable lattice. The operation of contraction of a line involves not

only removing it from the graph, but also replacing its two ends by a single one, all

other lines incident on the two ends being retained.

From the lattice for the hashtable package, we observe that concept 2 is the

infmum of concept O and concept 1. Again, an infimum of two concepts is the greatest

common subconcept of those concepts. As such, it represents the data being shared by

functions of two concepts yieldmg that infnnum (concept O and concept 1 in this

case). Hence an infnnum represents interference m the form of coupling. If this

infimum is suppressed, we will have a perfect anti-chain of three concepts that cleanly

represent the three modules that the concept lattice may be decomposed into, viz.

node, list and hashtable, encapsulatmg all the related data and functions neatly. In

31

other words, the suppression of the interference renders the lattice horizontally

decomposable into three partitions. Several algonthms have been established for

decomposition oflattices [Wille,Ganter 94], [Funk, Lewein, Snelting]. We present a

horizontal decomposition algorithm that uses semantic information extracted from the

source program.

Algorithm for the horizontal decomposition of a concept lattice

Horizontally Decomposable Lattice

Let LI, L2 ... Ln be lattices. The horizontal sum of these lattices is

n n
LLi ={T,B}YYLi \{Ti,Bi}, where, T 2? x, B 5 x for all XE r:1Li [Funk,
i=l i=l

Lewein, Snelting]. For instance, the lattice in figure 3.31 b is horizontally

decomposable. The Li are the disjoint summands. Conversely, a lattice L is

horizontally decomposable, if it is a horizontal sum. But in practice, L might not

readily have a horizontal sum. The coupling and interference in a system may produce

suprema and inti.ma that will need to be eliminated before the lattice can be

decomposed into modules. Therefore, in case a lattice is not horizontally

decomposable, it can be made so after the interferences have been removed. Although

the top element is a supremum, it is not considered as a source of coupling unless 1t

has a non-empty intent. Smularly, although the bottom element of the lattice

represents an inti.mum, 1t is not considered as a source of interference unless it has a

non-empty intent. To demonstrate the efficacy of our modularization algorithm, we

treat a "tangled" version of the hash table package described in the previous section.

We call this a tangled version because Find_record and Insert_record have

32

been rewritten to directly access the fields of other structures. Record has been type

defined to be of the type struct record, and the function Equal () has also

been provided. This version is listed in Appendix A3.41. Figure 3.42 shows the

context table for this version of the hash table package.

Uses_Record_fields Uses_Node_fields U ses_list_fields Uses_hashtable

Equal X

Print_data X

Initnode X

Initlist X

List_head_ins X X

Find_element X X

Size X

Print X X

Inithashtable X

Find_record X X X X

Insert_record X X

Figure 3.42: Context table for the tangled hash table

The corresponding concept lattice shown in figure 3.43a is based on the

following atomic concepts:

Concept CO= ({equal, print_data, find_rec, insert_rec},

{uses_record_fields})

ConceptCl=({init_node, list_head_insert, find_element,

delete_element, print},{uses_node_fields})

ConceptC2=({init_list,list_head_insert,find_element,

delete_element, size, print},

{uses_list_fields})

Concept C3 = ({ list_head_insert, f ind_element,

delete_element,print, find_record },

{uses_node_fields, uses_list_fields})

Concept C4 = ({Init_hashtable, Find_record, Insert_record} ,,

{Uses_hashtable})

Concept CS= ({Find_record}, {uses_record_fields,

uses_node_fields, uses_list_fields,

uses_hashtable})

Concept C6 ={ (Insert_record}, (Uses_record_fields,

uses_hashtable})

It may be observed that the resultant lattice m figure 3 .43a is not horizontally

decomposable. The lattice shows the three infima represented by the concepts C6, C3

and CS (in a breadth-first order).

lnithst

_list_f1e/ds

Figure 3.43a: Concept lattice for the "tangled" hash table

33

34

Infima that display interference are the /\ - reducible concepts of the lattice. This

suggests that by shifting the objects of this concept upward in the lattice, the

interference may be eliminated. Our next step 1s therefore to suppress these

interferences. To compute the suitable superconcept to which these interfering objects

may be relegated, we employ semantic information that can be obtained from the

program. In addition, information may also be obtained with user assistance.

A breadth-first search of a concept lattice, starting at the top node, can be used to

identify the infima and the suprema causing interference. The first supremum to be

identified is the top node. Since it has an empty intent, it does not represent coupling.

The next node of interest to be discovered in the breadth-first order is the node

representing concept C6. Consider the one function Insert_record () in the

extent of this concept. This function 1s causing the interference because it accesses the

fields of the two structures record, and hashtable. However, from the source

code, it is clear that hash tab 1 e struct displays a "has-a" relationship with the 1 is t

struct; 1 is t struct shows a "has-a" relationship with node struct and node struct

shows a "has-a" relationship with record struct. In other words, a hash table

instance contains a list mstance that contains a node instance that contains a

record instance. An object (Insert_record) that uses the fields of both, the

contained structure (record) and the containing structure (hashtable) is more

likely to belong to the module representing the containing structure. Therefore, the

obJect Insert_record, in this case, is added to the extent ofC4. We can now

eliminate C6 and connect CO and C4 directly to the subconcept ofC6 i.e. CS. The

resultant lattice is shown in figure 3 .44b. If a vertex needs to be suppressed, all the

edges from its direct parents are then connected to its children.

35

lnrthst

_llst_flelds

Figure 3.44b. Lattice after the suppression of the node representing concept C6

Therefore, the suppression of a vertex v leads to the creation of infima at most equal

to the number of children of v. We process each of these mfima until we reach the

bottom node in one breadth-first traversal of the lattice. If an infimum v to be

processed is also a supremum, we delegate all obJects m its extent to the respective

parents and connect v directly to top. All the children of v now become direct

children of the parents of v. This process continues until the lattice is horizontally

decomposable. The mfimum identified next is the node representing concept C3. This

concept produces interference because the functions in its extent

({list_head_insert,find_element,delete_element,print,

find_record}) access the fields of both the node structure and the list

structure. Since node is the contained structure and 1 is t is the containing structure,

36

we delegate the functions in the extent of C3 to that of concept C2. After eliminating

the node representing concept C3, we get the lattice shown in figure 3.43c.

Figure 3.43c: The concept lattice after the elimination of concept C3

The next node of mterest is bottom. This concept exhibits interference since the

function in its extent (f ind_rec) accesses the members of all the structures. Again,

with our knowledge of the relationship between these two structures, we can resolve

that this sole object is more likely to belong to the node representing the hashtable i.e.

C4. We therefore move f ind_rec to the extent of C4. Since this is the bottom node

of the concept lattice, we do not suppress it. The resultant lattice in figure 3 .43d is a

horizontal sum of four antichains that represent the four meaningful modules

identified in the system VIZ. record, node, list and hashtable.

37

Figure 3.43d: The final horizontally decomposable lattice

The identified modules are tabulated in the table in figure 3 .44.

Module Data members Operations

Record char name [40] Equal ()
char SSN[9] Print data ()

Node Record data InitNode ()
Node* next

List Node* head InitList ()
int length List_head_insert()

Find_element
Delete element -
Print

Hash table int tablesize InitHashtable()
List* Hash table Insert_record ()

Find record ()

Figure 3.44: Modules identified in the "tangled" hash table package

38

It IS possible that there may not be enough system information available to

resolve coupling and interference. Moreover, the system may have data in the form of

global variables alone; such base modules as offered by user defined compound data

types may not be available. Even in such cases, the algorithm will group functions and

the data used by them into modules. Elimination of coupling and interference in this

case may demand more user assistance. The following chapter presents a case study

where our modularization algorithm is applied to a small-scale legacy system written

in the C language. In the presence of both user defmed compound datatypes and

global variables, we show how restructuring can be carried out effectively by treating

data from these two domains separately, as opposed to making a model with all the

information to start with. We modularize the system based on a conceptual model

formed with the relationship between functions and user defmed compound datatypes

and their global instances. It is then much easier to delegate the other global variables

to these potential modules. The results obtained have been encouraging.

Because modularization is mherently subjective, it is not likely that this

process can ever be made completely automatic. However, for existing systems with

high entropy, there is an acute need for a tool that aids, as much as possible, in the

understanding and restructuring process. Sommerville states that "reengineering

software IS not normally effective unless some automated tool support can be

deployed to support the process" [Sommerville 96].

We observe that concept analysis, by providing a good method for analyzing

software not only aids program restructuring, but also gives a detailed account of all

dependencies due to couplmg and may be used to limit the increase of entropy as

software evolves.

39

Summary

In this chapter, we discussed the application of mathematical concept analysis to

reverse engineering of software. Based on the vISualization of software as a concept

lattice, we descnbed our algorithms for identifying meaningful modules from the

concept lattice.

The next chapter presents a case study where our modularization technique

has been applied to a computational-geometry library called Voronoi. The results

obtained are encouraging.

Chapter4

IMPLEMENTATION AND RESULTS

Introduction

Based on the work presented m this chapter we have implemented a prototype tool

that

• Creates an abstraction of a given software system as a concept lattice, where the

object set O is constituted by functions and macros, the attribute set A is

constituted by global variables and user defmed compound data types, and the

relation R relates an object with an attribute if it uses that attribute. For an

attribute that is a user defmed compound data type, an object is related to it if and

only if the object accesses its members.

• Identifies sources of coupling and interference in the system by analyzing the

concept lattice and

• partitions the system mto maximally cohesive and minimally coupled modules

that encapsulate functions and data.

40

41

Figure 3 .41 shows the general design of the tool. It contains the following parts:

• Program Information Extractor

• Concept Lattice Bmlder

• Modularizer

• GUI front end

• Lattice Drawing Tool

The Program Information Extractor: used to obtam information for generating the

context table. We have not implemented the Program Information extractor, and rely

on such cross referencing tools as cxref and Understand for C, for extracting

Program
Information
Extractor

GUI
Front end

Concept
Lattice
Builder

- Modularizer

Lattice
Drawing

Tool

Figure 3.41: The outline design of our modularization tool

system information from C programs. Understand for C is an interactive

development environment (IDE) designed for code navigation using a detailed

cross referencmg engine.

42

It also offers a C API to:

1. Report functions with their parameters and types

2. Report global objects

3. Report all structs and their member types

4. Find all references to and from an entity

The Concept Lattice Builder: takes input from the Program Information Extractor

and creates the abstraction of the system m the form of a concept lattice. It deals with

the construction of the context table, the identification of atomic concepts, and the

building of the entire concept lattice.

The Modularizer: Based on the concept lattice generated by the Concept Lattice

Bmlder and system information given by the Program Information Extractor, the

Modularizer identifies and elimmates the sources of coupling and interference in the

system and decomposes the lattice into mealllllgful modules that display high

cohesion and low coupling.

The GUI Front end: provides a graphical user interface to our modularization tool. It

generates HTML reports that offer a lot of architectural information generated by the

tool in addition to suggestmg restructuring actions.

The Lattice Drawing Tool: We employ a 2D graph drawing tool for drawing a

concept lattice. DOT, a successor of the UNIX tool DAG, is such an open source 2

dimensional graph drawing tool presented by AT&T Research. DOTTY is the

visualizer written on top of DOT.

43

The Concept Lattice Bmlder and the Modularizer have been written in ANSI standard

C++. The GUI front end is written m Tcl/Tk. The program has been compiled using

Microsoft Visual C++ 6.0 and runs on Microsoft Windows 95/98/NT/2000. For all the

examples illustrated in this thesis the output generated by our tool has been included

in the appendices. The source code for the Concept Lattice builder and the

Modularizer are listed in appendix B 1 and that for the GUI Front end, in appendix B2.

Case Study: voronoi

A Voronoi diagram is a geometric structure that represents proximity information

about a set of points. This program has been taken from a computational-geometry

library. The program contains roughly one thousand lines of C code, with eight source

files, forty-four functions, thirty-six global variables and six structures.

Initially we create a visualization of the system with a context that relates the

functions to the structures and their global instances alone. For the context table

shown in figure 4.21, our tool generates twenty concepts. Figure 4.22 shows the

resultant concept lattice. The nodes in color represent infima that need to be resolved.

Our tool identifies eight such infima. The system source provides us with all the

information necessary for suppressing these interfering concepts. These are eliminated

to give us the horizontally decomposable lattice shown in figure 4.23.

t:tJ '.::I '.::I :::r: 'tJ Cf.I t:tJ 'tJ
0., 11 11 Pl 0 f-'· t' iO
lQ (1) (1) r' f-'· rt p' ~ (1) (1) (1) Hi ::s (1) Pl

r' ::s (1) rt 00 00
f-'· 0 0., p' p'
00 0., lQ
rt (1) (1)

bisect X X
clip_line X X

deref X
dist X

ELdelete X
ELgethash X X

ELinitialize X
ELinsert X
ELleft X X X

ELleftbnd

ELright X
Endpoint X
Freeinit X
Getfree X
HEcreate X
intersect X
leftreg X

makefree X
nextone X

out_bisector X
out_ep X

out_site X
out_triple X
out_vertex X

PQmin X
PQbucket X
PQdelete X X
PQempty X

PQextractmin X X
PQ1n1t1al1ze X

PQinsert X X X
readone X

readsites X
ref X

right_of X X X
rightreg X

scomp X
voronoi X X X

Figure 4.21: The context table relating functions with the structures and
therr global instances

44

Cf.I
f-'·
rt
(1)
00

45

--
(

Figure 4.23: The first concept lattice for voronoi

I p)
/.

0

Figure 4.24: horizontally decomposable lattice suggesting eight modules

This lattice is a horizontal sum of eight antichams that represent potential modules.

These eight modules are hsted below

1. ({deref,dist,out_site,out_triple,out_vertex,
readone, ref } {Site })

2. ({ELdelete, ELinsert, ELleft, ELright, HEcreate,
PQbucket,1ntersect,leftreg,right_of,rightreg,
voronoi} {Halfedge})

3. ({scomp} {Point})

4. ({ELgethash, ELini tialize, ELleftbnd} {ELhash})

5 ({bisect,clip_line,endpoint,out_b1sector,out_ep}
{Edge})

6. ({freeinit, getfree,makefree} {Freelist})

7. ({nextone, readsites} {sites})

8. ({PQ_min,PQdelete,PQextractmin,PQinitialize,PQinsert}
{PQhash})

46

In the next step, we build a concept lattice with the identified modules as objects

and the global variables as attnbutes. The context, shown in figure 4.25 relates a

module to a global vanable if any function in that module uses that global variable.

By making this a two-pass process, we have effectively snnplified the modularization

process. A complete concept lattice bmlt with the entire attribute set would "clutter

up" the lattice making modulanzatlon difficult. With our method, we have generated

potential modules by encapsulating functions and user defmed compound datatype

members together in the first pass. The next pass accounts for the global variable

usage by the functions in these modules. The new context contains the modules

identified in the first pass m its obJect set, 0, and the unaccounted global vanables m

the attribute set A. Note that the objects and the attnbutes in the table shown in figure

4.25 have been transposed due to aesthetic reasons.

47

Cl C2 C4 C6 C7 ClO Cll

bottomside X
cradius X

debug X X
deltax X
deltay X

efl X
ELhashsize X
ELleftend X

ELrightend X
Freeinit X

hfl X X
leftreg X
nedges X
nsites X
ntry X
plot X X

PQcount X
PQhashsize X X

PQmin X X
pxmax X
pxmin X
pymax X
pymin X
sfl X X

siteidx X X
Sqrt_nsites X X X
total_search X
triangulate X X

xmax X
xmin X X
ymax X X
ymin X X

Figure 4.25: Context table considering global variables

Figure 4.26: The second concept lattice for voronoi

The resulting concept lattice is shown in figure 4 .26. The following are the reduced

labels corresponding to each node

GO =({Cl} {cradius})

Gl =({C2} {deltay})

G2 =({C4} {ELhashsize,ELleftend,ELrightend,deltax,ntry,

total search})

G3 = ({C6} { efl, nedges, pxrnax, pxrnin, pymax, pymin})

G4 = ({ C 7 } {})

G5 =({ClO} {})

G6 = ({Cll} {PQcount})

G7 = ({} {sfl})

G8 = ({} {debug, plot, triangulate})

48

G9 = ({} {siteidx})

GIO=({} {hfl})

G 11 = ({} {ymax, ymin})

G12 = ({} {PQhashsize, PQmin})

G13 = ({} {sqrt_nsites})

G14=({} {xmin})

49

Groups GO through to G6 represent the potential modules. The global variables in the

reduced labels corresponding to these are added to their corresponding intents. The

global variables that are shared between these modules label the suprema of modules

(G7 through G 14), and, as such, represent a source of coupling. Whether these

variables should be encapsulated into the modules or not can be decided with user

assistance. The table in figure 4.28 shows all the identified modules of voronoi.

Module Data members Operations

Site cradius deref, dist,
Point coord out_site, out_triple,
int sitenbr out_vertex, readone,
int refcnt out vertex, ref

Halfedge Deltay ELdelete, ELinsert,
Halfedge *ELleft, *ELright; ELleft, ELright,
struct Edge *ELedge; HEcreate, PQbucket,
int ELrefcnt; intersect, leftreg,
char ELpm; right_of, rightreg,
Site *vertex; voronoi
double ystar;
struct Halfedqe *PQnext;

Point float x, y scamp
Elhash ELhashsize, ELleftend, ELgethash,

ELrightend, deltax, ntry, ELinitialize,
total search ELleftnd

Edge efl, nedges, pxmax, pxmin, bisect, clip_line,
pymax, pymin end_point,

out bisector, out ep
Freelist Freenode *head; freeinit, getfree,

int nodesize; makefree
Sites nextone, readsites
Pqhash Pqcount PQ_min, PQdelete,

PQextractmin,
PQinitialize,
PQinsert

Figure 4.28: The modules identified in voronoi

The rest of the functions that are not relegated to any modules may be

considered to constitute a potential driver module and the unaccounted global

variables, if any, may be added to it. From the encouraging results ofthis case study,

we can conclude that concept analysis offers a useful method to automate program

comprehension and restructuring.

50

Chapter 5

CONCLUSION

Based on the information extracted from the given system, we presented a

technique to identify closely related data, routines and their definitions, and

encapsulate them in meaningful modules that are maximally cohesive and minimally

coupled. We presented the application of mathematical concept analysis to software

reengineering, and demonstrated how a concept lattice provides a concise, yet vivid

account of all the relationships amongst concepts. We used concept analysis to

identify inherent structures in software that cannot be fully captured in quantitative

analyses. With the encouraging results obtained from case study of the computational

geometric hbrary voronoi, we estabhshed that concept analysis offers a useful method

to automate program comprehension and restructuring. The followmg section

discusses related work m the field of program comprehension and software

reengineering. By comparing our results with those of these other efforts, we identify

our contribution to the field of automatic program comprehension and software

reengineering.

Related Work

There have been numerous prior research efforts in conceptual program

understanding [Chin, Quilici 96], [Quilici 94], [Kozaczynksi, Ning 94], [Wills 92],

51

52

[Wills 90], [Hartman 91], [Johnson 86]. They perform program understanding by plan

recognition: the identification of a set of items in the code that meet certain

constraints with heuristics used to reduce the combinatoncs involved in plan

recognition. None of these efforts in establishing a plan recognition algorithm has

scaled to the size of real-world software systems. These efforts assume a library of

program plans, and provide an engine for recognizing instances of these plans in the

system. As illustrated in [Woods, Qmlici, Yang 98] a typical plan recognition

algorithm parses the imperative code (shown in figure 5.31), makes an internal

representation for it, and with the help of a plan recognition engine, identifies a

suitable existing plan from the plan library.

const char *s = "Hello world";

for (i = 0; s [i] = ' \ 0 ' ; i ++)
putchar(s[i])

putchar ('\n') ;

for (i = O; s[i] != '\0'; i++)
{

if (s [i] == m)
{

}

pos = i;
break;

Figure 5.31: Example C code that manipulates strings

A typically recognized plan would be as illustrated in [Woods, Quilici, Yang 98]:

"The code declares a character string, initializes it with a constant, prints that string

followed by a newline character, and searches it for a particular value. "

The corresponding "objectified" version of figure 5.31 1s listed in figure 5.32.

const string s("Hello world");

cout << s << endl;

pos = s.findfirst(m);

Figure 5.32: The translation to object-oriented C++ using plan recognition

53

The success of this approach at objectification apparently depends highly on the

knowledge in the plan library, which should map pieces of existing imperative code to

suitable class operations. It is unlikely to have a complete code pattern library,

however this approach claims success on the basis that even if the understanding of

the code is partial, it will always be correct because the system will not recognize

design patterns that are not present in the code. The understanding may be partial

because there are design concepts that the process may not be able to identify. Our

efforts differ from plan recognition in that our approach aims at comprehending and

reengineering the underlying architecture of the software system.

Chen et al. have presented a C Information Abstraction System (CIA) that

records information about the various objects in a C program in a program database.

This information may then be processed by relational database tools to locate

declarations and analyze their relationships. Based on the system information

provided by CIA, vanous tools to provide graphical views of program structure have

been developed. These tools visualize the system as drrected graphs to model function

call graphs and file include hierarchies. In addition to automating software

restructuring tasks, CIA also aims to eliminate dead code from C systems. Based on

this work, experiments are being conducted on software metrics and program

structure comparison.

54

Concept analysis has been applied to a host of different problem domains.

Snelting has presented work on the application of mathematical concept analysis for

varied problems in the analysis and reengineering of software [Snelting 96]. One

application of mathematical concept analysis was to the problem of analyzing

configurations in UNIX source files. This work led to the development of the

NORA/RECS tool used to identify conflicts in software-configuration management

information. Snelting and Tip used a method well founded in mathematical concept

analysis to reengineer class hierarchies [Snelting, Tip 98]. A concept lattice was used

to visualize the access and subtype relationships between variables, objects and class

members. Lindig and Snelting studied the application of mathematical concept

analysis to the identification of modular structure of legacy code [Lindig, Snelting

97]. The results reported by them on the two case studies are not encouraging. In both

the cases, the lattice could not be decomposed satisfactorily due to the presence of a

large number of interferences. A context was built by relating the functions in the

program to the global variables being accessed by them. Our work has demonstrated

how the use user defined compound data types offers a good start to modularization.

Contemporaneously with their work, S1ff applied concept analysis to the C to

C++ conversion problem with fairly encouraging results [Siff 98]. The case studies

presented have not taken global variables into consideration. Although structures

present a good startlng point, modularization based on structures alone does not

address the problem of coupling and interference due to global objects. To resolve

interference, Siffuses negative information (e.g. "function f does not use the fields of

struct t"). It is our view that such added attributes complicate the concept lattice, and

that better results may be achieved by using information that can be extracted from

the program source. By also considering the global instances of user defined

55

compound datatypes, we have also demonstrated how the identified modules need not

necessarily correspond to the user defined types alone. By treating user defined

compound types and their global mstances separately from global variables, we have

simplified the modularization process by avoiding "clutter" in the concept lattice that

would be difficult to deal with in one pass.

To summarize, we have presented techniques

1. to reverse engineer software into a conceptual model in the form of a

conceptlattice,and

2. to reengineer the concept lattice mto the modules

We have seen that a concept lattice provides a concise, yet vivid account of the inter

relationships between the inherent structures in software. The encouraging results of

our case study have established that this technique can be effectively used to automate

program comprehension and software reengineering.

Chapter 6

DIRECTIONS FOR FUTURE RESEARCH

Identification of class hierarchies

The method described in the previous chapter aids program understanding by

automatically extracting and analyzing the program structure. We extracted

relationships between functions and variables and presented this information visually

to the restructurer in the form of a concept lattice. Structural information alone may

not be enough for completely understanding a system [Sommerville '96].

Maintenance tasks typically requrre semantic or conceptual understanding. System

structure does not address the underlying purpose of a particular function or variable,

a type of information that is almost always essential for program understanding.

Identification of idiosyncratic implementations of standard design concepts can be

used to increase the quality of modularization. Considering the specific problem of

reengineering legacy C code, there are many idioms that are commonly used by C

programmers to simulate such object-oriented features as inheritance, vrrtual

functions, and genericity. All of these involve type casting of pointers, with which a

programmer can interpret any memory region to be of any desired type. Not only do

type casts make programs vulnerable to type errors, but they also hinder program

comprehension and maintenance by creating latent dependencies between seemingly

56

57

independent pieces of code. According to McConnell, "a program that requires type

casts probably has some arclntectural gaps that need to be revisited. Redesign if that's

possible" [McConnell 93]. By identifymg the usage of the common programming

idioms, we may identify the intent of the programmer to emulate class-hierarchies

("is-a", "has-a" relations) and virtual functions.

Consider the example listing in Appendix 6.11 [Stroustrup 94]. Figure 6.12

shows the context table for the hstmg.

Shape Circle Square Rectangle

Initcircle X

Initsquare X

Initrectangle X

Draw X

Figure 6.12: Context table for Shapes

The corresponding concept lattice in figure 6.12 can be seen to be easily

horizontally decomposable; Ini tcircle being a member of the Circle class,

Ini trectangle, that of the Rectangle class, Ini tsquare, that of the

Square class, and Draw () , that of Shape class. However, an examination of the

underlying architecture shows that the function Draw () depends completely on the

physical layout of the structure instances in memory. Figure 6.12 shows the

corresponding concept lattice.

58

Figure 6.13: Concept lattice for "shapes"

In a programming language like C, the ability to cast variables and pointers allows a

program to access a given object as if it had a type different from its declared type.

The function draw () has been used to "draw" Circles, Squares and

Rectangles, while treating them as Shapes by depending on their structural

layout in memory. Physical layouts of structure and class instances are compiler and

system dependent, and software architectures depending on these are, at best, non

portable. Further, any new structure added to the design listed in figure 6.11, that will

need to be "drawn" will warrant changes in the draw () function. This makes the

system less changeable and less maintainable.

This warrants a need for type checking while building the context table.

Type-checking can be based on pomts-to analysis [Emami, Ghiya, Hendren 98],

[Ghiya, Hendren 98], [Omega 85], [Steensgaard 96], [Yong, Horwitz, Reps 99]. In

59

checking for type conversions, we also have to take into account the fact that most C

compilers do not require explicit casts from one pomter type to another. Implicit type

conversions at most invite a warning from a C compiler. The context table in figure

6.2 captures the correct relationship between the functions and the attributes.

Shape Circle Square Rectangle

Imtcircle X

Imtsquare X

Imtrectangle X

Draw X X X

Figure 6.2: New context table for "shapes"

lnit quare

uses_s uare_fields
uses_rectang/e_fie/ds

Figure 6.22: The new concept lattice for "shapes"

60

In resolving the interference presented by the bottom node, we observe that the

structures Circle, Square, and Rectangle are structural subtypes of the

structure Shape. In other words, they contain all the information in the structure

Shape and more. The data in Shape is duplicated in these structures as a contiguous

block, starting as the first member of the structure. This programming idiom is

commonly known as the redundant declaration idiom. With this information we can

identify an "is-a" relationship between each of these structures and the structure

Shape.

Listing 6.3 in the appendix lists the equivalent source code in C++, establishing the

inheritance identified in the system.

Data Organization Metric

It is possible that a system being restructured does not have enough structure

or that enough information is not available to resolve sources of coupling and

interference. Modularization achievable may be limited. In such cases, the concept

lattice could be used to generate a metric for the data organization in the system. The.

concept lattice can also be used to quantify such attributes as coupling, cohesion and

interference.

BIBLIOGRAPHY

[Abadi, Cardelli 96]
Martm Abadi, Luca Cardelli. A theory of ob1ects Springer, 1996

[Aho, Hopcroft, Ullman 87]
Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman. Data Structures and Algorithms
Addison Wesley Publication Company, 1987

[ANSI/ISO 90]
The Annotated ANSI C Standard. American National Standard for Programming
Languages - C. Annotated by Herbert Schildt, ANSI/ISO 9899-1990

[Birkhoff 73]
Garrett Birkhoff, Lattice Theory, third edition. Amer. Math. Soc. Coll. Publ. 25,
Providence, RI., 1973.

[Brooks 95]
Brooks Frederick P. The mythical man-month: Essays on Software Engineering.
Addison-Wesley Publication Company, Anniversary Edition.

[Chandra, Reps 99]
Satish Chandra and Thomas Reps Physical Type Checking for C. Technical Report
BL0l 13590-990302-04, Lucent Technologies, Bell Labs, March 1999.
http://www.bell-labs.com/~schandra/pubs/checking-tr.ps.

[Chen, Nishimoto, Ramamoorthy 90]
Yih-Fam Chen, Michael Y. Nishimoto, C. V. Ramamoorthy. The C Information
Abstraction System. IEEE Transactions on software engineering (TSE) 16(3): 325-334
(1990)

[Chin, Quilici 96]

61

62

Quiang Yang, Alexander Quilici, DECODE: A cooperative program understanding
environment. Journal of Software Maintenance: Research and Practice, 8(1):3-34.

[Cormen, Leiserson, Rivest 90]
Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest. Introduction to
Algorithms. The MIT Press, Cambridge, Massachusetts 1990

[Emami, Ghiya, Hendren 98]
Rakesh Ghiya and Laurie J. Hendren. Putting Pointer Analysis to work
ACM Principles of Programming Languages pg. 242-254. January '98.
[Even 79]
Shimon Even. Graph Algorithms. Computer Science Press, 1979

[Funk, Lewem, Sneltmg]
P. Funk, A. Lewein, G. Snelting
Algorithms for Concept Lattice Decomposition and their Application

[Ganter, Wille 96]
Bernhard Ganter and Rudolf Wille. Applied Lattice theory: Formal Concept Analysis

[Ghiya, Hendren 98]
Rakesh Ghiya and Laurie J. Hendren
Putting Pointer Analysis to Work. Proceedings of the Twenty Fifth ACM SIGPLAN
SIGACT Symposium on Principles of Programming Languages, San Diego,
California. 1998

[Grosch, Snelting 93]
F.-J. Grosch, G. Snelting: Polymorphic Components for Monomorphic Languages.
Second International Workshop on Software Reusability, March 1993, IEEE Comp.
Soc. Press, pp. 47-55.

[Godin, Alaoui 95]
R. Godin and R. Missaoui H. Alaoui. Incremental concept formation based on Galois
(concept) Lattices. Computational Intelligence, 11(2): 246-267, 1995

[Hartman 91]
Hartman J., Pragmatic empirical program understanding. In workshop notes, AAA!
Workshop on AI and Automated Program Understanding, San Jose, CA

[Horwitz, Reps, Binkley 90]

Susan Horwitz, Thomas Reps, and David Binkley. lnterprocedural slicing using
dependence graphs ACM Transactions on Programming Languages and Systems,
12(1): Pg. 26-60 January 1990

[Johnson 86]
Johnson W.L., Intension Based Diagnostics of Novice Programming Errors, Morgan
Kaufman, Los Altos, CA

[Kozaczynksi, Ning 94]
Kozaczynksi, V., Ning, J. Q., Automated program understanding by concept
recognition, Automated Software Engineering, 1:61-78

[Lewis 95]
Lewis and friends. Object Oriented Application Frameworks.
Manning Publication Co. 1995

[Lindig, Snelting 97]
C. Lindig, G. Snelting: Assessing Modular Structure of Legacy Code Based on
Mathematical Concept Analysis. Proc. International Conference on Software
Engineenng (ICSE 97), Boston, USA, May 1997, pp. 349-359.

[McConnell 83]
Steve McConnell. Code Complete. Microsoft Press, 1993

[N eirstrasz]
D.T.Oscar Neirstrasz. Object Oriented Software Composition. Prentice Hall
International (UK) Ltd., Hempstead, UK, 1995

[Omega 85]
Omega. A data flow analysis too/for the C programming language.
IEEE Transactions on Software Engineenng SE-11. No.9 September, 1985

[Prata 98]
Stephen Prata. C++ Primer Plus, 3rd ed. SAMS Publications

[Quilici 94]

63

Alexander Quilici, A memory based approach to recognizing programming plans.
Communications of the ACM, 37(5):84-93

[Siff 98]
Michael Benjamin Siff. Techniques for Software Renovation
PhD Dissertation, University of Wisconsin- Madison. 1998

[Snelting 96]
Gregor Sneltmg. Reengmeering of configurations based on mathematical concept
analysis. ACM Transactions on Software Engineering and Methodology. S(2): 146-
189. April 1996.

[Snelting, Tip 98]

64

G. Snelting, F. Tip: Reengineering Class Hierarchies Using Concept Analysis. Proc.
ACM SIGSOFT Symposium on the Foundations of Software Engineering, November
1998, pp. 99-110.

[Sommerville 96]
Sommerville, I. Software Engineering. Addision-Wesley, Reading, MA, 5th edition

[Steensgaard 96]
Bjarne Steensgaard. Point-to analysis in almost linear time.
In Proceedings of the Twenty-Third ACM Syposium on Principles of Programming
Languages, Pg. 32-41, St. Petersburg, FL, January 1996

[Stroustrup 94]
Bjarne Stroustrup. The Design and Evolution ofC++. Addison Wesley 1994

[Stroustrup]
Bjame Stroustrup. The C++ Programming Language. Addison Wesley. 3rd ed.

[Szasz 63]
Gabor Szasz Introduction to Lattice theory Academic Press, 1963

[Temperley 81]
H. N. V Temperley. Graph Theory and Applications. Ellis Horwood Limited. 1981

[Tarjan 83]
Robert E. Tarjan. Data Structures and Network Algorithms.
Society for Industrial and Applied Mathematics, 1983

[Wills 90]
Wills, L. M., Automated program recognition by graph parsing. Ph.D. th.sis, MIT,
Department of Computer Science

[Wills 92]
Wills, L. M., Automated program recognition: A feasibility demonstration. Artificial
Intelligence, 45(2): 113-172

[Yong, Horwitz, Reps 99]
Suan YI Yong, Susan Horwitz, Thomas Reps
Pointer Analysis for programs with Structures and Casting
Proceedings of the SIGPLAN '99 Conference on
Programming Language Design and Implementation (PLDI) 1999 ACM

65

APPENDICES

66

Appendix A2.1

<<list.h>>

#define true 1
#define false 0

struct Node{

};

struct Node *next;
Record data;

typedef struct Node Node;

typedef struct {
Node *head;
int length;

}List;

void initNode (Node* n, Record* d) {
n->data = *d;
n->next = 0;

void initList (List* l) {
1->head = O;
1->length = O;

}

void list_head_insert (List* l, Record* d) {
Node *n = (Node*) malloc (sizeof(Node));
if (!n) exit (1);
n->data *d;
n->next = 1->head;
1->head = n;
1->length++;

}

int find_element (List* l, Record* d, Node* prev) {
Node* p = 1->head;

}

while (p) {
if(p->data -- d) return true;
prev = p; p = p->next;

return false;

void print (List* l) {

}

struct Node *p = 1->head;
while (p) {

print_data(&(p->data));
p=p->next;
printf ("\n");

67

void delete_element (List* 1, Record* d) {
Node* p = 0;

}

if(find_element(l,d,p)) {

}

Node* temp= p;
if(p==O) { temp=l->head; 1->head = 1->head->next;

free (temp); }
else {temp= temp->next; p->next = temp->next; if(temp)

free (temp); }
1->length--;

return;

int size (List* 1) {
return 1->length;

}

void destroy_list(List* 1) {
Node *p = 1->head;
while (p) {

}

1->head = 1->head->next;
free (p);
p = 1->head;

}

<<hash.h>>

#include "list.h"

typedef struct {
int tablesize;
List* Hashtable;

}Table;

void InitBashtable(Table* T, int size) {
inti;
T->tablesize = size;
T->Hashtable = (List*) malloc (T->tablesize * sizeof(List));
for (i=O; i<T->tablesize; i++)

initList(&(T->Hashtable[i]));
}

void Insert(Table* T, Key k, Record* r) {
if(!Lookup(T, k, r))
list_head_insert(&(T->Hashtable[HashFn(k)%T->tablesize]), r);

}

int Lookup (Table* T, Key k, Record* r) {
List* 1 = &(T->Hashtable[HashFn(k)%T->tablesize]);
if (1->head) {

struct Node* p = 1->head;

68

}

while (p) {
if (Match(k, &(p->data))==O) {

*r = p->data;
return true;

p = p->next;

return false;

void destroy_table (Table* T) {
inti;

}

for(i=O; i<T->tablesize; i++)
destroy_list(&(T->Hashtable[i]));

free(T->Hashtable);

Listing 2.11: A generic hash table package

69

Figure 2.12: Concept Lattice for the hash table package

1. ({InitNode}, {struct node})

2. ({Initlist, List_head_insert, Find_element, Delete_element,
Destroy_list, Print, Size},{struct list})

3. ({Inithashtable, Lookup, Insert, Destroy_table}, {struct
hashtable})

Figure 1.13: The identified modules

70

Appendix A3 .41

<<variables.h>>

struct record {

} ;

char name[40];
char SSN [9 l;

typedef struct record Datatype;

bool equal (Datatype rl, Datatype r2) {

71

return strcmp(rl.name,r2.name)==0 && strcmp(rl.SSN,r2.SSN)==0);

void print_data (Datatype rl) {
printf ("Name : %s\nSSN: %s \n", rl .name, rl. SSN);

<<hash.h>>

#define TABLESIZE 117
struct List* Hashtable[TABLESIZE];

void initHashtable() {
for (int 1=0; i<TABLESIZE; i++) {

Hashtable[i] = (struct List *)malloc (sizeof(struct
List));

initList(Hashtable[1]);

bool f1nd_record (canst char* k, struct record* r) {
struct List* 1 = Hashtable[atoi(k)%TABLESIZE];
if(l->head) {

struct Node* p = 1->head;
while (p) {

if (strcmp(p->data.SSN,k)==O) {
strcpy(r->name,p->data.name);
strcpy(r->SSN,k);
return true;

p = p->next;

return false;

void insert_record (struct record* r) {
1f(!find_record(r->SSN, r))

list_head_insert(Hashtable[atoi(r->SSN)%TABLESIZE], *r};

Listing 3.41: Tangled hash table package

72

Uses_Record_f U ses_N ode_fielld U ses_list_fields U ses_hashtable

Equal X

Print_data X

Initnode X

Initlist X

List_head_inst X X

Find_element X X

Size X

Print X X

Inithashtable X

Find_record X X X X

Insert_record X X

Figure 3.42: Context table for the tangled hash table

Figure 2.43: Concept lattice for the tangled hash table

Appendix A6.1

typedef enum {CIRCLE, SQUARE, RECTANGLE, ELLIPSE} type;

typedef struct {
type k;
int x;
int y;

} Shape;

typedef struct {
type k;
int x;
int y;
int radius;

} Circle;

int initcircle (Circle* c, int a, int b, int r, enum type t} {
c->x = a;

}

c->y = b;
c->radius = r;
if (t != CIRCLE) return 0;
c->k=t;
return 1;

typedef struct {
type k;
int x;
int y;
int side;

} Square;

int initsquare (Square* s, int a, int b, int si, enum type t} {
s->x = a;

}

s->y = b;
s->side = si;
if ('t != SQUARE) return O;
s->k = t;
return 1;

typedef struct {
type k;
int x;
int y;
int length;
int breadth;

} Rectangle;

73

int initrectangle (Rectangle* r, int a, int b, int ln, int br, enum
type t) {

}

r->x = a;
r->y = b;
r->length = ln;
r->breadth = br;
if (t != RECTANGLE) return 0;
r->k=t;
return 1;

void draw (Shape* s) {
switch (s->k) {
case CIRCLE:

}

printf ("I am a circle\n");
printf ("Center: %d, %d, radius: %d\n", s->x, s->y,

*(&(s->y)+l));
break;

case RECTANGLE:
printf ("I am a rectangle\n");
printf ("Center: %d, %d, length: %d, breadth: %d\n",

s->x, s->y, *(&(s->y)+l), *((&(s->y)+l)+l));

break;
case SQUARE:

printf ("I am a square\n");
pr1ntf ("Center: %d, %d, length: %d\n", s->x, s->y,

* (& (s->y) +1));
break;

int main() {

}

inti;
Circle c;
Squares;
Rectangle r;
Shape* shapes[3];

initcircle(&c,10,20,30,CIRCLE);
initsquare(&s,15,25,20,SQUARE);
initrectangle(&r,20,30,15,20,RECTANGLE);

shapes[2] = &c;
shapes[l] = &r;
shapes[O] = &s;

for(i=O; i<3; i++)
draw(shapes [1]);

return O;

Listing 6.1: "Shapes"

74

Appendix A6.4

c1ass Shape {
protected:

int x; int y;
public:

virtual void Draw () 0;
};

class Circle: public Shape {
protected:

int radius;
public:

};

Circle (int a,int b,int r);
void Draw () ;

Circle::Circle (int a,int b,int r) { ... }

void Circle::Draw () {
// Draw only Circle
}

class Square: public Shape {
protected:

int side;
public:

};

Square (int a,int b,int si);
void Draw () ;

Square::Square (int a,int b,int si) { ... }

void Square::Draw () {
//Draw only Square
}

class Rectangle: public Shape {
protected:

int length;
int breadth;

public:

};

Rectangle (int a,int b,int ln,int br);
void Draw () ;

Rectangle::Rectangle (int a,int b,int ln,int br) { .•. }

void Rectangle::Draw () {
//Draw only rectangle
}

Listing 6.4: Restructured Shapes with virtual draw(}

75

Appendix Bl

#ifndef WORD_ITERATOR
#define WORD_ITERATOR

#include <iostream>
#include <fstream>
#include <sstream>
#include <string>

class word_iterator {

protected:

std::istream *in;
through

std::string value;
char delimiter;

// pointer to the istream to iterate

// current value of the iterator
// delimiter to decide "next"

bool at_end; // flag to indicate position of
iterator

void read() {
if (*in) {

*in>> value;

at_end = (*in) ? true false;

public:

typedef std::input_iterator_tag iterator_category;
typedef std::string value_type;
typedef ptrdiff_t difference_type;
typedef const std::string* pointer;
typedef const std::string& reference;

word_i terator () in(&std::cin), at_end(false), delimiter('\t')
{}

word_iterator(std::istream& s, const char delim
in(&s), delimiter(delim)

{ read(); }

reference operator* () const { return value; }

pointer operator-> () const { return &value; }

word_iterator operator++ () {
read();
return *this;

}

word_iterator operator++ (int) {
word_iterator temp= *this;
read();
return temp;

}

'\ t')

76

} ;

bool operator== (const word_iterator& 1) const {
return (in== i.in && at_end i.at_end) I I

(at_end == false && i.at_end==false);
}

bool operator== (bool flag) const {
return at_end==flag;

bool operator != (const word_iterator& i) const {
return! (*this== i);

bool operator!= (bool flag) const {
return at_end!=flag;

}

#endif

<<line_iterator.h>>

#ifndef WORD_ITERATOR
#define WORD_ITERATOR

#include <iostream>
#include <fstream>
#include <sstream>
#include <string>

class word_iterator {

protected:

std::istream *in;
through

std::string value;
char delimiter;

bool at_end;
iterator

void read() {
if (*in) {

II pointer to the istream to iterate

II current value of the iterator
II delimiter to decide "next"

II flag to indicate position of

*in>> value;

at_end = (*in) ? true false;

public:

typedef std::input_iterator_tag iterator_category;
typedef std::string value_type;
typedef ptrdiff_t difference_type;
typedef const std::string* pointer;
typedef const std::string& reference;

77

word_1 tera tor (} in(&std::cin}, at_end(false}, delimiter('\t'}
{}

word_iterator(std: :istream& s, const char delim = '\t'}
in(&s), delimiter(delim)

} ;

#endif

/*

{ read(); }

reference operator* () const { return value; }

pointer operator-> (} canst { return &value; }

word_iterator operator++ (} {
read(};
return *this;

}

word_iterator operator++ (int} {
word_iterator temp= *this;
read(};
return temp;

}

bool operator== (const word_iterator& 1) const {
return (in== i.in && at_end -- i.at_end} I I

(at_end == false && i.at_end==false);

bool operator== (bool flag) const {
return at_end==flag;

bool operator != (const word_iterator& i} const {
return! (*this== i};

bool operator!= (bool flag} const {
return at_end!=flag;

}

Sidharth Kodikal

Class concept_base implements a context table entry.
It being similar to a concept structurally has been factored out as
the base class.

File: concept_base.h
Last revised: 11/08/00

*I

#1fndef CONCEPT_BASE

78

#define CONCEPT_BASE

#include <iostream>
#include <set>
#include <string>
#include <algorithm>

extern class lattice;
extern class context_table;

class concept_base
{

protected:

std::set<std::string> obJects;
std::set<std::string> attributes;

public:

friend class lattice;
friend class context_table;

friend bool operator< (const concept_base& cl, const
concept_base& c2);

friend bool operator
concept_base& c2);

(const concept_base& cl, const

typedef std::set<std: :string>::iterator SETITER;

void add_object(std::string s)
{

}

// add a function to O
objects.insert(s);

void add_attribute(std::string s)
{

}

// add an attribute to A
attributes.insert(s);

virtual bool is_akin (const concept_base& other)
{

return std::includes(other.attributes.begin(),
other.attributes.end(), attributes.begin(), attributes.end());

}

virtual std::ostream& output (std::ostream& out) const
{

out << " ({";
std::copy(objects.begin(), objects.end(),

std::ostream_iterator<std::string>(out,", "));
out << "} ";
out << " {";
std::copy(attributes.begin(), attributes.end(),

std::ostream_iterator<std: :string>(out,", "));
out << "}) ";
return out;

} ;

79

bool operator< (const concept_base& cl, const concept_base& c2)
{

// some order
return (cl.objects.size() < c2.objects.size());

}

bool operator== (const concept_base& cl, const concept_base& c2)
{

return (cl.objects== c2.obJects);

std::ostream& operator<< (std::ostream& out, const concept_base& c)
{

c .output (out);
return out;

std::set<std::string> operator+ (const std: :set<std::string>& sl,
const std::set<std::string>& s2)
{

std::set<std::string> temp;
std: :set_union(sl.begin(), sl.end(), s2.begin(), s2.end(),

std::inserter(temp, temp.begin()));
return temp;

std: :set<std::string> operator - (const std::set<std::string>& sl,
const std::set<std::string>& s2)
{

std::set<std::string> temp;
std::set_difference(sl.begin(), sl.end(), s2.begin(), s2.end(),

std::inserter(temp, temp.begin()));
return temp;

}

#endif

#ifndef CONCEPT_H_
#define CONCEPT_H_

#include "concept_base.h"
#include <list>

class concept
{

public concept_base

int number;

std::set<int> superconcept_list; // for o/p compatible with
Ralph Freese's Lattice drawing tool

std::set<int> subconcept_list; // for o/p compatible to
ATT Dot

public:

friend class lattice;

friend bool operator< (const concept& cl, const concept& c2);

80

friend bool operator== (const concept& cl, const concept& c2};

concept(} : concept_base() { }

void set_name (int x} {number= x; }

int get_name (} const { return number; }

bool is_superconcept (const concept& other}
{

II returns true if
II a. this includes the objects of other AND
II b. other includes the attributes of this
if (*this== other) return false;
return (std::includes (objects.begin(), objects.end(},

other.objects.begin(}, other.objects.end(}} I I std::includes
(other.attributes.begin(}, other.attributes.end(},
attributes.begin(}, attributes.end(}});

}

bool is_subconcept (const concept& other)
{

II returns true if
II a. other includes the objects of this AND
II b. this includes the attributes of other
if (*this== other} return false;
return (std::includes (other.objects.begin(),

other.objects.end(}, objects.begin(}, objects.end()) I I
std: :includes (attributes.begin(), attributes.end(),
other.attributes.begin(), other.attributes.end()));

} ;

}

void add_superconcept (int num)
{

superconcept_list.insert(num};

void add_subconcept (int num)
{

subconcept_list.insert(num);

std::ostream& output (std::ostream& out} const
{

out<< "C" <<number<<"=";
concept_base::output(out};
return out;

bool operator< (const concept& cl, const concept& c2)
{

II for sorting using sort. sort to be able to eliminate
duplicates using unique

return (cl.objects.size() > c2.objects.size(}} &&
(cl.attributes.size() < c2.attributes.size(});

II ordered according to galois connectivity

bool operator== (const concept& cl, const concept& c2}
{

return (cl.objects== c2.objects} && (cl.attributes -
c2.attributes};
}

81

std::ostream& operator<< (std::ostream& out, const concept& c)
{

c.output(out);
return out;

// predicate for find_if function. finding by key (number) instead of

struct predicate
{

int number;
predicate (int num) : number(num) { }
bool operator () (const concept& c)
{

return (number== c.get_name());
}

} ;

// strict weak ordering for std::sort
struct ltstr
{

} ;

#endif

bool operator() (const concept& cl, const concept& c2)
{

return cl< c2;
}

#ifndef CONTEXT_TABLE
#define CONTEXT_TABLE

#include <list>
#include "concept_base.h"
#include "line_iterator.h"
#include "word_iterator.h"

extern class lattice;

class context_table {

std::list<std::string> obJects;
std: :list<std::string> attributes;

std::list<concept_base> table;

public:

friend class lattice;

typedef concept_base* pointer;
typedef const concept_base* const_pointer;
typedef concept_base& reference;
typedef const concept_base& const_reference;

typedef std::list<concept_base>::iterator ctable_iterator;
typedef std::list<concept_base>::const_iterator

const_ctable_iterator;
typedef std::list<concept_base>::reverse_iterator

reverse_ctable_iterator;
typedef std::list<concept_base>::const_reverse_iterator

const_reverse_ctable_iterator;

82

ctable_iterator begin () { return table.begin(); }
ctable_iterator end() { return table.end(); }

reverse_ctable_iterator rbegin () { return table.end(); }
reverse_ctable_iterator rend() { return table.begin(); }

std::istream& input(std::istrearn& in)
{

line_iterator file_begin(in, '*');
line_iterator file_end;

word_iterator row_start;
word_iterator row_end;

// read O (objects)
row_start = file_begin.begin();
std::copy(row_start, row_end, std::inserter(objects,

objects.begin()));

// read A (attributes)
++file_begin;
row_start = file_begin.begin();

std::copy(row_start, row_end, std::inserter(attributes,
attributes.begin()));

for ++file_begin; file_begin != file_end; ++file_begin)
{

}

concept_base cb;
row_start = file_begin.begin();

cb.add_obJect(*row_start++);

for (; row_start != row_end; row_start++)
cb.add_attribute(*row_start);

table.push_back(cb);

return in;

std::ostream& output(std::ostream& out) const
{

out << "Objects: ";
std::copy(obJects.begin(), obJects.end(),

std: :ostream_iterator<std: :string> (out, "\t"));
out<< std::endl;
out<< "Attributes: ";
std::copy(attributes.begin(), attributes.end(),

std::ostream_iterator<std::string>(out, "\t"));
out<< std::endl;
std::copy(table.begin(), table.end(),

std::ostream_iterator<concept_base>(out, "\n"));
return out;

std::ostrearn& htrnl_output(std::ostrearn& out) const
{

II start table
out<< "<htrnl>\n <!-- Generated by Sidharth's Reverse

Engineering Tool>\n";
out<< "<head><title> Context table </title> </head>

<body> \n";

83

out<< "<table BORDER=l>\n"
out<< "<tr>\n";

// print objects: heading row
out<< "<td></td>\n<td>";
std::copy(attributes.begin(), attributes.end(),

std::ostream_iterator<std: :string>(out, "</td>\n<td>"));
out.seekp (-4, std::ios::cur);
out<< "</tr>\n";

// print rows
const_ctable_iterator titer= table.begin();
std::list<std::string>::const_iterator obiter

objects.begin();
std::list<std::string>::const_iterator atiter;

for(; titer != table.end(), obiter!= objects.end();
++titer, ++obiter)

{
out<< "<tr><td>" <<*obiter<< "</td>\n";

for(atiter = attributes.begin(); atiter !=
attributes.end(); ++atiter)

{
out<< "<td>";
if({*titer) .attributes.find(*atiter) !=

(*titer) .attributes.end())

} ;

{
out << "X";

out<< "</td>";

out<< "</tr>\n";
}

// end table
out<< "</table>\n</body>\n</html>";
return out;

std::istream& operator>> (std::istream& in, context_table& c)
{

c. input (in);
return in;

std::ostream& operator<< (std::ostream& out, const context_table& c)
{

return c.output(out);

#endif

84

#ifndef LATTICE_H_
#define LATTICE_H_

#include "context_table.h"
#include "concept.h"
#include <set>
#include <algorithm>

struct concept_pair
{

} ;

concept x;
concept y;

concept_pair() { }
concept_pair(const concept& a, const concept& b) x(a), y(b) {

std::ostream& operator<< (std::ostream& out, const concept_pair& cp)
{

/*

out<< "\n\n --- \n\n";
out<< cp.x << std: :endl << cp.y;
return out;

a. generate the atomic concepts from the context table, name them.
compute 'top', and 'bottom'

b. create a worklist containing distinct pairs of these atomic
concepts

c. if any concept is a subconcept of another, add the superconcept
to the

superconcept list of the subconcept
d. starting with the first pair in the worklist, compute suprema.

if there is one, name it,
add it to the superconcept lists of each of the subconcepts.

e. create new pairs of this new suprema with the concepts in the
atom_list

bearing that two concepts in a pair cannot have a relation
f. add this new concept to the atom_list
g. voila! bottom up approach.

*/

class lattice
{

context_table context;
std::list<concept> atoms_list;
std::list<concept_pair> work_list;
std::list<concept> partition_list;
int concept_counter;
concept top;
concept bottom;

bool supremum (const concept& cl, const concept& c2, concept&
supremum)

{
// returns true if this and other yield a supremum, false

otherwise;
// puts the supremum concept in the supremum parameter

bool flag= false;

85

if (cl== c2) return flag;

std::set_intersection(cl.attributes.begin(),
cl.attributes.end(), c2.attributes.begin(), c2.attributes.end{),
std::inserter(supremum.attributes, supremum.attributes.begin()));

context_table::ctable_iterator citer;

if { supremum.attributes.size())
{

for(citer = context.begin(); citer !=
context.end(); ++citer)

{
if{std::includes((*citer) .attributes.begin(),

{*citer) .attributes.end(), suprernum.attributes.begin(),
supremum.attributes.end()))

{
flag= true;
std::set<std::string>::iterator siter;

for{siter = (*citer) .objects.begin{);
siter != (*citer) .objects.end{); ++siter)

{
suprernum.add_obJect{*siter);

if {flag)
return true;

return false;

bool infimum (const concept& cl, const concept& c2, concept&
infimum)

{
// returns true if this and other yield an infimum, false

otherwise;
// puts the infimum concept in the infimum parameter

std::string resolve {const concept& c)
{

std: :string ht= "uses_hashtable", 1st
"uses_list_fields", nd = "uses_node_fields", rec=
"uses_record_fields";

if (std::find(c.attributes.begin{), c.attributes.end(),
ht) != c.attributes.end{))

return ht;
if { std: :find(c.attributes.begin(), c.attributes.end(),

1st) != c.attributes.end{))
return 1st;

if (std::find(c.attributes.begin{), c.attributes.end{),
nd) != c.attributes.end{))

return nd;
if { std::find(c.attributes.begin{), c.attributes.end{),

rec) != c.attributes.end())
return rec;

void clean_principle_ideal { std: :list<concept>::iterator i,
const std::set<std::string>& minus)

{

86

(*i) .obJects = (*i) .objects - minus;
std::set<int>::iterator iter =

(*i) .superconcept_list.begin();
for (; iter != (*i) .superconcept_list.end(); ++iter)
{

std::list<concept>::iterator temp_iter;
temp_iter = std::find_if(partition_list.begin(),

partition_list.end(), predicate(*iter));

public:

if (temp_iter != partition_list.end()
{

clean_principle_ideal(temp_iter, minus);
}

lattice() concept_counter(0) { bottom.set_name(-1);
top.set_name(-2); }

void build_atoms ()
{

++citerl)

context_table::ctable_iterator citerl, citer2;

II compute atomic concepts in O(N) time

for(citerl = context.begin(); citerl != context.end();

concept ctemp;
std::set<std::string>::iterator siter;

II have to do this because set::insert(iteratorl,
iterator2) is not supported

II by most compilers. some work with
set: :const_iterators ... not M$VC

II TRY std::set_union() instead
for(siter = (*citerl) .objects.begin(); siter !=

(*citerl) .obJects.end(); ++siter)
{

ctemp.add_object(*siter);
}

for(siter = (*citerl) .attributes.begin(); siter !=
(*citerl) .attributes.end(); ++siter)

{
ctemp.add_attribute(*siter);

for(citer2 = context.begin(); citer2 !=
context.end(); ++citer2)

{
if (citerl == citer2)

continue;

if((*citerl) .is_akin(*citer2))
{

for(siter = (*citer2) .objects.begin();
siter != (*citer2) .objects.end(); ++siter)

{
ctemp.add_object(*siter);

87

}

II no duplicates in atom_list: O(N)
if((std::find(atoms_list.begin(),

atoms_list.end(), ctemp)) == atoms_list.end())
{

}
}

ctemp.set_narne(concept_counter++);
atoms_list.push_back(ctemp);

//compute the direct superconcepts of "bottom"

std: :copy(context.attributes.begin(),
context.attributes.end(), std::inserter(bottom.attributes,
bottom.attributes.begin()));

bottom.set_narne(-1);

std::list<concept> dummy= atoms_list;

std::list<concept>::iterator aiter = atoms_list.begin(),
del_iter = atoms_list.end();

for (; aiter != atoms_list.end(); ++aiter)
{

if(bottom.attributes == (*aiter) .attributes)
{

std::copy((*aiter) .objects.begin(),
(*aiter) .objects.end(), std::inserter(bottom.objects,
bottom.objects.begin()));

bottom.set_narne((*aiter) .get_name());
dummy.remove(*aiter);

atoms_list = dummy;

for (aiter = atoms_list.begin(); aiter !=
atoms_list.end(); ++aiter)

bottom.superconcept_list.insert((*aiter) .get_name());

// creating concept "top"

std::copy(context.objects.begin(), context.objects.end(),
std::inserter(top.objects, top.objects.begin()));

// compute "top" and its subconcepts in build_lattice

void print_atoms (std::ostrearn& out) const
{

std::copy(atoms_list.begin(), atoms_list.end(),
std::ostrearn_iterator<concept_base>(out, "\n\n"));

}

void initialize_worklist ()
{

std::list<concept>::iterator aiterl, aiter2;

// initialize the work list as pairs of distinct concepts
// in O(N*N) time

88

for(a1terl = atoms_list.beg1n(); aiterl !=
atoms_list.end(); ++aiterl)

{
for(aiter2 = a1terl,++aiter2; aiter2 !=

atoms_list.end(); ++aiter2)
{

if((*a1terl) .is_subconcept(*a1ter2)
{

bottom.superconcept_list.erase((*aiter2) .get_name());
(*aiterl) .add_superconcept(

(*aiter2) .get_name());
continue;

}
if((*aiterl) .is_superconcept(*aiter2)
{

bottom.superconcept_list.erase((*aiterl) .get_name());
(*aiter2) .add_superconcept(

(*aiterl) .get_name());

}

I*

continue;
}
concept_pair cptemp(*aiterl, *aiter2);
work_list.push_back(cptemp);

d. starting with the first pair in the worklist, compute suprema.
if there is one, name it,

add it to the superconcept lists of each of the subconcepts.
e. if the new concept does not already exist in the atom_list,

add it there and proceed to step f.
f. create new pairs of this new suprema with the concepts in the

atom_list

*/

bearing that two concepts in a pair cannot have a relation
g. voila! bottom-up approach.

void build_lattice()
{

build_atoms();
initialize_worklist();

std::list<concept_pa1r>::iterator iter;
std::list<concept>::iterator aiter;
for(iter = work_list.begin(); iter != work_list.end();

++iter)

concept stemp;
if(supremum((*iter) .x, (*iter) .y, stemp))
{

if((std::find(atoms_list.begin(),
atoms_list.end(), stemp)) atoms_list.end() && ! (stemp == bottom)

{

!= atoms_list.end(); ++aiter)

stemp.set_name (concept_counter++);
atoms_list.push_back(stemp);

for(aiter = atoms_list.begin(); aiter

if((*aiter).is_subconcept(stemp)

89

(*aiter) .add_superconcept(
(stemp) .get_name());

continue;

if(
(*a1ter) .1s_superconcept(stemp)

(stemp).add_superconcept(
(*a1ter) .get_name());

stemp);

// compute "top"

continue;

concept_pair cptemp(*aiter,

work_l1st.push_back(cptemp);

std::list<concept> dummy= atoms_list;

for(aiter = atoms_list.beg1n(); aiter !=
atoms_l1st.end(); ++a1ter)

{
if((*aiter) .objects== top.objects)
{

std: :copy((*aiter) .attributes.begin(),
(*aiter).attributes.end(), std::inserter(top.attributes,
top.attr1butes.beg1n()));

}
else

atoms_l1st

top.set_name((*a1ter) .get_name());
dummy.remove(*aiter);

top.set_name(-2);

dummy;

for(aiter = atoms_list.begin(); aiter !=
atoms_list.end(); ++aiter)

}

{
if((*aiter) .superconcept_list.size() == 0)

(*aiter) .add_superconcept(top.get_name());
}

void partition_lattice(
{

/*
a.for each concept, create a subconcept list: visit

concept, find_1f each of it"s superconcepts
and add concept to their subconcept list. write a

Pred for find_if
b.sort in ascending order of number of attributes in

concepts
c.iterate thru this 11st; find infima, resolve, find_if

the appropriate superconcept,
the obJects to it"s objects list, add its subconcept to

all the superconcepts" subconcept lists
remove this concept from the subconcepts list of all

the superconcepts

90

*I

typedef std::list<concept>::iterator list_iterator;

partition_list = atoms_list;
partition_list.push_front(bottom);
partition_list.push_back(top);

II a. computing the subconcept lists of each concept

list_iterator piter = partition_list.begin(), temp_iter =
partition_list.end();

std::set<int>::iterator supiter;

for ; piter != partition_list.end(); ++piter)
{

supiter = (*piter) .superconcept_list.begin();
for (; supiter !=

(*piter) .superconcept_list.end(); ++supiter)
{

temp_iter =
std::find_if(partition_list.begin(), partition_list.end(),
predicate(*supiter));

if (temp_iter != partition_list.end()
{

(*temp_iter) .add_subconcept((*piter).get_name());
}

concepts
II b.sort in ascending order of number of attributes in

partition_list.sort();

std:: cout << "after sorting before messin\n";
std::copy(partition_list.begin(), partition_list.end(),

std:: ostream_iterator<concept> (std:: cout, "\n"));
I*
c.iterate thru this list; find infima, resolve, find_if

the appropriate superconcept,
the objects to it's obJects list, add its subconcept to

all the superconcepts' subconcept lists
remove this concept from the subconcepts list of all

the superconcepts
*I

std::set<int>::iterator setiter;

for (piter = partition_list.begin(); piter !=
partition_list.end(); ++piter)

{ ,

if (*piter) .superconcept_list.size() > 1)
infimum

II

std: :string prior= resolve(*piter);
std::cout <<"resolving"<< *piter << prior

<< "------------\n";

for (supiter =
(*piter) .superconcept_list.begin(); supiter !=
{*piter) .superconcept_list.end(); ++supiter

{
temp_iter =

std::find_if(partition_list.begin(), partition_list.end(),
predicate(*supiter));

91

for (setiter =
(*piter) .subconcept_l1st.beg1n(); setiter !=
(*piter) .subconcept_list.end(); ++setiter)

{

(*temp_iter) .add_subconcept(*setiter);
}

// compute node to which objects of
*piter to be moved

if (
(*temp_iter) .attributes.find(prior) != (*temp_iter) .attributes.end()
)

{
(*temp_1ter).objects =

(*temp_iter) .objects+ (*piter) .objects;

(*temp_iter) << "++++\n";
}
else
{

std: :cout << "Moving to 11 <<

//(*temp_iter) .objects=
(*temp_iter) .objects - (*p1ter) .objects;

clean_principle_ideal(temp_iter,
(*piter) .objects);

std: :cout << "Taking from ... " <<
(*temp_iter) << "++++\n";

}

// suppress 1nfima

std::list<concept> durnmy_list = partition_list;

for (piter = partition_list.begin(); piter !=
partition_list.end(); ++piter)

{
if(((*piter) .superconcept_list.size() > 1) I I

(*piter) .attributes.size() == 0 I I (*piter) .objects.size() -- 0)
{

durnmy_list.remove(*p1ter);

}

partit1on_l1st = durnmy_list;

std::copy(part1tion_l1st.begin(), partition_list.end(),
std:: ostream_iterator<concept> (std:: cout, "\n"));

void print_partitions (std::ostream& out) const
{

std::copy (partition_list.begin(), partition_list.end(),
std:: ostream_iterator<concept> (out , "\n\n"));

}

void print_worklist(std::ostream& out)
{

std::copy(work_list.begin(), work_list.end(),
std: :ostream_iterator<concept_pa1r>(out, "\n"));

92

tool
// html output compatible with ralph freese's lattice drawing

void print_lattice_bottomup(std::ostream& out) const
{

std::list<concept>::const_iterator aiter;

out<< "<html> \n <!-- Textual bottomup lattice generated
by Sidharth's reengineering tool> \n"

<< "<head> <title> Lattice - Text form </title> \n
</head> \n <body>";

out<<"(
\n";
out << " (";
if (bottom.get_name() -- -1)

out<< "bottom(";
else

out<< bottom.get_name() <<" (";

std::copy((bottom) .superconcept_list.begin(),
(bottom) .superconcept_list.end(), std::ostream_iterator<int>(out, "
II));

out<<"))
\n";

std::set<int>::const_iterator sliter;
for(aiter = atoms_list.begin(); aiter !=

atoms_list.end(); ++aiter)
{

out<<"("<< (*aiter).get_name() <<" (";
for(sliter = (*aiter) .superconcept_list.begin();

sliter != (*aiter) .superconcept_list.end(); ++sliter)
{

if(*sliter == -2)
out<< "top";

else
out<< *sliter <<" ";

out<<"))
\n";

if (top.get_name() == -2)
out<< "top ())
\n";

else
out<< top.get_name() << "())
\n";

out<< ")
\n";
out<< "</body> \n </html>\n";

// plain text output compatible with ATT dot
void print_lattice_topdown(std::ostream& out) const
{

std::set<int>::const_iterator sliter;

out << "digraph G {\n";

for(std::list<concept>::const_iterator aiter
atoms_list.begin(); aiter != atoms_list.end(); ++aiter)

{
// check if this is an infimum
if((*aiter) .superconcept_list.size() > 1)
{

/*
"5" [label = "\N"

color "black"
width= "0.750000"

93

"[color=red]\;\n";

l
*I

shape= "ellipse"

out<< •c• << {*aiter) .get_name{) <<

/*
"6" -> "1" [color = "black"

arrowheadhead = "none"]
*/

for{ sl1ter =
(*aiter) .superconcept_l1st.beg1n{); sliter !=
(*a1ter) .superconcept_l1st.end{); ++sl1ter)

{
if{ (*sliter) == -2)
{

out<< "top->C" <<
{ *a1 ter). get_name {) << • [arrowhead=none] \; \n";

}
else

out<< •c• << {*sliter) << "->C"
<< {*aiter) .get_name{) << "[color=red\narrowhead=none]\;\n\n";

else
{

for{ sliter =
{*aiter) .superconcept_list.begin(); sliter !=
(*a1ter) .superconcept_l1st.end(); ++sl1ter)

{
if{ {*sliter) == -2)
{

out<< "top->C" <<
{ *aiter) . get_name () << "[arrowhead=none] \; \n";

}
else

out<< "C" << *sliter << "->C" <<
{*a1ter) .get_name{) << "[arrowhead=none]\;\n";

}

if{bottom.get_name{) != -1)
{

out<< •c• << bottom.get_name{) <<
• [color=red]\;\n";

for(sliter = bottom.superconcept_list.begin{);
sliter != bottom.superconcept_list.end{); ++sliter)

{
out<< •c• << *sliter << "->" << •c• <<

bottom. get_name () << • [color=red\narrowhead=none] \; \n";
}

}
else
{

for{ sliter = bottom.superconcept_list.begin{);
sliter != bottom.superconcept_list.end{); ++sliter)

{
out<< "C" << *sliter << "->bottom" /*<<

bottom.get_name{)*/ << "[arrowhead=none]\;\n";
}

}
out << "} •;

94

} ;

std::istream& input (std::istream& in)
{

}

in>> context;
return in;

std::ostream& output (std::ostream& out) const
{

out<< context;
return out;

std::ostream& print_contexttable (std::ostream& out) const
{

context.html_output(out);
return out;

std::istream& operator>> (std::istream& in, lattice& 1)
{

return l.input(in);

std::ostream& operator<< (std::ostream& out, const lattice& 1)
{

return l.output(out);

#endif

#pragma warning(disable: 4786)
#include <iostream>
#include <string>
#include <string.h>
#include "lattice.h"

using namespace std;

char* parsefilename (char *str)
{

char *token, *temp;
char seps [] = "\ \" ;
token= strtok(str, seps);
while(token!= NULL
{

temp= token;
token= strtok(NULL, seps);

}
return strtok (temp, " . ") ;

}

95

string directorypath (const char *filename, char *path)
{

int limit= strlen(path) - strlen(filename) - 4;
char* di= new char[limit+l];
strncpy(di, path, limit);
di[limit] = '\0';
return string(di);

string dir;
string filename;

void generate_html_report (const lattice& 1, std::ostream& out
{

out<< "<html> \n <?-- Textual bottomup lattice generated by
Sidharth's reengineering tool> \n"

<< "<head> <title> Reegneering Report </title> \n </head>
\n <body>";

out<< "<hl> Report </hl>\n";

out<< " <h3> View context table </h3>

\n";

out<< " <h3> View all concepts </h3>

\n";

out<< " <h3> Textual representation of
the lattice generated </h3>

\n";

out<< " <h3> View the lattice generated </h3>

\n";

out<< " <h3> View suggested restructuring
actions </h3>

\n";

out<< " <h3> Top view of the lattice </h3>

\n";

out<< " <h2> Context table </h2> \n";
l.print_contexttable (out);
out<< "

\n";

out<< " <h2>List of the Concepts
generated </h2>\n";

out << "<pre> \n" ;
l.print_atoms(out);
out<< "</pre>\n";
out<< "

\n";

out<< " <h2> Textual Representation of the
lattice </h2> \n";

l.print_lattice_bottomup (out);
out<< "

\n";

out<< " <h2> Behold the Lattice </h2>

 \n" ;

96

//out<< "<img src=" <<filename<< ".jpg height=600 width=600
BORDER=\"0\">\n";

out<< "<img src=contabl.Jpg height=900 width=900
BORDER=\ "0\ ">\n";

out<< "<h2> Suggested restructuring
actions </h2>\n";

out<< "<h3> Suggested Partitions: </h3>\n";
out<< "<pre>\n";
l.print_partitions (out);
out<< "</pre>\n";

out<< " <h2> Lattice topview </h2>

\n";

//out<< "<img src=" <<filename<< "_top.jpg height=700
width=900 BORDER=\"0\">\n";

out<< "<img src=contabl_top.Jpg height=900 width=900
BORDER=\"0\">\n";

out<< "</body></html>\n";

int main(int argc, char* argv[])
{

if(argc < 2)
{

}

cout << "Usage: lattice <context_file>\n";
exit(l);

string path= argv[l];

filename= parsefilename(argv[l]);

ifstream fin;
fin.open(path.c_str());

dir = directorypath(filename.c_str(), (char *)path.c_str());

string dotfile = dir +filename+ ".dot";
string reesefile = dir +filename+ "_reese.html";
string htmlopfile = dir +filename+ ".html";
string conceptsfile = dir +filename+ "_concepts.dat";
string partitionsfile = dir +filename+ "_partitions.dat";

ofstream foutl;
foutl.open(conceptsfile.c_str());
if (foutl. fail ())
{

cout << "Cannot open op file\n";
exit(l);

ofstream fout2;
fout2.open(dotfile.c_str());
if (fout2. fail ())
{

cout << "Cannot open op file\n";
exit(l);

ofstream fout3;
fout3.open(htmlopfile.c_str());
if (fout3. fail ())
{

cout << "Cannot open op file\n";

97

exit(l);
}

ofstream fout4;
fout4.open(reesefile.c_str());
if (fout4. fail ())
{

cout << "Cannot open op file\n";
exit(l);

lattice t;
fin>> t;

cout << t;

t.build_lattice();
t.print_atoms(foutl);
t.print_lattice_topdown(fout2);
t.print_lattice_bottomup(fout4);
t.partition_lattice();

generate_html_report(t, fout3);

fin.close();
foutl.close();
fout2.close();
fout3.close();

return O;

98

Appendix B2

<<gui.tcl>>

#usr/bin/wish -f

#window
wm withdraw
set w [toplevel .t]
wm title .t {Reegineering Tool}

menu

set m [menu $w.menubar -tearoff OJ
$m add cascade -label File -menu [menu $m.file]
$m.file add command -label "Load Context" -command "load_context
$w.f2"
$m.file add command -label "Save Partitions" -command {puts
Load_context"}
$m.file add command -label Exit -command exit

$m add cascade -label Action -menu [menu $m.action]
$m.action add command -label Partition -command {puts Partition}
$m.action add command -label Suggest -command {puts Suggest}

$m add cascade -label View -menu [menu $m.view]
$m.view add command -label "Report" -command viewreport

$m.view add command -label "Lattice Diagram" \
-command {exec c:/progra-1/graphviz/bin/dotty $dotfile &}

$m.view add command -label "Lattice Topview" \
-command {exec c:/progra-1/graphviz/bin/lneato $dotfile &}

$m.view add command -label "Lattice Representation" -command {exec
c:/progra-1/netscape/communicator/program/netscape -k $reesefile &}

$m.view add command -label Partitions -command {puts "show
partitions"}

$m add cascade -label Help -menu [menu $m.help]
$m.help add command -label About -command "show_message Sidharth"
$m.help add command -label Bugs -command {puts "Known bugs"}

$w configure -menu $m

framel: buttons

set f [frame $w.fl -relief groove -bd 3]
button $f.bl -text "Load Context" -default active -command
"load_context $w.f2"

button $f.b3 -text "Report" -default normal\
-command viewreport

button $f.b6 -text "Draw Lattice" -default normal\
-command {exec c:/progra-1/graphviz/bin/dotty $dotfile &}

button $f.b4 -text "Show Topview" -default normal\
-command {exec c:/progra-1/graphviz/bin/lneato $dotfile &}

button $f.b5 -text "View labels" -default normal -command {exec
notepad $rlabel &}

99

button $f.b8 -text "View Partitions" -default normal -command {exec
notepad $partitionsfile &}

button $f.b7 -text "Text Lattice" -default normal -command {exec
c:/progra~l/netscape/communicator/program/netscape -k $reesefile &}

button $f.b9 -text "Restructured Lattice" -default normal\
-command {exec c:/progra~l/graphviz/bin/dotty $dotfile2 &}

button $f.b10 -text "Restructured topview" -default normal\
-command {exec c:/progra~l/graphviz/bin/lneato $dotfile2

&}

pack $f.bl $f.b6 $f.b4 $f.b3 $f.b5 $f.b8 $f.b7 $f.b9 $f.b10 -padx 1 -
side left
pack $f -pady 2

#frame2: text for displaying all latice concepts
set f [frame $w.f2]
text $f.t -wrap word -width 90 -spacingl lm -spacing2 0.5m -spacing3
lm \

-height 15 -yscrollcommand ".y set"
scrollbar .y -command "$f.t yview"
#$f.t insert end {All the concepts will be displayed}
pack $f.t -fill x -expand true -side left
pack $f -pady 2

proc load_context {fl} {
global filename path dotfile htmlopfile conceptsfile

partitionsfile reesefile rlabel dotfile2
set filename [import_file]
exec c:/users/sidharth/ms_thesis/tool_0l/debug/lattice

$filename

set path [file root $filename]
set dotfile ${path}.dot
set dotfile2 ${path}_2.dot
set reesefile ${path}_reese.html
set htmlopfile ${path}.html
set conceptsfile ${path}_concepts.dat
set partitionsfile ${path}_partitions.dat
set rlabel ${path}_rlabels.dat

load_concepts $fl.t

proc load_concepts {tl} {

}

global conceptsfile dotfile path
if [catch {open $conceptsfile} in] {

puts stderr "Cannot open file"
}

while {[gets $in line] >= 0} {
$tl insert end $line\n

proc import_file { } {
global filename
set file_types {

{ "Context Files" { .con .dat .txt }}
{ "All Files" * }}

set filename [tk_getOpenFile -initialdir [pwd] -filetypes
$file_types \

-title "Load Context"]
set initialdir [file dirname $filename]
return $filename

100

proc show_message {msg} {
message about -text "Sidharth Kodikal"
}

proc viewreport { } {
global dotfile path htmlopfile

set img ${path}.ps

exec c:/progra-1/graphviz/bin/dot -Tps $dotfile -o $img
exec c:/aladdin/gs6.0l/bin/gswin32 -sDEVICE=Jpeg -

sOutputFile=${path}.jpg \
-sNOPAUSE -q $img

set img ${path}_top.ps

exec c:/progra-1/graphviz/bin/neato -Tps $dotfile -o $img
exec c:/aladdin/gs6.0l/bin/gswin32 -sDEVICE=jpeg -

sOutputFile=${path}_top.Jpg -sNOPAUSE -q $img

exec c:/progra-1/netscape/communicator/program/netscape
$htmlopfile &

}

101

