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EXISTENCE, BLOW-UP AND EXPONENTIAL DECAY FOR
KIRCHHOFF-LOVE EQUATIONS WITH DIRICHLET
CONDITIONS

NGUYEN ANH TRIET, VO THI TUYET MAI
LE THI PHUONG NGOC, NGUYEN THANH LONG

Communicated by Dung Le

ABSTRACT. The article concerns the initial boundary value problem for a non-
linear Kirchhoff-Love equation. First, by applying the Faedo-Galerkin, we
prove existence and uniqueness of a solution. Next, by constructing Lyapunov
functional, we prove a blow-up of the solution with a negative initial energy,
and establish a sufficient condition for the exponential decay of weak solutions.

1. INTRODUCTION

In this article, we consider the initial boundary value problem with homogeneous
Dirichlet boundary conditions

0
wr — = [B(@,tu, [[u]?, [Jug 12 lJwel?s [Jwe?) (e + Mttar + ugee) ] + Ay

ox
= Pttt IO IO O i OF) "
= 5 LG (0t v, s ()2, a1, s ()1 e ()])]
+ fz,t), z€Q=(0,1),0<t<T,
u(0,t) = u(1,t) =0, (1.2)
u(z,0) = to(x), u(x,0)="11(x), (1.3)

where A > 0, \; > 0 are constants and g, %; € H} N H?; f, F and G are given
functions that assumptions stated later.

This problem has the so called model of Kirchhoff-Love type because it connects
Kirchhoff and Love equation, this type is also introduced in [I7]. More precisely
has its origin in the nonlinear vibration of an elastic string (Kirchhoff [5]), for
which the associated equation is

Eh [* Ou )
phuy = <P0+ E/o |87y(y’t)‘ dy)ummv (1.4)
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here u is the lateral deflection, L is the length of the string, h is the cross sectional
area, F/ is Young’s modulus, p is the mass density, and Fp is the initial tension. On
the other hand, (1.1]) arises from the Love equation

et = Ty tee 2°w gzt = 0, (1.5)

presented by Radochovd [14]. This equation describes the vertical oscillations of a
rod, which was established from Euler’s variational equation of an energy functional

T oL
1 1
/ / [in(uf + pPwu?,) — §F(Eui + ppwPugtsy)| da dt (1.6)
o Jo

where u is the displacement, L is the length of the rod, F' is the area of cross-section,
w is the cross-section radius, E is the Young modulus of the material and p is the
mass density.

It is well known that the existence, global existence, decay properties and blow-up
of solutions to the initial boundary value problem for Kirchhoff type models under
different types of hypotheses in have been extensively studied by many authors, for
example, we refer to [2] Bl 4] 13} 15} 18] [19], and references therein.

In [3], the authors studied the existence of global solutions and exponential decay
for a Kirchhoff-Carrier model with viscosity.

In [15], the authors discussed the global well-posedness and uniform exponential
stability for the Kirchhoff equation in R™. Here, the global solvability is proved
when the initial data is taken small enough and the exponential decay of the energy
is obtained in the strong topology H?(R") x H?(R™).

In [13], the author investigated the global existence, decay properties, and blow-
up of solutions to the initial boundary value problem for the nonlinear Kirchhoff
type.

In [I8], the viscoelastic equation of Kirchhoff type was considered and the authors
established a new blow-up result for arbitrary positive initial energy, by using simple
analysis techniques.

The purpose of this paper is establishing the existence, blow up and exponential
decay of weak solutions forf. To our knowledge, there is no decay or
blow up result for equations of this type. However, the existence and exponential
decay of solutions or blow up results for Love equation were studied in [I2]. Here,
by combining the linearization method for the nonlinear term, the Faedo-Galerkin
method and the weak compactness method, the existence of a unique weak solution
of a Dirichlet problem for the nonlinear Love equation

Uttt — Ugy — Uzttt — Alux:ct + )\ut

d (1.7)
= F(x,t,u, Uy, Us, Ugt) — %[G(x,t,u,um,ut,umt)] + f(z,1),
for 0 < z < 1 and ¢t > 0, has been proved. When F = F(u) = a|u|P~2u, G =
G(ug) = blug|P~2ug, a, b € R, p > 2, the blow up and exponential decay of
solutions were established. For details, in case of a > 0, b > 0; f(z,t) = 0, with
negative initial energy, the solution of blows up in finite time. In case of
0> 0, b <0, if g, |2 — adl, > 0and f € L2((0,1) x Ry), (1)) < Cet,
such that f(t) decays exponentially as t — 400, the energy of the solution decays
exponentially as ¢ — +oo. Finally, in case of a < 0, b < 0 and ||f(¢)| is small
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enough, has a unique global solution with energy decaying exponentially as
t — +o00, without the initial data (g, @1) small enough.

Our model was inspired in the above mentioned works and motivated by the
results in [12], we study the existence, blow-up and exponential decay estimates for
f. This article is organized as follows. Section 2 is devoted to preliminaries
and an existence result for (L.1)-(L.3) in case F, G € C*([0,1] x [0,T] x R* x RY);
B e CY([0,1] x [0,T] x R x R%) with B(x,t,y,z) > by > 0, V(z,t) € [0,1] x [0,T],
for all y € R, for all z € Ri. Since f, G, B are arbitrary, we need to combine
the linearization method, the Faedo-Galerkin method and the weak compactness
method.

In Sections 3, 4, Problem 7 is considered in the case B = B(x,t) and
F = F(u,uy), G = G(u, uy) such that (F,G) = (%—ZL:, %—f). More details, in Section
3, with f(z,t) = 0 and a negative initial energy, we prove that the solution of
f blows up in finite time. In Section 4, we give a sufficient condition, in
which the initial energy is positive and small, to guarantee the global existence and
exponential decay of weak solutions. In the proof, a suitable Lyapunov functional
is constructed. The results obtained here may be considered as the generalizations
of those in [7, [12] [I7], based on the main tool in [I7] and the techniques in [12].

2. EXISTENCE OF A WEAK SOLUTION

First, we set the preliminary as follows.

Let (-,-) be either the scalar product in L? or the dual pairing of a continuous
linear functional and an element of a function space, || - || be the norm in L? and
Il - ||x be the norm in the Banach space X. Let LP(0,T;X), 1 < p < oo be the
Banach space of the real functions u : (0,7) — X measurable, with

T 1/p
Jul o = (| Tutoligar) " <0 for1<p<oc,
0

and

[[ull L= (0.7:x) = esssupgpcr [lu(t)][x  for p = oc.

Denote u(t) = u(e,t), w/(t) = u(t) = Gi(a,1), w'(t) = wn(t) = G (1),
“w(t) = g"( ) umw( ) = aﬁ( )

With F € C*([0,1] x Ry x R* x RY), F = F(z,t,y1,...,Y4,21,--.,71), We

put D1F = 28 D,F = 28 D, F = 282 D, «F = £ with i = 1 4

oz * 2 ot ? 1+2 Ay’ 146 9z DI
and D®F = D" ... D{}°F, a = (a1,...,010) € Z}ro, la] = a1 + -+ a19 < kK,
D(O""’O)F — F.

Similarly, with B e Ok([o 1] x [0 TIxRxR%), B=B(z,t,y,21,...,2), we put
DB = 81, DsB = m, D3B = 8y7 D; 3B = g—fi, with i =1,...,4 and D°B =
DY ...DFB, B=(p,....5) €L, |l =P+ + P <k, DO-OB =B

We recall the following properties related to the usual spaces C([0,1]), H!, and
H} ={ve H':v(1) =v(0) =0}.

Lemma 2.1. (i) The imbedding = H' — C([0,1]) is compact and

1/2
ol < V2(I10l? + [lva )%, vo e HY, (2.1)
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(it) On H}, the norms |Jvg|| and ||v| g = (|jv]|* + ||v;,v||2)1/2 are equivalent. On
the other hand
[vlleqony < llvall - for allv € Hg. (2.2)

Now, we consider the existence of a local solution for (1.1)—(1.3), with A\, A; €
R, A; > 0. Without loss of generality, by the fact that I’ contains the variable u;
and A is arbitrary, we can suppose that A = 0. The weak formulation of (1.1))—

([T.3) can be given in as follows: Find u € W = {u € L>®(0,T,; H} N H?) : /,
u” € L>(0,T,; Hi N H?)}, such that u satisfies the variational equation
(u” (), w) + (Blu] () (ua (t) + A (t) + uir (1)), wa)
= (f(), w) + (Flu](t), w) + (G[u](t), wa),
for all w € H}, a.e., t € (0,T), with the initial conditions
u(0) = @g, u(0) =14, (2.4)

(2.3)

where
B[ ](fﬂ t) = B(w tou(a, t), [lut)|?, [lus ()12, [[o/ )12, ug(0)]1%),

2t ), (), 0 (2, 8), (o, ), a2, o (1) 2,
HOINTAGIRE (2.5)
) = G (.t ul, ), up (w,0), ' (@, 0), 0 (.0, a2, Jua (01,

I <t>||2 e (O11).

We use the following assumptions:
(Hl) Ug, Uy € H& ﬂH2;
(H2) fv f/ € LQ(QT)7 QT = (05 1) X (OaT)7
(H3) B € C*([0,1] x[0,T] xR xR}) and there exists a constant by > 0 such that
B(z,t,y,2) > by, for all (z,t) € [0,1] x [0,T], for all y € R, for all z € R%;
(H4) F € C'([0,1] x [0,T] x R* x R%);
(H5) G € C'([0,1] x [0,T] x R* x RY).
Theorem 2.2. Let (H1)—~(H5) hold. Then Problem (LI)—-(L.3) has a unique local
solution u and
u € L=(0,Ty; Hy N H?), ' € L>®(0,T,; H N H?), 26)
u” € L*®(0,T,; Hy N H?), '

for T, > 0 small enough.
Remark 2.3. Thanks to the regularity obtained by (2.6), Problem (1.1)—(L.3)) has

a unique strong solution
ue CH[0,T.]; Hy N H?), ' € L*>(0,T.; Hy N H?). (2.7)

Proof of Theorem[2.3. We have two steps. Using linearization, step 1 constructs a

linear recurrent sequence {u,,}. Step 2 shows that {u,,} converges to v and u is
exactly a unique local solution of (L1.1))—(L.3].

Step 1. Consider T > 0 fixed, let M > 0, we put
Kn(f) = (172000 + 1F 172000) " (2.8)
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||BHC0(AM) = sup ‘B($,t,y721,...,24)|,

with

Ap = 10,1] x [0,T] x [-M, M] x [0, M*]*,
7

B = Bllo 4, = I1Blleocan, + > IDiBllco 4,
=1

||F||CO(AM) :SUP7t7iUl,~--ay47217-~-a24) € AM‘F(x’t,yla"'7y47Z17'"524)|a
x
with

Ayp = [07 1] X [O’T} X [7M7M]4 2 [07M2]47
10
Fur = ||Flleran) = IFlcoan + Y IDiFllcoay),

i=1
10

G = Glleran) = IGcocay) + D IDiGllcoa,)-
i=1

For each T, € (0,7] and M > 0, we put
W(M,T,) = {v € L0, Ty; H N H?) -/ € L®(0,T,; HE n H?),

v" € L>(0,T,; H)), with vl Lo 0,72 E2) (2.9)

10/l e o,smmgemys 10l o sty < M
Wi(M,T,) = {ve W(M,T.) :v" € L0, T,; Hy N H?)},
where Qr, = Q x (0,T%).

We establish the linear recurrent sequence {u,,} as follows. We choose the first
term ug = 0, suppose that

Um—1 € Wl(M, T*), (210)

and associate with problem (|1.1)—(1.3)) the following problem.
Find u,, € W1(M,T,) (m > 1) which satisfies the linear variational problem

(i, (), w) + (B (£) (tna () + Artipy, (£) + 1, (£)), wz)
= (f(t),w) + (Fp(t),w) + (G (t),w,), Yw € Hy, (2.11)
U (0) = o, U, (0) =,
where
B, (z,t) = Blum—1)(z,t)
= B(ﬂ:,t, Um—1(2, 1), [[tm—1 ()%, [|Vam—1 (6)|1%, 11 (D117, ||VU'T,L_1(t)H2)7
Fo(x,t) = Flupm—1](x,t)
= F(m, toUm—1 (2, t), Vg—1(z,t), ul,_q (2, t), Vu,, 4 (z,1), (2.12)

=1 (D112, 1Vt =1 (D17, g1 (D], IIV%q(t)HQ)
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Gm(z,t) = Glum—1](z,t)
—G<m £ 1 (), Vi1 (2, 1), 10!, (2, 1), Vadl, (2, 1),

=1 (O, 1Vt —1 (B2, (a7, (t)IIQ, IIV%fl(t)Hz)-

Lemma 2.4. Let (H1)—(H5) hold. Then there exist positive constants M, T, > 0
such that, for ug = 0, there exists a recurrent sequence {u,} C Wi(M,T,) defined

w E10) E1D).

Proof. The proof consists of several steps.

(i) The Faedo-Galerkin approximation (introduced by Lions [6]). Consider a special

orthonormal basis {w;} on H} : w;(x) = V2sin(jnz), j € N, formed by the

eigenfunctions of the Laplacian —A = %. It is clear to see that there exists

5:3( ), 1 <j <k, on interval [0, 7] such that if we have expression in form
k
k
uP ) =3 )y, (2.13)
j=1

then u(k)( t) satisfies

(i) (1), w5) + (B (1) (ulh (8) + Mg (1) + i (1)) wye)
= (f(0), wj) + (Fn(t),w5) + (G (t), wjz), 1 <j<F, (2.14)

in which
k
fiop = Zaﬁk)wj — 1y strongly in H} N H?,
j=1
R (2.15)
U1 = Zﬁj(.k)w]— — w1 strongly in H& N H2.
j=1

Indeed, ([2.14)) leads to an equivalent form of system (2.14]) as follows

+Zb (&) () + MG (1) + e} (0) = fmi 1), 10
cﬁSQ(O):aEk% &0y =p", 1<i<h,
where
P (8) = (F@)sw03) + (Fn (), w5) + (G (£), w32),
(2.17)

b () = (B (Dwiz, wys), 1<, j <k

System (2.16), (2.17) has a unlque solution ¢! )(t) 1 < j <k on interval [0, 7],
the proof is obtalned through (2.10) and normal argument (see [I]).
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(ii) A priori estimates. We shall give a priori estimates to show that there exist
positive constants M, T, > 0 such that ulk) e W(M,T,), for all m and k. Put

SO = IVBa@u O + IV B (Al (1)

+ [ty ( )II2 + g ()]
+2[|V/ B ()il (¢ ||2 + II\/ () (0]
+ gy ||2 + VB ()i ( ||2 (2.18)

+ou / [n\/ WP + 1V B A0 (5)

+ ||\/ m(8)iF) () ]
It follows from and - that

S0
=S§f><ot>+2 / <f<s>,u£,’§><s>>dst—2 | ). i pas
w2 [0 a0 ) ds+2 [ (P ) ds
2 (E(s), AdS) () ds + 2 / (Gn(s), 48 () ds
2 | (L (), 60 (5)) s + 2 / (G(s), 8 (5)) s
+2/Ot<G,m( ), Aalk) (s)) ds+/ ds/ B! (x,s) [|u(k) (z,5)]> + |AuF) (z, 5)|?
+ 208 (2, )2 + [Aal) (2, ) — i) (@, 5)[] da
-2 f B () (kL (5) + Mkl (5), L ())ds

=2 [ (Bl WE106) 4 M) + (50, AP (9)ds
0

12

=SW0)+ > ;.
j=1
(2.19)
First, we need to estimate £(k) ||u O)|I?> + [|\/Bm ug,]fg)g 0)||%. Letting t —

0y in 1, multiplying the result by ¢ )(0) it gives
1G5 ()% + [V Bum (0)ii (0)|*
+ <Bm(0)()‘1u1kx + uom)» i{%)(0))
= (£(0), i3 (0)) + (Fn(0), @3 (0)) + (Gim (0), i{3).(0)).
Then
&) = [l 0)1* + VB (0)ifh), (0) 1
< MV Bm(0)ige| + ||\/ (0)diokz I]][1 /B (0)iity, (0
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+ LO) + [ En (O] WS )] + 1Go (0) 1[5 (0)
< IV Bin (0 ks || + VB (0)iona |l 1/ €0

(k)
+[IFO) + | E(0)[]3/ €% + G (0)]]

< IV Bm(0) ke || + 1V B (0)toke| + £ O] + [[Fn (0)]] + ﬁlle(O)ll]?

On the other hand, By, (z,0) = B(x,0, o, ||tol|?, [0z %, %1%, [|@14]%) is inde-
pendent of m and the constant || F,(0)|| + ||G (0)||/v/o is also independent of m,
because

|G (O]
Vbo

= HF(u O>ﬁ07ﬂ0m7a17alr7 ||ﬂ/0||27 ||ﬂ/0:v||2; ||a1||2a ||alz||2) ||

[ (O] +

1 O - - - -
+ EHG('»OJLO»UOmUl,lev a0l a1, l[@ ], awl*) |-
Therefore,
{7(,’:) < Sy, forallm, k, (2.20)

where S is a constant depending only on f, g, @1, B, F, G and \;.

Equations (2.15]), (2.18]) and (2.20]) imply that
SE0) = 1/ B (0)iokz I + v/ Bm (0) Ao |* + @rkl|* + [|T1ka |
+2||\/ m( U1kw||2+||\/ m(0) Ay |* + €5

<S8y, forallm, keN,

where S is also a constant depending only on f, 4g, 41, B, F, G and A;.
We estimate the terms I; of (2.19). By the Cauchy - Schwartz inequality, we
obtain

t t
=2 / (£, (5)) ds < [ Flagany + / 14 (s)|2ds;
t t
L2 / (G (5), D0 (5))ds < 1F12om + / 1Ai® (s)|2ds;
0 0

t t
Iy = 2/ (f'(5), B (s))ds < || 72(0m) +/ |89 (s) | ds.
0 0
Note that

St (8) 2 /B (0 012 + v/ B () Aty (0) |2 + ||/ B (D03 (2) |
> bo(llum( P+ A (¢ )II2 + [ @)11%),
SO

t
L+ L+ I3 < 2K32,(f) + bi/ S5 (s)ds. (2.21)
0 Jo

Because
|Fm(x,t)‘ S FM, |Gm(xat)| § GMa (222>
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we have
t _ t
I =2 [ (Fale), i) (9)ds < B+ [ af3(s) P
0 0
t t
s =2 [ (Bn(o). Bl (o))ds < TP+ [ [ a(5) s
0 0
t _ t
lo=2 [ (Guls). i (s))ds <TGy + [ il (o)|Pds,
0 0
By
S0 = 21V B @O + VB O
WO < IO+ 18401
we have

_ _ 1 [t
0 Jo
We remark that

F;n(t) = DQF[um 1] + D3F[um 1] Upp—1 T D4F[um_1]Vu;n_1
+ D5F[um 1] 1+ DGF[Um 1]Vum 1

(2.23)

+2D7 F [, - 1]<um 1(8); g1 (1)) + 2Ds F [t 1 [Vt 1 (£), Vi, 1 (1))

+ 2Dg F [t 1]y, 1 (1), upy, 1 (t)) + 2D10 F [thy 1]V, 4 (t), Vu

yields
IF. ()] < (14 4M + 8M>)Fyy = Fyy.
Thus . t
Fo=2 [ (F ()8 6 < B+ [l (s) s,
0 0

In a similar way, we obtain the estimate

t
=2 / (Gl (5), i) (s))ds < T.G3, + / 8 (s) 2ds,
0

with Gy = (14 4M + 8M?)G ;. From
Gma(t) = D1Gum-1] + D3Gum—1]Vum—1 + DaGlty—1] Aty 1
+ D5Glum—1]Vul, 1 + DeGlum—1]Aul, 4,

we obtain

[Gra@)] < (1 +4M)Gyn < Gy
Hence
t . t
Iy =2 [ {Ga(s), B30 (9)ds < T.Cy + / 186 (5))2ds.
0 0
On the other hand

25 () > 2|/ B (0)iE) (812 + 2||/Bom () Al (¢
> 50(2||U(k)( Z + 2 Aafy (1)) )
> bo ([l (O + a2 (O + | Aal) (#)]).

2

mo1(t))

(2.24)

(2.25)
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‘We have verified that
I + Is + Iy < 2T.(F3; + G3))

k i) ()12 + ||i) 2 %) (8)|12]ds
+ [ UED @R+ 1R + 156D @ s )
< 2T (F3 + G3)) bo/ S

It is known that
B;n(t) = DQB[U’"L 1] + D3 [unb l]u

3\

1), Val, (1)) (2.32)

SO
|B!,(z,t)] < (1+ M +8M?)By = By (2.33)
We also have
SI(t) = I/ B (t)uih (¢ ||2 + VB Au(k) H2 + 2[[v/ B (£) a0 (1) |1?
+ II\/ HALR ()] + H\/ )|

> bolluya(t )II2 + IIAu(’“)( BII* + 2IIU"“)( )||2 + 1 Aal @1 + 15 @)1%),

hence
t 1
ol = | [ ds [ BiGos) o) + |80 . 6)? + 2ilf) o, 9
0 0
+ 10l (2, 5)[2 = [iE) (. ) da
t
<Bur [ (IR + 18D G + 20 + 86D ) (239
0
+ (i) (s) 2] s

5 t
< Bu / Sk (s)ds
bo Jo

Note that

£) 2 |/ B ()uf2 (01 + 2]/ B (O, (O + |/ B (i (0]
> bo[\lu(k)( I + 2l (1)1 + IIUmz(t)II2],

we deduce that

I = 2 / (Bl () (s) + AL (5)), 85 (s)) |

< QBM/ (lufak () + Ml () DS (s) | ds (2.35)

—M(2+)\1)/ S (s)ds
0 0
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Because of
Bpz(2,t) = D1Blum—1] + D3Bltm—1]Vtm-1,
\Bm(a; t)| < Bu(1 +2M) = By,
) 2 I/ Bm H2 + 2[[v/ B (£) ()12
+ H\/ i (0 +11v/Bm Au(’“) )12
> bo(||u$:§;<t>||2 + 20l 0] + ||um<t>||2 + laal @)]2),

we have the estimate

hz = 2/0 (Buna(5)(uF)(s) + Al (s) + i) (s)), Aal) (s))ds

< 2BM/ (lufer (N + Acllaf (s) |+ lag (s)DIAal (s)llds — (2.36)

B t
<Myy Al)/ S (5)ds.
bo 0

Consequently, estimates (2.19), (), (2:21)), 2:23), 2.31), [.34), (2:37) and (2.36)
show that

S (1) < So + 2K2,(f) + AT, (F3, + G2%))

(2.37)
+ [4+(7+2/\1 )Ba] / S (s)ds.
0
We choose M > 0 sufficiently large such that
1
So + 2K3,(f) < 5 M7, (2.38)
and then choose T, € (0, 7] small enough such that
1 _ ~ T,
(§M2 + 4T (F3 + G3y)) exp[— A+ (T 2\1)By]] < M?, (2.39)
0
and ~
B
kr, = 2/ D/ Ty explT. 22/[ )] <1, (2.40)
0
with
> 1 2 F ~ N2 2 277252
Dy = b—[4(1 +2M)*(Far + Gu)® 4+ (2+ M\)° (1 + 4M)*M* By, .
0
From (2.37)—(2.39)), we have
—T,
S (8) < exp[—— 4+ (7 +2\) Bu]| M2
0 (2.41)

+ 7 [4+(7+2>\1 Bu] / Sk (s
0

Using Gronwall’s Lemma, (2.41)) leads to
T,
S (t) < exp[—— po (T 2X\1) Bar]|M? exp|— » "4+ (T4 20) Byl < M2, (2.42)

for all ¢t € [0, T%], for all m and k, so
ul® € W(M,T,), for all m and k. (2.43)
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(iii) Limiting process. By (2.42), there exists a subsequence of {ugi)} with a same
notation, such that

ul® — u,, in L0, Ty; HE N H?) weakly*,

a® — ! in L°(0,Ty; Hi 0 H?) weakly*, -
. (k) "o 00 L7l * ( ’ )
Uy — up in L°(0, Ty; Hy) weakly™,
U € W(M,Ty).
Passmg to limit in 7 (2.15)), it is clear to see that wu,, is satisfying (2 ,

in L2(0,Ty) Furthermore (2.11)1 and (2.44)4 imply that
B () Ault, (t) = =B (8)[ A, () + A1 Aup, ()] — B (8) (tma (t) + AMun,, (£)
+ g (1) + () = f(t) = Fin(t) + Ga(t)
=V, € L>(0,T,; L?).
We have
boll Ay, ()] < (| B () Aty (1) | = (1 Wi (1) ] < [1Win | 22 0,72522)

Hence u!,, € L*(0,T,; H: N H?), so we obtain u,, € Wi(M,T.), Lemma is
proved. It means that step 1 is done. O

Step 2. We state the following lemma.

Lemma 2.5. Let (H1)—(H5) hold. Then

(i) Problem (LI)—~(L3) has a unique weak solution u € W1 (M, T.), where M >
0 and T, > 0 are chosen constants as in Lemma [2.4}

(ii) The linear recurrent sequence {un,} defined by (2.10)-(2.12)) converges to
the solution u of f strongly in the space

Wi (T,) = {v € L=(0,Ty; Hy) : v € L>=(0,T\; HY)}. (2.45)

Proof. We use the result obtained in Lemma [2.4] and the compact imbedding the-
orems to prove Lemma [2.5] It means that the ex1stence and uniqueness of a weak

solution of Prob. mfn ) is proved.

(i) Existence. It is well known that W7 (7}) is a Banach space (see Lions [6]), with
respect to the norm

lvllw, 7.y = IvllLos 0,105m2) + 10| Los (0,705 - (2.46)

It is clear that {u,,} is a Cauchy sequence in W1 (T}). Indeed, let w,, = tmt1 — Um,
we have

(Wi, (8), ) + (B () (Wina (t) + Ay, () + wi, . (1)), wa)
= (Frn+1(t) = Fin (1), 0) + (Gm41(t) — Gin(t), wa)
—{[Bnt1(t) = B ()] (e (£) + Mt () + Uiy (1)), wa),  Vw € Hg,
W, (0) = w!, (0) = 0.

(2.47)
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Consider (2.47) with w = w],,, and then integrating in ¢, we obtain
Zm(t)
t

—o / (Foni1(5) — Fn(8), wlp (5))ds + 2 / (Gon41(5) — Gon(5), W ())ds
t 1
+ [ s [ B ) ko) + a9 (2.48)

- 2/0 (Bim41(8) = B () (Ui (8) + Mg (8) + U (5)), Wiy (5))ds
=J1+Jo+ 3+ Ja,

with
Zm(t) = (O + 1V B ()W (07 + 1V B2 (D) wmar (8)]1?
Lo / 1V B2 (5) e (5)] .
From
[Ems1(s) = Fu(s) || < 2(1 +2M) Eaglwin—1]lw, (1),
||Gm+1(8) Gm(s)]l < 2( + 2M)Grl|wm -1 lwr (12.)

|B7n+1(37 S) ( )| S ( +4M)BM||wm—1HW1(T*)7
||’mex( ) + Alumx( ) + U’wa(s)n < (2 + >\1)M

we obtain the estimates
t
Tyt g = 2/ (Foir () — Fon(s), 0, (s))ds
0

42 [ (Gruia(5) = G (o). a5 (2.49)

4 ~ t
< U+ 2MP By + O Ty + | Zno)ds

G“

t 1
Js = / s / Bl (2, 8) (0P (2, 8) + [t (2, 5) 2)de
0 0

¢
N B
SBM/O (lwma ()11 + llw),, (s)]1%)ds < B J)r Zm(S)dS;

Ju = *2/0 ((Bm+1(5) = Bin(5)) (tma () + Arti (5) + (), wyng () ds

t
224 M) (1 + DM Baslom-alwicr [ e (5)]ds
0

1 _ t
%(2+)\1) (1+4M)2M2Bﬁ4T*||wm_1||%%(T*)+/O Zm(s)ds.
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From ([2.48) and (2.49) we have

_ B t
Zpn(t) < TDps w13y, () + (2+ b—i}”) / Zp(s)ds, (2.50)
0
with
_ 1 _ _ _
Dy = - [4(1 + 2M)?(Fav 4 Gur)? + (2+ \)* (1 + 4M)*M? B3] (2.51)
0

Using Gronwall’s Lemma, ([2.50) leads to

lwmllw, (1) < krlwm-1llw, () YmeN, (2.52)

S0

l[wm = Umpllwy (1) < M(1 - kT*)_lkITCiv Vm,p € N. (2.53)

It follows that {u,,} is a Cauchy sequence in Wi(T,), so there exists u € W1 (T%)
such that

U, — u strongly in Wy (Ty). (2.54)

Note that u,, € W1(M,T.), so there exists a subsequence {uy,,} of {un,} such

that
U, —u in L>(0,Ty; Hy N H?) weakly*,

u’mJ — ' in L™(0,T,; Hy N H?) weakly*,
u/,;j — " in L™®(0,T,; Hy) weakly™*,
ue W(M,T,).
On the other hand, by , (]m[), (]m[) and m4, we obtain
1Fm (8) = Flul ()] < 2(1 + 2M) Fys||um—1 — ullw, (z.),
1Gm(t) = Gl < 2(1 +2M)G s llum-1 — ullw, (1), (2.56)
| Bin+1(2,t) — Blu(z,t)] < (1+4M) By |[um—1 — ullw, z2)-
Then and imply
F,, — F[u] strongly in L>(0,T; L?),
Gm — Glu] strongly in L>(0,Ty; L?), (2.57)
B,, — Blu] strongly in L= (Qr,).

Passing to limit in (211), (Z12) as m = m; — oo, by [@54), [255) and (257,

there exists u € W(M, T,) satisfying
(u"(t), w) + (Blu] (£) (ug (t) + My (t) + ua(t)), wa)
= (f(t),w) + (Flu](t), w) + (Glu](t), ws), Yw € Hy,
and satisfying the initial conditions
u(0) = g, u'(0) = . (2.59)
Furthermore, assumption (H2) implies, from (2.55)4 and (2.58) that

(2.55)

(2.58)

Blu]Au" = —B[u](Au + A\ Au’) — ag(B[u])(uw + Al +ull)
r (2.60)

From
bol|Au” (t)|| < || Blu](t) Au" (@) || = [ (#)]] < ¥l Lo (0,7.:22)
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we obtain u” € L>(0,Ty; HiNH?), and so u € W1 (M, T.). The existence is proved.

(ii) Uniqueness. Let ug, us be two weak solutions of (1.1)—(1.3]), such that
w € Wi(M,T.), i=1,2. (2.61)
Then w = uy — uo satisfies

(w”(t), w) + (B () (we(t) + A\wl,(t) + wl(t)), ws)
= (F1(t) — F2(t),w) + (G1(t) — Ga(t), w,)

/ " 1 (2'62)
— ([B1(t) = Ba(t)](u2a(t) + Mg, (1) + ug, (1)), wa), Vw € H,
w(0) = w'(0) =0,
where

Taking v = w = u; — ug in (2.62)); and integrating with respect to ¢, we obtain

t

plt) =2 / (Fy(s) — Fa(s), w'(s))ds + 2 / (G () — Ga(s), wl(s))ds

0

/ ds/ By(z,s)(w?(z,8) + |wl(z,s)*)dx (2.64)

+2/O ((B1(s) — Ba(s))(u2z(s) + Mg, (s) + ug,(s)), wi(s))ds,

where

p(t) = [l ()] + [|v/Br(t)wh (O)]1* + |V Bi(t)wa ()]
+2/\1/ /B (o), (s)|2ds.

On the other hand, by (H3)-(H5), we deduce from (2.8), (2-65)), that

(2.65)

|B)(x,5)| < (14 M +8M?)By = By,
Bue,5) — Ba(e,9)] < [ -0+ M) Bur /),
IFi(s) — Fa(s)]| < z\/z(l M) P /o9, (2.66)
IG1(6) ~ Galo)l 2, 21+ 2301 /o9,

[u2z(s) + Arti, () + ug, (s)]| < (2+ A)M
Combining (2.64) and ([2.66]) leads to
2 _ 2v/2 _ ¢
p(t) <[44/ - (L+2M)(Ey +Gar) + b +T(2+>‘1)<1+4M)MBM] p(s)ds.
0 0 0
By Gronwall’s Lemma we have p = 0, i.e., u; = us. This completes the proof. [

By proving Lemma, we complete the proof Theorem O
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3. BLow up

In this section, we consider(1.1)—(1.3) with A\, A\; > 0, B = B(z,t) € C1([0,1] x
[0,T)), B(x,t) > by > 0; F = F(u,u,) — Ay, G = G(u,uy), F, G € CY(R%;R) as
follows
9
Ox

0
= F(u,ug) — %(G(u,ux)) + f(z,t), O0<z<l, 0<t<T, (3.1)
u(0,t) = u(l,t) =0,
u(z,0) = to(x), wu(x,0)=a1(x).
Obviously, by the Theorem (3.1) has a weak solution u(x,t) such that
we CH[0,T.); H* N HY), u’ € L>(0,Ty; H* N HY), (3.2)

gy — - [B(2, 1) (Ug + MUzt + Ugpr)] + Ay

for T, > 0 small enough. Furthermore, if the following assumptions hold, then a
blow up result is obtained.
(H2) [ =0.
(H3") B € C([0,1] x [0,7T]) and there exist the positive constants by, by, by such
that
(i) bo < B(x,t) < by, for all (z,t) € [0,1] x [0,T7,
(i) —by < B'(z,t) <0, for all (z,t) € [0,1] x [0,T];
(H4’) There exist F € C?(R%R) and the constants p, ¢ > 2; dy, d; > 0, such
that
(i) 2 (u,v) = Fu,v), 2 (u,v) = G(u,v),
(ii) uF(u,v) + (u v) > dy F(u,v), for all (u,v) € R?,
(iii) F(u, ) di(JvlP + |u]?), for all (u,v) € R
H5) 0< M\ < 2 2
(H6’) di > max {2 + 2’\17101’1, b();\ — 2} with d; as in (H4).

Example 3.1. The following functions satisfy (H4’):

|”‘_2u|v|ﬁ + 61’73|u|q_2u7

F(u,v) = aya|u
G(u,v) = p71|v|P~ 20 + Ba|u|*|v]’~ 2w,
where «, 8, p, ¢ > 2; 71, J2, 73 > 0 are the constants, with
2\1b1 b
1 17 T 2,
by b1

with bg, b1, A1 as in (H3'), (H5'). It is obvious that (H4') holds, because there
exists an F € C?(R?;R) defined by

min{p, ¢, & + B} > max{2 +

F(u,v) = Fa[ol? + Falul 0] + Fslul?,
such that
or
ou
OF _ a8
O ) = Pl + B ful* ol %0 = Glu,v),
wF (u,v) +vG(u,v) > di.F(u,v), forall (u,v) € R?,

(u,v) = a’yg|u\o‘72u|v|’3 + q’_yg|u|q*2u = F(u,v),
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in which dy = min{p, ¢, « + S} > max{2 + 2A1b1 , :/1\1 — 2},
F(u,v) > dy(Jv|P + |u]?) for all (u,v) € R?,

with d; = min{%,73}. Let us put

1
1(0) = =5 a|? = SIVEO)inl? = SIVEO ol + | Flio(o). o ()

Theorem 3.2. Let (H2')—(H6") hold. Then, for any i, € H§ N H?, such that
H(0) > 0, the weak solution u = u(z,t) of (3.1) blows up in finite time.

Proof. It consists of two steps: the Lyapunov functional L(t) is constructed in stepl
and then the blow up is proved in step 2.

Step 1. We define the energy associated with as
1
E(t) = 5/ (O] + *II\/ 0%+ *II\/ t)ug (1)
/ Flu(z,t), ug(x, t))dz,

and we put H(t) = —E(t), for all ¢t € [0,7,). Multiplying (3.1)); by v/(z,t) and
integrating the resulting equation over [0, 1], we have

H'(t) = w017 + Ml v/ B (6)]2

(3.3)

1! (3.4)
—5/ B'(x,t)(u (z,t) + |u), (z,1)|*)dz > 0.
0
This implies
0< H(0) <H(), Vtelo,T.), (3.5)
SO
0< H( /.7-' (x,1), ug(x,t))dx;
[ ()1 + I/ B(t)ug ()| + |/ B(t)us ()] (3.6)
< 2/ Flu(z,t),ug(x,t))de, Vte[0,Ty).
0
Now, we define the functional
L(t) = H'7(t) + eV (t), (3.7)
where

U(t) = (u'(t), u(t)) + (B(t)uy (t), ua(t)) + %Hu I+ 5 IIF %, (3.8)
for € small enough and
0<n<1,2/(1-2n) <min{p,q}. (3.9)
Next we show that there exists a constant L; > 0 such that

L'(t) = Lo[H (t) + llua ()70 + lu) L0 + [0/ @1 + lug 01 + [lua(®)]P]. (3.10)
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Multiplying (3.1); by u(z,t) and integrating over [0, 1] leads to
()= ')+ VB H2 I/ B(t)us (t)]?
+(B'(t)u / B'(x, t)u;(x, t)dx (3.11)

+ (F(u(t), ug (), u(t)) + (G(u(t), us (1)), ue (1))

Therefore,
L'(t)y=1—n)H "t)H'(t) +V'(t) > eV'(¢). (3.12)
By (H4'), we obtain
(F(u(t), ug(t)), u(t)) + (G(u(t), uz(t)), us(t))
> dy [ Flue. ).l 1))ds, 5.13)

/0 Fu(@,t), ue (@, t))de > di([lua ()7, + [[u)]Z0)-

On the other hand, by (H3’), we obtain

At

(B ()0 (1) <>>+5/03<z (o, )|

b A1b
< o IVBOGOIVBu O] + G5 VB (1)

b A1
STZ(*W DI + Ml BEua ¢ ) S VB ()]
b A1b

SIVBOU O + % VB Ous 0]

T 2boh;
From (3.11)), (3.13)), (3.14) it follows that

v()
> [0 + VB 0] ~ [VE @0
IV ||2+*1b1w O+ [ Flute 0,0

2b A1
A
= [/ () + SOIVBOu (O = (1+ 5 =) VB O (1))
+d151/ Fu(z,t),uy(z,t))dx
0

Fdi(1 = H) + 51 (1 + SIVBE O + 5 1B

S sl )P

> d16181(||u$( e + lu)|9e) +di(1 = 61)H(t) + [1 +
b
[2+d1 ﬁ —d1d1]|[\/ B )
b
§[d1 —2(1+ 5) = ]IV BB 0],

for all 6; € (0,1).

(3.14)
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From d; > max{2 + 20 % 91 we have d; — 2(1 + Agigl) >0and 2+d; —

bo ? boAt
bo 57 > 0, we can choose d; > 0 small enough such that
b1 A1by
2+dy — 7—(51d1 > 0 and d; —2(1+ ) —51d1 >0, (315)
boA1 bo
and then ((3.10)) holds.

From the formula of L(t) and (3.10), we can choose ¢ > 0 small enough such
that

L(t) > L(0) >0, Vte[0,Ty). (3.16)
Using the inequality

5
(le> <5 Ile, for all » > 1, and z1,...,25 > 0, (3.17)
i=1

we deduce from (3.7 . ) that

LHYU=D(t) < const.[H (1) + [ {u(t), ' (¢ )>|1/(1’") + [(B()ul (1), ua (8)) [/

+ (@70 + B ()]0,

(3.18)
Using Young’s inequality, we have
[Cult), w/ ()7 < ()| O (1))
< o O + s WO @19)
< const. (J|luz (1) + [l ()]1%),
where s = 2/(1 — 2n) < min{p, ¢} as in (3.9). Similarly, we obtain
(B @ us )Y < B O @
< const. ||ux I+ |lul(t )HQ)
Combining 7, we obtain
LY (1) < const.[H (t) + o/ ()]* + [|uy (8)]|* + Ju(t) |/ 7 (3.21)

+ e (O + Jlua ()]1°].

Step 2. We note that the following property for any v € Hg.
Lemma 3.3. Let 2 <1y <gq, 2 <7y, r3 <p. Then, for any v € H}, we have
"+ ozl + lloa ™ < 3(1[vlFe + lvallTe + Nz ). (3.22)

[lv
The proof of the above lemma is not difficult, so we omit it. Using and
Lemma [3.3| with r; = ﬁ, ro =2/(1—n), r3 = s, we obtain
LY (t) < const. [H(t) + [|u' (0)[|* + [[uf (8)]|* + [|ua (8)]
+ ||U(t)||q + lue @71, ¥t €0,T)).
It follows from (3.10) and (3.23) that

L'(t) > L2L1/<Hz>(t), vt € [0,T), (3.24)

(3.23)
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where Lo is a positive constant. Integrating (3.24]) over (0,t) leads to
1 1
, 0<t<=—(1—nLE=(0). (3.25)
Lon

Ln/(lfﬁ)(t) > _
- _ _ L
/1 n)(())_ 1jgt

Consequently, L(t) blows up in a finite time given by T = %Zn(l —n) L=/ (=m(0).
The proof of Theorem is complete. [
4. EXPONENTIAL DECAY

In this section, we consider Problem ([3.1) under the following assumptions.

(H') f € L%(Ry; L2) N L} Ry L2); )
(H3”) B € C1([0,1] x Ry) and there exist three positive constants by, by, by such

that
(i) bo < B(x,t) < by, for all (x,t) € [0,1] x Ry,
(i) —by < B'(z,t) <0, for all (z,t) € [0,1] x Ry;
(H4”) There exist F € C?(R?;R) and the constants p,q, o, 8 > 2; 2 < «, 3,9 < p;

dy,dy,dy > 0, such that
9 (y,v) = G(u,v), for all (u,v) € R?,

(i) & (u,v) = F(u,v), 3%
(ii) F1(u,v) = Flu,v) + Jl\fu|p < JQ(|u|°‘\v|ﬁ + |u|?), for all (u,v) € R?

(iii) wF(u,v) +vG(u,v) < doF(u,v), for all (u,v) € R?;
(H5”) do < p with dg as in (H4”).

Example 4.1. The functions satisfy (H4”):
F(u,v) = aFo|ul*2ulv|® + ¢73|u|??u,

G(u,v) = —pAfv~?v + B3z |ul*v] 20,

where o, 3,p,q > 2; ¥1,7%2,7%3 > 0 are the constants, with 2 < «,8,q < p and
a+ 3 < p. We see that (H4”) holds. We consider F € C?(R?;R) defined by

F(u,v) = =Fu ol + Folul* o] + 3 ul®.

Then we have
oOF - o - _
—— (u,v) = F2|ul**ulv|” + ¢¥s|u|!"*u = F(u,v),

ou
OF . _ el 16—
(u,v) = =pHa[v[P"?v + BFa|ul*[v|" v = G(u,v),

ov
Fi(u,v) = Flu,v) + Falo? < do(ful*[o]” + [u]?),

for all (u,v) € R%, where d; = A1, dy = max{7s,73}.
On the other hand, (H5"”) holds, because

wF (u,v) + vG(u,v)
(p = ) F (u,0) = eFa|vl” + Fa(a + B = p+&)|ul[v]” +73(g — p+ ) [ul?

S de(ua U)v
where do = p — & < p, with € > 0 small enough such that

a+fB—-p+e<0, g—p+e<O.

for all (u,v) € R?,

0<e<p,
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Now, we show the main result of this section. That is, the solution u of (3.1)) is
global and has exponential decay provided that F(0) is small enough, and

0) = Iv/B(0)iio. |? —p/o Fi(iio(x), toe (z))dz > 0,

where p > max{2, do} with dy given in (H4”)(iii).
Let w = u(z,t) be a weak solution of (3.1]) satisfying (3.2 as note in section 3.
To obtain the decay result, we construct the functional

L(t)=E(t)+0¥(t), (4.1)
with § > 0; E(t) and ¥(¢) as definition in Section 3. We rewrite E(t) as follows

B(t) = I @) + 51 VB + 5y BEue @ +d e ()],
—/ Fi(u(z, t), ug(x,t))de
= 51O + SIVBOGOE + G - DIVE@Duw 0]

5 1
+ da Jua ()7, + I;I(t),

where
I(t) = |[v/B(t)u(t)]? —p/ Fi(u(z,t), ug(x, t))de. (4.2)

Theorem 4.2. Assume that (H2”)-(H5”) hold. Let @g, i1 € HE N H? such that
I1(0) > 0 and the initial energy E(0) satisfy

g (2 ) T (2 (2 p) T 50 4
’,7 0 p 2 (p _ 2)b0 * d'l (p _ 2)b0 * b .
where )
E, = (E(O) + §||f||L1(R+;L2)) exp (| £l 2y z2))- (4.4)
Assume that -
I£(D)]? < Crexp(—int) for allt >0, (4.5)
where Cy, 7, are two positive constants. Then, there exist positive constants C, 7
such that

Il O + N (I + e (D + lua(®)]1 < Cexp(=7t), for all t > 0. (4.6)

Proof. Tt consists of three steps.
Step 1. An estimate of E'(t). We have

1
E'(®) < SIFOI+ IOl @17,
€1 1
() < -0 = D@1 - MIVBBGO1 + 5 1O,
for all &1 > 0. Indeed, multiplying (3.1); by «'(z,t) and integrating over [0, 1], we
obtain
E'(t) = =Allu'()]1* = Mllv/B()us (6)]?
1t
+ 5/ B'(w, 1) (uz (x,) + |ug (2, 1)|*)dz + (f(t),u'(2)).-
0

(4.7)

(4.8)
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On the other hand

@, O)] < SO + S IF@ ()] (19)
From B'(z,t) <0, by (4.8 . .7 it is easy to see that (,») holds. Similarly,
[(f(@), /(1)) < 7Hf( g + 521 [/ (®)]J?,  for all & > 0. (4.10)

By B'(z,t) <0, (4.8) and -, that (£.7) () is valid.
Step 2. An estimate of I(t). By the continuity of I(¢) and I(0) > 0, there exists
T7 > 0 such that

I(t) >0, Vtelo,T], (4.11)
this implies that
1
E(t) = Sllw'@)1* + ( ||v e ()] + dillus(t)|7,, V¢ € [0,T].  (4.12)
Combining (4.7)); with ( and using Gronwall’s inequality we obtain
— 2 -
(p%)%%wW+mwamp<Eo<Ez welb ). (413

Hence, it follows from (Hy, (ii4) . - ) that

D /0 Fi(u(z, t), u.(x,t))de

< p@(/ol lu(z, )| ug (z,t)|Pd + /01 \u(x,t)|qu)

< peda ([l ()1 2 ()17 + 2 (2)]1) 1)

< pda (I () o ()35 -+ (1))

< Pl e BT (V4 (2 ) a0,
im&i;ﬂﬁal@anW®W>aﬂmﬂteMﬂ]Pmﬂx:wMT>m
I(t) > 0, t € [0,T]}. If Too < +o00 then the continuity of I(t) leads to I(Tw) > 0.

By the same arguments, there exists 7., > T, such that I(¢) > 0, for all ¢ € [0,T.].
Hence, we conclude that I(¢) > 0, for all £ > 0.

Step 3. Decay result. First, we note that there exist the positive constants 31, 32
such that - -
BE(t) < L(t) < BaEr (), Vit >0, (4.15)

for § small enough, where

Bi(t) = o' ()| + VB, )17 + IV B@ua (O + lus (N7, + 1(2). (4.16)

Indeed, we have
£16) = 31 OF + 5 IVEOLOI + (5~ DIVE@us(0)l*
+&wammﬁ5ﬂw+ﬂwﬁxwm (417)

B0, (0) + ()] + 21V B 0]
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On the other hand,
(u(t),u _% o IVBOuw O + 3 I 0]
(4.18)
*II\/ O + *H\/ t)ua (1)

(B(t)ug (), u

Then
£(t) > 5= 8 O] + (1~ )|V B, (1)
G- %MMB@)%&)H? @l + 10 419
Z BlEl(t)v

where J is small enough, and

§1 1 6§ 5 1 —2)b
- —== ,dl,];}>0, 0<5<min{1,(pp%)0}. (4.20)

B = mm{Q,QP%

Similarly,
1
F(t) < 5(1+5)IIU()H2 1+5 )V B(t)us (t)]°
1
+ du|ug (D)7 + ~1(2)
L p (4.21)
1 1 4 9
g =7 50 oo+ i MV EDus )]
§52E1( )a
where
~ 146 1 1 6 A
ﬁgzmax{i, 7—7+ ( +—+—+)\1 d1}>0. (4.22)
2 2 bo  bo

Next, we show that the functional ¥(¢) satisfies

(1) < ||u/<t>\|2 +(1+ )||F 07
~(1-2- —)HF s (1) (4.23)

I?

d
- ff( ) — dadi [[ua (1) 7 + Ellf(t)

for all e9 > 0.
The proof is as follows. Multiplying (3.1); by u(z,t) and integrating over [0, 1],
we obtain

() = [lu (I + | VBOu, (O] = [V B(t)ua(t

(Bt (1) <>>+% [ B
(P ult) 1w (6)), () -+ {C(1) (1)) 1)) + (), ().

Ol

(4.24)
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Furthermore, by (H4”) (i), we obtain
(F(u(t), ug(t)), u(t)) + (G(u(t), ua(t)), us(t))

(), u
< d, / (ule, 1), a2, )

1 . (4.25)
— i / Fa (e, 1), g 2, £)) et — [ (£) ]

d
2”\/ tug(t H2 (t) — d2d1||uw< )HZI),P

We also have
1
M B'(z,t)u?(z,t)dx <0,
2 0
< 25 L IVBOWL O + 52 VB0, (420
2
(0. u(0) < 32 IV B ()] + €2||f(t)||2,

for all e3 > 0. Combining (|4.24)—(4.26]), we obtain (4.23).

The estimates (4.7) ;) and (4.23) give
€1
cws-(-2- 6)||u’<t>||2

(B' (t)ug (1), uat

x

— M=o )]II\/ Ol
4.27)
d (
—5(1—*2—*\\\/ t)ua (1)
od 1,1
= 22 1(0) = o s (1 + 5 (= + D)ISOI,
for all §, e1, e > 0. Because p > max{2,ds} > da, we can choose g9 > 0 such that
d2 €9
/i=1———-—=>0. 4.28
! p bo (4.28)
Then, for ; small enough such that 0 < 5 < A and if § > 0 such that
b2
Go=A— L 6>0, O3=X —0(1+-—2")>0,
2 2€2b0 (4 29)
—2)b '
0 < 6 < min{1, u}.

By (£27)-(:29), we obtain

L(t) < —B3Er(t) + Cre ™ < — g3

() + Cre™ ™" < —5L(t) + Cre” ™", (4.30)
where G5 = min{36;, 6, 3, %% IS , ddady },0 <7 < mln{ﬁ M}, C1 = %(— + é)é’l.
On the other hand, we have
L(t) > B min{1, bo } || ()]|* + bolug (O)I* + bollws ()1 + [lu() |7, + w170
This completes the proof. (I
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