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Abstract. In this article we give sufficient conditions for the existence of an

antiperiodic solution to the van der Pol equation

x′(t) = y(t), y′(t) = µ
“
x(t)−

x3(t)

3

”′
− x(t) + f(t)for a. e. t ∈ R,

subject to a finite number of state-dependent impulses

∆y(τi(x)) = Ji(x), i = 1, . . . ,m .

Our approach is based on the reformulation of the problem as a distributional

differential equation and on the Schauder fixed point theorem. The functionals
τi and Ji need not be Lipschitz continuous nor bounded. As a direct conse-

quence, we obtain an existence result for problem with fixed-time impulses.

1. Introduction

The study of anti-periodic solutions is closely related to the study of periodic so-
lutions and their existence plays an important role in characterizing the behaviour
of nonlinear differential equations. On the other hand impulsive problems are char-
acterized by the occurrence of abrupt changes of their solutions which implies that
such solution does not preserve the basic properties which are associated with non-
impulsive problems. In real world problems, the impulses often do not occur at fixed
times, but moments of their appearance depend on the state and situation of a differ-
ential model. Then the corresponding impulse conditions are called state-dependent
in contrast to fixed-time impulse conditions where the moments of discontinuity are
prescribed.

First order differential systems with fixed-time impulses can be found for ex-
ample in [11, 2]. They mostly appear as models of neural networks and their
anti-periodic solutions are investigated in many papers [1, 7, 15, 17, 16, 18, 19, 21].
For state-dependent impulses in such models see [14], where Lipschitz nonlinearities
are assumed.

Second order differential equations can serve as physical models, for example:
Rayleigh equation (acoustics), Duffing, Liénard or van der Pol equations (oscillation
theory). Anti-periodic solutions of these equations without impulses are discussed
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in [6, 9, 12, 20] and of Rayleigh equation with fixed-time impulses in [10]. The
first result about the existence and uniqueness of anti-periodic solutions of the
distributional Liénard equation with state-dependent impulses has been reached by
Belley and Bondo [3] under the assumption that functionals describing moments
and values of impulses are globally Lipschitz continuous and bounded. Close results
for periodic problems can be found in [4, 5]. Here, we focus our considerations on
anti-periodic solutions of the van der Pol equation with state-dependent impulses
both in “classical” and distributional formulations.

Namely, we investigate the existence of solutions to the van der Pol differential
equation

x′(t) = y(t), y′(t) = µ
(
x(t)− x3(t)

3

)′
− x(t) + f(t) for a. e. t ∈ R, (1.1)

with a parameter µ ∈ (0,∞) and a function f which is Lebesgue integrable on [0, T ]
and satisfies

f(t+ T ) = −f(t) for a. e. t ∈ R. (1.2)
We are interested in the existence of a solution fulfilling the antiperiodic conditions

x(0) = −x(T ), y(0) = −y(T ). (1.3)

It is natural to search for a solution (x, y) such that

x(t+ T ) = −x(t), t ∈ R. (1.4)

In addition, (1.1) is subject to the state-dependent impulse conditions

∆y(τi(x)) = Ji(x), i = 1, . . . ,m, (1.5)

where τi,Ji i = 1, . . . ,m, are real-valued functionals, τi have values in (0, T ) and
∆y(τ) = y(τ+)− y(τ−) for τ ∈ R. Then (1.1), (1.4) and (1.5) lead to

y(t+ T ) = −y(t), t ∈ R, t 6= τi(x), i = 1, . . . ,m. (1.6)

Since x satisfying (1.4) is 2T -periodic and has zero mean value, i.e.,

x̄ =
1

2T

∫ 2T

0

x(t) dt = 0,

the functionals τi and Ji are defined on the set of 2T -periodic functions of bounded
variation with zero mean value. We will consider such solutions (x, y) for which y is
piecewise absolutely continuous with the only instants of discontinuity at t = τi(x),
i = 1, . . . ,m. Then the assumption that τi, i = 1, . . . ,m, have values in (0, T )
guarantees the continuity of y at the points nT , n ∈ Z, and consequently the
second equality in (1.3).

Our main result is contained in the next theorem, which is a direct consequence
of Theorem 5.1 from Section 5.

Theorem 1.1. Assume that T ∈ (0,
√

3), τ1, . . . , τm are continuous with values in
(0, T ) and if i 6= j, then τi(x) 6= τj(x) for each 2T -periodic absolutely continuous
function x with zero mean value. Further assume that J1, . . . ,Jm are continous
and bounded. Then there exists µ0 > 0 such that for each µ ∈ (0, µ0] the problem
(1.1), (1.3), (1.5) has a solution.

The novelty of this paper is the following:
• Our existence result for problem (1.1), (1.3), (1.5) is the first in the litera-

ture.
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• We need not the Lipschitz continuity of functionals τi and Ji in problem
(1.1), (1.3), (1.5) as well as in (3.1) in contrast to [3].
• We also get the solvability provided these functionals are unbounded.
• Our solvability conditions can be very easily checked, which we illustrate

on two nontrivial examples.

2. Preliminaries

Motivated by the paper [3] we construct a distributional differential equation
equivalent to the problem (1.1), (1.3), (1.5). This enables to work in more advan-
tageous space ÑBV and to use properties of Fourier series of distributions. To this
aim, by P2T we denote the complex vector space of all complex-valued 2T -periodic
functions of one real variable having continuous derivatives of all orders on R. The
elements of P2T are called test functions and P2T is equipped with a locally convex
topological space structure (see [8]). Its topological dual is denoted by (P2T )′. The
elements of (P2T )′ are called 2T -periodic distributions or only distributions, i.e.,
these elements are complex-valued continuous linear functionals on P2T .

For a distribution u ∈ (P2T )′ and a test function ϕ ∈ P2T , the symbol 〈u, ϕ〉
stands for a value of the distribution u at ϕ. The distributional derivative Du of a
distribution u is a distribution which is defined by

〈Du,ϕ〉 = −〈u, ϕ′〉 for each ϕ ∈ P2T .

Let us take n ∈ Z and introduce a complex-valued function en ∈ P2T by

en(t) := einωt, t ∈ R,

where ω = π/T . Then every distribution u can be expressed uniquely by the Fourier
series

u =
∑
n∈Z

û(n)en, (2.1)

where û(n) ∈ C are Fourier coefficients of u,

û(n) = 〈u, e−n〉, n ∈ Z.

For a distribution u we define the mean value ū as

ū := û(0) = 〈u, e0〉 = 〈u, 1〉, (2.2)

and, for simplicity of notation, we write ũ := u− ū.
In general, the Fourier series in (2.1) need not be pointwise convergent and the

equality in (2.1) is understood in the sense of distributions written as

lim
N→∞

〈sN , ϕ〉 = 〈u, ϕ〉 ∈ C for each ϕ ∈ P2T , where sN =
∑
|n|≤N

û(n)en.

In particular, the Dirac 2T -periodic distribution δ is defined by

〈δ, ϕ〉 = ϕ(0) for each ϕ ∈ P2T ,

and it has the Fourier series
δ =

∑
n∈Z

en. (2.3)

The convolution u ∗ v of two distributions has the Fourier series

u ∗ v =
∑
n∈Z

û(n)v̂(n)en, (2.4)
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and the Fourier series for distributional derivatives Du and D2u reads

Du =
∑

n∈Z,n6=0

inω û(n)en and D2u =
∑

n∈Z,n6=0

(inω)2û(n)en. (2.5)

This immediately implies that

u ∗ δ = u, Du = D2u = 0, Dũ = Du, D2ũ = D2u. (2.6)

Let us introduce distributions E1 and E2 by

E1 :=
∑

n∈Z,n6=0

1
inω

en, E2 := E1 ∗ E1 =
∑

n∈Z,n6=0

1
(inω)2

en, (2.7)

and define linear operators I and I2 by

Iu := E1 ∗ u =
∑

n∈Z,n6=0

1
inω

û(n)en,

I2u := I(Iu) = E1 ∗ (E1 ∗ u) =
∑

n∈Z,n6=0

1
(inω)2

û(n)en = E2 ∗ u.
(2.8)

Using (2.4) and (2.5), for every distribution u, we obtain

D(Iu) = I(Du) = ũ, D2(I2u) = I2(D2u) = ũ,

I2(Du) = Iu = Iũ, D2(Iu) = Du = Dũ.
(2.9)

From these identities we see that I is an inverse to D on the set of all distributions
with zero mean value and therefore we call I an antiderivative operator.

Consider τ ∈ R. Let us remind the translation operator Tτ on test functions
and distributions. For a function ϕ ∈ P2T we define Tτϕ ∈ P2T by

(Tτϕ)(t) := ϕ(t− τ), t ∈ R,

and for a distribution u ∈ (P2T )′ we define Tτu ∈ (P2T )′ by

〈Tτu, ϕ〉 := 〈u,T−τϕ〉, ϕ ∈ P2T .

Since

(̂Tτu)(n) = 〈Tτu, e−n〉 = 〈u,T−τe−n〉 = e−inωτ 〈u, e−n〉 = e−inωτ û(n), (2.10)

for n ∈ Z, the Fourier series of Tτu reads

Tτu =
∑
n∈Z

e−inωτ û(n)en, u ∈ (P2T )′, (2.11)

in particular, for τ = T

TTu =
∑
n∈Z

(−1)nû(n)en, u ∈ (P2T )′. (2.12)

Further, by (2.3) and (2.11), the Dirac 2T -periodic distribution δτ at the point
τ ∈ R which is defined as

δτ := Tτδ,
and satisfies

δτ =
∑
n∈Z

e−inωτen, δτ = 1, (2.13)

u ∗ δτ = Tτu, u ∈ (P2T )′.
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Hence
Iδτ = E1 ∗ δτ = TτE1, I2δτ = E2 ∗ δτ = TτE2. (2.14)

We are interested in solutions of (1.1) satisfying the antiperiodic conditions (1.3)
and so we work here with antiperiodic distributions. Exactly, we say that a distri-
bution u ∈ (P2T )′ is called antiperiodic provided u satisfies

TTu = −u. (2.15)

By (2.12) we see that u ∈ (P2T )′ is antiperiodic if and only if û(n) = 0 for each
even n ∈ Z. Consequently, if u ∈ (P2T )′ is antiperiodic, then û(0) = u = 0 and
Du, Iu are antiperiodic, as well. On the other hand, (2.13) yields that the Dirac
2T -periodic distribution δτ , which could characterize impulses from (1.5), is not
antiperiodic. Therefore, motivated by [3], we introduce the distribution

ετ := δτ − TT δτ (2.16)

which is antiperiodic for any τ ∈ R.
Now, we turn our attention to real-valued functions and distributions which we

use in next sections. To this aim the functional spaces defined below consist of
real-valued 2T -periodic functions. Clearly it suffices to prescribe their values on a
semiclosed interval with the length 2T :

• L1 is the Banach space of Lebesgue integrable functions equipped with the
norm ‖x‖L1 := 1

2T

∫ 2T

0
|x(t)| dt,

• BV is the space of functions of bounded variation; the total variation of
x ∈ BV is denoted by var(x); for x ∈ BV we also define ‖x‖∞ := sup{|x(t)| :
t ∈ [0, 2T ]},
• NBV is the space of functions from BV normalized in the sense that x(t) =

1
2 (x(t+) + x(t−)),

• ÑBV represents the Banach space of functions from NBV having zero mean
value (x̄ := 1

2T

∫ 2T

0
x(t) dt = 0), which is equipped with the norm equal to

the total variation var(x),
• for an interval J ⊂ [0, 2T ] we denote by AC(J) the set of absolutely con-

tinuous functions on J , and if J = [0, 2T ] we simply write AC,
• C∞ ⊂ P2T is the classical Fréchet space of functions having derivative of

an arbitrary order,
• for finite Σ ⊂ [0, 2T ) we denote by PACΣ the set of all functions x ∈ NBV

such that x ∈ AC(J) for each interval J ⊂ [0, 2T ] for which Σ∩ J = ∅. For
τ ∈ [0, 2T ), we write PACτ := PAC{τ},
• ÃC = AC ∩ ÑBV; for finite Σ ⊂ [0, 2T ) we denote P̃ACΣ = PACΣ ∩ ÑBV,
• ∆y(τ) := y(τ+)− y(τ−) for y ∈ ÑBV, τ ∈ R.

Further, Car designates the set of real functions f(t, x) such that f(·, x) ∈ L1 for
each x ∈ R and satisfy the Carathéodory conditions on [0, 2T ]× R.

We say that u ∈ (P2T )′ is a real-valued distribution if

〈u, ϕ〉 ∈ R for each ϕ ∈ C∞.

A real-valued distribution u is characterized by the fact that its Fourier coefficients
û(n) and û(−n) are complex conjugate for each n ∈ Z. Obviously, if τ ∈ R and u
and v are real-valued distributions, then u ∗ v, ũ, Du, D2u, Iu, I2u, Tτu, δτ and
ετ are real-valued distributions, as well.
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We say that u ∈ (P2T )′ is a regular distribution if u is a real-valued distribution
and there exists y ∈ L1 such that

〈u, ϕ〉 =
1

2T

∫ 2T

0

y(s)ϕ(s) ds for each ϕ ∈ C∞. (2.17)

Then we say that u = y in the sense of distributions and write y in place of u
in (2.17). Hence all functions from L1 can be understood as regular distributions.
For x ∈ BV, we write x′ as a classical derivative, which is defined a.e. on R and
which is an element of L1 and consequently a regular distribution. If x ∈ AC, then
x′ = Dx in the sense of distributions.

Since the first series in (2.7) converges pointwise to the 2T -periodic function

E1(t) =

{
T − t for t ∈ (0, 2T ),
0 for t = 0,

we see that E1 is a regular distribution and it can be considered as a function from
P̃AC0. The second series in (2.7) uniformly converges to the 2T -periodic function

E2(t) =
t(2T − t)

2
− T 2

3
, t ∈ [0, 2T ],

and so E2 is a regular distribution which can be considered as a function from ÃC.
Similarly for τ ∈ R,

TτE1 ∈ P̃ACτ , TτE2 ∈ ÃC. (2.18)

Obviously, E′2 = E1, E′1 = −1 a.e. on [0, 2T ) and

var(E1) = 4T, ‖E1‖∞ = T, var(E2) = T 2, ‖E2‖∞ =
T 2

3
. (2.19)

Since

(x ∗ y)(t) :=
1

2T

∫ 2T

0

x(t− s)y(s) ds, t ∈ [0, 2T ] for x, y ∈ L1,

for h ∈ L1, we have

(E1 ∗ h)(t) =
1

2T

∫ 2T

0

(s− t)h(s) ds+
1
2

(∫ t

0

h(s) ds−
∫ 2T

t

h(s) ds
)
,

for t ∈ [0, 2T ]. Therefore Ih is a regular distribution which is equal to the function
E1 ∗ h ∈ AC, and we conclude by (2.8),

h ∈ L1 =⇒ Ih, I2h ∈ ÃC, (Ih)′(t) = h(t)− h̄ a.e. t ∈ [0, 2T ] . (2.20)

Further, for x ∈ BV and t ∈ R we have (Tτx)(t) = x(t− τ) which implies

var (Tτx) = varx and ‖Tτx‖∞ = ‖x‖∞, x ∈ BV. (2.21)

Let us recall the following inequalities

var(x ∗ y) ≤ var(x)‖y‖∞, x, y ∈ NBV , (2.22)

var(x ∗ f) ≤ var(x)‖f‖L1 , x ∈ NBV, f ∈ L1 , (2.23)

‖x‖L1 ≤ ‖x‖∞ ≤ var(x), x ∈ ÑBV . (2.24)
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Remark 2.1. Let x be antiperiodic. If x ∈ NBV, then x(t+T ) = −x(t) for t ∈ R,

‖x‖∞ = sup
t∈[0,T ]

|x(t)|,

and var(x) is double the total variation of x over the interval [0, T ] (or any semi-
closed interval of the length T ). If x ∈ L1, then x(t + T ) = −x(t) for a.e. t ∈ R
and

‖x‖L1 =
1
T

∫ T

0

|x(t)| dt.

Therefore it is sufficient to define an antiperiodic function on any interval of the
length T .

By (2.14) and (2.16) and (2.18), it holds for τ ∈ R,

Iετ = Iδτ − ITT δτ = TτE1 − Tτ+TE1 ∈ P̃AC{τ,τ+T}, (2.25)

I2ετ = I2δτ − I2TT δτ = TτE2 − Tτ+TE2 ∈ ÃC. (2.26)

So, for τ = 0, we have

Iε0 = E1 − TTE1, I2ε0 = E2 − TTE2,

and in detail

Iε0(t) =

{
0 t = 0,
T t ∈ (0, T ),

I2ε0(t) =
T (2t− T )

2
, t ∈ [0, T ], (2.27)

Since Iετ = TτIε0, by (2.21) and (2.27) and according to Remark 2.1, we obtain

var(Iετ ) = 4T, ‖Iετ‖∞ = T, var(I2ετ ) = 2T 2, ‖I2ετ‖∞ =
T 2

2
, (2.28)

for τ ∈ R. Choosing τ1, τ2 ∈ R, where |τ1 − τ2| < T , from (2.8), (2.19), (2.23) and
(2.27), we deduce the estimate

var(I2ετ1 − I2ετ2) = var(I(Iετ1 − Iετ2)) = var(E1 ∗ (Iετ1 − Iετ2))

≤ var(E1)‖Iετ1 − Iετ2‖L1 ≤ 8T |τ1 − τ2|.
(2.29)

3. Auxiliary distributional equation

Here we consider the distributional differential equation

D2z = µD
(
z − z3

3
)
− z + f +

1
2T

m∑
i=1

Ji(z)ετi(z) (3.1)

with a parameter µ ∈ (0,∞), where f ∈ L1 fulfils (1.2), τi : ÑBV → (0, T ),
Ji : ÑBV→ R, and ετi(z) is defined in (2.16) for i = 1, . . . ,m.

Definition 3.1. A function z ∈ ÑBV is called a solution of the distributional
equation (3.1) if

〈D2z, ϕ〉 =
〈
µD
(
z − z3

3
)
− z + f +

1
2T

m∑
i=1

Ji(z)ετi(z), ϕ
〉

(3.2)

for every ϕ ∈ C∞.

Remark 3.2. Definition 3.1 is justified by the following considerations.
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• If z ∈ NBV satisfies (3.2), then for ϕ = 1 in (3.2) we have by (2.2)

D2z = µD
(
z − z3

3
)
− z + f +

1
2T

m∑
i=1

Ji(z)ετi(z).

Antiperiodicity of f and ετi(z) together with (2.6) imply z = 0, i.e. z ∈
ÑBV.
• For z ∈ ÑBV, Eq. (3.1) has two equivalent forms

Dz = µ
(
z − z3

3
)
− µ

(
z − z3

3
)

+ I
(
− z + f +

1
2T

m∑
i=1

Ji(z)ετi(z)

)
, (3.3)

z = µI
(
z − z3

3
)

+ I2
(
− z + f +

1
2T

m∑
i=1

Ji(z)ετi(z)

)
, (3.4)

which are obtained from (3.1) by means of the antiderivative operator I
and identities (2.9). Vice versa, differentiating (3.4) and using the facts
z̃ = z, f̃ = f and ε̃τi(z) = ετi(z) we arrive at (3.1).
• A solution z of (3.1) is a solution of (3.4) and, due to (2.20) and (2.26), we

see that z ∈ ÃC ⊂ ÑBV.

We are ready to compare equation (3.1) with our original problem (1.1), (1.3),
(1.5). To do it consider x ∈ ÃC and denote the set

Σx := {τ1(x), . . . , τm(x), τ1(x) + T, . . . , τm(x) + T}. (3.5)

Definition 3.3. Assume that the condition

τi(x) 6= τj(x) for all i, j = 1, . . . ,m, i 6= j, x ∈ ÃC (3.6)

is fulfilled. The couple (x, y) ∈ ÃC × P̃ACΣx
is called a solution of the impulsive

problem (1.1), (1.5) if it satisfies the differential equation (1.1) and the impulse
conditions (1.5). A solution (x, y) of (1.1), (1.5) is called antiperiodic if it satisfies
the antiperiodic conditions (1.3).

Lemma 3.4. Let (3.6) hold. If z ∈ ÑBV is a solution of the distributional equation
(3.1), then the couple (x, y) ∈ ÃC × P̃ACΣx

with x = z on R and y = Dz a.e. on
R satisfies (1.1) and

∆y(τi(x)) = Ji(x), ∆y(τi(x) + T ) = −Ji(x), i = 1, . . . ,m. (3.7)

Conversely, if the couple (x, y) ∈ ÃC× P̃ACΣx
satisfies (1.1) and (3.7), then z = x

is a solution of (3.1).

Proof. (i) Assume that z ∈ ÑBV is a solution of (3.1) and put

x(t) = µI
(
z − z3

3
)
(t) + I2(−z + f)(t)

+
1

2T

m∑
i=1

Ji(z)
(
Tτi(z)E2(t)− Tτi(z)+TE2(t)

)
, t ∈ R,

and

y(t) = µ
(
z(t)− z3(t)

3
)
− µ

(
z − z3

3
)

+ I(−z + f)(t)
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+
1

2T

m∑
i=1

Ji(z)
(
Tτi(z)E1(t)− Tτi(z)+TE1(t)

)
, t ∈ R.

According to Remark 3.2, by (3.4), (2.26) and (2.20), we see that x ∈ ÃC and z = x

on R. Similarly, using in addition (3.3), (2.25), we get y ∈ P̃ACΣx
and Dz = z′ = y

a.e. on R. Due to z = x the first equation in (1.1) is fulfilled. Since E′1 = −1 a.e.
on R, we get for each τ ∈ R the equality TτE′1 = E′1 a.e. on R. Having in mind
that z and If are absolutely continuous and z = z̃, f = f̃ , we use (2.9) and find
that the second equation in (1.1) is satisfied, as well. Finally, since for τ ∈ R,

TτE1(t) =

{
T − (t− τ) for t ∈ (τ, τ + 2T ),
0 for t = τ,

we see that if τ ∈ (0, T ), the function TτE1 has in the interval [0, 2T ] exactly one
jump at τ , in particular

∆TτE1(τ) = T − (−T ) = 2T,

and the function −Tτ+TE1 has in the interval [0, 2T ] exactly one jump at τ + T ,
in particular

−∆Tτ+TE1(τ + T ) = −2T.

Therefore,

∆y(τi(x)) =
1

2T
Ji(x)2T = Ji(x), i = 1, . . . ,m,

and similarly,

∆y(τi(x) + T ) =
1

2T
Ji(x)(−2T ) = −Ji(x), i = 1, . . . ,m.

Hence, the impulse condition (3.7) is fulfilled.
(ii) Now, conversely assume that (x, y) ∈ ÃC × P̃ACΣx satisfy (1.1) and (3.7)

and put z = x. Then Dz = Dx = x′ = y a.e. on R. According to (3.5), (3.6) and
the assumption that τi(x) ∈ (0, T ), i = 1, . . . ,m, we can write Σx = {s1, . . . , s2m},
where

0 =: s0 < s1 < . . . < s2m < s2m+1 := 2T.

Then for ϕ ∈ C∞ we have

〈D2z, ϕ〉
= −〈Dz,ϕ′〉 = −〈y, ϕ′〉

= − 1
2T

∫ 2T

0

y(t)ϕ′(t) dt = − 1
2T

2m+1∑
i=1

∫ si

si−1

y(t)ϕ′(t) dt

= − 1
2T

2m+1∑
i=1

(
[y(t)ϕ(t)]si

si−1
−
∫ si

si−1

y′(t)ϕ(t) dt
)

=
1

2T

2m+1∑
i=1

(y(si−1+)ϕ(si−1)− y(si−)ϕ(si)) +
1

2T

∫ 2T

0

y′(t)ϕ(t) dt

=
1

2T

2m∑
i=1

∆y(si)ϕ(si) + 〈y′, ϕ〉
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=
1

2T

m∑
i=1

∆y(τi(x))ϕ(τi(x)) +
1

2T

m∑
i=1

∆y(τi(x) + T )ϕ(τi(x) + T ) + 〈y′, ϕ〉

=
m∑
i=1

1
2T
Ji(x)δτi(x) −

m∑
i=1

1
2T
Ji(x)δτi(x)+T + 〈y′, ϕ〉

=
〈 1

2T

m∑
i=1

Ji(x)ετi(x) + µ
(
x− x3

3
)′ − x+ f, ϕ

〉
=
〈 1

2T

m∑
i=1

Ji(z)ετi(z) + µD
(
z − z3

3
)
− z + f, ϕ

〉
.

Therefore z is a solution of (3.1). �

Remark 3.5. Condition (3.7) contains the impulse condition (1.5). On the other
hand, if x and y are antiperiodic and satisfy (1.5), then they fulfil (3.7).

Remark 3.6. If we drop the assumption (3.6) in Lemma 3.4, the couple (x, y)
is a solution of differential equation (1.1), but the condition (1.5) is not correctly
formulated. For example if τ1(x) = τ2(x) and J1(x) 6= J2(x). Therefore, in this
case, the condition (1.5) must be replaced by

∆y (τi(x)) =
∑

1≤j≤m:
τj(x)=τi(x)

Jj(x), i = 1, . . . ,m.

Theorem 3.7. Let (3.6) be satisfied. Assume that z ∈ ÑBV is a solution of the
distributional equation (3.1) and z satisfies (1.4). Then the couple (z,Dz) is an
antiperiodic solution of problem (1.1),(1.5).

Proof. By Lemma 3.4 and Remark 3.5, the couple (z,Dz) ∈ ÃC × P̃ACΣz
is a

solution of problem (1.1), (1.5). Since z(t+ T ) = −z(t) for t ∈ R, we have Dz(t+
T ) = −Dz(t) for t ∈ [0, T ]. Consequently

z(0) = −z(T ) and Dz(0) = −Dz(T ),

i.e. (x, y) = (z,Dz) satisfies condition (1.3). �

4. Fixed point problem

According to Theorem 3.7, to get an antiperiodic solution of problem (1.1), (1.5),
it suffices to prove the existence of a solution z ∈ ÑBV of the distributional equation
(3.1) which in addition satisfies (1.4). Motivated by the equivalent form (3.4) of
(3.1), we define an operator F : ÑBV→ ÑBV by

Fz = µI
(
z − z3

3
)

+ I2
(
− z + f +

1
2T

m∑
i=1

Ji(z)ετi(z)

)
. (4.1)

If we summarize the assertions of Theorem 3.7 with those in Remark 3.5, we have
the following assertion.

Lemma 4.1. Each fixed point z of the operator F is a solution of the distributional
equation (3.1). Moreover, if (3.6) is fulfilled and z is antiperiodic, then (z,Dz) is
an antiperiodic solution of problem (1.1), (1.5).
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Together with the basic assumptions from Sections 1 and 3 – that µ is a positive
parameter and f ∈ L1 fulfils (1.2) – we now consider boundedness and continuity
of functionals τi, Ji. Exactly we moreover assume

τi : ÑBV→ [a, b] ⊂ (0, T ), i = 1, . . . ,m, are continuous, (4.2)

Ji : ÑBV→ [−ai, ai], i = 1, . . . ,m, are continuous, (4.3)

where ai ∈ (0,∞), i = 1, . . . ,m.

Lemma 4.2. Let the assumptions (4.2) and (4.3) be satisfied. Then the operator
F is completely continuous.

Proof. Let us divide our proof into two steps.

Step 1. We prove that F is continuous. Let us consider a sequence {zn}∞n=1 ⊂ ÑBV
converging in ÑBV to z ∈ ÑBV. Denote

vn := F(zn), v := F(z).

Then, by (4.1),

vn − v = µI (zn − z)−
µ

3
I
(
z3
n − z3

)
− I2(zn − z)

+
1

2T

m∑
i=1

(
Ji(zn)I2ετi(zn) − Ji(z)I2ετi(z)

)
.

(4.4)

By (2.24) we see that ‖zn − z‖∞ → 0 as n → ∞. Hence, by (2.22) and (2.8), for
n→∞, we have

var(Ii(zn − z)) = var(Ei ∗ (zn − z)) ≤ var(Ei)‖zn − z‖∞ → 0, i = 1, 2,

var
(
I
(
z3
n − z3

))
≤ var(E1)‖z3

n − z3‖∞ → 0.

Further,

var
(
Ji(zn)I2ετi(zn) − Ji(z)I2ετi(z)

)
= var

(
Ji(zn)I2ετi(zn) − Ji(z)I2ετi(zn)

)
+ var

(
Ji(z)I2ετi(zn) − Ji(z)I2ετi(z)

)
≤ |Ji(zn)− Ji(z)| var(I2ετi(zn)) + |Ji(z)| var(I2ετi(zn) − I2ετi(z)),

and using (2.28), (2.29) and (4.3), for i ∈ {1, . . . ,m}, we obtain

var
(
Ji(zn)I2ετi(zn) − Ji(z)I2ετi(z)

)
≤ 2T 2|Ji(zn)− Ji(z)|+ 8Tai|τi(zn)− τi(z)|.

It follows from (4.2) and (4.3) that Ji(zn) → Ji(z) and τi(zn) → τi(z) as n → ∞.
We infer from (4.4) that var(vn − v) → 0 as n → ∞, which means that F is
continuous.
Step 2. Let us choose a bounded set B ⊂ ÑBV and prove that the set F(B) is
relatively compact in ÑBV. To this aim we take an arbitrary sequence {vn}∞n=1 ⊂
F(B). Then there exists a sequence {zn}∞n=1 ⊂ B such that

vn = F(zn), n ∈ N.
Since B is bounded, there exists κ > 0 such that

var(zn) ≤ κ, n ∈ N. (4.5)

By (4.2) and (4.3) we have

τi(zn) ∈ [a, b], |Ji(zn)| ≤ ai, i = 1, . . . ,m, n ∈ N,
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and we can choose a subsequence {znk
}∞k=1 such that

lim
k→∞

τi(znk
) = τ0,i, lim

k→∞
Ji(znk

) = J0,i, (4.6)

where τ0,i ∈ (0, T ), J0,i ∈ [−ai, ai] for i = 1, . . . ,m. By (4.5) and the Helly’s
selection theorem (see e.g. [13, p. 222]) there exists a subsequence {zn`

}∞`=1 ⊂
{znk
}∞k=1 which is pointwise converging to a function z∗ ∈ BV and moreover z∗ = 0.

Normalizing z∗ in the sense of z(t) = (z∗(t−) + z∗(t+))/2 we obtain z ∈ ÑBV and
a subsequence {zn`

}∞`=1 converging to z a.e. on [0, 2T ]. Using (2.24), (4.5) and the
Lebesgue convergence theorem, we see that ‖zn`

− z‖L1 → 0 as n` →∞. Denote

v := µI
(
z − 1

3
z3
)

+ I2
(
− z + f +

1
2T

m∑
i=1

J0,iετ0,i

)
.

In the same way as in step 1 we get

var(vn`
− v)

≤ µ var(E1)‖zn`
− z‖L1 +

µ

3
var(E1)‖z3

n`
− z3‖L1 + var(E2)‖zn`

− z‖L1

+
1

2T

m∑
i=1

(
|Ji(zn`

)− J0,i| var(I2ετi(zn`
)) + |J0,i| var(I2ετi(zn`

) − I2ετ0,i
)
)
,

and derive that the sequence {vn`
}∞`=1 is convergent to v in ÑBV. This yields that

F(B) is relatively compact in ÑBV. �

We are ready to prove the existence of a fixed point of the operator F in ÑBV.
To do it we denote

c1 := T‖f‖L1 +
m∑
i=1

ai, T0 := 1− µT − T 2

3
, c2 :=

1
2

√
T0

µT
, (4.7)

assume that µ and T satisfy

Tc1 ≤
T0

3

√
T0

µT
, (4.8)

and define the set

Ω :=
{
z ∈ ÑBVsuch that var(z) ≤ c2, z is antiperiodic

}
. (4.9)

Remark 4.3. The construction of the set Ω is based on these observations:

• The parameter c2 is well defined for T0 ≥ 0 which requires the inequality
1 − T 2/3 > 0. Therefore we have to assume T ∈ (0,

√
3). Further, T0 ≥ 0

implies µ ≤ 1
T −

T
3 .

• If c1 > 0, then c2 > 0 and Ω is nonempty, convex, bounded and closed set
in ÑBV.
• If T ∈ (0,

√
3), then√

1− µT − T 2

3

µT
→∞ as µ→ 0+ ,
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and therefore (4.8) is always valid for each sufficiently small µ. If c1 > 0 ,
then the optimal (maximal) value of the parameter µ is determined by

Tc1 =
T0

3

√
T0

µT
. (4.10)

• If c1 = 0, then f = 0 a. e. on R and the impulses (1.5) disappear.

Theorem 4.4. Consider (4.7) and (4.9) and assume that T ∈ (0,
√

3) and c1 > 0.
Let (4.2) and (4.3) hold. Then there exists a solution µ0 > 0 of (4.10) such that
for each µ ∈ (0, µ0] the operator F maps Ω into Ω.

Proof. By Remark 4.3, there exists µ0 > 0 satisfying (4.10). Consider µ ∈ (0, µ0].
Clearly µ fulfils (4.8). As we mentioned in Section 2, if z ∈ ÑBV is antiperiodic,
that is z fulfils (1.4), then Iz is antiperiodic as well. Since f is supposed to satisfy
(1.2) and the distribution ετ is antiperiodic for any τ ∈ R, we can conclude that if
z ∈ ÑBV is antiperiodic, then Fz ∈ ÑBV is antiperiodic, as well. Therefore, if we
have the set Ω from (4.9), we only need to prove

var(Fz) ≤ c2 for each z ∈ Ω . (4.11)

So, let us choose z ∈ Ω. By (4.1) and (2.8),

var(Fz) ≤ µ var(Iz) +
µ

3
var
(
I(z3)

)
+ var(I2z) + var(I2f)

+
1

2T

m∑
i=1

ai var(I2ετi(z))

= µ var(E1 ∗ z) +
µ

3
var
(
E1 ∗ z3

)
+ var(E2 ∗ z) + var(E2 ∗ f)

+
1

2T

m∑
i=1

ai var(I2ετi(z)).

Consequently, using (2.22), (2.23) and (2.28), we derive

var(Fz) ≤ µ‖E1‖∞ var(z) +
µ

3
var(E1)‖z3‖∞ + ‖E2‖∞ var(z)

+ var(E2)‖f‖L1 + T

m∑
i=1

ai.

Therefore, by (2.19), (2.24), (4.7), we get

var(Fz) ≤ µT var(z) +
4µT

3
(‖z‖∞)3 +

T 2

3
var(z) + T 2‖f‖L1 + T

m∑
i=1

ai

≤
(
µT +

T 2

3
)

var(z) +
4µT

3
(var(z))3 + Tc1 .

Hence, to derive (4.11), it suffices to prove the inequality(
µT +

T 2

3
)
c2 +

4µT
3
c32 + Tc1 ≤ c2 . (4.12)

Subtracting the first term on the left-hand side we get

4µT
3
c32 + Tc1 ≤

(
1− µT − T 2

3
)
c2 ,
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and using (4.7) we obtain

4µT
3

(1
2

√
T0

µT

)3

+ Tc1 ≤
T0

2

√
T0

µT
,

which is equivalent to (4.8). Therefore (4.12) is proved. �

5. Main results

Theorem 5.1. Consider (4.7) and assume that T ∈ (0,
√

3) and c1 > 0. Let (4.2)
and (4.3) hold. Then there exists a solution µ0 > 0 of (4.10) such that for each
µ ∈ (0, µ0] the distributional equation (3.1) has at least one antiperiodic solution z
such that var(z) ≤ c2. If in addition (3.6) holds, then problem (1.1),(1.5) has an
antiperiodic solution (x, y) = (z,Dz).

Proof. By Remark 4.3, there exists µ0 > 0 satisfying (4.10). Let us consider the
operator F : ÑBV → ÑBV defined in (4.1), and the set Ω defined in (4.9), where
µ ∈ (0, µ0]. According to Theorem 4.4 the operator F maps Ω to Ω. Due to
Lemma 4.2 the operator F is completely continuous. Therefore, by the Schauder
fixed point theorem F has a fixed point z ∈ Ω. Finally, by Lemma 4.1 we see
that z is an antiperiodic solution of the distributional equation (3.1) and that
under the assumption (3.6) the couple (z,Dz) is an antiperiodic solution of problem
(1.1),(1.5). �

Theorem 5.2. Let T ∈ (0,
√

3). Let (3.6), (4.2) and (4.3) hold. Then the equation

x′(t) = y(t), y′(t) = −x(t) + f(t), for a. e. t ∈ R,

subject to the state-dependent impulse conditions

∆y(τi(x)) = Ji(x), i = 1, . . . ,m,

has at least one antiperiodic solution (x, y) such that

var(x) ≤
T 2‖f‖L1 + T

∑m
i=1 ai

1− T 2

3

.

Proof. Let us put

c1 = T‖f‖L1 +
m∑
i=1

ai, c2 =
Tc1

1− T 2

3

. (5.1)

Consider the operator F from (4.1), where µ = 0 and the set Ω from (4.9) with c2
defined by (5.1). Similarly as in the proof of Theorem 4.4 we prove (4.11). Since
now µ = 0, we derive

T 2

3
c2 + Tc1 ≤ c2

(compare with (4.12)). Using (5.1), we get

Tc1 ≤ c2
(
1− T 2

3
)

= Tc1.

Hence F maps Ω to Ω, and arguing as in the proof of Theorem 5.1, we finish the
proof. �
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If τi, i = 1, . . . ,m, do not depend on x ∈ ÑBV, then the state-dependent impulse
conditions (1.5) have the form of the fixed-time impulse conditions

∆y(τi) = Ji(x), i = 1, . . . ,m, (5.2)

where the points τi ∈ (0, T ), i = 1, . . . ,m, are known and fixed. It is clear that
(4.2) holds and Theorem 5.1 yields the following corollary.

Corollary 5.3. Consider (4.7) and assume that T ∈ (0,
√

3) and c1 > 0. Let (4.3)
hold. Then there exists a solution µ0 > 0 of (4.10) such that for each µ ∈ (0, µ0]
the distributional equation

D2z = µD
(
z − z3

3
)
− z + f +

1
2T

m∑
i=1

Ji(z)ετi
(5.3)

has an antiperiodic solution z.
If in addition

τi 6= τj for all i, j = 1, . . . ,m, i 6= j,

then problem (1.1),(5.2) has an antiperiodic solution (x, y) = (z,Dz).

Example 5.4. Put m = 1, T = 1, choose 0 < a < b < 1, assume that f ∈ L1

satisfies ‖f‖L1 = 1 and define

τ1(x) = a+ (b− a)| cos(‖x‖∞)|, J1(x) = arctan(var(x)), x ∈ ÑBV.

Then τ1 : ÑBV→ [a, b] is continuous, so τ1 fulfils (4.2) and J1 : ÑBV→ [−π/2, π/2]
is continuous, so J1 fulfils (4.3) with a1 = π/2. Then, by Remark 4.3, the inequality
µ ≤ 2

3 has to be fulfilled, and according to (4.7),

c1 = 1 +
π

2
, T0 =

2
3
− µ, c2 =

1
2

√
2

3µ
− 1.

By Theorem 5.1, for each µ ∈ (0, µ0] the distributional equation (3.1) has an an-
tiperiodic solution z ∈ ÑBV such that var(z) ≤ c2. Further, the state-dependent
impulsive problem (1.1), (1.3), (1.5) has a solution (x, y) = (z,Dz). The value
µ0 ≈ 0.0049 is a solution of the equation

9µ
(
1 +

π

2
)2 =

(2
3
− µ

)3
.

The assumptions (4.2) and (4.3) about boundedness of the functionals τi and Ji,
i = 1, . . . ,m, can be restricted on the set Ω from (4.9).

Theorem 5.5. Consider (4.7) and assume that c1 > 0 and T ∈ (0,
√

3). Further
assume that there exist 0 < a < b < T , ai > 0, i = 1, . . . ,m, such that

τi(Ω) ⊂ [a, b], τi : ÑBV→ R, i = 1, . . . ,m, are continuous, (5.4)

Ji(Ω) ⊂ [−ai, ai], Ji : ÑBV→ R, i = 1, . . . ,m, are continuous. (5.5)

Then there exists a solution µ0 > 0 of (4.10) such that for each µ ∈ (0, µ0] the
distributional equation (3.1) has at least one antiperiodic solution z ∈ Ω.

If in addition (3.6) holds, then problem (1.1),(1.5) has an antiperiodic solution
(x, y) = (z,Dz).
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Proof. By Remark 4.3, there exists µ0 > 0 satisfying (4.10). Let µ ∈ (0, µ0]. Put

χ(s) =


1, s ∈ [0, c2],
2− s

c2
, s ∈ (c2, 2c2),

0, s ≥ 2c2,

and for z ∈ ÑBV define

τ∗i (z) := χ(var(z))τi(z), i = 1, . . . ,m,

J ∗i (z) := χ(var(z))Ji(z), i = 1, . . . ,m.

According to Lemma 4.1, each fixed point z of the operator F∗ : ÑBV→ ÑBV,

F∗z = µI
(
z − z3

3
)

+ I2
(
− z + f +

1
2T

m∑
i=1

J ∗i (z)ετ∗i (z)

)
is a solution of the distributional equation

D2z = µD
(
z − z3

3
)
− z + f +

1
2T

m∑
i=1

J ∗i (z)ετ∗i (z).

By (5.4) and (5.5), the functionals τ∗i and J ∗i fulfil (4.2) and (4.3). Consequently,
due to Lemma 4.2, the operator F∗ is completely continuous. In addition, if z ∈ Ω,
then τ∗i (z) = τi(z), J ∗i (z) = Ji(z) and hence F∗z = Fz. Therefore, by Theorem
4.4, the operator F∗ maps Ω to Ω. So, by the Schauder fixed point theorem, F∗
has a fixed point z ∈ Ω. Consequently z is a fixed point of F . Now, as in the
proof of Theorem 5.1, we use Lemma 4.1 to get that z is an antiperiodic solution of
the distributional equation (3.1). Moreover, under the assumption (3.6) the couple
(z,Dz) is an antiperiodic solution of problem (1.1),(1.5). �

Example 5.6. Put m = 1, T = 1, choose 0 < a < b < 1 and assume that f ∈ L1

satisfies ‖f‖L1 = 1. Then, as in Example 5.4, we have

µ ≤ 2
3
, T0 =

2
3
− µ, c2 =

1
2

√
2

3µ
− 1.

Since the set Ω depends on the parameter µ, we can define

τ1(x) = a+ µ(b− a)
√
‖x‖∞, J1(x) = µ

∫ 2

0

x2(t) dt, µ ∈
(
0,

2
3
)
,

for x ∈ ÑBV. For each µ ∈ (0, 2/3) the functionals τ1 and J1 are continuous on
ÑBV and τ1(Ω) ⊂ [a, b] and J1(Ω) ⊂ [0, a1], where a1 = 4

3 − 2µ. Thus, according
to (4.7), c1 = 7

3 − 2µ, then equation (4.10)reads

9µ
(7

3
− 2µ

)2 =
(2

3
− µ

)3
,

and it has a solution µ0 ≈ 0.0059. By Theorem 5.5, for each µ ∈ (0, µ0] the distribu-
tional equation (3.1) has an antiperiodic solution z ∈ ÑBV such that var(z) ≤ c2.
Further, the state-dependent impulsive problem (1.1), (1.3), (1.5) has a solution
(x, y) = (z,Dz). Let us note that for each µ ∈ (0, µ0], the functionals τ1 and J1

are unbounded on ÑBV, J1 is not globally Lipschitz continuous and τ1 is not even
locally Lipschitz continuous.
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