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ON THE U-STABILITY OF A NONLINEAR VOLTERRA
INTEGRO-DIFFERENTIAL SYSTEM

AUREL DIAMANDESCU

ABSTRACT. In this paper we prove sufficient conditions for W-stability of the
zero solution of a nonlinear Volterra integro-differential system.

1. INTRODUCTION

Akinyele [I] introduced the notion of W-stability of degree k with respect to
a function ¥ € C(R4,Ry), increasing and differentiable on R, and such that
U(t) > 1 for t > 0 and lim;_,oo U(t) = b, b € [1,00). The fact that the function ¥
is bounded does not enable a deeper analysis, of the asymptotic properties of the
solutions of a differential equations, than the notion of stability in sense Lyapunov.

Constantin [5] introduced the notions of degree of stability and degree of bound-
edness of solutions of an ordinary differential equation, with respect to a continuous
positive and nondecreasing function ¥ : Ry — R_. Some criteria for these notions
are proved there too.

Morchalo [I3] introduced the notions of W-stability, ¥-uniform stability, and W-
asymptotic stability of trivial solution of the nonlinear system o’ = f(¢, ). Several
new and sufficient conditions for mentioned types of stability are proved for the
linear system 2’ = A(t)z. Furthermore, sufficient conditions are given for the
uniform Lipschitz stability of the system 2’ = f(¢,xz) + g(¢t,2). In this paper, the
function ¥ is a scalar continuous function.

The purpose of our paper is to prove sufficient conditions for W-(uniform) sta-
bility of trivial solution of the nonlinear Volterra integro-differential system

t
= A(t)xr + / F(t,s,z(s))ds (1.1)
0
which can be seen as a perturbed system of
y' = Aty (1.2)

We investigate conditions on the fundamental matrix Y (¢) for the linear system
and on the function F'(¢, s, ) under which the trivial solution of or
is U-(uniformly) stable on R;. Here, ¥ is a matrix function whose introduction
permits us obtaining a mixed asymptotic behavior for the components of solutions.
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Recent works for stability of solutions of have been given by Mahfoud [12]
who used Lyapunov functionals; Lakshmikantham and Rama Mohana Rao [I1] who
used the comparison method; Hara, Yoneyama and Itoh [I0] who used “variation of
parameters” formula; in other words, the solution of equation with the initial
function ¢ on [0, tg] - namely x(t) = ¢(t) for t € [0, o] - is written

z(t;to, ) = Y ()Y " L(to)o(to) —I—/O Y ()Y (s) /05 F(s,u,z(u;ty, @) duds;

and by Avramescu [2] who used the method of admissibility of a pair of subspaces
with respect to an operator.

2. DEFINITIONS, NOTATION AND HYPOTHESES

Let R™ denote the Euclidean n-space. For x = (x1,22,23,...,7,)7 in R", let
||z = max{|z1], |22|,...,|zn|} be the norm of z. For an n x n matrix A = (a;;),
we define the norm |A[ = sup,<; [[Az].

In the system we assume that A is a continuous n xn matrix on Ry = [0, 00)
and F: DxR® - R", D={(t,s) € R?:0< s <t< oo}, is a continuous n-vector
such that F(t¢,s,0) =0 for (t,s) € D.

Let ¥; : Ry — (0,00), % =1,2...n, be continuous functions and

U = diag[\Ill, \IIQ, .. \I/n]

Now, we give definitions of various types of U-stability.

Definitions. The trivial solution of is said to be U-stable on R, if for every
e > 0 and every tp in Ry, there exists 6 = d(e,to) > 0 such that any solution x(t)
of which satisfies the inequality || ¥ (to)z(to)|| < 0, also satisfies the inequality
[1e(t)x(t)|| < e for all t > tg.

The trivial solution of is said to be ¥-uniformly stable on R if it is U-stable
on R, and the above 4 is independent of .

Remarks. 1. For ¥; = 1,4 =1,2...n, we obtain the notions of classical stability
and uniform-stability.

2. If in the definitions above, we replace ¥ with W*, k € Z\ {0,1}, we obtain
stability and uniform-stability of degree k with respect to a scalar function ¥ [5].

3. W-STABILITY OF LINEAR SYSTEMS

The purpose of this section is to study conditions for W-(uniform) stability of
trivial solution of linear systems. These conditions can be expressed in terms of a
fundamental matrix for (1.2]).

Theorem 3.1. Let Y (t) be a fundamental matriz for (1.2). Then

(a) The trivial solution of is W-stable on R, if and only if there exists a
positive constant K such that |V (t)Y (t)| < K for all t > 0.

(b) The trivial solution of is U-uniformly stable on Ry if and only if there
exists a positive constant K such that [¥(t)Y ()Y ~(s)¥~1(s)| < K for all
0<s<t<o0.
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Proof. The solution of which takes the value y in R™ at a > 0 is y(t) =
Y ()Y Ya)y for t > 0.

Suppose first that the trivial solution of is U-stable on R;. Then, for e =1
and to = 0, there exists 6 > 0 such that any solution y(t) of which satisfies
the inequality ||¥(0)y(0)| < 0, there exists and satisfies the inequality

[ ()Y (£)(T(0)Y(0)) " (0)y(0)]| <1 fort>0.

Let u € R™ be such that |lul| < 1. If we take y(0) = $¥~1(0)u, then we have
[(0)y(0)|] < 6. Hence, |T(#)Y (¢)(¥(0)Y(0))"*3u|| < 1 for t > 0. Therefore,
W ()Y (t)((0)Y(0))~1| < 2/6 for t > 0. Hence, |¥(t)Y (t)] < K, a constant, for
t>0.

Suppose next that |U(¢)Y (¢)] < K for t > 0. For ¢ > 0 and ¢ty € Ry, let
8(e,to) = eK1(W(to)Y (to)) "t ~L. For ||[W(to)y(to)|| < & and t > tg, we have

0)y
1@yl = [TEY () (T (to)Y (to) " (to)y(to)]| < e

Thus, the trivial solution of (1.2)) is ¥-stable on R,.
Part (b) is proved similarly and omit its proof. The proof is complete. O

Remarks. 1. It is easy to see that if |¥(¢)| and |¥'~1(¢)| are bounded on R, then
the W-stability is equivalent with the classical stability.

2. Theorem [3.1| generalizes a similar result for classical stability [7].

3. In the same manner as in classical stability, we can speak about ¥-(uniform)

stability of a linear system (|1.2)).
Example 3.2. Consider the linear system (1.2]) with

1 -1 0
At)=11 1 0
0 0 =2
Then
etsint elcost 0
Y(t)= | —€'cost e'sint 0
0 0 e 2

is a fundamental matrix for the system (1.2]). Because Y (¢) is unbounded on Ry,
it follows that the system (1.2) is not stable on R,. Consider

et 0 0
Ut)y=10 et 0
0 0 €%

Then, for all 0 < s <t < 00, we have

cos(t—s) —sin(t—s) O
V()Y ()Y (s)U " (s) = | sin(t—s) cos(t—s) O
0 0 1

Thus, the system (1.2)) is ¥-uniformly stable on R.
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Remark. The introduction of the matrix function ¥ permits us obtain a mixed
asymptotic behavior of the components of the solutions.

Theorem 3.3. Let Y(t) be a fundamental matriz for (1.2)). If there exist a con-
tinuous function ¢ : Ry — (0,00) and the constants p > 1 and M > 0 which fulfil
one of the following conditions:

(i) fot ()| T)Y ()Y ~L(s)UL(s)|[Pds < M, for all t >0

(ii) fot e(8)|Y L) U ()W ()Y (¢)|Pds < M, for all t > 0,
then, the system is W-stable on R .
Proof. For the case (i), first, we consider p = 1. Let q(t) = [¥(¢)Y (¢)|~! for ¢t > 0.
From the identity

([ et ds)uoy @ = [ elouay ey 6w ey s ds
0 0

it follows that

([ etsrats)as) ey

S/O P()[ (Y (Y (5)T ()| V()Y (s)la(s) ds.

Thus, the scalar function h(t) = fot ©(s)q(s) ds satisfies the inequality
h(t)g ' (t) < M, fort > 0.
We have h/(t) = p(t)q(t) > M~ tp(t)h(t) for t > 0. It follows that
h(t) > h(t)eM Ta O gt >t >0
and hence
WY (1) = ¢ 1) < MA Y (t)e ™ Ja#@ s for >4 > 0.

Because |U ()Y ()| is a continuous function on [0, ¢;], it follows that there exists
a positive constant K such that |¥(¢)Y (¢)] < K for ¢ > 0. Hence, the theorem
follows immediately from the Theorem
Next, suppose that p > 1. Let r(¢) = | ()Y (¢)| P for ¢t > 0. In the same manner
as above, we have
t

([ et as)umyl< [ ooy ey 6w oy ds
0 0

Because ¢(s)|¥(s)Y (s)|r(s) = (¢(s))/P(@(s)r(s))/?, where % + % =1, we have
([ et as) eyl
0

< [ ol ey Oy (8 (l(e(s)r(s) V7 ds.

Using the Holder inequality, we obtain

([ etorrts)as) e

1/q

= (/()t‘p(s>|‘1'(t)y(t>Y_l(S)\I’l(s)l”ds)l/p(/ot ps)r(s)ds) ", ¢ 0
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or
(/t o(s)r(s) ds) ()Y (1) < Ml/p(/t o(s)r(s) ds) 1/q, t>0.
Thus, the H(iatrix U(t)Y(t) satisfies the inequali?cy
W)Y (1) < Ml/p(/ot o(s)r(s) ds)il/p, VE>0.
Denoting Q(t) = fg w(s)r(s)ds for t > 0, we obtain
[WOY ()] < M7 Q)P vi>o.
Because Q'(t) = p(t)r(t) = ()| V()Y (t)|7P > M~ 1p(t)Q(t), we have
Q) = Q)M ey s
It follows that
[BOY (1)) < MYP(Q(1)H/Perr M A g >,
Because |¥(t)Y (t)| is a continuous function on [0, 1], it follows that there exists a
positive constant K such that |¥(¢)Y (¢)| < K for ¢ > 0. Hence, the theorem follows

immediately from the Theorem
For case (ii), the proof is similar and we omit it. The proof is complete. O

Remarks. 1. The function ¢ can serve to weaken the required hypotheses on the
fundamental matrix Y.

2. Theorem [3.3| generalizes a result of Dannan and Elaydi [§].

3. In the conditions of the Theorem, the linear system can not be W-uniformly
stable on R. This is shown in [9, Example 2].

Finally, we consider various W-stability problems connected with the linear sys-
tem
' = (A(t) + B(t))x (3.1)
as a perturbed system of . We seek conditions under which the W-(uniform)
stability of implies the U-(uniform) stability of .

Theorem 3.4. Suppose that B is a continuous n X n matriz function fort > 0. If
the linear system (1.2) is U-uniformly stable on Ry and

/Oo [T (t)B(t)T~(t)| dt < +o0,
0

then the linear system (3.1) is also W-uniformly stable on R .

Proof. Let Y (t) be a fundamental matrix for the homogeneous system ([1.2)). Be-
cause the system (|1.2) is U-uniformly stable on R, there exists a positive constant
K such that

W)Y ()Y )T (s)| < K for 0< s <t < +o0.

The solution of (3.1)) with initial condition x(tg) = ¢ is unique and defined for all
t > 0. Then it is also a solution of the problem

¥ = A(t)r + B(t)z, z(tg) = 0.
Therefore, by the variation of constants formula,

x(t) = Y(t)Y_l(to)xO + t Y ()Y ' (s)B(s)x(s) ds

to
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or, for t,tg > 0,
U(t)a(t) = W)Y ()Y (o) ¥ (to) ¥ (to)zo

+/ )Y (1Y ()T ()T (s) B(s) T~ (s)U(s)x(s) ds

to

From the above conditions, it results that

1@z (t)]| < K[ (to)x(to)ll + K [ [¥(s)B(s)¥™ (s)[[¥(s)x(s)] ds,

to

for t > tg > 0. Therefore, by Gronwall’s inequality,
|9 (@®(t)| < KN (to)a(ty)lle" Fo M OPOTTONE - or 4 > 4y
Thus, putting L = [~ [V (¢)B(t)¥~(t)| dt, we have
1)z (t)|| < K| (to)z(ty)|eXE, for all t >t > 0.

This inequality shows that the system (3.1)) is U-uniformly stable on R,. The proof
is complete. ([l

Remark. The above theorem generalizes a results of Caligo [3], Conti [6] in con-
nection with uniform stability.

If the linear system (1.2)) is only W-stable, then the linear system (3.1) can not
be W-stable. This is shown by the next example transformed after an example due
to Perron [14].

Example 3.5. Let a € R be such that 1 < 2a <1+ ¢~ 7 and let

—a 0
At) = ( 0 sinln(t+1)+cosln(t+1) — 211)

Then

efa(t+1) 0
Y(t) = 0 o (t+D)[sinIn(t+1)~2a]

is a fundamental matrix for the homogeneous system (|1.2)).
a(t+1)
Let U(t) = (e 0 (1)) We have

1 0
V()Y (t) = (0 e(t+1)[sinln(t+1)2a]) -

Because |¥(t)Y (¢)| is bounded on Ry, it follows that the system (1.2]) is U-stable
on R;. For 0 <s <t oo, we have

EOVOY @V = (o ron)

where f(t) = (¢t + 1)sinln(t + 1) — 2at.

It is easy to see that lim, oo [f(t,e® — 1) — f(t, —1)] = oo, where t,, = e+ 7
and a = arccos 1*\;;. Thus, | ()Y (t)Y ~!(s)¥~!(s)| is not bounded for 0 < s <
t < co. From Theorem 1, it follows that the system is not W-uniformly stable
on R, .
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0 0
B(t) = <e—a(t+1) 0> )

If we take

then

e—a(t+1) 0
Y (t) = (e(t+l)[sinln(t+1)—2a] f1t+1 e—ssinlns g e(t+1)[sin1n( t+1)—2a])

is a fundamental matrix for the perturbed system (3.1). We have

1 0
\I/(t)Yl(t) = (e(t+1)[sinln(t+1)—2a] f1t+1 e—ssinlns g e(t+1)[sin1n( t+1)—2a]) '

Let a € (0,7/2) be such that cos > (2a—1)e™. Let t,, = e~ 2)" forn = 1,2....
For t,, < s <t,e* we have scosa < —ssinln s < s and hence

tne™
s T e
et"E (sinlntpe 2a)/ e ssinln s ds
1

tne™
T T _ Cea}
> et"e (sinlntpe 2a)/ e ssinln s ds
t

n
e

S tpe
> etne (1- a)/ eS8 g
tn

_ etn[(1—2a)e +cos a] (etn(e —1)cos a _1) cos_la — 00

This shows that |U(¢)Y7(¢)| is unbounded on R . It follows that the equation
is not W-stable on R. Finally, we have [; |¥(s)B(s)¥~!(s)|ds < +oc.

Also, the Theorem 3 is no longer true if we require that W(¢)B(t)¥~1(t) — 0 as
t — 00, instead of the condition

Ampw@B@mr%@ms<+m.

This is shown by the next example, adapted from an example in Cesari [4].

Example 3.6. Consider the system (1.2]) with

- (4 )

Then
sin(t+1) cos(t+1)
Y(t) = ((t+1) cos(tt—jll)—sin(t—i-l) (ZR)) sin(ttill)+cos(t+1)> .
(t+1)* (t+1)*
is a fundamental matrix for the homogeneous system (1.2]).

Let ¥(t) = (t—gl t—?l)' We have

T(OY ()Y ()T (s)
( (s+41) cos(t—s)+sin(t—s) sin (t — S) )

(t—s) Cos(t—s)—{gtt-}-t+s+2) sin(t—s)  (¢+1) cos(t—s)—sin(t—s)
(t+1)(s+1) 1

for 0 < s <t < oo. It is easy to see that the system (1.2]) is W-uniformly stable on

R..
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Now, we consider the system (3.1)) with
0 0
B(t) = (0 2> :
T+1

> sint  cost
Y(t) = (cost —sint) ’
is a fundamental matrix for the perturbed system (3.1). We have
\I/(t)f’(t) _ (t—l—l) (smt cost ) .

cost —sint
It follows that the system (3.1]) is not ¥-(uniformly) stable on R. Finally, we have

Then

/OOO |U(s)B(s)¥'(s)|ds = +oo and tlirrolo U (t)B(t)W~(t)] = 0.

Theorem 3.7. Suppose that:
(1) There exist a continuous function ¢ : Ry — (0,00) and a positive constant
M such that the fundamental matriz Y (t) of the system (1.2)) satisfies the
condition

/t ()| U()Y ()Y (s)U ™ (s)|ds < M, Vt>0
0

(2) B(t) is a continuous n X n matriz function on Ry such that
sup o™ (1) | (6 B(H) T (1)

s a sufficiently small number.
Then the linear system (3.1) is W-stable on R,..

Proof. From the first assumption of theorem it follows that there exists a positive
constant N such that
[T()Y(t) <N, Vit>0.

The solution of (3.1 with initial condition z(tp) = x¢ is unique and defined for all
t > 0. Then it is also a solution of the problem

¥ =At)r + B(t)x, =z(to) = zo.

Therefore, by the variation of constants formula,
t
z(t) =Y ()Y (to)z + / Y ()Y ' (s)B(s)x(s)ds, t>0.
to

Hence,
@) < [TV (Y ()T (t0) ¥ (to)z, |

+/t @Y ()Y ()T (5)U(s) B(s)T ™ (5)U(s)(s)]| ds,

for all t > to. If we put

b=sup eIV (OBOYT(H) < M,

then, for T' > to and t € [tg, T], we have
[Tz < [CE)Y O]Y (o)W (o) [[|¥ (to)zo || + Mb sup [W(t)a(t)].

to<t<T
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Therefore,
sup [[W()x(t)]| < (1= Mb) " NIY " (to) U (t0) [ (to) -
to<t<T
It follows that the system (3.1]) is U-stable on R,. The proof is complete. |

Remark. We can show that the conclusion of Theorem 4 is valid if the condition

supp™ ! (1) [ W () B(t) U~ (1) < M~
t>0

is replaced with the condition

lim o ()| () B(t)¥~1(t)| =0.

t—oo

Theoremis no longer true if we require that the system (1.2)) be U-(uniformly)
stable on R, instead of the condition

/tgo(s)|\ll(t)Y(t)Y1(5)\11_1(s)| ds <M, Yt>0.
0

This is shown by the next example.

Example 3.8. Consider the system (1.2)) with A(¢) = O3. Then, a fundamental
matrix for the system (1.2]) is Y'(¢) = I. Consider

W(t) = <(1) H?l) .

OV OY v = (5 )

t+1

Because

is bounded for 0 < s < t < +o0, it follows that the system (1.2) is ¥-uniformly

stable on R . If we take
0 0
B(t) = (O a ) )
Vi1

where a > 0, then

~ 1 0
0= (y auvem )

is a fundamental matrix for the perturbed system (3.1)). Because

~ 1 0
V()Y (t) = ( eza¢m>
0 t+1
is unbounded on Ry, it follows that the perturbed system (3.1 is not U-stable on
Ry.
Finally, we have sup,~q [¥(¢)B(t)¥ ! (t)| = a and limy_o [¥(t)B(t)® ' (t)| = 0.
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4. U-STABILITY OF THE NONLINEAR SYSTEM (|1.1J

The purpose of this section is to study the ¥-(uniform) stability of trivial solution
of (1.1). Now, we state a hypothesis which we shall use in various places.

(HO) For all tg > 0, zp € R™ and p > 0, if ||¥(t9)zo|| < p, then there exists a
unique solution z(t) on Ry of (1.1)) such that x(tg) = z and | (t)z(t)] < p
for all ¢ in [0, ¢o).

This is a natural hypothesis in studying W-stability of system (1.1). In [10], this
hypothesis is tacitly used in particular case ¥ = I,,.

Theorem 4.1. Assume that Hypothesis (H0) is satisfied. Assume that there exist
a continuous function ¢ : Ry — (0,00) and a positive constant M such that the
fundamental matriz Y (t) of the system (1.2)) satisfies the condition

/Ot ()| U ()Y ()Y (s)U 1 (s)|ds < M, Vt>0.

Also assume that function F' satisfies the condition
W), s z)| < f(E,9)][¥(s)z],

for 0 < s <t < oo and for all x in R™, where f is a continuous nonnegative
function on D such that

t
t 1
sup/ 1(t5) ds < —.
t>0.Jo  ©(t) M
Then, the trivial solution of the system (L.1]) is U-stable on Ry.

Proof. From the second assumption of the theorem, it follows that there exists a
positive constant N such that

(&)Y (t)] <N, forallt>0.

From the third assumption of the theorem, there exists ¢ such that

t
f(t,s) 1
ds<qg< —, forallt>0.
/0 o(t) M

For a given € > 0 and tg > 0, we choose

€ (1—qM)e

6= min{2’ 2N|Y =1 (to)¥~1(to)| 4

Let zg € R™ be such that ||¥(tg)zo|| < 9.

From the first assumption of the theorem , there exists a unique solution z(t) on
R of the system such that z(tg) = zo and ||U(¢)x(¢t)|| < ¢ for all t € [0, 0]
Suppose that there exists 7 > tg such that

|[T(r)z(r)||=¢ and ||¥(t)z(t)|| <e fort € [to,T).
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By the classical formula of variation of constants, we have

[ (r)z(n)]| < (DY ()Y ™ (t0) ¥ (o) ¥ (to), |

i /;w)w) )l / 19 (5)F (s, u, 2(w)]| du ds

< NIY ~(to) U~ (t0)]6
+ [ eeeyey el [ s

to

< NY o) ¥ (to)|6

! -1 -1 ° f(s,u)
+e [Cp@m@y ey weel [ 5

< NY ) e )0+ e [ "o [E()Y (7)Y ()T (s)] ds

to
< NY Hto) U (ty)]0 +eqM
<e(l—gM)4eqgM = e,

which is a contradiction. Therefore, the trivial solution of system (1.1) is W-stable
on R;. The proof is complete. u

Corollary 4.2. Suppose that g and h are continuous nonnegative functions on R

such that
g(t) /t 1
sup —= h(s)ds < —.
b o) Jo MO <

Then in Theorem [{.1] we can consider f(t,s) = g(t)h(s).

Corollary 4.3. Suppose that k is a continuous nonnegative function on Ry such

that
sup —— / k(u) du <
t>0 90

Then in Theorem we can consider f(t,s) = k(t — s).

Corollary 4.4. If in Theorem[{.1} the third condition is replaced by the condition:
The function F satisfies: For all € > 0 there exists 6(g) > 0 such that for all xin

se) = {r € Ce: F Sup W @)z(t)] < d(e)}

we have
1) F (L, s,a(s)l| < =f(t,5) [W(s)a(s)| for0 < s <t < +oo,

where [ is a continuous nonnegative function on D such that

)
ii%’/o (1)

then the trivial solution of system (1.1)) is W-stable on R..

The proof of the above corollary is similar to that of Theorem
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Theorem 4.5. Assume hypothesis (HO) is satisfied. Assume the function F satis-
fies

W) E R, s, 2)| < [t s)[[@(s)z], for0<s <t<oo

and for every x € R™, where f is a continuous nonnegative function on D such that

M:/Ooo/otf(t,s)dsdt <00.

Also assume the fundamental matriz Y (t) of the system (1.2)) is such that
[COY ()Y ()8 (s)] < K

for all0 < s <t < 400, where K is a positive constant. Then, the trivial solution
of (1.1)) is ¥-uniformly stable on R..

Proof. Let e > 0 and §(¢) = 0.5e K~ 1(1 + M)~ te KM Let ty > 0 and 29 € R®
be such that || (tg)zo|| < 0(g). There exists a unique solution z(¢) on R4 of (1.1)
such that x(to) = zo and || ¥(¢)x(¢)] < d(e) for all t € [0, ¢o]. For ¢t > tg, we have

¥ (&)z(t)]]
= [T ()Y (to) T (t0) ¥ (to) 2,

S

—|—/ \I/(t)Y(t)Y_l(s)\Ilfl(s)/ U(s)F(s,u,x(u))duds||

to 0

< K| W (to)z, | +K/t /OSf(s,u)||q;(u)x(u)||duds = K| W(to)z,||
+K/t /0f(s,u)||‘l/(u)x(u)\|duds+K/t /tsf(s,u)\lf(u)x(u”duds

< K5(e)(1+ M) +K//fsu||\1/ ()| du ds.

It is easy to see that the function Q(t) fto Jo F(s,u)[[ ¥ (u)a(u)|| duds is continu-
ously differentiable and increasing on [tg, 00). For ¢ > tg, we have

t

Q)= [ [t w[¥(w)z(u)l|du

to

< / FE)KO(E) (1 + M) + KQ(u) du

= K(e) 1+M/ftudu+K tf(tu)Q()du.

to
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Then

[Q(t)exp(K/t: /t:f(s,u)duds)]/
—exp(—K /tt t; F(s,u) duds) [Q'(t) — KQ() t: F(t ) du]
gexp(—K/t:/t:f(s,u)duds)

x [K6()(1 + M) /totf(t,u) du+K/t:f(t,u)(Q(u) — Q) du]

§exp(—K/t tsf(s,u)duds)[Ké(s)(l—i—M) ) f(t,u) du]

= [ = 6(e) (1 + M)e™ ™ io Jig £sr) dudeq
Integrating from ¢ to ¢ (t > to), we have
Q(t)e_KfftO IS £(s,u) duds < 5(e)(1 + M) [1 _ K JE 15 £(su) duds] '
We deduce that
[ ()2 ()] < 8(e)K(1+ M)e"™M <&, forall t >t

This proves that the trivial solution of (1.1) is W-uniformly stable on Ry. The
proof is complete. U

Corollary 4.6. Suppose that g and h are continuous nonnegative functions on Ry
such that

o) t
/ g(t)/ h(s)dsdt < 4o0.
0 0
Then in Theorem [{.5 we can consider f(t,s) = g(t)h(s).
Remark. Theorem generalizes a result of Hara, Yoneyama and Itoh [I0].
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