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EXPONENTIAL STABILITY OF TRAVELING WAVES FOR
NON-MONOTONE DELAYED REACTION-DIFFUSION
EQUATIONS

YIXIN LIU, ZHIXIAN YU, JING XIA

ABSTRACT. This article concerns the exponential stability of non-critical trav-
eling waves (the wave speed is greater than the minimum speed) for non-
monotone time-delayed reaction-diffusion equations. With the help of the
weighted energy method, we prove that the non-critical travelling waves are
exponentially stable when the initial perturbation around the wave is small.

1. INTRODUCTION
In this article, we study the stability of traveling waves for the non-monotone
delayed reaction diffusion equation

Ovlt) _ pT0D) gty 2) + fult —ra)), (6a) ERT xR (L)

ot 0z
with the initial condition
v(s,z) =vo(s,z), se[-r0], zeR. (1.2)

where D > 0, r > 0 are constants. The nonlinear functions d(u) and f(u) satisfy
the following hypotheses:

(H1) d € C?([0,00],R), f € C?([0,00],R); there exist only two constant equilib-
ria 0 and K > 0 such that f(0) = d(0), f(K) = d(K), d'(0) — f'(0) < 0
and d'(K) — f'(K) > 0.

(H2) There exists K* > K such that d(K*) > m
d(v) < d(K*) for all v € [0,K*), f'(0)v > f(v) > 0, d(v) > d'(0)v and
f/(0)v > d(v) for all v € (0, K*].

(H3) d(v) is strictly increasing on [0, K*] and d(v) < f(v) < 2d(K) — d(v) for
v € [0,K), d(v) > f(v) > 2d(K) — d(v) for v € (K, K*].

(H4) d’'(v) > d'(0) and |f'(v)] < f/(0) for all v € (0, K*].

Equation includes several practical models. Letting d(v(t,z)) = dv(t, x),

reduces to the time-delayed reaction-diffusion equation

ou(t,x) D 0?v(t, )
o 0x?

—ov(t,z) + f(u(t —rz)). (1.3)
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This model represents the single species population distribution such as the Aus-
tralian blowfly [IT, 12, 27]. Here v(t,z) denotes the mature population of the
blowflies at location = and time ¢, D > 0 and § > 0 are the diffusion coefficient
and death rate of the mature population, the time delay r > 0 is the time taken
from birth to maturity, and f(v(t — r,z)) is the birth function. Especially, taking
f(v) =pve=® p>0,a>0, is a typical Nicholson’s blowflies model; i.e.,
2

W) _ pPUET) ot ) + ot — rye= =), (1.4)

When the birth function f is monotone, authors in [9, 13| 22| 23] 28] [29] inves-
tigated the existence of monotone traveling waves by using the monotone iteration
and fixed-points theorem with help of the upper-lower solutions. Schaaf [26] first
studied linear stability for the delayed reaction diffusion with the quasi-monotone
nonlinear terms, which includes 7 by using a spectral method. The authors in
[21] investigated the nonlinear stability of traveling waves by using the (technical)
weighted energy method. Then authors in [25] further employed its global stability
by using the weighted energy technique and the comparison principle. These re-
sults were then extended to more general delayed reaction diffusion equations with
the quasi-monotone nonlinearity in [I5] [16] [30]. By using the Fourier transform,
Green’s function and the weighted energy method, the authors in [24] [25] showed
the global stability of critical traveling waves, which depends on the monotonicity
of both the equation and traveling waves.

However, because of the lack of monotonicity, the simple but useful methods
have failed. For this case [6, [7, [8] 17, B0, 10] show the existence of traveling waves
by developing different methods. Especially, the study on the stability of traveling
waves is quite limited. Wu, Zhao and Liu [34] first showed the stability of trav-
eling waves with the large wave speed for by using weighted energy method.
Recently, Lin et al [I4] established the stability of traveling waves (including os-
cillating traveling waves) for by using the weighted energy method and the
nonlinear Halanay inequality. Then Chern et al [3] followed the recent study [14]
and further answered all critical traveling waves for are time-asymptotically
stable with the help of some new development.

To the best of our knowledge, the stability of traveling waves for the more general
non-monotone delayed reaction diffusion equation is still not investigated. The
methods in [34] 3] can still be used owing to the boundedness of the solution with
the initial condition for the non-monotone delayed reaction diffusion equation ,
which was proved in [32].

2. PRELIMINARIES AND MAIN RESULT

We first introduce some notation. Throughout this paper, C' > 0 denotes a
generic constant, while C; > 0 (¢ = 0,1,2...) represents a special constant. Letting
I be an interval, especially I = R, L?(I) is the space of the square integrable
function on I, and H*(I)(k > 0) is the Sobolev space of the L?-function f(x)

defined on I whose derivatives dd—g;f, i = 1,...,k, also belong to L*(I). L2(I)
represents the weighted L?-space with the weight w(x) > 0 and its norm is defined

by
Il = ( [ wtrr@) "
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HE(I) is the weighted Sobolev space with the norm given by

wmp{izmm

Letting T' > 0 and B space, we denote by C°([0,T]; B) the space of the B-valued
continuous functions on [0, 7], and L?([0, T|; B) as the space of B-valued L?-function
on [0,T]. The corresponding spaces of the B-valued function on [0, c0) are defined
similarly.

The traveling waves for connecting 0 and K are the special solution to
in the form of v(t, z) = ¢(x + ct), namely, ¢ satisfies

c¢'(§) — D¢"(&) + d(d(€)) — f($(€ — er)) =0, (2.1)
¢(—00) =0, ¢(+00) =K. (2.2)
If f/(0) > d'(0), there exists a unique number ¢, > 0 such that for ¢ > c,, the

characteristic equation A(c,\) = 0 of linearized equation at 0 for (2.1) has two
positive roots A\; = A1(c) > 0 and A2 = A2(c) > 0, where

A(c, N) := X — DX2 +d'(0) — e " £/(0). (2.3)

dt ) 1/2
—f(@)dz) .

Moreover,
A — DX+ d'(0) > e f(0), for A <\ < Aa. (2.4)

Let us recall the existence and uniqueness of traveling waves for with the
non-monotone nonlinearity, (see [I7]) and some related results can also be found
in [5, B3] and the boundedness of the solution with the initial condition for the
non-monotone delayed reaction diffusion equation , see [32].

Proposition 2.1. Assume that (H1)-(H3) hold, there exists a unique number c, >
0 such for every ¢ > c., Equation (L.1)) has a unique (up to translation) traveling
wave solution ¢(§) satisfying ¢(—o0) = 0, ¢(+00) = K and 0 < ¢(§) < K* for all
£eR.

Proposition 2.2. Assume that (H1)-(H4) hold and 0 < vg(s,z) < K* for all
(s,z) € [-r,0] x R. Then the solution of Cauchy problem (1.1)) and (L.2)) satisfies

0<w(t,x) < K* forall (t,z)€[0,+00) x R.

For A1 < A < A2 and some number &,, define the weight function

—2X(£—€x)
w({){e2 , for & <&,

1, for £ > &,. (25)

For a given weight function w(§) and letting T' > 0, we define the solution spaces
as

X(=r,T) = {ulu(t,§) € C([-r,T]; C(R) N HL(R))}
and

MT)2 = s (Ju(®)l2 + Jut)|% )-
te[—r,T]

In particular, when T = co, we can also define the solution space as X (—r, c0) and
the norm of the solution space as M(oo0). Now, we state the stability result for

).
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Theorem 2.3 (Stability). Assume that (H1)-(H4) hold and |f'(K)| is sufficiently
small. For any given traveling wave ¢(&) of (1.4)) with speed ¢ > c., if the initial
perturbation is small; i.e.,

0
max 1(vo = @) ()1Z + [l (vo — ) (0173 +/ I(vo = ¢) ()73 ds < 45,

se[—r, _r
then the unique solution v(t,x) of and exists globally and satisfies
u(t,z) — ¢( + ct) € C([~r,00); C(R) N Hy(R)), (2.6)
sup [v(t,z) — ¢z +ct)| < Ce ™™, >0 (2.7)
z€R

for the constant C' > 0 and p > 0.

3. PROOF OF STABILITY

To obtain the stability of non-monotone delayed reaction diffusion equations, we
need to give some results.

Lemma 3.1. Assume that (H1)—(H4) and ¢ is a traveling wave for (1.4). Then
there exists A > 0 such that

'(€)| <A and lim ¢'(€)=0

£—=Fo0
Proof. Letting
_c—/c2+4Dd'(0) d ¢+ /2 +4Dd'(0)
p1L= 2D and - p2= 2D ’
it follows from (|1.4]) that
1 ©nies) T pale—s)
= eP ST H sds+/ eSS H(p)(s)ds|,
o€) = 5| [ @)+ [ (8)(s)4ds]

where H(¢)(s) = f(o(s — cr)) + d'(0)p(§) — d(¢(€)). Differentiating the above
equation with respect to &, we obtain

0O = g | [ e m s [ e o]

(p2 — p1) ¢

(3.1)

Since py — p1 > 2 @, we obtain

1
") € ———=max|H(¢)(s)]:= A forall £ €R.
910) < s max H(O)(5) ¢
Finally, (3.1) and the L.Hopital’s rule imply that limg_ 4, ¢'(§) = 0. the proof is
complete. O

Lemma 3.2. Assume that f'(0) > d'(0) and |f'(K)| is sufficiently small. Then,
for every ¢ > ¢y, there exist £y, & € R with & > & such that

min c ef)\cr ! i
max{|f’(¢(&o — er)|, |f(6(€0))|} < {A(c, \) + £/(0),d'(0)}

cosh(Acr) ’
and for & > &, — cr > &o,

max{|f'(&(§ —er))|, [/ ($()I} < max{| " (¢(So — )], [f (6(0))[}-
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Since limg_, 100 #(€) = K and f/(K) is sufficiently small, the conclusion of the
above lemma obviously holds.
Letting u(t,&) := v(t,x) — ¢(£),€ = = + ct, where ¢(x + ct) is a given traveling
wave solution of ([1.1]), the Cauchy problem (1.1)) and (1.2)) can be reformulated as
Ut(t, 5) + Cu&(t, E) - Du&f(tv g) = g(u(t - T?é. - CT)) - p(u(ta f))a
(t.€) € (0,+00) x R, (3.2)
u(s, &) =vp(s,& —es) — (&) =: up(s, &), (s,&) €[-r0] xR,
where
g(u) = f(o+u) = f(8), p(u)=d(¢+u)—d)
By the iteration technique and the energy method (see [14] 18 [19] ), we can obtain
the existence of local solutions for (3.2]).

Theorem 3.3. Assume that (H1)—(H4) hold. For any given traveling wave ¢(§)
with ¢ > ¢y, suppose ug(s,€) € X(—r,0), and M(0) < &1, where §1 is a given
positive constant. Then there exists a small to = to(d1) > 0 such that the local
solution u(t,&) of uniquely exists for t € [—r, to] and satisfies u € X (—r,tg)
and M (to) < aM(0) for some constant a.

Proof. Let ul®(t,€) := ug(t,&) € X(—r,0) C X(—r,to). Then define the iteration
u(tD) = T (u(™) for n > 0 by
au(n—H) au(n+1) aQu(n-H)
+c -D = g(u™(t —r & —cr)) — p(u™(t,€)),
- - S =9 =g ) < p ),

u(n-l—l) (876) = ’LLO(S,&-), s € [_7’7 0]7 5 eR.
Using Fourier transform, (3.3]) can be written as

W (¢, ) :/Rr(n,t)uo(o,g—n)dn+/o /Rl“(n,t—S)

(3.4)
x [g(u™ (s — 1.6 —n+er)) —p(ul™ (s,€ —n)] dnde,
where T'(n, t) is the heat kernel
1 (ntct)?
I(n,t) = e~ 4Dt |
() VAar Dt
By applying regular energy estimates to both sides of (3.3)), indicated as
t 1
/ / (D2 0B x wie)obul) de ds,
0 JR *p=0o
we can estimate
t
[ D@y + [ D )]y ds
0 (3.5)

0 t
<C(lul + [ o)l ds+ [ [ )ds), ¢ € 0.t
—r 0
for some positive constant C' > 0. From (3.4)) it follows that
[u" D (t) o < Clluo(0)[|c + Cto sup  [[u™()]lc, ¢ € [0,to)- (3.6)
t

e(—nr,to
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According to (3.5) and (3.6)), it holds that
0
Myusn (o) < C(_max f(s)-+ o)y + [ uo(s) sy ds) +CtoMycn (1),

Thus, when max.e(_) [uo()||% + [luo(0)[3, + S, l[uo(s) |3 ds < 1 with 0 <

to < 1, ™Y = T (u(™) defined in (3-3) is a contraction mapping from X (—r, o)
to X (—r,t9). Hence, by using Banach fixed point theorem, (3.2]) admits a unique
local solution in X (—r,tg). This completes the proof. O

A priori estimate. We rewrite as
ut(tﬂ f) + CU§(t7 f) - DU§§(t7 f) + d/(qb(f))u(t, f) - fl(qs(g - CT))u(t - T,f - C’I“)
=Gu)(t,§) — E(u)(t,£), (t,€) € (0,400) X R,
U(57£) = UO(Svf)’ (575) € [_T7 O] x R,
where
G(u)(t,8) = f(u(t —=r,§ —cr) + ¢(§ —cr)) = f(¢(§ —cr))
= /(6(§ — er)ult —r,§ —cr),
E(u)(t,€) = d(u(t,§) + ¢(§)) — d($(£)) — d'(¢(£))u(t, &) (3.9)
Lemma 3.4. Let u(t,&) € X(—r,T). Then

U 2, te_2“(t_5) — w(Eu3(s s
Ju()li2; + / / By (€) — CM(1))w(€)u?(s,€) dE d

) (3.10)
< e (JunOl + [ un(s) 3 ds),
where
Bl €)= Ao ©) = 20— L@ DI GEIPEET @
w,(£> ! D w’(f) 2 /
Agal€) == 2 & 20(6(0) - S22 i ol - en))
1e) 24 1)

w(€&+cr)
w(§)

1 !
- 5|f (¢(9)]

and p,mn are positive constants.

Proof. Multiplying (3.7) by e?**w(&)u(t, &) with € € R and 0 <t < T, we have

1 1
Ze2tou? b 4 e Zewu? — Duwuue ¢ + De*Mwu? + Dez“tw'u§u
2 ¢ 2 ¢ ¢

{2 (0(6) — e ten? — P u(Eulr, O (61 — erult — 1€ — en)

= W (€)u(t, )G (u) — E(u)].
(3.13)
By the Cauchy-Schwarz inequality,

D w'\2
|De?Mwueu| < De*Mwu? + =M (=) wu?
¢ €Ty w ’
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we reduce (3.13)) to

1 1
{iezﬂtwlﬁ}t + e*Ht { icwzf — Dwuug }5

+ { - gi +d'(6(8) —n— g(%)z}emwﬁ (3.14)
— e (€)u(t, &) f(¢(& — er)ult —r,& —cr)
< eMw(€ult, )]G (u) — B(u)].

Integrating (3.14)) over R x [0,¢] with respect to & and ¢, we have

e |u(t) HL2 +/ / 2us _ (0(€) — 21— 12)(2’((5)))2}
x w(§)u”(s, &) d§ ds
_ 2/ / 2us —er)u(s,&u(s —r, & —cr)déds (3.15)

< lluo(0)]12: +2 / / 25 (€uls, €)[G(u)(s,€) — B(u)(s, €)] de ds.
Since

of [ [ (@) (o€ - crputs. Outs =g — er) de s
< /O /R 3 (€)| [ (B(E — er)) (s, €) dE ds
L e ! —cr))|uP(s —r, & —cr s
+n/O/R ()1 (S(€ — er)lud(s — € — or) de d
—a [ [ @)l F (€ — o) ud(s, ) de ds
bk .
+ e / / W(E + er) |1 (BLE)[u (5, €) dE ds
2us ! —cr))|u*(s s

Sn/o /Re 1S (D€ — er))|u(s,€) de d

e [ ] et ol o)l (.9 deds

4 e // W(E + o) £/ (6(6))|ud (5, €) d ds,
Substituting (3.16) in , we have
t
et (1) |2, + / / 1B, (€€ (s, €) de ds
62ur 0
< luo(O)E; + / T / (e + o) [ (6(O)ud(s,€) de s (3.17)
' 213 (Eu(s G(u — F(u d€ d
+2/0/R (€)u(s,€)[Cu)(s,€) — B(u)(s,€)] dé ds,

where B, ,, ., (&) is given by (3.11).
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By standard Sobolev’s embedding inequality H*(R) — C°(R) and the embed-
ding inequality H}(R) — H(R) (since w(§) > 1, for all £ € R), we have, for all
EeRand —r <t <T,

lut,§)] < Sup lu(t, &)] < oollult, ) < oollult, )|y < ooM (), (3.18)
€

where oy > 0 is the embedding constant. Since

G(u)(t, )| = [f(u(t —r,§ —cr) + ¢(§ —cr)) = f(¢(§ —cr))
— f1(0(& = er)ult — & —er)| < Clu(t —7,€ —er)]?,

we obtain

o| [ [ @t octis.odcas
< CooM(1) // 265 (EVu2(s — 7, € — er) dE ds
= CoogM(t) / / A (€ + er)u?(s, €) de ds

< OM(t)e?r // 205,y sfdfds—k/_r/ e250(€ + er)ul(s, g)dgds}

<CM(t / / 2us dEds—i—/_r/ e w(& + er)ud(s, €) dgds}

(3.19)
On the other hand,

[E(u)(t, )| = |d(u(t,§) + ¢(&)) — d(¢(€)) — d'(6(&))u(t, )| < Clu(t,€)I%,

we can also obtain

2’/ / 23, L) E(u)(s, €) dfds’<CM / / 205, ) de ds.
(3.20)
From (3.19), (3.20) and (3.17), we have
t
Oy + [ [ 0 (Byunl®) - CMOI(©u(s, ) deds
0 R

"(6()ug(s, ) deds (3.21)

0 2
<@z + [ [ et -+ enionre) +
0

< (IO + [ o)z ds).

-Tr

which immediately implies ((3.10)). This completes the proof. a

Next we prove a key inequality.
Lemma 3.5. Letting n = e~ ", there exists a unique number c, > 0, such for

every ¢ > ¢y, there exists a constant Cy > 0 such that

Ap () >C1 >0 foreR. (3.22)
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Proof. We distinguish three cases:

Case 1: For € < &, —cr, w(€) = e 22678 and w(€ + cr) = e 2AEEFen)
w' ()
w(€)

By (H4) and (2.4), we can have

_ 72>\’ w(£+CT) _ 672)\(37’.

w(§)

w'(§)

E)
L areny EE D)
GG

= 2e\ — 2DA? + 2d'($(€)) — e[ f(¢(& — er))| — e[ £ (9(€))]
> 2<c/\ DX 4 d(0) — e*ACTf’(o)) = Oy > 0.

Aﬂ,w(g) =—C

+2d'(¢(6)) -

(LY st — e

(3.23)

Case 2: For &, —cr < & <&, then w(€) = e 2Mé76) and w(€ + ¢r) = 1, and by
Lemma [3:2] we have

An,w(g)
_ O _ DN e — or
= e TR -5 (D) i)
1, w(&+er)
OIS

— 26\ — 2DX + 24/ (9(6)) — I (6( — er))]
~ IO

> 2(eA — DA +d(0) — e 7 f/(0)) + 2 f1(0) — S (9(¢ —er))| (32D
— 176

> 20(e.0) + 2677 (0) = (n+ 2 max{|f (€ = )L | (0]}

> 200(c, A) + 26 £1(0) — 2 maxc] [/ (6(¢ — er)], | ($(€))]} cosh(Aer)

> 2(A(e, ) + e f(0) = max{ |1 (6(60 — er))], 1f'(6(60))1} cosh(rer) )
=:C12 > 0.

Case 3: For £ > &, w({) =w({+ cr) =1, and by Lemma[3.2] we obtain
Apw(€) = 2d(6(8)) —nlf'(6(§ — er))| — %\f/(fb(f)ﬂ
! 1 / /
> 2(d(0) = (n+ ) max{(7(6(6 — ). 17 (6]} (3.25)

> 2(d(0) — max{|f"(6(& — er))l, |f'(6(&) |} cosh(Aer))
=:C13 > 0.
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Combining (3.23)—(3.25)), we obtain A, ,,(§) > C1, where C; = min;— 2 3{C1;} > 0.
This completes the proof. ([

Lemma 3.6. Let u(t,§) € X(—r,T). Then there exists a constant p* > 0 such
that for 0 < p < p*, it holds

t
e + [ [ 0ol ds
0

< e (Jun@l + [ un(s)E3ds),

—r

(3.26)

provided M (t) < 1.

Proof. We distinguish three cases:
Case 1: For £ < & —cr, w(€) = e 2ME-8) (€ 4 ¢r) = e 2ME&ter) and
according to Lemma |3.5

Byl§) = Ael6) = 2= L — D100 =

Z Cl _ 2“’ _ f/(o)ef)\cr(elur _ 1)
=: (9 >0 for 0<N<M1,

(3.27)

where g1 is the unique root of the equation
Cy —2p — f'(0)e AT (e —1) = 0.

Case 2: For &, — cr < & <&, then w(é) = e=2M678) and w(é 4 cr) = 1,

By l§) = Ael6) = 2= L = 01000

> Oy — 2 — f(0)eNT (20— 1)e2MEE) (3.28)
> Cy - 2 — F(0)eX (27 1)
=:Cy% >0 for0<pu< ps
where po is the unique root of the equation
Cy —2u — f'(0)e e (eH" — 1) = 0.

Case 3: For £ > &, w(§) =w( +er) =1,

&%AOZAW@%JM*%gwaW@@m

2 Cl _ 2/~L _ f/(o)ekcr(eZ;u" _ 1)

=:Cy >0 for 0 < p < po.
Combining (3.27), (3.28) and (3.29), we obtain B, , . (§) > Cs, for 0 < p < ps,
where Cy := min{Cs;, Caz} and p. = min{py, po}. It follows from (3.10) that

itz + [ 2 [ 1o = Cratende.) deds

w(&+cr)

“@) (3.29)

0
< e (Jun( + [ un(s) I d ds).

—r
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which implies (3.26)) by letting M (¢) < 1. This completes the proof. O
Next, we shall establish the energy estimate for u¢, which is similar to (3.26)).
Lemma 3.7. Let u(t,&) € X(—r,T). Then it holds

t
Jue(®l: + | &2~ ug(t) s
0 (3.30)

0
< e (Jus(O)lfyy + [ lua()lfyds)-
provided M (t) < 1.

Proof. Differentiating (3.2]) with respect to £ and multiplying the obtained equation
by e*tw(&)ue(t, ), we have

L oope 2 ot f 1 2 2 2 2
fel‘wu} —|—e“{fcwu — Dwueu } + DMt ou2, + De*Muwugu
{2 &Sy 9 T chee s, 33 £Uge

+{ =55+ d0() — njettuut — u( uet. OF (B —er))  (331)
X ug(t—r,&—cr)
= MW (E)ug(t, €)[G2(u) + Gi(u)] — e w()ug(t, €)[Ea(u) + B (u)],
where
Gi(u)(t,€) = [f'(u(t —r,& —er) + §(& — er)) = f/($(§ — er))]¢' (€ — er),
Ga(u)(t,€) = [f"(ult —r,& —cr) + @(§ — cr)) — [/($(€ — er))ug(t — 7,€ — er),
By (u)(t,€) = [d'(u(t, &) + 6(8)) — d'(¢(€))]¢' (€),
Ea(u)(t,€) = [d'(u(t, ) + $(€)) — d'(6(8))]ue(t, €).

Using the Cauchy-Schwarz inequality
D '\ 2
|De**w'uguge| < De*wuZ, + Zeg“t (%) wug,
it follows from (3.31)) that

L oout o out [ 1 2
{56 ® wug}t + e“H {icwug — Dwu§u§§}§

(-5 - 2(2) o o
— e w(Eug(t, &) f'(P(E — er)ue(t —r, & —cr)
< e2~tw(§)u5(t, 6)[Ga(u) + Gy (u)] — e2utw(§)u5(t,§)[E2(u) + E1(u)].

Integrating the above inequality over R x [0,¢] with respect to £ and ¢, we have

el + [ [t -2 patioe) - 5 (LEY7)
x w(&ug (s, &) dE ds

B 2/0 /Re B30(E) f (€ — er)ue (s, E)ue(s — 1, & — er) dE ds (3.33)
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< [uo(0)]13s +2 / / (€ ug (5, )[Ca(u) (5. €) + G (u) (s, €)] dé ds
2 / / 21505 (€Yug (5, €) [Ba (u)(s,€) + By () (5, £)] d€ d.

By the Cauchy-Schwarz inequality, we have
t
2| [ [ @) (016 — eruels. uels — ¢ — ) de s
0o Jr
t
< 77/0 /Rez“sw(f)\f/(gb(f — cr))\ug(s,f) d¢ ds

X , (3.34)
= 2ur 2us / 2
+ 776 H /0 /Re Hw(€+er)|f (¢(§))|u§(s,§) d¢ ds
0
+ 18/" / / (& + o) [ (D(E)) [ude (s, €) dE ds.
It follows from and - ) that
2 ug (1) |2 + / [ B (€5, 8) s ds
0 R
2ur 0
< luo(O)f + - / / (e + el (D) udels,8) deds
- (3.35)

+2// 20 (€ g (5,€) | Gau) (5,€) + G (u) (s, 6)] d s
— €215 (E)ue (s H(u)(s 1(uw)(s s.
2// (e (s, O o) (5,€) + Er (u) (s, )] de d

Again, by the Taylor expansion,

|G (u)(t, &) = |[f' (u(t —r,& —cr) + @& —cr)) — f1(P(€ — er))]|ue(t — 7,6 — cr)
< Clu(t —r, & —cr)|ug(t —r, & —cr),

we can estimate the nonlinear term as

o [ eet@nets. 00006, 0) deas

SC’/ /eZ“Sw(g)ug( O|u(s —r, & —cr)|ug(s —r, & —cr)dE ds

< OM(t) / / e w(€)ug (s, &) dE ds (3.36)

+CM(t 1/ // 2*‘(5*’” w(€ + eryud(s,€) ¢ ds
// 218 ¢)d¢ ds

+OM@) /_ /R 2R 6+ er)ude (s, €) dE ds,
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and

) /0 t /R €255 (€ ug (5, €) Gy () (5, €) dE dis
<c| [ [ eratepuelsuts = €~ anyots — en) de s

< C/ / e w(&)ug(s, &)|u(s —r, & — cr)| dé ds (3.37)

<c// 2us 5,&)déds
+C’ /_T/R—I—/O /]R eQ’L(S+T)w(§+cr)u2(s,§) d€ ds.

Similarly, we obtain

2‘At/R62#500(5)“5(5,f)Ez(u)(S,ﬁ))d{ds‘ < CM(t) /Ot/RSZ"Sw(ﬁ)u?(S,E) de ds

o| [ [ eaonets. om0 acas
<o [ [ emmteets.uts, 00 (€ - er)de s

<C// W (E)ug (s, ) dE ds
+c// 218 (E)u? (s, €) dE ds.

It then follows from — and Lemma that
t 0
a3z + [ e ue0lzds < e (Juo)s + [ ool ds).

-Tr

(3.38)

Combining (3.26)) and (3.30)), for some constant C, which is independent of T and
u(t, &), we have

0
(Ol < Ce(Jluo(0) s +/ luo(s)3sds). for all 0< £ < T.

—r

This completes the proof. (I

Proof of Theorem[2.3. Tt is based on the existence of a local solution and the es-
timate obtained above. The process is similar to the one in [20, 21], using the
continuity extension method, so we omit it. O
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