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Abstract

We consider the symmetric solutions to the Young-Laplace equation, and its extensions
past vertical points. We provide a classification of all symmetric solutions using certain
families of parameters. This classification produces a unified approach to fluid interfaces in
capillary tubes, sessile and pendent drops, liquid bridges, as well as exterior and annular
capillary surfaces. The generating curves for symmetric solutions have asymptotes for large
arclengths, and the behavior of these asymptotes is analyzed.

1 Introduction

The study of the equilibrium shapes of liquids has a long history, though the discovery of
the calculus not surprisingly lead to a turning point in these efforts. In 1805 Thomas Young
published his celebrated essay [36] followed in 1806 by a more mathematical treatment by
Pierre-Simon Laplace [19], establishing the Young-Laplace equation

∇ ·

(

∇u
√

1 + |∇u|2

)

= κu+ λ, (1)

where the left hand side is the mean curvature operator, 2H, u is the height of the fluid interface,
κ = ρg/σ, ρ is the density of the fluid, σ is the surface tension of the fluid interface, g is a
gravitational constant, and λ is a Lagrange multiplier that is used if volume constraints are
considered. Solutions of this equation are called capillary surfaces. In 1830 Gauss [13] obtained
the same results using the method of virtual variations and at the same time establishing natural
boundary conditions for the physical problem of determining the height of the fluid interface in
a container. Much has transpired in the last two centuries, and the current standard reference
is a manuscript by Finn [8].

In this paper, we will investigate the symmetric solutions of (1), and their extensions past
vertical points. The symmetric solutions can be described by a generating curve, and we will
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choose a form of (1) that is in terms of arclength. That generating curve will depend on certain
parameters which we will describe. The main physical distinction between surfaces is that
some are simply connected, and others are topologically annular. In particular, we will provide
a classification scheme for all symmetric solutions to the Young-Laplace equation in terms of
these parameters, and we will also analyze the asymptotic behavior of all of these solutions for
large arclength.

There are many problems where one may prove that solutions to (1) are necessarily sym-
metric about a vertical axis. See Gonzalez [15] and Wente [34] for examples of this. Another
approach is to prove existence of solutions under the assumption of symmetry, and then to
quote a uniqueness theorem, say as might be found in [8].

Further, frequently treatments of symmetric capillary problems in the last half-century have
been restricted to simply connected domains, or geometric problems which admit a solution
which is topologically equivalent to a disc. We are aware of three types of problems that deviate
from this trend. First is the study of liquid bridges, for which see work by Athanassenas [1], Finn
and Vogel [11] and Vogel [33] for example. Next are exterior problems such as a rod dipped into
an unbounded sea of liquid, as can be found in Johnson and Perko [18], Siegel [25], Turkington
[31], and Vogel [32]. Finally, there are applications involving multiple fluids or particles floating
on the fluid interface. For the third type we do not yet know if the configurations are symmetric,
but nevertheless we are able to obtain some results under the assumption of symmetry. The one
exception that the authors are aware of is a proof of a symmetry property for three immiscible
fluids by Treinen [30]. Some examples involving multiple fluids or particles floating on the fluid
interface are papers by Elcrat, Neel and Siegel [6], Elcrat and Treinen [7], Finn [9], Finn and
Sloss [10], Finn and Vogel [12], McCuan [21], McCuan and Treinen [22, 23], and Treinen [28].
Given this interest in problems of annular type (possibly unbounded), or applications that use
them, this leads to a study motivated by that perspective. See Elcrat, Kim and Treinen [5],
Gordan and Siegel [16, 17], Siegel [26], and Treinen [29].

2 Initial exploration and classification

It is our goal to provide a framework to classify all symmetric solutions of the Young-Laplace
equations. Our methods are numerical in nature, and as such may be seen as conjectural, though
we have taken extreme steps in reducing errors to the limits of what is currently computationally
feasible. We begin this process by considering some illustrative examples.

We assume the surface is symmetric about the vertical axis, and thus has a generating curve.
To determine this, we use the form of the differential equation parameterized by arclength s
which is given by the following system:

dr

ds
= cosψ (2)

du

ds
= sinψ (3)

dψ

ds
= κu−

sinψ

r
. (4)

Here r is the radius, u is the height above the r-axis, and ψ is the inclination angle. We have
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normalized so that the Lagrange multiplier λ is zero. The solution to this system may be
extended past both vertical points and inflection points, which we now turn to illustrate.
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Figure 1: Generating curve for a capillary tube (L), and the interface it represents in a capillary
tube, with the fluid below the interface (section shown) (R).
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Figure 2: Generating curves for a sessile drop (L), and that sessile drop (section shown) (R).

Our first example is a solution to the system (2)-(4) so that the ending inclination angle ψ
attains a value π/2 − γ at a prescribed radius r where γ is a contact angle with a cylindrical
wall at r. This is a generating curve for the classical capillary tube, and both the generating
curve and the capillary tube are shown in Figure 1. Our next example is solution of the system
so that the ending inclination angle ψ attains a value π − γ when the enclosed volume attains
a prescribed value. This forms a generating curve that when inverted and vertically translated
(using Lagrange multipliers) describes a sessile drop, as is shown in Figure 2. Both this example
and the previous one are attained by using the initial conditions r(0) = 0, u(0) = u0, and
ψ(0) = 0, and then finding the value of u0 that satisfies the above conditions. We have chosen
to illustrate both of these with a value of u0 = 3. Then, if we continue the solution, it
extends past a point of self intersection and becomes immersed. See Figure 3 (L). For physical
problems involving fluid interfaces, we may only use portions of the curve that are embedded,
as in Figure 3 (R). By doing so we pick up some types of annular capillary surfaces, and also
components that may be used to construct liquid bridges. If we continue the solution for much
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Figure 3: Immersed solutions (L), and the corresponding annular capillary surface (section
shown) (R). Here we have chosen to illustrate an annular capillary surface that contains vertical
points, and extends beyond the radii of the endpoints for the generating curve.
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Figure 4: The large arclength extension of the immersed solution (L), and family of generating
curves (R).

larger arclength, we begin to see the asymptotic behavior, as seen in Figure 4 (L).

Upon changing the initial height, we find a family of solutions. It is apparent that the
solutions to the system are asymptotic to lines in the ru-plane, and that the slope of each linear
asymptote is dependent on the initial value u0. Five different choices of initial heights u0 are
shown in Figure 4 (R).

Pendent drops may be described by the system (2)-(4) with κ replaced by −κ, and our
next step is to make the connection between the above and pendent drops. Take a selection of
generating curves from the last example, and at each starting point replace the initial angle ψ
with −π. This will pair an inverted pendent drop with each immersed solution achieved above.
Upon reflection this curve is in its traditional orientation. In Figure 5 we show the generating
curve and the corresponding pendent drop hanging from a circular tube. See Figure 6 for a
comparison with pendent drops where the left figure has been described by our framework, and
the right figure is a reflected view without the immersed portions. Concus and Finn [4] wrote
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pioneering work in this connection.
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Figure 5: Generating curve for a pendent drop (L), and that pendent drop suspended from a
circular tube (section shown) (R).
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Figure 6: Connections to pendent drops.

Consider again the immersed portions of the generating curve. A question is if we have
attained all possible annular capillary surfaces with the family generated by the initial conditions
r(0) = 0, u(0) = u0, ψ(0) = 0 with u0 ∈ R? We have an immediate negative answer. Start with
a horizontal point at r0 = 0.5 and u0 = 3, and then extend in both directions as in Figure 7.
The curve does not extend to r = 0. We will provide more detail for the difference between
these two types of solution curves in Section 7. For the moment we merely remark that it is a
fact that the inclination angle ψ must be 0 at r = 0 due to the symmetry of the problem and
the regularity theory, say as might be extended from work of Giusti [14]. One implication is
that we have a way to parameterize this new family of annular capillary surfaces. If we consider
the point on the generating curve that is closest to the vertical axis, we may denote this point
as (r0, u0) and conclude by elementary calculus that ψ0 = −π/2 + nπ there for some n ∈ Z. It
is possible to normalize so that ψ0 = −π/2. Thus we have established a two-parameter family
parameterized by (r0, u0) with ψ0 = −π/2 that is distinct from the family generated by (0, u0)
with ψ(0) = 0.
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Figure 7: An example of annular capillary surfaces that do not touch the vertical axis.
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Figure 8: Oscillation about the r-axis (L) and three members of the family parametrized by
(r0, u0).

0 2 4 6 8 10 12
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9 10
−8

−7

−6

−5

−4

−3

−2

−1

0

1

Figure 9: A special case with exponential decay (L) and three members of the family
parametrized by (r0, u0) with u0 < 0 (R).
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Consider the right graph in Figure 7, and in particular the portion of the curve that extends
down and towards the r-axis. If you remove the upper immersed part of this curve, then this
is an example of an inverted annular pendent drop. To the extent of the authors’ knowledge,
this is the first explicit example given of a capillary surface of this type in the literature. As
this appears to be the case, we include a brief exploration of the subject in Section 3.

It should be noted that the same type of oscillation about the r-axis that occurs for the
pendent drops also occurs for the annular pendent drops, as is shown in Figure 8 (L). A good
reference for the classical behavior is [8].

In our final examples we consider a few different values of u0 in this two-parameter family.
The right graph of Figure 8 contains three examples where u0 > 0. The same type of linear
asymptotics is apparent, and the slope of these asymptotes also changes with the generating
parameters. The right graph of Figure 9 contains three examples of u0 < 0, which has similar
behavior. In particular in both of these examples it should be pointed out that the first
embedded portion lengthens as u0 becomes smaller in magnitude, here we mean the portion of
the generating curve from −π/2 ≤ ψ ≤ π/2 in the case when u0 > 0. This fact was proved in
[5]. In this way one may see that the unbounded liquid bridge fits into this classification scheme
as u0 → T (r0) where the function T is defined to precisely give this curve with exponential
decay. See Siegel [25], Turkington [31], and Vogel [32] for discussions of this behavior, shown
in Figure 9 (L).

We claim that the only remaining symmetric capillary surface is the singular solution,
which can be seen as a point-wise limit of pendent drops as u0 → −∞. Where, of course κ
is replaced by −κ. See Concus and Finn [2, 3] and Nickolov [24]. This discussion leads to the
following conjecture, which we state as a conjecture, though the contents of this paper give
strong numerical evidence supporting it.

Conjecture 2.1 Let H be the mean curvature operator, and let κ be either a positive or negative

real number. Let U be a solution of

2H = κu (5)

that is symmetric about the vertical axis. Then, using

dr

ds
= cosψ (6)

du

ds
= sinψ (7)

dψ

ds
= κu−

sinψ

r
(8)

with

r(0) = r0 (9)

u(0) = u0 (10)

ψ(0) = ψ0, (11)

U can be represented in one of the following ways:
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1. r0 = 0, ψ0 = 0, u0 ∈ R and U is described by some interval of arclength s0 ≤ s ≤ s1. If

κ < 0, then the representation is traditionally reflected about the r axis,

2. r0 > 0, ψ0 = −π/2, u0 ∈ R and U is described by some interval of arclength s0 ≤ s ≤ s1.
If κ < 0, then the representation is traditionally reflected about the r axis,

3. U is the singular solution.

All of the simply connected capillary surfaces are contained in Case 1, as well as some of the
annular capillary surfaces. Case 2 contains the unbounded liquid bridge where u0 = T (r0) with
s1 = ∞ and, barring the singular solution, Case 2 also contains the remaining surfaces that are
not simply connected, which as we will see in Section 7 is the bulk of the surfaces of this type.

3 Annular Pendent Drops

As we stated above, pendent drops may be described by the system (2)-(4) with κ replaced
by −κ. Geometrically this is a reflection of the curve about the r-axis, or it could be seen as
changing the orientation of the gravitational potential. We note that perhaps the easiest way
to formulate the problem is as either an annular hanging tube attached to a larger volume of
fluid, or as a pipet with an annular opening and with fixed pressure. Wente [35] considered
the simply connected version of these two problems, as well as that of a drop hanging from a
horizontal plate. It follows from the symmetry results proved by Wente [34] that any attempt
at constructing an annular analogue of the drop hanging from a single horizontal plate will lead
to a more classical simply connected pendent drop. Of course, one may attempt to rectify this
by considering a system of plates at different heights, but we note that the heights of the plates
would depend on the contact angles and the enclosed volume, and thus with the exception
of some rare cases, the solution would not be symmetric about the vertical axis, even if the
supporting configuration is. It is unfortunately outside of the scope of this paper to perform a
detailed analysis of these surfaces.
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Figure 10: Two examples of annular pendent drops, where the fluid is above the interface.

The two configurations that we are able to formulate, that of the annular hanging tube,
and that of the “medicine dropper” with annular opening both have the same boundary value
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problem. As in [35], we expect that these two different formulations will have different stability
properties even though they both satisfy the same boundary value problem. The system (2)-(4)
with κ replaced by −κ is given the boundary values of

ψa =
π

2
− γa (12)

ψb = γb −
π

2
(13)

where the physical contact angles γa and γb are measured interior to the liquid at radii a and
b, respectively. We give two numerical examples. In Figure 10 we consider contact angles
γa = 0.9π and γb = 0.7π. On the left a = 0.1 and b = 0.3, while on the right a = 0.1 and
b = 1.75. Notice that the scales vary between plots, while a remains fixed.

4 Power Series Expansion

So far we have not addressed the singularity at r = 0. We do so here with a degree of accuracy
that is sufficient to achieve error on the order of machine epsilon using the Runge-Kutta-Felberg
implementation ODE45 in Matlab.

We computed the power series expansion of the solution centered at the arclength s = 0 up
to s6 terms, and the result is collected in the following theorem. While lengthy, the computation
is straightforward. Lohnstein [20] and Wente [35] also produced related calculations.

Theorem 4.1 The solution of (2)-(4) with r0 = 0 and ψ0 = 0 is given by

r ≈ s−
κ2u2

0

24
s3 −

κ3u2
0

160
s5,

u ≈ u0 +
κu0
4
s2 +

(

κ2u0
64

−
κ3u3

0

192

)

s4,

+

(

κ3u0
2, 304

−
κ4u3

0

720
−

κ5u5
0

138, 240

)

s6,

ψ ≈
κu0
2
s+

κ2u0
16

s3 +

(

κ3u0
384

−
κ4u3

0

1, 920
−

κ5u5
0

23, 040

)

s5.

through 6th degree terms.

We used this to determine an arclength s = s∗ where if 0 ≤ s ≤ s∗ we use

dr

ds
≈ 1−

κ2u2
0

8
s2 −

κ3u2
0

32
s4,

du

ds
≈

κu0
2
s+

(

κ2u0
16

−
κ3u3

0

48

)

s3 +

(

κ3u0
384

−
κ4u3

0

120
−

κ5u5
0

23, 040

)

s5,

dψ

ds
≈

κu0
2

+
3κ2u0
16

s2 +

(

5κ3u0
384

−
κ4u3

0

384
−

κ5u5
0

4, 608

)

s4

and otherwise we use (2)-(4).
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Here s∗ is chosen so that for the range of u0 values used produces an error at s∗ comparable
with machine ǫ. Thus we have minimized the error in using ODE45. For large arclength,
computations are intensive, and outstrip reasonable use of a single workstation. We use ODE45
to compute the data {r0, r1, . . . , rn} and {u0, u1, . . . , un} as approximation to the continuous
solution. Here n is the index associated with sn = ℓ, which is some large ending arclength. In
what follows we will use ℓ = 20, 000.

5 Least Squares using the SVD

We will use least squares to determine the regression line for the data {r0, r1, . . . , rk} and
{u0, u1, . . . , uk} for some large k. As we will see in Sections 6 and 8, this is used to approximate
the linear asymptote of the data. We will use the singular value decomposition to compute this
regression line as follows.

Given A ∈ Rm×n, we have

V = [v1|v2| . . . |vn] ∈ Rn×n,

and
U = [u1|u2| . . . |un] ∈ Rm×m

both with orthonormal columns, and Σ ∈ Rm×n is diagonal and has nonincreasing positive
entries σj , so that Avj = σjuj, 1 ≤ j ≤ n. The index of the smallest positive singular value
gives the rank of A, and we denote it by p. The Reduced Singular Value Decomposition (SVD)
is

A = Û Σ̂V̂ ∗

where the columns of U , Σ, and V are used only when they are needed to reconstruct A, and
these reduced matrices are given .̂ notation. Here Û ∈ R

m×p, Σ̂ ∈ R
p×p, and V̂ ∗ ∈ R

p×n.
We obtain data {r0, r1, . . . , rk} and {u0, u1, . . . , uk} that corresponds to coordinates along

a given approximate solution curve. The least squares line y = c1r + c0 best satisfies

Ac :=











1 r0
1 r1
...

...
1 rk











[

c0
c1

]

=











u0
u1
...
uk











=: u. (14)

First, compute A = Û Σ̂V̂ ∗, then the orthogonal projector P = Û Û∗ projects onto the range of
A, giving y = Pu = Û Û∗u. The algorithm is

1. Compute A = Û Σ̂V̂ ∗.

2. Compute Û∗u.

3. Solve the diagonal system Σ̂w = Û∗u for w.

4. Set c = V̂w.

See Trefethen and Bau [27] for an excellent exposition of the merits of this choice of least
squares method.
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6 Asymptotic Behavior for r0 = 0

In what follows, we determine the asymptotic behavior of the solutions to the capillary equa-
tions, and we begin with the case where r0 = 0. Given an initial height u0, we have computed
approximations to the solution curve, as given by the data {r0, r1, . . . , rn} and {u0, u1, . . . , un}
with a large ending arclength ℓ, and n is the index such that the arclength sn = ℓ. First note
that the least squares line for the data {r0, r1, . . . , rn} and {u0, u1, . . . , un} remains between the
upper and lower envelopes generated by each individual solution. Then we note that Elcrat,
Kim, and Treinen [5] and Treinen [29] proved that for any symmetric annular capillary surface
the distance between the left vertical point and the right vertical point go to zero as the height
of the horizontal point between them goes to infinity. It follows that the least squares line
will converge to the asymptote in some sense, provided that asymptote is linear. As further
evidence that the data has a linear asymptote, see Figure 11, which shows a small range of
u0 values in the family of generating curves that start on the u-axis, and their corresponding
regression lines as computed using the methods of Section 5. Then a natural question to ask is
what the slope and intercept of these regression lines are, in terms of the initial height u0.

0 0.5 1 1.5 2 2.5 3 3.5
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20

30
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Figure 11: Three of the regression lines we computed shown with the corresponding data.

In Figure 12 (L) we see that the intercept of the regression line starts out near zero, and
slowly increases. Over the interval we computed it, it increases to a value of 1.2 when u0 =
32. Given the nature of approximation in obtaining our data for the generating curve, we
suggest that this could be error from the combination of methods used. If so, and we take a
normalized value to be the intercept values divided by u0, then we find the normalized value
is approximately 0.0375. To be clear, the findings of our simulations strongly suggest that the
intercept of the asymptote is 0. This will be supported further in Section 8.

In Figure 12 (R) we graph slope of the least squares lines over u0 in the range [0, 32]. Our
initial results indicated that the slope of the asymptote was a quadratic curve, though, as we
will see it is not quite so simple. This lead to a much more accurate numerical exploration, with
the prescribed error on the order of machine epsilon. In order to be more precise, we assume
that the slope is of the form xα, then in Figure 13 we plot α with u0 first in the range [0, 0.3],
and again in the range [10, 52]. We then see that for small u0 values the power of the slope is
close to 1/3, and for large u0 values the slope of the regression line is not quite u2

0
, but close,
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Figure 12: The intercept (L) and slope (R) of the regression line as a function of u0.

and as u0 → ∞, the evidence strongly suggests that α→ 2.
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Figure 13: Graphs of the power α under the assumption that the slope is of the form xα. Small
u0 values are on the left, and larger u0 values are on the right.

Given the supporting evidence, it is reasonable to assume that the asymptotic behavior is
linear. After the error in estimating the solution to the initial value problem, the second type
of error is the difference between the least squares line and the asymptotic line. To counter this
we take rather large values of ending arclength ℓ, and as we have mentioned before, we find
ℓ = 20, 000 to be sufficient. As we discussed earlier, the loops get smaller when any horizontal
point (r0, u0) → (∞,∞). The least squares line does not leave the envelope generated by the
solution curve, thus the least squares line approaches the asymptotic line as ℓ→ ∞. As for the
convergence of these quantities as the arclength gets longer, Figure 14 illustrates that the partial
arclength values of both the intercept the power α as functions of u0 are Cauchy sequences in
the sense that they are approaching a limiting function of u0 as ℓ → ∞. The relatively small
range of u0 was chosen to highlight this feature, and to dampen any changes of the limiting
functions over a longer range of u0.

The above numerical evidence supports the following.

12



20 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 21

0.5

1

1.5

2

2.5

3

3.5

4

u0

y−
in

te
rc

ep
t

 

 

100% computed

80% computed

60% computed

40% computed

20% computed

20 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 21

2.046

2.048

2.05

2.052

2.054

2.056

u0

α

 

 

100% computed

80% computed

60% computed

40% computed

20% computed

Figure 14: Convergence of the intercept as the ending arclength ℓ→ ∞ (L), and the convergence
of the power α as the ending arclength ℓ→ ∞ (R).

Conjecture 6.1 Solutions of the system

dr

ds
= cosψ (15)

du

ds
= sinψ (16)

dψ

ds
= κu−

sinψ

r
(17)

with

r(0) = 0 (18)

u(0) = u0 (19)

ψ(0) = 0, (20)

have linear asymptotes as s→ ∞. The linear asymptotes pass through the origin. Further, the

slopes of the linear asymptotes depend on u0, and that dependence is approximately quadratic

if u0 is sufficiently far from 0. As u0 → ∞, the slope of the asymptote converges to a line with

slope u2
0
. For u0 small enough, the slope has the form xα with α between 1/4 and 1/3.

7 A parameter space for annular capillary surfaces with r0 > 0

Considering the implication of Figure 7, in that we have symmetric capillary surfaces that do
not fit in the family parametrized by u0 with r0 = 0, we are then left with a secondary two
dimensional parameter space of (r0, u0) for r0 > 0. We normalize this parameter space so that
ψ = −π/2 at this vertical point along that curve that is nearest to the vertical axis. While we
discussed this in leading up to Conjecture 2.1, it remains to give some way to determine the
difference between the two types of parametrization. In Figure 15 (L) we see that curves from
two different parametrization families can become nearly indistinguishable somewhere along
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their trajectories. Two questions arise. First, how can one know if their normalized (r0, u0)
point is truly the furthest point to the left along the trajectory of the curve? Second, how do
we know if we actually have a candidate for a (r0, u0) vertical point? We are able to address
both of these questions while at the same time reducing the size of the parametrization space
substantially.
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Figure 15: Two nearby curves of both types (L), the first four curves of horizontal points with
example generating capillary curves where r0 = 0 (R).

To begin, let r0 = 0 and u0 > 0. Define f1 = 〈r, u〉 by the assignment u0 7→ 〈rπ, uπ〉 where
the inclination angle ψ of the generating curve is π at that point. Thus we see f1 is a curve
made up of the first horizontal points along the generating curves in the family of solutions for
r0 = 0 and u0 > 0. Figure 15 (R) shows two example curves from the family of solution curves
where r0 = 0. Also shown there are four curves made up of further horizontal points generated
by these capillary curves for u0 ∈ (0,∞). There are infinitely many more of these curves of
horizontal points, of course, but in fact we will only need the first of these. We define these
curves so that for i = 2, 3, . . ., fi is determined by u0 7→ 〈riπ, uiπ〉. If we start a capillary curve
with a horizontal point in this first region between the coordinate axes and f1, then we find
that the next horizontal point of this capillary curve appears between f1 and f2. The further
horizontal points of that capillary curve are interleaved between the fi, for i = 2, 3, . . ..

Next, we would like to see if that region bounded by the coordinate axes and f1 is sufficient
to parametrize the entire family of generating curves. Figure 16 (L) shows the horizontal points
generated by a grid of horizontal points started between f1 and f2. In all cases there are
resulting points contained in the region bounded by f1 and the coordinate axes. As the curve
f1 is approached, the horizontal points converge to the vertical axis. There is some error, but
given our starting point, we are unable to account for the singularity in the system of differential
equations in any reasonable way. Thus this error is to be expected. We see this error most
dramatically near the origin.

Then, as the normalized vertical point of a capillary curve is to the left of its first horizontal
point, we have restricted the unbounded parameter space into a significantly smaller parameter
space, though still unbounded, as f1 is asymptotic to both the axes.
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Figure 16: Evidence that the unbounded region between the axes and the first curve of horizon-
tal points generates all cases where r0 > 0 (L), all the cases of initial values where we generated
solution curves, and their corresponding regression lines (R).

8 Asymptotic Behavior for r0 > 0

Finally, we will analyze the asymptotic behavior of capillary curves that are in the region
between the coordinate axes and f1. As before, we have obtained extremely accurate results
for computations over large arclengths from weeks of parallel processing on the STAR cluster
at Texas State University. The resulting data is generated at approximately 9000 gridpoints,
and uses approximately 1TB of storage space. The region we obtained results for is shown in
Figure 16 (R). Again, we were able to use the SVD based least squares algorithm to analyze
this data, and a prototype is shown in Figure 17 (L).
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Figure 17: Prototype regression lines for three capillary curves in the reduced parameter space
(L). The intercept as a function of u0 with a fixed r0 = 0.11302. Notice that the intercept is
approximately 0 (R).

As a way of summarizing the rather large data set that we have generated, we will look at
a 100 by 100 grid of (r0, u0) values. The data we generated is not uniformly spaced, with the
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largest shift in the grid occurring around u0 ≈ 0.94. We use a non-structured interpolation
which is of class C1 except at data points. The information that we interpolate is the vertical
intercept and the slope of the least squares lines, and further under the assumption that the
slope is of the form xα, we interpolate the power α as well.
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Figure 18: The slope as a function of u0 with a fixed r0 = 0.11302 (L). A magnified plot of the
power α under the assumption that the slope is of the form xα, with magnification centered on
the largest values of u0 in this range, and α→ 2 (R).

We first present this information as a sample of three r0 values that are representative of
small, medium, and large values. Then we take all of the u0 values in our interpolating grid
that correspond to that sample r0, and we plot the intercept, slope, and power as a function
of u0 given that choice of r0. This is collected in Figures 17 (R) and 18-22. In all of these
examples, the intercept is approximately 0, and this is a good representation of the data we
generated.
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Figure 19: The slope as a function of u0 with a fixed r0 = 0.11302, with the magnification
centered on values of u0 near 0, and α→ 1/3 (L). The intercept as a function of u0 with a fixed
value of r0 = 2.068005 (R). Again, notice that this is approximately 0.

We first consider r0 = 0.11302 in Figure 18 we see that the slope appears to be quadratic,
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and the plot of the power α converges to 2 as u0 goes to its largest value in the parameter
space. As u0 → 0, we see α → 1/3 in Figure 19 (L). For the medium choice of r0, we use
r0 = 2.068005. The slope appears to be more linear in character, and Figure 20 shows that α
is approximately −1 at the upper end of the u0 values. We see the limit α→ 0.45 as u0 → 0 in
Figure 21 (L). The third sample is r0 = 4.637416, and we see that the slope is concave down,
and indeed, Figure 22 shows the power is between 0.5 and 1 when u0 is small. The formula for
extracting the power is based on logarithms, and does not give reasonable results when u0 ≈ 1,
thus, as the largest values of u0 are near 1 for this choice of r0, we do not have extracted values
for the upper limit here.
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Figure 20: The slope as a function of u0 with a fixed r0 = 2.068005 (L). A magnified plot of the
power α under the assumption that the slope is of the form xα, with the magnification centered
on the largest values of u0 in this range (R).
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Figure 21: The magnification is centered on values of u0 near 0, and α → 0.45 (L). The
intercept as a function of u0 with a fixed value of r0 = 4.637416 (R). Once again, notice that
this is approximately 0.

Our final figures are given in order to see how the behavior changes with variable r0. In
Figure 23 we move r0 through our range of data from approximately 0 through about 5.5 we
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Figure 22: The slope as a function of u0 with a fixed r0 = 4.637416 (L). A magnified plot of the
power α under the assumption that the slope is of the form xα, with the magnification centered
on the largest values of u0 in this range (R).

take u0 to be the smallest value in our data set (L), compared to u0 as the largest value in our
data set (R). It is worth mentioning that the plot on the left has a constant u0, and the plot on
the right has a variable u0 that is just below the curve f1. For small u0 values (on the left) we
see the slope is small, less than 0.4, and decreasing in r0. Again, due to the inability to extract
the power α when u0 ≈ 1, and the shape of the parameter region, we are only able to present
the graph of the power as a function of r0 for the smallest value of u0 in our data set. This is
shown in Figure 24.
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Figure 23: The slope as a function of r0 with a fixed u0 with the smallest value we computed
(L), and with variable u0 for the largest value we computed, which is just below f1 (R).

We summarize our experiments as support for the following conjecture.
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Figure 24: The power α as a function of r0 with a fixed u0 value of the smallest we computed.

Conjecture 8.1 Solutions of the system

dr

ds
= cosψ (21)

du

ds
= sinψ (22)

dψ

ds
= κu−

sinψ

r
(23)

with

r(0) = r0 > 0 (24)

u(0) = u0 (25)

ψ(0) = 0, (26)

have linear asymptotes as s→ ∞. The linear asymptotes pass through the origin. Further, the

slopes of the linear asymptotes depend on both r0 and u0, and that dependence is approximately

quadratic in the initial height u0 if u0 is sufficiently far from 0. As u0 → ∞, the slope of the

asymptote converges to a line with slope u2
0
. That is, for small r0, as u0 → f1, the power α of

the slope converges to 2. For u0 small enough, the slope has the form xα with α comparable to

1/3.
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