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ABSTRACT 

 
Future computing systems, from handhelds all the way to supercomputers, will be 

more parallel and more heterogeneous than today’s systems to provide more performance 

without an increase in power consumption. Therefore, GPUs are increasingly being used 

to accelerate general-purpose applications, including applications with data-dependent, 

irregular memory access patterns and control flow. 

The growing complexity, non-uniformity, heterogeneity, and parallelism will 

make these systems, i.e., GPGPU-accelerated systems, progressively more difficult to 

program. In the foreseeable future, the vast majority of programmers will no longer be 

able to extract additional performance or energy-savings from next-generation systems 

because their programming will be too difficult, i.e., the programmer will no longer 

possess the necessary expertise to understand and exploit the systems effectively. In this 

project, the characteristics of GPU codes are quantified and, based on these metrics, 

different optimization suggestions are made. 
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CHAPTER 1 

Introduction 

1.1 Serial vs. Parallel 

Traditionally, software has been written for serial computation. A problem is 

broken into a discrete series of instructions and instructions are executed sequentially one 

after another (Fig. 1.1). All of these instructions are executed on a single processor and 

only one instruction may execute at any moment in time [21]. However, for performance 

reasons, superscalar CPUs may execute multiple independent instructions together and 

even out-of-order. 

 

Figure 1.1 Serial computations 

 

In the simplest sense, parallel computing is the simultaneous use of multiple 

compute resources to solve a computational problem. A problem is broken into discrete 

parts that can be solved concurrently. Each part is further broken down to a series of 



 

2 

instructions. Furthermore, instructions from each part execute simultaneously on different 

processors and an overall control/coordination mechanism is employed (Fig. 1.2). 

 

Figure 1.2 Parallel computations 

 

The computational problem should be able to divide into discrete pieces of work 

that can be solved simultaneously, execute multiple program instructions at any moment 

in time and be solved in less time with multiple compute resources than with a single 

compute resource. The compute resources are typically a single computer with multiple 

processors/cores or an arbitrary number of such computers connected by a network. 

 

1.2 Why Parallel? 

Problems are too costly to be solved with the classical approach. Also there is 

high demand of getting results on specific and reasonable time. In the natural world, 

many complex, interrelated events are happening at the same time, yet within a temporal 
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sequence. Compared to serial computing, parallel computing is much better suited for 

modeling, simulating and understanding complex problems which have some 

characteristics i.e., data reuse and regularity in data accesses and control flow. 

Using parallel computing could save time and/or money and/or energy. In theory, 

assigning more resources to a task will shorten its time to completion, with potential cost 

savings. Also, parallel computing makes us capable of solving larger and more complex 

problems. Many such problems are impractical or impossible to solve them on a single 

computer, especially given limited computer memory. In addition, parallelizing massive 

computation has additional advantages such as taking advantage of non-local resources 

[21]. 

 

1.3 GPU 

A graphics processing unit (GPU) is a specialized processor designed to rapidly 

manipulate and alter memory to accelerate the creation of images in a frame 

buffer intended for output to a display. GPUs are used in embedded systems, mobile 

phones, personal computers, workstations, supercomputers, and game consoles. Modern 

GPUs are very efficient at manipulating computer graphics and image processing, and 

their highly parallel structure makes them more effective than general purpose CPUs for 

algorithms where processing of large blocks of data is done in parallel. In a personal 

computer, a GPU can be present on a video card, or it can be on the motherboard. 

The term GPU was popularized by Nvidia in 1999, who marketed the GeForce 

256 as “the world’s first ‘GPU’, or Graphics Processing Unit, a single-chip processor 

http://en.wikipedia.org/wiki/Frame_buffer
http://en.wikipedia.org/wiki/Frame_buffer
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Mobile_phone
http://en.wikipedia.org/wiki/Mobile_phone
http://en.wikipedia.org/wiki/Personal_computer
http://en.wikipedia.org/wiki/Workstation
http://en.wikipedia.org/wiki/Game_console
http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Image_processing
http://en.wikipedia.org/wiki/Video_card
http://en.wikipedia.org/wiki/Motherboard
http://en.wikipedia.org/wiki/Nvidia
http://en.wikipedia.org/wiki/GeForce_256
http://en.wikipedia.org/wiki/GeForce_256
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with integrated transform, lighting, triangle setup/clipping, and rendering engines that are 

capable of processing a minimum of 10 million polygons per second” [22]. 

 

1.4 GPU vs. CPU 

The CPU or Central Processing Unit is where all the program instructions are 

executed to process the data. Advancements in modern day CPUs have allowed it to 

crunch more numbers than ever before, but the advancement in software technology 

meant that CPUs are still trying to catch up. A Graphics Processing Unit or GPU is meant 

to alleviate the load of the CPU by handling all the advanced computations necessary to 

project the final display on the monitor. 

Originally, CPUs handled all of the computations and instructions in the whole 

computer. But as technology progressed, it became more advantageous to take out some 

of the responsibilities from the CPU and have it performed by other microprocessors. In 

the days before Graphical User Interfaces (GUIs), the screen was simply a small grid 

with each box having an 8-bit value that corresponds to a character. This was relatively 

very easy to do for the CPU, but GUIs have greater resolutions with each pixel having a 

16-bit or 32-bit color value. 

GPUs were originally developed to render 2D graphics; specifically, to accelerate 

the drawing of windows in a GUI. But as the need for 3D and faster graphics acceleration 

grew, the GPU became faster and more specialized in its task. GPUs are now general 

floating-point processors that can easily crunch computations along with texture mapping 

tasks. 

http://en.wikipedia.org/wiki/Transform,_clipping,_and_lighting
http://www.differencebetween.net/technology/difference-between-cpu-and-microprocessor/
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Hardware wise, GPUs and CPUs are similar but not identical. Fig 1.3 shows the 

high-level architectures of CPU vs. GPU. As a simple explanation, CPUs have a few 

powerful core processors while GPUs have many less powerful processors. The 

specialized nature of GPUs means that it can do its task much faster than a CPU ever can, 

but it is not able to cover all of the capabilities of the CPU. Multiple GPUs can also be 

employed to achieve a single goal much like the dual core CPUs currently available [23]. 

 

Figure 1.3 CPU vs. GPU [source:Nvidia] 
 

1.5 Thesis Motivation 

There are two main difficulties with accelerators such as GPU devices. First, they 

can only execute certain types of programs efficiently, in particular programs with 

sufficient parallelism, data reuse, and regularity in their control flow and memory access 

patterns. Second, it is harder to write effective software for accelerators than for CPUs 

because of architectural disparities such as very wide parallelism, exposed memory 
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hierarchies, lockstep execution, and memory-access coalescing. Several new 

programming languages and extensions thereof have been proposed to hide these aspects 

to various degrees and thus make it easier to program accelerators [25]. 

The general idea of this thesis is to make parallel programming easier for 

programmers who are not experts in GPU programming specially with irregular codes 

which have data-dependent behavior i.e., data accesses and control flow, and are hard to 

parallelize. Our goal is to design a tool for GPU codes, irregular codes in particular, to 

find the performance bottlenecks of the codes and suggest some optimization hints to the 

user to make the code more efficient. By efficiency, we mean efficiency in both aspect of 

power consumption and runtime. 

In the rest of this thesis document, Ch.2 Background illustrates the needed 

background and the general idea and mentions related work. Ch.3 Design explains the 

general idea and how the flow of experiments is. Ch.4 Experimental Methodology 

introduces what type of devices and what version of software had been used for 

experiments. Ch.5 Results and Analysis shows the results of each experiment alongside 

with analysis. Ch.6 Summary and Conclusion contains a brief summary on the thesis, 

reasonable conclusions and future works. 
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CHAPTER 2 

Background 

2.1 GPU Architecture and Programming 

GPUs consist of Streaming Multiprocessors (SM) and each SM contains 

Processing Elements (PE). Threads run on PEs and blocks of threads are allocated to 

SMs. 

 

Figure 2.1 Streaming multiprocessors and processing elements 

 

GPU memories are separate from CPU memories. As it is shown in Fig. 1.5 [26], 

GPUs have a global memory (DRAM), which every thread in each block has access to 

and also a Constant Memory (DRAM, cached). These two memories are connected to the 

CPU via the PCI bus. Inside each SM is a shared memory, which is visible to all threads 

inside a block. Each thread has its own registers, which are limited. 

GPUs are designed specifically for graphics and thus are somewhat restrictive in 

operations and programming. Due to their design, GPUs are only effective for problems 

that can be solved using stream processing and the hardware can only be used in certain 

ways [22]. 

GPUs can only process independent vertices, fragments and streams, but can 

process many of them in parallel. This is especially effective when the programmer wants 

http://en.wikipedia.org/wiki/Stream_processing
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to process many vertices or fragments in the same way. In this sense, GPUs are stream 

processors 

 

Figure 2.2 GPU memory architecture [source: Nvidia] 

 

that can operate in parallel by running one kernel on many records in a stream at once. 

A stream is simply a set of records that require similar computation. Streams 

provide data parallelism. Kernels are the functions that are applied to each element in the 

stream. In the GPUs, vertices and fragments are the elements in streams and vertex and 

fragment shaders are the kernels to be run on them. Kernels can be thought of as the body 

of loops. On the GPU, the programmer only specifies the body of the loop as the kernel 

and what data to loop over by invoking geometry processing. 
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2.2 Irregular Kernels 

Recent years have seen a surge of interest in the use of graphics processing units 

(GPUs) as general-purpose computing accelerators. For programs that map well to GPU 

hardware, GPUs offer a substantial advantage over multicore CPUs in terms of 

performance, performance per dollar, and performance per transistor. GPUs also 

outperform CPUs in energy efficiency on some applications. Due to these benefits, GPUs 

are appearing as accelerators in many systems. 

It is well-known that GPUs are very effective for exploiting parallelism in regular 

programs that (i) operate on large vectors or matrices, and (ii) access them in statically 

predictable ways. These codes often have high computational demands, exhibit extensive 

data parallelism, access memory in a streaming fashion, and require little 

synchronization. A large number of algorithms from important application areas fit these 

criteria, including algorithms used in fields ranging from fluid dynamics to computational 

finance. There exists a broad base of knowledge on the efficient parallelization of these 

algorithms, and their GPU implementations can be tens of times faster than tuned parallel 

CPU versions. 

However, many problem domains employ algorithms that build, traverse, and 

update irregular data structures such as trees, graphs, and priority queues. Irregular 

programs can be found in domains like n-body simulation, data mining, decisions 

problems that use Boolean satisfiability, optimization theory, social networks, system 

modeling, compilers, discrete-event simulation and meshing. They are more difficult to 

parallelize and more challenging to map to GPUs than regular programs [24]. 
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2.3 Main Idea 

Several efficient GPU implementations of irregular algorithms have been 

published, demonstrating that GPUs are capable of accelerating at least some irregular 

codes relative to multicore CPUs. However, considering novelty of parallel processors 

and according to difficulties of programming on supercomputers, i.e., using GPGPU, 

programmers will need access to a system/performance/parallelism expert, but there are 

only relatively few of them and each one may only be an expert on a certain aspect or 

application domain. That raises the all-important question of how to best deliver such 

expertise from different sources to programmers? The main goal of this project is to 

provide an answer to this question. 

I believe the likely solution to be automatic program analysis and 

recommendation systems. They essentially embody the expert’s knowledge and perform 

the analysis he or she would execute in person to determine how to improve a piece of 

code. Based on this analysis, the system recommends possible courses of action. 

 

2.4 Related Work 

These days, due to slow-down speed of hardware technology improvement, 

software is playing a more important role to keep computing technology improving. 

Making applications more efficient in all aspects, leads us to the need of performance 

measurement. So scientists and experts are trying to design tools for measuring and 

quantifying performance to some understandable format. 

Almost all of the tools are based on traces of events on source code or executable 

code. They are trying to instrument and measure some metrics/events and then trying to 
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work on the collected data and analyze them. Paradyn [1] was the first tool in automatic 

performance analysis of HPC dynamic instrumentation to efficiently obtain performance 

profiles of unmodified executables. 

KOJAK [2], Scalasca [3] [13] and Vampir [4] are trace-based tools which support 

MPI, OpenMP and hybrid platforms. KOJAK automatically deduces the performance 

properties from the trace files and diagnoses sources of inefficient runtime behavior on a 

high-level abstraction. 

Scalasca [3] [13] is highly scalable and based on wait states that occur in the code 

(For example, identifying result of unevenly distributed workloads). It uses TAU`s rich 

instrumentation capabilities [7] (TAU`s API) and processes the performance/trace data in 

parallel using as many cores as have been used for the target application. Also it scores 

and summarizes the trace report and shows it on a strong GUI profiler. 

Vampir [4] is also a trace-based performance tool for MPI and/or thread/parallel 

cores. It instruments the source code and because of that has measurement overhead. 

VampirTrace [5] supports event queue method with a library wrapping approach for 

CUDA and OpenCL and has been used for GPU performance measurement. 

Periscope [6] evaluates performance while the application is still running and 

searches for previously specified performance problems or properties. It is MPI-based on 

more focused on efficient communication between cores/processors. Periscope 

summarizes the measurement phase output and uses summary information instead of 

tracing. 

TAU [7] is a portable tool for performance instrumentation, measurement, 

analysis and visualization of large scale parallel applications. It has different layer for 
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easier mapping to all parallel architecture and because of that and also the general model 

for both software and hardware, many other tools use TAU`s API or different layer`s 

outputs in their approaches. TAU is optimized itself according to platform available 

features and customizable for different blocks of code. It has 3 major features, source 

instrumentation, compiler instrumentation and library wrapping. Using the library 

wrapping benefit of TAU, TAUCuda [8] is created for GPU performance. It has no 

modification on the source code or binary code. 

Recently released tool Score-P [9] is a portable measurement infrastructure for 

performance measurement tools of HPC. Each of above tools has different measurement 

output format. For example output format of measurement layer Vampir [4] is OTF and 

output format of measurement layer of Scalsca [3] [13] is EPILOG/CUBE. Score-P tries 

to integrate all of these tools into a unified measurement infrastructure. It is compatible 

with TAU [7], Scalasca [3] [13], Vampir [4] and Periscope [6]. It also covers CUDA. It 

has flexible measurement without re-compilation, basic and advanced profile generation, 

event trace recording and online access to profiling data are some of the benefits of 

Score-P. It supports MPI, OpenMP, and hybrid parallelism (and serial). Also it has 

enhanced functionality for OpenMP 3.0, CUDA and highly scalable I/O. 

HPCToolkit [10] [17] generates statistical profiles using Interval timers and 

hardware counter overview interrupts and evaluate both application binary and source 

code. 

CUDA Performance Tools Interface (CUPTI) [11] is NVIDIA`s product 

particularly for CUDA-GPU. A strong library for measuring CUDA code performance 

according to the device features. It has Callback API which allows you to interject tool 
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code at the entry and exit to each CUDA runtime and driver API call. Also it has Event 

API which allows the tool to query, configure, start, stop and read event counters on a 

CUDA enabled device. The PAPI CUDA [12] Component is a hardware performance 

counter measurement technology for the NVIDIA CUDA platform which provides access 

to the hardware counters inside the GPU. PAPI CUDA is based on CUPTI support in the 

NVIDIA driver library. In any environment where the CUPTI-enabled driver is installed, 

the PAPI CUDA Component can provide detailed performance counter information 

regarding the execution of GPU kernels. 

NVIDIA Visual Profiler [14] is compatible with all CUDA-enabled devices. It 

finds all bottlenecks with accurate statistics in detail using binary file of CUDA for 

analysis. Command prompt access to the profiler, remote access and showing all details 

about time and memory usage by CPU functions and GPU kernels at the same time are 

some of its features. User can add more hardware metrics for measurement and analysis 

in case of need of more accurate statistics. After each round of analysis, it shows a brief 

explanation for each encountered bottleneck. NVIDIA Nsight [15] uses it as profiler tool 

in Eclipse or Visual Studio. Nsight profiles the code directly from source code and shows 

the exact line of code which encountered as bottleneck. 

eeClust [16] determine relationships between the behavior of parallel programs 

and the energy consumption of their execution on a compute cluster. It uses Vampir [4] 

and Scalasca [3] [13] software tools to also record energy-related metrics. The users can 

then insert energy control calls into their applications which will allow the operating 

system and the cluster job scheduler to control the cluster hardware in an energy-efficient 

way. The effectiveness will be evaluated with the help of a small cluster testbed with 
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special energy measurement and control components and synthetic and realistic 

benchmarks. 

Virtual Institute - High Productivity Supercomputing (VI-HPS) [18] is the 

collaboration of eleven partner institutions for improving the quality and accelerating the 

development process of complex simulation codes in science and engineering that are 

being designed to run on highly-parallel computer systems. Most of known tools for 

parallel performance and measurement such as TAU [7], Scalasca [3][13] and Vampir 

[4], designed and created by the partners of this big project. They also have couple of 

ongoing and completed projects in the field of productivity and performance to improve 

their previous products. POINT, Score-P, SILC, HOPSA, PRIMA and LMAC are tools 

for integrating and improving the functionality of performance and measurement tools 

such as TAU [7] and Vampir [4]. For instance, LMAC adds the functionality of 

automatically examining performance dynamic for irregular behavior of parallel 

simulation codes to the established performance analysis tools Vampir [4], Scalasca [3] 

[13] and Periscope [6]. 

OpenSpeedshop [19] is performance analysis toolset using program counter (pc) 

sampling, callstack sampling analysis, hardware performance counters, MPI profiling and 

tracing, I/O profiling and tracing and floating point exception analysis. It supports MPI, 

Pthreads, OpenMP and hybrid platforms. 

Intel VTune Amplifier XE 2013 [20] is the premier profiler for C, C++, C#, 

FORTRAN, Assembly and Java. It optimizes serial and parallel performance and locates 

and analyses the bottlenecks of the code, bandwidth, memory accesses and branches with 

low overhead and high resolution using on-chip hardware. Analyzing hybrid applications 
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using MPI and OpenMP, supporting cluster computing, remote command line access and 

perfect GUI are some of its more important features. VTune also tune OpenCL and 

collect GPU metrics. 

A few such systems are still in their infancy and not yet in wide use. Our 

approach is unique among all of above tools. The focus is on irregular GPU kernels, 

which are more difficult to make efficient. The main advantage of the proposed tool over 

other similar tools is the suggestion feature. After analyzing, quantifying and measuring 

performance metrics, the tool recommends to the user some optimization hint such as 

using different optimization flags, which make the GPU code more optimized. Also we 

use Machine Learning approaches to make our suggestions more and to automate as 

much as possible. Also using machine learning in this tool gives us the ability of 

extending/modifying the suggestion database and simplifies porting the tool to new 

systems. 
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CHAPTER 3 

Design 

3.1 Overview 

To provide an automated optimization suggestion tool for irregular GPU kernels, 

we first need to measure how optimized a kernel already is. Our approach to measuring 

this is to quantify different performance characteristics of each kernel. We use the 

NVIDIA Visual Profiler [27] for this purpose. It is a profiling tool that can measure a 

large number of different performance metrics based on hardware performance counters. 

The performance quantification results in a large number of features (individual 

measurements) such as instruction counts, number of cycles, cache hits/misses at 

different layers, etc. of the kernel code. These feature vectors are input into Machine 

Learning (ML) methods to classify or rank optimizations. I profiled codes with different 

sets of optimizations included to train the ML algorithms to hopefully recognize whether 

an optimization is already present or not and, if not, how much speedup it might provide. 

In other words, the goal is to predict by how much each of the trained 

optimizations (or combination thereof) will improve or hurt the performance of a given 

CUDA code based on the trained ML model. Based on these predictions, the tool can 

select which, if any, optimizations to suggest to the user. 

 

3.2 N-Body Problem 

In physics, n-body simulation is used to compute the motion of 

individual celestial objects that interact with each other gravitationally [28]. Solving this 

http://en.wikipedia.org/wiki/Physics
http://en.wikipedia.org/wiki/Astronomical_object
http://en.wikipedia.org/wiki/Gravitation
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problem has been motivated by the need to understand the motion of the sun, planets, and 

the visible stars [29]. 

 

 

Figure 3.1 Simple n-body algorithm 

 
The goal of each step in an n-body simulation is to determine the new position of 

all the bodies by calculating the sum of the forces exerted on each body from all other 

bodies. For large numbers of bodies, such as in a star cluster, this simulation can be very 

slow, making parallelization essential. The n-body problem is simple to parallelize by 

dividing the dataset into equal blocks and assigning them to each processor to calculate 

the force and new position of each body in its block. Fig 3.1 shows a simple parallel 

algorithm for n-body problem that has a complexity of O(n
2
). Due to its quadratic time 

complexity, this algorithm is very slow for large numbers of bodies, even when run in 

parallel. 
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To remedy this situation, the Barnes-Hut (BH) n-body algorithm has been 

developed, which has a complexity of O(n log n). However, this algorithm repeatedly 

builds and traverses an unbalanced tree data structures, resulting in complex and data-

dependent program behavior, i.e., irregular control flow and memory-access patterns. 

This algorithm is difficult to parallelize in general and specifically for GPUs. 

 

3.3 Barnes-Hut Algorithm 

The Barnes-Hut algorithm (by Josh Barnes and Piet Hut) recursively divides the 

volume around the bodies into cubic cells. The resulting hierarchical decomposition is 

recorded in an octree (the three-dimensional equivalent of a binary tree). This allows 

bodies from nearby cells to be treated individually while treating bodies in distant cells 

together as a single large body centered at the cell’s center of mass (or as a low-

order multi-pole expansion). This dramatically reduces the number of force calculations 

that must be computed [30]. The resulting error should be small since the force decreases 

with the square of distance and the algorithm only uses an approximation for far-away 

bodies. 

I took the BH code from the LonestarGPU suite [35] and modified it, as well as 

our NB implementation, to include all possible combinations of six source-code 

optimizations. The GPU implementation of the Barnes-Hut algorithm encompasses the 

six steps shown in Figure 3.3, each of which is implemented using one or multiple 

kernels. Since this implementation is very irregular, it represents a useful case study for 

testing the ML tool. 

 

http://en.wikipedia.org/w/index.php?title=Josh_Barnes&action=edit&redlink=1
http://en.wikipedia.org/wiki/Piet_Hut
http://en.wikipedia.org/wiki/Octree
http://en.wikipedia.org/wiki/Center_of_mass
http://en.wikipedia.org/wiki/Multipole_expansion
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Figure 3.2 Pseudocode of Barnes-Hut algorithm 

 

 

 

Figure 3.3 GPU-implementation of BH algorithm 
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3.4  Profiling 

In computer science, the term profiling refers to a form of dynamic program 

analysis that measures, for example, the usage of particular instructions or the frequency 

and duration of function calls. Most commonly, profiling information serves to aid 

program optimization [32]. I use nvprof, the NVIDIA Visual Profiler [27], to collect 

supported events and metrics from CUDA kernels [31]. 

 

3.5 Speedup 

Speedup is a metric for capturing the relative performance improvement when 

executing a task. The speedup is calculated as the ratio of the runtime before applying an 

optimization over the runtime after applying the optimization. A speedup above 1.0 

means that the optimization resulted in an improvement in performance, i.e., a reduction 

in runtime. 

 

3.6 Machine Learning 

Generally speaking, machine learning is a subfield of computer science and 

statistics that deals with the construction and study of systems that can learn from data, 

rather than follow only programmed instructions [34]. Usually, machine learning 

methods are used for problems that require prediction and/or classification. In my project, 

I need to predict how much speedup we can achieve by applying an optimization to an 

irregular GPU kernel. 
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All machine learning approaches have one thing in common: they all use data 

attributes as features to perform classification/prediction. Each data entry can be viewed 

as a data point in an N-dimensional space, where N is the number of attributes each data 

item has. Assume we have 20,000 data entries for training. By assigning them to data 

points in the N-dimensional space, we can uniquely represent each data item. This model 

makes it possible to place any new data point into this space so that it can be classified 

based on its similarity to other nearby data points. 

In this project, the target irregular GPU kernel would be profiled (quantified into 

numbers) and the ML tool will use its trained model to predict the expected speedup. 

 

3.7 Machine Learning Algorithms 

In this section, I briefly explain three popular machine leaning algorithms that I 

have used in my experiments. 

Regression is concerned with modelling the relationship between variables that is 

iteratively refined using a measure of error in the predictions made by the model. 

Regression methods are important in statistics and have been cooped into statistical 

machine learning. 

The instance-based learning model is a decision problem with instances or 

examples of training data that are deemed important or required to the model. Such 

methods typically build up a database of example data and compare new data to the 

database using a similarity measure to find the best match and make a prediction. The 

focus is on representation of the stored instances and similarity measures used between 

instances. 
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Decision tree methods construct a model of decisions made based on the values of 

the attributes in the data. Decisions fork at each level in the tree until a leaf node is 

reached, where a prediction decision is made based on the training cases that reached the 

same leaf node. Decision trees are trained on data for classification and regression 

problems [36]. 
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CHAPTER 4 

Experiments 

4.1 Overview 

The goal of my experiments is to compare the actual speedup of using different 

optimization and the speedup predicted by the machine learning tool. If the predicted 

speedup is reasonably close to the actual speedup then it means that by accurate 

prediction of our tool we can suggest the user which optimization or any combination of 

them can be used to get higher speedup. In this project, all needed experiments had been 

divided to three major phases, i) profiling, ii) machine learning (training the model) and 

iii) analyzing outputs. In profiling phase, I had profiled the BH [35] and NB [35] code 

with different number of inputs with/without using optimizations to have some numbers 

as performance indicator. These numbers help us studying the manner and relevance of 

different optimizations and how much they affect the performance. Different machine 

learning models can be made out of the data produced in profiling phase. Then by 

running different codes as test instances and letting the machine learning tool predict the 

speedup of that test instance based on different models, I became able to compare the 

actual speedup and expected speedup to see how much accurate our tool is. 

I used NVCC V6.0.1 to compile CUDA codes on NVIDIA Tesla K20 GPU 

device. I wrote all of needed script for running the experiments, parsing and formatting 

output files using Python 2.6.6. Also for drawing charts I used R-tool V3.0.2. 
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4.2 Profiling 

Using nvprof of NVIDIA Visual Profiler V6.5, BH and NB codes have to be 

profiled and I chose them because BH is highly irregular and could be a good candidate 

to represent all type of irregularity in the GPU code and NB is the same problem but with 

complete regular implementation. Profiling these two codes would show us the difference 

of performance characteristics of each code. Their profiling data is my main dataset that I 

perform the experiments and evaluate the power of the proposed tool. During the 

experiments, I wanted to collect different information about the kernels. The more 

information I have, the better model I can create based on that information. Using a 

command from nvprof, I found 250 metrics or events that can be calculated and 

supported by this tool. Although it takes a while to measure all available attributes, I 

decided to measure them because I did not know exactly which events/metrics are useful 

in next phase and could be a feature in the machine learning process. Once I figured out 

which features are playing more important role in prediction tool for making decision, I 

can narrow down the list of events/metrics to the ones that help us more for better 

prediction. 

 

4.3 Optimizations 

The two programs had been modified in a way that makes it possible 

to individually enable or disable specific optimizations. For NB, we chose the following 

six code optimizations: 
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1. FTZ is a compiler flag that allows the GPU to flush denormal numbers to zero when 

executing floating-point operations, which results in faster computations. 

While strictly speaking not a code optimization, the same effect can be achieved by 

using appropriate intrinsic functions in the source code. 

2. RSQRT uses the CUDA intrinsic “rsqrtf()” to quickly compute one over square root 

instead of using the slower but slightly more precise “1.0f / sqrtf()” expression. 

3. CONST copies immutable kernel parameters once into the GPU’s constant memory 

rather than passing them every time a kernel is called, i.e., it lowers the calling 

overhead. 

4. PEEL separates the innermost loop of the force calculation into two consecutive loops, 

one of which has a known iteration count and can therefore presumably be better 

optimized by the compiler. The second loop performs the remaining iterations. 

5. SHMEM employs blocking, i.e., it preloads chunks of data into the shared memory, 

operates exclusively on this data, then moves on to the next chunk. This drastically 

reduces the number of global memory accesses. 

6. UNROLL uses a pragma to request unrolling of the innermost loop(s). Unrolling often 

allows the compiler to schedule instructions better and to eliminate redundancies, thus 

improving performance. 

 

For BH, we selected the following six source-code optimizations. 

1. VOTE employs thread voting instead of a shared-memory-based code sequence to 

perform a 32-element reduction. 
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2. WARP switches from a thread-based to a warp-based implementation that is much 

more efficient because it does not suffer from branch divergence and uses less 

memory as it records certain information on a per warp instead of a per thread basis. 

3. SORT approximately sorts the bodies by spatial distance to minimize the tree prefix 

that needs to be traversed during the force calculation. 

4. RSQRT is identical to its NB counterpart. 

5. FTZ is also identical to the corresponding NB optimization. 

6. VOLA strategically copies some volatile variables into non-volatile variables and 

uses those in code regions where it is known (due to lockstep execution of threads in 

a warp) that no other thread can have updated the value. This optimization reduces 

memory accesses. 

 

 

4.4 Naming 

I compiled each of NB/BH code with different combination of optimizations, 

different inputs (different number of bodies and different number of time-steps). Also in 

my experiments I used replication methods to ensure consistency and improve reliability. 

Any unexpected event or interruption on the device that I was running the experiments on 

could affect the results and makes them less precise. Because of that, I profiled each of 

the executables 3 times to make sure that I would get accurate results. 

First of all for ease of reading and finding desired file, I converted the 

presence/absence of each of six optimizations for each code into a bit-string of 0s and 1s 

with length of 6. The order of different optimizations for different codes are shown in 

Table 4.1 
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Code Bit 5 
Most Significant Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

least Significant 

BH VOTE WARP SORT RSQRT FTZ VOLA 

NB FTZ RSQRT CONST PEEL SHMEM UNROLL 

 
Table 4.1 Order of optimizations in bit-string 

 

For example, the bit-string 000101 for BH code shows that the optimizations 

RSQRT and VOLA had been used. 

For BH and NB, I used different number of bodies and time-steps as shown in 

Table 4.2. I tried to choose meaningful and scalable size of inputs in order to make the 

code use enough resources to keep our analysis more accurate and complete. For BH 

code which is an irregular GPU code, I profiled the code with 3 different numbers of 

bodies and also with half of them to see how much decreasing inputs to half, affects the 

results. 

 

NB BH 

Body Time-step Body Time-step 

50,000 2 125,000 2 

100,000 2 250,000 2 

100,000 5 250,000 5 

200,000 5 500,000 5 

- - 500,000 10 

- - 1,000,000 10 

 
Table 4.2 Inputs for profiling BH and NB codes 

 
For each set of inputs, I had profiled the code with different combination of six 

optimizations (64 different combinations in total). 

The profiling information contains values such as number of cache hits/misses or 

amount of data transfer (bits) which are highly dependent to the size of input. In order to 
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make the profiling information comparable to each other regardless of input sizes, the 

dataset need to be normalized. Normalizing data adjusts values measured on different 

scales to a notionally common scale. For normalizing profiled data, I used Vn = Vo/A * C 

where Vo is the value of each attribute before normalization, Vn is the value of 

corresponding attribute after normalization, A is the number of active cycles and C is a 

constant. Using this equation, the values are input size-independent and all data would be 

measured on same scale. 

Once I got all the results from profiling phase, I can train and create models based 

on the profiling data (training dataset) and predict the speedup of any test instance 

(testing dataset). But before testing unknown test instances on the training model, we 

need to make sure that our model is valid. Cross validation is one of the techniques helps 

us validate the model. 

 

4.5 Cross Validation 

Cross-validation is a model validation technique for assessing how the results of 

a statistical analysis will generalize to an independent data set. It is mainly used in 

systems where the goal is prediction, and one wants to estimate how accurately a 

predictive model will perform in practice. The goal of cross validation is to define a 

dataset to "test" the model in the training phase give an insight on how the model will 

generalize to an independent data set. 

One round of cross-validation involves partitioning a sample of data into 

complementary subsets, performing the analysis on one subset (called the training set), 

and validating the analysis on the other subset (called the validation set or testing set). To 

http://en.wikipedia.org/wiki/Model_validation
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Accuracy
http://en.wikipedia.org/wiki/Complement_(set_theory)
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reduce variability, multiple rounds of cross-validation are performed using different 

partitions, and the validation results are averaged over the rounds. 

In my experiments I tried to train and test on different datasets to see how 

accurate our model is. As I mentioned above, for each set of inputs I did each profiling 

experiment 3 times. Also for each set of inputs, I profiled the codes for all possible 

combination of six optimizations (64 combinations). So I have 192 total number of files 

after profiling for each input size. Shown in Table 4.3, different experiments for 

evaluating the tool have been set up for BH and NB code. 

 

Experiment 
Training 

Dataset 

Dataset  

Entries 

Testing  

Dataset 

Dataset  

Entries 

Tests  

includes 

Trainings 

Train and 

test on same 

input 

1 BH 64 BH 192 Yes Yes 

2 BH 64 BH 128 No Yes 

3 BH 128 BH 64 No Yes 

4 BH 192 BH 64 No No 

5 BH 192 NB 192 No No 

6 NB 192 BH 192 No No 
 

Table 4.3 Different experiments for evaluating the tool 

 
Our machine learning method leverages the algorithms implemented in Weka, a 

tool for performing data mining tasks [37]. I applied this method to the dataset that had 

been produced in profiling phase. This tool predicts the speedup that we expect to get 

applying different optimization flags. For each test instance, this tool using four different 

prediction methods (Regression, IBK, M5P and Odds Ratio) and predict the speedup of 

using each of 6 different optimization flags. Afterwards, the expected speedup could be 

compared to the actual speedup. 

 

 

http://en.wikipedia.org/wiki/Variance
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4.6 Analyzing Output 

As mentioned above, the ML tool predicts speedup for each test instance in case 

of using different flags. The generated output by the ML tool tells us how much speedup 

we should get if we use those flags. For instance, if the generated value for the flag 

WARP is 1.73, it means that if we enable the flag WARP and compile the BH code then 

run it with 125000 bodies and 2 time-steps, we expect the runtime to be 1.73 times faster 

than doing the same thing but with disabled WARP flag. Then by comparing the 

predicted value 1.73 with the real speedup, we can measure the accuracy of the ML tool. 

If the prediction is relatively close to the real speedup then we can suggest to the user to 

use the mentioned flag in order to get optimized results. 
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CHAPTER 5 

Evaluation, Results, and Analysis 

5.1 Overview 

This chapter presents the results of the experiments I performed to evaluate the 

prediction accuracy of the proposed approach. As discussed previously, the output of the 

tool I wrote are predictions of the speedups we expect to obtain when using different 

source-code optimizations. To validate the results, I compared the predicted with the 

actual speedup in many scenarios. 

The experiments include different experiments of cross validation. In experiments 

1 through 4, I trained and tested the model based on the BH code. In experiments 5 and 6, 

the model is trained on BH/NB and tested on NB/BH. The number of data entries in each 

training/testing dataset are multiples of 64 because I opted to include all 64 combinations 

of the investigated optimizations in each dataset. The following subsections provide more 

detail about the different experiments and strategies. 

Each tuple < n, t > corresponds to 64 data-file entries where n is the input size and 

t is number of the run. The strategy that I chose for evaluating and comparing the results 

is the following. For each specific optimization and tuple < n, t >, I removed all entries 

that included this optimization, which always leaves 32 entries that do not include the 

optimization. Testing on the trained model generates 6 different predicted speedups, one 

for each of the studied optimizations. The predicted speedup values are then compared to 

the actual (measured) speedup when actually including this optimization in the code. 
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Calculating the ratio of the actual speedup (AC) over the expected speedup (EX) 

shows how close the prediction is to the real speedup. If the predictions are accurate, the 

ML tool can use them to rank the different optimization, that is, suggest the most 

promising optimizations (if any) to the user based on the expected speedup. 

I show the results in form of strip charts. A strip chart plots the data along a line 

with each data point represented by a star. It is often used for showing the density and 

distribution of data. For each training model, the resulting strip chart shows 32 data 

points that represent the ratio of the actual speedup over the expected (predicted) 

speedup. Note that the speedup predictions do not have to be 100% accurate for the tool 

to work well. As long as the speedups are approximately correct, the tool will recommend 

the appropriate source-code optimizations, if any. 

 

5.2 Experiment 1 

For each set of inputs, I performed three runs, i.e., I profiled the BH code three 

times. In the first experiment, I trained the model based on the 64 data-files from a single 

run and tested all 192 files, including the training data, on the resulting ML model. As I 

trained and tested on the same dataset, I expected the predictions to be accurate. Each 

machine learning method used in the prediction tool typically yields a different predicted 

speedup. To improve readability, I only show the results from the one or two best-

performing ML models. 

The Y axis of the result charts is the ratio of the Actual Speedup (AC) over the 

Expected Speedup (EX). The closer the data-points are to 1.0 the more accurate the 
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prediction is. The X axis represents the tuples < Tr, Ts > where Tr is the training model 

and Ts is testing dataset. 

Figure 5.1 shows the results of experiment 1 for the six optimizations using the 

IBK method. As expected, the predictions are very close to the actual speedup. 

 

 

Figure 5.1: Ratios (AC/EX), Experiment 1, IBK method 

 

Most of the data points are above the red line, which means the ratio of the actual 

speedup over the predicted speedup is greater than 1.0. In fact, almost 95% of the 

predictions made by the IBK method are less than the actual speedup and are, therefore, 

underestimated. Nevertheless, all of the data-points fall into the range (0.8, 1.2), which 

b) WARP a) VOTE c) FTZ 

f) VOLA e) RSQRT d) SORT 



 

34 

shows that the predictions are close to the actual speedup in all cases. This is expected 

since the test instances include the training dataset. 

Sometimes, using certain optimizations might hurt performance, leading to a 

slowdown. I compared the actual speedup with the predicted speedup for each 

optimization to see if they both increase (PP) or decrease (NN) the performance. If both 

the predicted and the actual speedup are greater than one, it is correct for the 

recommendation tool to predict a performance gain and thus to recommend the 

optimization. Similarly, if both the predicted and the actual speedup are less than 1.0, 

using that optimization would hurt performance and not recommending the 

corresponding optimization by the tool is the correct behavior. Table 5.1 shows how 

often the expected speedup and the actual speedup are either both above 1.0 or both 

below 1.0. Using this metric and the IBK method, on average over 97% of the predictions 

match the actual behavior. The PN and NP columns in this table show how often the 

expected speedup and the actual speedup are opposite (i.e., false positives and false 

negatives). 

 

  PP PN NP NN Accuracy 

VOTE 75.0 0.0 0.0 25.0 100.0 

WARP 100.0 0.0 0.0 0.0 100.0 

SORT 85.4 0.0 0.0 14.6 100.0 

RSQRT 90.3 4.9 0.7 4.2 94.4 

FTZ 52.3 7.3 3.6 36.8 89.1 

VOLA 100.0 0.0 0.0 0.0 100.0 

      

    
Total 97.3 

 
Table 5.1: Accuracy of predicted behavior, Experiment 1, IBK method 
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Figure 5.2 shows the results when using the M5P method for making the 

predictions. Comparing with the IBK results above, it seems that IBK performs better. 

For example, the range of the ratios for VOTE is (0.99, 1.03) using IBK and (0.4, 1.5) 

using M5P. Unlike IBK, which makes mostly underestimated predictions, the ratios of 

M5P are about evenly distributed below and above 1.0. 

 

 
Figure 5.2: Ratios (AC/EX), Experiment 1, M5P method 

 
 

The accuracy of the predicted behavior is also better in IBK compared to M5P. 

Table 5.2 shows the percentage of accurate predictions for each optimization. Only 57% 

of the FTZ behavior is correctly predicted, which severely hurts the overall accuracy. 

Note that FTZ does not typically help or hurt performance, much making it hard to 

predict its behavior correctly. 

a) VOTE b) WARP c) FTZ 

d) SORT e) RSQRT f) VOLA 
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  PP PN NP NN Accuracy 

VOTE 69.8 5.2 0.7 24.3 94.1 

WARP 94.1 5.9 0.0 0.0 94.1 

SORT 80.6 4.9 11.1 3.5 84.0 

RSQRT 85.4 9.7 1.4 3.5 88.9 

FTZ 17.4 42.2 0.7 39.8 57.1 

VOLA 100.0 0.0 0.0 0.0 100.0 

      

    
Total 86.4 

 
Table 5.2: Accuracy of predicted behavior, Experiment 1, M5P method 

 
 

The remaining ML methods, Linear Regression and Odds Ratio, result in worse 

performance and are not interesting enough to be shown here. 

 
5.3 Experiment 2 

In this experiment, I trained the model on the 64 data-files of a single run and 

tested the other 128 files obtained from the two other runs. Although the training data is 

not included in the testing data, the results are expected to be accurate because all files 

stem from the same program running the same inputs multiple times. Figure 5.3 and 

Table 5.3 show the results for the six optimizations using the IBK method for experiment 

2. 

The results are almost identical to experiment 1 with just a slight decrease in 

accuracy due to excluding the training data from the testing dataset. The results for the 

M5P method are also very similar to those of experiment 1. The M5P method uses just a 

few features so excluding the training data from the testing dataset does not affect the 

results significantly. 
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  PP PN NP NN Accuracy 

VOTE 75.0 0.0 0.0 25.0 100.0 

WARP 100.0 0.0 0.0 0.0 100.0 

SORT 85.4 0.0 0.0 14.6 100.0 

RSQRT 89.1 6.1 1.6 3.3 92.4 

FTZ 49.7 9.8 6.3 34.1 83.9 

VOLA 100.0 0.0 0.0 0.0 100.0 

      

    
Total 96.0 

 
Table 5.3: Accuracy of predicted behavior, Experiment 2, IBK method 

 

 

 

 

c) FTZ a) VOTE b) WARP 

d) SORT e) RSQRT f) VOLA 

Figure 5.3: Ratios (AC/EX), Experiment 2, IBK method 
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5.4 Experiment 3 

In experiment 3, I trained the model on 128 files and tested on other 64 

(experiment 2 used the opposite approach). The hope is that using more training data will 

improve the resulting model. Figure 5.4 and Table 5.4 show the results for the six 

optimizations using the IBK method for experiment 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These results are comparable to the results from the previous experiments in terms 

of underestimating the speedup and the prediction accuracies. In all cases, the range of 

the ratios is (0.95, 1.05). If the few outliers in WARP (Figure 5.4.b) are ignored, the 

a) VOTE b) WARP c) FTZ 

d) SORT e) RSQRT f) VOLA 

Figure 5.4: Ratios (AC/EX), Experiment 3, IBK method 
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results reveal that adding 64 more data-files to the training dataset does not have a 

significant impact on IBK’s predictions. The same is true for the M5P method. 

 

  PP PN NP NN Accuracy 

VOTE 75.0 0.0 0.0 25.0 100.0 

WARP 100.0 0.0 0.0 0.0 100.0 

SORT 85.4 0.0 0.0 14.6 100.0 

RSQRT 89.2 5.9 1.0 3.8 93.1 

FTZ 48.6 10.9 4.5 35.9 84.5 

VOLA 100.0 0.0 0.0 0.0 100.0 

      

    
Total 96.3 

 
Table 5.4: Accuracy of predicted behavior, Experiment 2, IBK method 

 

Obtaining about 96% accuracy in the first 3 experiments is expected because 

training and testing on almost identical data makes the results accurate. In the following 

experiments, the training dataset is different from the testing dataset in both the program 

inputs and the programs themselves. 

 

5.5 Experiment 4 

In experiment 4, I trained the model with all 192 data-files from one program 

input and tested on 64 files from each of the other program inputs. Figure 5.5 shows the 

results of the VOTE optimization with the IBK method. Most of the ratios are around 1.0, 

meaning that the predicted speedups are close to the actual speedup when adding the 

VOTE optimization. Unlike in the 3 previous experiments, where most of the IBK ratios 

were above 1.0, in this experiment the ratios are distributed quite evenly above and below 

the line. This is also true for the other optimizations (Figure 5.6 and Figure 5.7). The few 
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outliers in Figure 5.5 stem from test cases using the smallest input size, which apparently 

result in sufficiently different performance metrics to throw off IBK. 

 

 

Figure 5.5: Ratios (AC/EX) of VOTE, Experiment 4, IBK method 

 

 

 
 

Figure 5.6: Ratios (AC/EX) of WARP, SORT, and VOLA, Experiment 4, IBK method 

 
 

For the optimizations WARP, SORT, and VOLA, the predictions on smaller 

inputs are also less accurate than using larger inputs. The plotted ratios are denser close to 

the 1.0 line for all 3 optimizations in Figure 5.6 because of the higher accuracy with 

larger inputs. Nevertheless, the results are promising because the range of the ratios in all 

a) WARP b) SORT c) VOLA 
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of these cases is (0.1, 2), which means the tool’s prediction speedups are reasonably close 

to the actual speedups. 

Figure 5.7 shows the ratios for FTZ and RSQRT using IBK. The range of the 

ratios is (0.98, 1.04) and quite evenly distributed regardless of the input size and test 

cases. 

 

 
Figure 5.7: Ratios (AC/EX) of FTZ and RSQRT, Experiment 4, IBK method 

 
 

Table 5.4 shows that the accuracy of positive/negative speedup is still 92% on 

average. Clearly, training the model on data from one input and testing on data from a 

different input does not hurt the model’s performance substantially. 

Figure 5.8 shows the ratios of the predicted speedup over the actual speedup using 

the M5P method. The ratios are more densely clustered around the 1.0 line than they are 

for the IBK method. Moreover, the range of ratios has a tighter bound (0.5, 1.5). 

 

 

a) FTZ b) RSQRT 
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  PP PN NP NN Accuracy 

VOTE 72.3 2.7 0.0 25.0 97.3 

WARP 100.0 0.0 0.0 0.0 100.0 

SORT 81.7 3.8 1.3 13.3 95.0 

RSQRT 87.6 7.7 3.2 1.5 89.1 

FTZ 44.3 15.1 14.1 26.6 70.8 

VOLA 100.0 0.0 0.0 0.0 100.0 

      

    
Total 92.0 

 
Table 5.5: Accuracy of predicted behavior, Experiment 4, IBK method 

 

 

 

 
 

Figure 5.8: Ratios (AC/EX), Experiment 4, M5P method 

 

However, as it is shown in Table 5.4, the accuracy of the prediction behavior is 

lower than IBK’s. This difference between ratios and behavior prediction accuracy shows 

that the ratio of the actual speedup over the predicted speedup can be close to 1.0 yet the 

a) VOTE b) WARP 
c) SORT 

d) FTZ e) RSQRT f) VOLA 
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predicted speedup lies on the “other” side of the 1.0 line than the actual speedup. 

Fortunately, such cases are easily avoided in the recommendation tool by not suggesting 

optimizations that only result in a small speedup above 1.0. 

 

  PP PN NP NN Accuracy 

VOTE 59.8 15.2 11.7 13.3 73.1 

WARP 96.0 4.0 0.0 0.0 96.0 

SORT 80.0 5.4 12.1 2.5 82.5 

RSQRT 80.8 14.5 2.3 2.4 83.2 

FTZ 16.9 42.5 3.0 37.6 54.5 

VOLA 100.0 0.0 0.0 0.0 100.0 

      

    
Total 81.6 

 
Table 5.6: Accuracy of predicted behavior, Experiment 4, M5P method 

 

5.6 Experiment 5 

Training the model on a set of programs and testing it on a different program is 

the ultimate test of my approach. In this experiment, I trained the model on different 

versions of the BH code and used various versions of the NB code as test cases. This 

experiment shows much of the results change when I train the model based on data from 

an irregular GPU code and test it on a regular GPU code. Note that the FTZ and RSQRT 

optimizations are common to both BH and NB. Hence, I only compare the predicted and 

actual speedups of these two optimizations as I do not know the actual speedups of the 

remaining four optimizations when they are applied to NB. 

Figure 5.9 shows the results of this experiment using IBK. Almost half of the 

ratios are below the 1.0 line. The range of the ratios for FTZ is (0.2, 1.7), which shows 

that the prediction accuracy of the speedup is not as close as it was in the previous 
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experiments (Figure 5.9.a). For RSQRT, the range of the speedups is (0, 3.5), which 

means there is a significant difference between the actual and the predicted speedup in 

many cases. As before, the prediction results for test cases with larger input sizes tends to 

be better. For each model, I tested all 64 data-files of each set of four inputs on the NB 

code. As GPU codes generally have better performance on large inputs, getting better 

results for training and testing the model on larger inputs is beneficial. 

Considering that I am training and testing on two totally different codes, the 

results are still promising. As shown in Table 5.5, the accuracy of the predictions for 

these two optimizations is almost 84%. This means that the tool’s suggestions on these 

optimizations to the user are correct 84% of the time. 

 

 

 

 

 

 

 

 

Figure 5.9 Ratios (AC/EX), Experiment 5, IBK method 

 
 

 
Figure 5.9: Ratios (AC/EX) of FTZ and RSQRT, Experiment 5, IBK method 

 
 

The accuracy of the M5P method in this experiment for FTZ and RSQRT is only 

33%. The reason of this low accuracy is that M5P uses very few features for making 

decisions. When the training and testing dataset are from different programs, the 

possibility of accurate predictions based on just a few features is relatively low. 

a) FTZ b) RSQRT 
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  PP PN NP NN Accuracy 

FTZ 85.9 0.0 14.1 0.0 85.9 

RSQRT 81.3 0.0 18.8 0.0 81.3 

      

    
Total 83.6 

 
Table 5.7: Accuracy of predicted behavior, Experiment 5, IBK method 

 

 

5.7 Experiment 6 

This final experiment is identical to experiment 5 except I switched the training 

and testing datasets. Hence, I trained the model on data from the regular NB code and 

tested it on data from the irregular BH code. 

Interestingly, all of the predicted speedups for FTZ using the IBK method are 

lower than the actual speedups of using FTZ on the BH code because all of the ratios are 

in the range (0, 0.7) as shown Figure 5.10.a. Moreover, RSQRT has better predicted 

values in this experiment rather than the previous one (Figure 5.10.b). The range of 

values of ratios is (0.78, 1.45) and most of the ratios are close to line 1.0. For smaller size 

of input of training and testing dataset the prediction tool overestimated the speedups. 

Table 5.5 shows the accuracy of the predicted values. Comparing the results of 

the IBK method of this experiment with the corresponding results from the previous 

experiment, I find that more accurate predictions are made by the tool when the model is 

trained on irregular code and tested on regular code, which makes sense as irregular 

codes tend to be more complex. 
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Figure 5.10: Ratios (AC/EX), Experiment 6, IBK method 

 
 
 

  PP PN NP NN Accuracy 

RSQRT 51 46.7 0.6 1.8 52.7 

FTZ 58.6 0 41.4 0 58.6 

      

    
Total 55.7 

 

 
Table 5.8: Accuracy of predicted behavior, Experiment 6, IBK method 

 
 
 

There is another important difference between this experiment and all previous 

experiments. In the first five experiments, the prediction accuracy of IBK is better than 

that of M5P. However, as shown in Table 5.6, in experiment 6 the overall accuracy of 

M5P is better than IBK. Hence, there is no one ML model that is always better for my 

tool. M5P yields better performance because it narrows the features down to a few 

metrics, which are significant for both irregular and regular codes. 

 

a) FTZ b) RSQRT 
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  PP PN NP NN Accuracy 

RSQRT 74.8 22.9 1.4 1 75.8 

FTZ 7.6 51 4.7 36.7 44.3 

      

    
Total 60.1 

 
Table 5.9: Accuracy of predicted behavior, Experiment 6, M5P method 

 

In almost all of experiments, the IBK method of the prediction tool generated 

better expected speedup than other methods. The reason is IBK method is an instance-

based model which builds the model at testing time based on the test instance attributes in 

addition to the training data attributes. Also as it is shown in almost all of strip charts, the 

dense of data-points (AC/EX) is more around line 1.0 for larger input sizes. 
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CHAPTER 6 

Summary and Conclusion 

6.1 Summary 

In this thesis, I designed a tool to suggest optimization hints to the user in order to 

improve the efficiency of GPU code with an emphasis on irregular codes. The tool needs 

to be trained on performance data from different programs that do and do not include 

certain source-code optimizations. During this training, the tool builds machine-learning 

models for each optimization so that it can later estimate the speedup for each 

optimization when presented with performance data from other programs. To measure 

and quantify the performance, I profile different GPU codes with/without certain 

optimizations and with multiple inputs to gather a large set of performance data. The tool 

is able to rank the optimizations based on their predicted speedup and suggests the top 

optimizations to the user if their predicted speedup is above a given threshold. To 

evaluate the accuracy of the predicted speedups, I compared them to the actual speedups 

obtained when adding the various source-code optimizations to the code. I performed six 

different performance evaluation experiments of training models and predicting 

speedups. In first four experiments, I trained and tested the model on the BH code and 

obtained up to 97% prediction accuracy. In the remaining two experiments, where I train 

the model on BH/NB and test it on NB/BH, the tool delivers up to 82% of accuracy. 
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6.2 Conclusion 

Based on the results shown in Chapter 5, the predictions of the machine learning 

tool are more precise when I trained the model on data-files obtained with larger program 

input sizes. This makes sense as larger inputs result in more profiling data and more 

stable-state utilization of the GPU. Expectedly, training the model with more data yields 

better predictions. 

When training the model on code that is different from the tested code, I found 

that model training based on irregular codes and testing on regular codes results in better 

predictions than training on regular code and testing on irregular codes. This is likely a 

combination of two factors. First, regular codes are less complex, making them easier to 

predict in general. Second, the higher complexity of irregular codes probably provides 

more diverse training data, which results in better trained ML models. 

I studied four different machine learning methods for making the predictions. My 

results show that there is no such thing as one clear winner. Nevertheless, IBK generally 

performs very well when predicting the likely speedup of source-code optimizations. 

 

6.3 Future Work 

In this thesis, I used differently optimized Barnes-Hut implementations of the n-

body problem as a representative irregular GPU code. Of course, using additional 

(irregular) codes for training would be better. Also, I studied six source-code 

optimizations as a proof of concept. Large numbers of optimizations can and should be 
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used to better test the capabilities of the tool and to validate the approach. Finally, I used 

six different inputs. Especially on irregular codes, which can be input sensitive, profiling 

with more diverse inputs might be beneficial to see how much the inputs affect the 

accuracy of the predictions. 

For the machine learning phase, I investigated four different methods. Other types 

of machine learning methods could, of course, be employed for predicting the speedups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

51 

LITERATURE CITED 

 [1] B. P. Miller and J. K. Hollingworth and M. D. Callaghan, The Paradyn Performance 

Tools and PVM, Proceedings of the Second Workshop on Environments and Tools 

for Parallel Scientific Computing: Townsend, TN, USA, 25–27 May 1994, pp. 201-

210, Society for Industrial and Applied Mathematics, 1994. 

[2] Bernd Mohr and Felix Wolf, KOJAK - a tool set for automatic performance 

analysis of parallel programs, Springer-Verlag, 2003. 

[3]  Zoltán Szebenyi, Brian J. N. Wylie, Felix Wolf: SCALASCA Parallel Performance 

Analyses of SPEC MPI2007 Applications. In Proc. of the 1st SPEC International 

Performance Evaluation Workshop (SIPEW), Darmstadt, Germany, volume 5119 of 

Lecture Notes in Computer Science, pages 99-123, Springer, June 2008. 

[4]  W. E. Nagel and A. Arnold and M. Weber and H.-Ch. Hoppe and K. Solchenbach, 

VAMPIR: Visualization and Analysis of MPI Resources, 1996. 

[5] Matthias S. Müller and Andreas Knüpfer and Matthias Jurenz and Matthias 

Lieber and Holger Brunst and Hartmut Mixand Wolfgang E. Nagel, Developing 

Scalable Applications with Vampir, VampirServer and VampirTrace, PARCO, 

Advances in Parallel Computing, Vol. 15, pp. 637-644, IOS Press, 2007. 

[6]  Michael Gerndt and Karl Fürlinger and Edmond Kereku, Periscope: Advanced 

Techniques for Performance Analysis, PARCO, John von Neumann Institute for 

Computing Series, Vol. 33, pp. 15-26, Central Institute for Applied Mathematics, 

Jülich, Germany, 2005. 

[7]  S. Shende and A. D. Malony, “The TAU Parallel Performance System,” 

International Journal of High Performance Computing Applications, SAGE 

Publications, 20(2):287-331, Summer 2006 

[8]  Allen D. Malony, Scott Biersdorff, Wyatt Spear, and Shangkar Mayanglambam. 

2010. An experimental approach to performance measurement of heterogeneous 

parallel applications using CUDA. In Proceedings of the 24th ACM International 

Conference on Supercomputing (ICS ‘10). ACM, New York, NY, USA, 127-136. 

DOI=10.1145/1810085.1810105 http://doi.acm.org/10.1145/1810085.1810105 

[9] http://www.vi-hps.org/projects/score-p/ 

http://liinwww.ira.uka.de/csbib?query=%2Bau:MillerBP*+%2Bau:Miller&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:HollingworthJK*+%2Bau:Hollingworth&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:CallaghanMD*+%2Bau:Callaghan&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:MohrB*+%2Bau:Mohr&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:WolfF*+%2Bau:Wolf&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:NagelWE*+%2Bau:Nagel&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:ArnoldA*+%2Bau:Arnold&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:WeberM*+%2Bau:Weber&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:HoppeHC*+%2Bau:Hoppe&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:SolchenbachK*+%2Bau:Solchenbach&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:MullerMS*+%2Bau:Muller&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:KnupferA*+%2Bau:Knupfer&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:JurenzM*+%2Bau:Jurenz&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:LieberM*+%2Bau:Lieber&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:LieberM*+%2Bau:Lieber&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:BrunstH*+%2Bau:Brunst&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:MixH*+%2Bau:Mix&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:NagelWE*+%2Bau:Nagel&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:GerndtM*+%2Bau:Gerndt&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:FurlingerK*+%2Bau:Furlinger&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:KerekuE*+%2Bau:Kereku&maxnum=200&sort=year
http://doi.acm.org/10.1145/1810085.1810105
http://www.vi-hps.org/projects/score-p/


 

52 

[10]  Laksono Adhianto and Sinchan Banerjee and Michael Fagan and Mark 

Krentel and Gabriel Marin and John Mellor-Crummey and Nathan Tallent, 

HPCToolkit: Performance tools for parallel scientific computing, SC’08 USB Key, 

ACM/IEEE, November 2008. 

[11]  https://developer.nvidia.com/cuda-profiling-tools-interface 

[12]  Browne, S., Deane, C., Ho, G., Mucci, P. “PAPI: A Portable Interface to Hardware 

Performance Counters,” Proceedings of Department of Defense HPCMP Users 

Group Conference, June, 1999. 

[13] Markus Geimer, Felix Wolf, Brian J. N. Wylie, Erika Ábrahám, Daniel Becker, 

Bernd Mohr: The SCALASCA Performance Toolset Architecture. In Proc. of the 

International Workshop on Scalable Tools for High-End Computing (STHEC), Kos, 

Greece, pages 51–65, June 2008. 

[14] https://developer.nvidia.com/nvidia-visual-profiler 

[15] http://www.nvidia.com/object/nsight.html 

[16] Michael Knobloch and Timo Minartz and Daniel Molka and Stephan 

Krempel and Thomas Ludwig 0002 andBernd Mohr, Electronic poster: eeclust: 

energy-efficient cluster computing, SC Companion, pp. 99-100, ACM, 2011. 

[17] http://www.hpctoolkit.org 

[18] http://www.vi-hps.org/projects/ 

[19] Martin Schulz, Jim Galarowicz, Don Maghrak, William Hachfeld, David Montoya 

and Scott Cranford, Analyzing the Performance of Scientific Applications with 

Open|SpeedShop, Parallel Computational Fluid Dynamics:, to be North-Holland, ( 

November ) May 2009. 

[20] http://software.intel.com/en-us/intel-vtune-amplifier-xe 

[21] https://computing.llnl.gov/tutorials/parallel_comp/#Who 

[22] http://en.wikipedia.org/wiki/Graphics_processing_unit 

[23] http://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-

a-gpu/ 

[24] Martin Burtscher, Rupesh Nasre, and Keshav Pingali. A Quantitative Study of 

Irregular Programs on GPUs. In Proceedings of the 2012 IEEE International 

Symposium on Workload Characterization, pages 141-151, 2012. 

http://liinwww.ira.uka.de/csbib?query=%2Bau:AdhiantoL*+%2Bau:Adhianto&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:BanerjeeS*+%2Bau:Banerjee&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:FaganM*+%2Bau:Fagan&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:KrentelM*+%2Bau:Krentel&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:KrentelM*+%2Bau:Krentel&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:MarinG*+%2Bau:Marin&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:%28%2bMellor%20%2bCrummeyJ%2a%29+%2Bau:Mellor-Crummey&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:TallentN*+%2Bau:Tallent&maxnum=200&sort=year
https://developer.nvidia.com/cuda-profiling-tools-interface
https://developer.nvidia.com/nvidia-visual-profiler
http://www.nvidia.com/object/nsight.html
http://liinwww.ira.uka.de/csbib?query=%2Bau:KnoblochM*+%2Bau:Knobloch&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:MinartzT*+%2Bau:Minartz&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:MolkaD*+%2Bau:Molka&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:KrempelS*+%2Bau:Krempel&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:KrempelS*+%2Bau:Krempel&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:LudwigT*+%2Bau:Ludwig&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:MohrB*+%2Bau:Mohr&maxnum=200&sort=year
http://www.hpctoolkit.org/
http://www.vi-hps.org/projects/
http://software.intel.com/en-us/intel-vtune-amplifier-xe
https://computing.llnl.gov/tutorials/parallel_comp/#Who
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
http://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/


 

53 

[25] http://www.hpcwire.com/2014/01/09/future-accelerator-programming/ 

[26] CS 4378T / CS 5351 Spring 2013 Lecture, Martin Burtscher, Texas State 

University 

[27] https://developer.nvidia.com/nvidia-visual-profiler 

[28] http://en.wikipedia.org/wiki/N-body_problem 

[29] https://www.princeton.edu/~achaney/tmve/wiki100k/docs/N-body_problem.html 

[30] http://en.wikipedia.org/wiki/Barnes%E2%80%93Hut_simulation 

[31] http://docs.nvidia.com/cuda/profiler-users-guide/#nvprof-overview 

[32] http://en.wikipedia.org/wiki/Profiling_(computer_programming) 

[33] http://home.wlu.edu/~whaleyt/classes/parallel/topics/amdahl.html 

[34] http://en.wikipedia.org/wiki/Machine_learning 

[35] http://iss.ices.utexas.edu/?p=projects/galois/lonestargpu 

[36] http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/ 

[37] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, 

Ian H. Witten (2009); The WEKA Data Mining Software: An Update; SIGKDD 

Explorations, Volume 11, Issue 1. 

 

 

 

 

http://www.hpcwire.com/2014/01/09/future-accelerator-programming/
https://developer.nvidia.com/nvidia-visual-profiler
http://en.wikipedia.org/wiki/N-body_problem
https://www.princeton.edu/~achaney/tmve/wiki100k/docs/N-body_problem.html
http://en.wikipedia.org/wiki/Barnes%E2%80%93Hut_simulation
http://docs.nvidia.com/cuda/profiler-users-guide/#nvprof-overview
http://en.wikipedia.org/wiki/Profiling_(computer_programming)
http://en.wikipedia.org/wiki/Machine_learning
http://iss.ices.utexas.edu/?p=projects/galois/lonestargpu
http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/

