
A TOOL FOR AUTOMATIC SUGGESTIONS FOR IRREGULAR GPU KERNEL

OPTIMIZATION

by

Saeed Taheri

A thesis submitted to the Graduate Council of

Texas State University in partial fulfillment

of the requirements for the degree of

Master of Science

with a Major in Computer Science

December 2014

Committee Members:

 Martin Burtscher, Chair

 Apan Qasem

 Ziliang Zong

COPYRIGHT

by

Saeed Taheri

2014

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,

section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations

from this material are allowed with proper acknowledgment. Use of this material for

financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Saeed Taheri, authorize duplication of this work,

in whole or in part, for educational or scholarly purposes only.

DEDICATION

I dedicate this thesis to my family who supports me in my entire life and to the soul of

my father who I always feel his support.

v

ACKNOWLEDGEMENTS

This project was funded in part by a gift from Nvidia Corporation.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ..v

LIST OF TABLES ..viii

LIST OF FIGURES .. ix

ABSTRACT ..x

CHAPTER

1. INTRODUCTION .. 1

1.1 Serial vs. Parallel .. 1

1.2 Why Parallel? .. 2

1.3 GPU... 3

1.4 GPU vs. CPU .. 4

1.5 Thesis Motivation ... 5

2. BACKGROUND .. 7

2.1 GPU Architecture and Programming .. 7

2.2 Irregular Kernels ... 9

2.3 Main Idea .. 10

2.4 Related Work .. 10

3. DESIGN .. 16

3.1 Overview ... 16

3.2 N-body Problem .. 16

3.3 Barnes-Hut Algorithm .. 18

3.4 Profiling .. 20

3.5 Speedup ... 20

3.6 Machine Learning .. 20

3.7 Machine Learning Algorithms .. 21

4. EXPERIMENTS ... 23

vii

4.1 Overview ... 23

4.2 Profiling .. 24

4.3 Optimizations .. 24

4.4 Naming .. 26

4.5 Cross Validation.. 28

4.6 Analyzing Output .. 30

5. EVALUATION, RESULTS AND ANALYSIS ... 31

5.1 Overview ... 31

5.2 Experiment 1 ... 32

5.3 Experiment 2 ... 36

5.4 Experiment 3 ... 38

5.5 Experiment 4 ... 39

5.6 Experiment 5 ... 43

5.7 Experiment 6 ... 45

6. SUMMARY AND CONCLUSION ... 48

6.1 Summary ... 48

6.2 Conclusion .. 49

6.3 Future Work .. 49

LITERATURE CITED ... 51

viii

LIST OF TABLES

Table Page

4.1 Order of optimizations in bit-string ... 27

4.2 Inputs for profiling BH and NB codes ... 27

4.3 Different experiments for evaluating the tool .. 29

5.1: Accuracy of predicted behavior, Experiment 1, IBK method 34

5.2: Accuracy of predicted behavior, Experiment 1, M5P method 36

5.3: Accuracy of predicted behavior, Experiment 2, IBK method 37

5.4: Accuracy of predicted behavior, Experiment 3, IBK method 39

5.5: Accuracy of predicted behavior, Experiment 4, IBK method 42

5.6: Accuracy of predicted behavior, Experiment 4, M5P method 43

5.7: Accuracy of predicted behavior, Experiment 5, IBK method 45

5.8: Accuracy of predicted behavior, Experiment 6, IBK method 46

5.9: Accuracy of predicted behavior, Experiment 6, M5P method 47

ix

LIST OF FIGURES

Figure Page

1.1 Serial computations .. 1

1.2 Parallel computations ... 2

1.3 CPU vs. GPU ... 5

2.1 Streaming multiprocessors and processing elements ... 7

2.2 GPU memory architecture ... 8

3.1 Simple n-body algorithm ... 17

3.2 Pseudocode of Barnes-Hut algorithm .. 19

3.3 GPU-Implementation of BH algorithm ... 19

5.1 Ratios (AC/EX), Experiment 1, IBK method .. 33

5.2 Ratios (AC/EX), Experiment 1, M5P method ... 35

5.3 Ratios (AC/EX), Experiment 2, IBK method .. 37

5.4 Ratios (AC/EX), Experiment 3, IBK method .. 38

5.5 Ratios (AC/EX) of VOTE, Experiment 4, IBK method .. 40

5.6 Ratios (AC/EX) of WARP, SORT, and VOLA, Experiment 4, IBK method 40

5.7 Ratios (AC/EX) of FTZ and RSQRT, Experiment 4, IBK method 41

5.8 Ratios (AC/EX), Experiment 4, M5P method ... 42

5.9 Ratios (AC/EX) of FTZ and RSQRT, Experiment 5, IBK method 44

5.10 Ratios (AC/EX), Experiment 6, IBK method .. 46

x

ABSTRACT

Future computing systems, from handhelds all the way to supercomputers, will be

more parallel and more heterogeneous than today’s systems to provide more performance

without an increase in power consumption. Therefore, GPUs are increasingly being used

to accelerate general-purpose applications, including applications with data-dependent,

irregular memory access patterns and control flow.

The growing complexity, non-uniformity, heterogeneity, and parallelism will

make these systems, i.e., GPGPU-accelerated systems, progressively more difficult to

program. In the foreseeable future, the vast majority of programmers will no longer be

able to extract additional performance or energy-savings from next-generation systems

because their programming will be too difficult, i.e., the programmer will no longer

possess the necessary expertise to understand and exploit the systems effectively. In this

project, the characteristics of GPU codes are quantified and, based on these metrics,

different optimization suggestions are made.

1

CHAPTER 1

Introduction

1.1 Serial vs. Parallel

Traditionally, software has been written for serial computation. A problem is

broken into a discrete series of instructions and instructions are executed sequentially one

after another (Fig. 1.1). All of these instructions are executed on a single processor and

only one instruction may execute at any moment in time [21]. However, for performance

reasons, superscalar CPUs may execute multiple independent instructions together and

even out-of-order.

Figure 1.1 Serial computations

In the simplest sense, parallel computing is the simultaneous use of multiple

compute resources to solve a computational problem. A problem is broken into discrete

parts that can be solved concurrently. Each part is further broken down to a series of

2

instructions. Furthermore, instructions from each part execute simultaneously on different

processors and an overall control/coordination mechanism is employed (Fig. 1.2).

Figure 1.2 Parallel computations

The computational problem should be able to divide into discrete pieces of work

that can be solved simultaneously, execute multiple program instructions at any moment

in time and be solved in less time with multiple compute resources than with a single

compute resource. The compute resources are typically a single computer with multiple

processors/cores or an arbitrary number of such computers connected by a network.

1.2 Why Parallel?

Problems are too costly to be solved with the classical approach. Also there is

high demand of getting results on specific and reasonable time. In the natural world,

many complex, interrelated events are happening at the same time, yet within a temporal

3

sequence. Compared to serial computing, parallel computing is much better suited for

modeling, simulating and understanding complex problems which have some

characteristics i.e., data reuse and regularity in data accesses and control flow.

Using parallel computing could save time and/or money and/or energy. In theory,

assigning more resources to a task will shorten its time to completion, with potential cost

savings. Also, parallel computing makes us capable of solving larger and more complex

problems. Many such problems are impractical or impossible to solve them on a single

computer, especially given limited computer memory. In addition, parallelizing massive

computation has additional advantages such as taking advantage of non-local resources

[21].

1.3 GPU

A graphics processing unit (GPU) is a specialized processor designed to rapidly

manipulate and alter memory to accelerate the creation of images in a frame

buffer intended for output to a display. GPUs are used in embedded systems, mobile

phones, personal computers, workstations, supercomputers, and game consoles. Modern

GPUs are very efficient at manipulating computer graphics and image processing, and

their highly parallel structure makes them more effective than general purpose CPUs for

algorithms where processing of large blocks of data is done in parallel. In a personal

computer, a GPU can be present on a video card, or it can be on the motherboard.

The term GPU was popularized by Nvidia in 1999, who marketed the GeForce

256 as “the world’s first ‘GPU’, or Graphics Processing Unit, a single-chip processor

http://en.wikipedia.org/wiki/Frame_buffer
http://en.wikipedia.org/wiki/Frame_buffer
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Mobile_phone
http://en.wikipedia.org/wiki/Mobile_phone
http://en.wikipedia.org/wiki/Personal_computer
http://en.wikipedia.org/wiki/Workstation
http://en.wikipedia.org/wiki/Game_console
http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Image_processing
http://en.wikipedia.org/wiki/Video_card
http://en.wikipedia.org/wiki/Motherboard
http://en.wikipedia.org/wiki/Nvidia
http://en.wikipedia.org/wiki/GeForce_256
http://en.wikipedia.org/wiki/GeForce_256

4

with integrated transform, lighting, triangle setup/clipping, and rendering engines that are

capable of processing a minimum of 10 million polygons per second” [22].

1.4 GPU vs. CPU

The CPU or Central Processing Unit is where all the program instructions are

executed to process the data. Advancements in modern day CPUs have allowed it to

crunch more numbers than ever before, but the advancement in software technology

meant that CPUs are still trying to catch up. A Graphics Processing Unit or GPU is meant

to alleviate the load of the CPU by handling all the advanced computations necessary to

project the final display on the monitor.

Originally, CPUs handled all of the computations and instructions in the whole

computer. But as technology progressed, it became more advantageous to take out some

of the responsibilities from the CPU and have it performed by other microprocessors. In

the days before Graphical User Interfaces (GUIs), the screen was simply a small grid

with each box having an 8-bit value that corresponds to a character. This was relatively

very easy to do for the CPU, but GUIs have greater resolutions with each pixel having a

16-bit or 32-bit color value.

GPUs were originally developed to render 2D graphics; specifically, to accelerate

the drawing of windows in a GUI. But as the need for 3D and faster graphics acceleration

grew, the GPU became faster and more specialized in its task. GPUs are now general

floating-point processors that can easily crunch computations along with texture mapping

tasks.

http://en.wikipedia.org/wiki/Transform,_clipping,_and_lighting
http://www.differencebetween.net/technology/difference-between-cpu-and-microprocessor/

5

Hardware wise, GPUs and CPUs are similar but not identical. Fig 1.3 shows the

high-level architectures of CPU vs. GPU. As a simple explanation, CPUs have a few

powerful core processors while GPUs have many less powerful processors. The

specialized nature of GPUs means that it can do its task much faster than a CPU ever can,

but it is not able to cover all of the capabilities of the CPU. Multiple GPUs can also be

employed to achieve a single goal much like the dual core CPUs currently available [23].

Figure 1.3 CPU vs. GPU [source:Nvidia]

1.5 Thesis Motivation

There are two main difficulties with accelerators such as GPU devices. First, they

can only execute certain types of programs efficiently, in particular programs with

sufficient parallelism, data reuse, and regularity in their control flow and memory access

patterns. Second, it is harder to write effective software for accelerators than for CPUs

because of architectural disparities such as very wide parallelism, exposed memory

6

hierarchies, lockstep execution, and memory-access coalescing. Several new

programming languages and extensions thereof have been proposed to hide these aspects

to various degrees and thus make it easier to program accelerators [25].

The general idea of this thesis is to make parallel programming easier for

programmers who are not experts in GPU programming specially with irregular codes

which have data-dependent behavior i.e., data accesses and control flow, and are hard to

parallelize. Our goal is to design a tool for GPU codes, irregular codes in particular, to

find the performance bottlenecks of the codes and suggest some optimization hints to the

user to make the code more efficient. By efficiency, we mean efficiency in both aspect of

power consumption and runtime.

In the rest of this thesis document, Ch.2 Background illustrates the needed

background and the general idea and mentions related work. Ch.3 Design explains the

general idea and how the flow of experiments is. Ch.4 Experimental Methodology

introduces what type of devices and what version of software had been used for

experiments. Ch.5 Results and Analysis shows the results of each experiment alongside

with analysis. Ch.6 Summary and Conclusion contains a brief summary on the thesis,

reasonable conclusions and future works.

7

CHAPTER 2

Background

2.1 GPU Architecture and Programming

GPUs consist of Streaming Multiprocessors (SM) and each SM contains

Processing Elements (PE). Threads run on PEs and blocks of threads are allocated to

SMs.

Figure 2.1 Streaming multiprocessors and processing elements

GPU memories are separate from CPU memories. As it is shown in Fig. 1.5 [26],

GPUs have a global memory (DRAM), which every thread in each block has access to

and also a Constant Memory (DRAM, cached). These two memories are connected to the

CPU via the PCI bus. Inside each SM is a shared memory, which is visible to all threads

inside a block. Each thread has its own registers, which are limited.

GPUs are designed specifically for graphics and thus are somewhat restrictive in

operations and programming. Due to their design, GPUs are only effective for problems

that can be solved using stream processing and the hardware can only be used in certain

ways [22].

GPUs can only process independent vertices, fragments and streams, but can

process many of them in parallel. This is especially effective when the programmer wants

http://en.wikipedia.org/wiki/Stream_processing

8

to process many vertices or fragments in the same way. In this sense, GPUs are stream

processors

Figure 2.2 GPU memory architecture [source: Nvidia]

that can operate in parallel by running one kernel on many records in a stream at once.

A stream is simply a set of records that require similar computation. Streams

provide data parallelism. Kernels are the functions that are applied to each element in the

stream. In the GPUs, vertices and fragments are the elements in streams and vertex and

fragment shaders are the kernels to be run on them. Kernels can be thought of as the body

of loops. On the GPU, the programmer only specifies the body of the loop as the kernel

and what data to loop over by invoking geometry processing.

9

2.2 Irregular Kernels

Recent years have seen a surge of interest in the use of graphics processing units

(GPUs) as general-purpose computing accelerators. For programs that map well to GPU

hardware, GPUs offer a substantial advantage over multicore CPUs in terms of

performance, performance per dollar, and performance per transistor. GPUs also

outperform CPUs in energy efficiency on some applications. Due to these benefits, GPUs

are appearing as accelerators in many systems.

It is well-known that GPUs are very effective for exploiting parallelism in regular

programs that (i) operate on large vectors or matrices, and (ii) access them in statically

predictable ways. These codes often have high computational demands, exhibit extensive

data parallelism, access memory in a streaming fashion, and require little

synchronization. A large number of algorithms from important application areas fit these

criteria, including algorithms used in fields ranging from fluid dynamics to computational

finance. There exists a broad base of knowledge on the efficient parallelization of these

algorithms, and their GPU implementations can be tens of times faster than tuned parallel

CPU versions.

However, many problem domains employ algorithms that build, traverse, and

update irregular data structures such as trees, graphs, and priority queues. Irregular

programs can be found in domains like n-body simulation, data mining, decisions

problems that use Boolean satisfiability, optimization theory, social networks, system

modeling, compilers, discrete-event simulation and meshing. They are more difficult to

parallelize and more challenging to map to GPUs than regular programs [24].

10

2.3 Main Idea

Several efficient GPU implementations of irregular algorithms have been

published, demonstrating that GPUs are capable of accelerating at least some irregular

codes relative to multicore CPUs. However, considering novelty of parallel processors

and according to difficulties of programming on supercomputers, i.e., using GPGPU,

programmers will need access to a system/performance/parallelism expert, but there are

only relatively few of them and each one may only be an expert on a certain aspect or

application domain. That raises the all-important question of how to best deliver such

expertise from different sources to programmers? The main goal of this project is to

provide an answer to this question.

I believe the likely solution to be automatic program analysis and

recommendation systems. They essentially embody the expert’s knowledge and perform

the analysis he or she would execute in person to determine how to improve a piece of

code. Based on this analysis, the system recommends possible courses of action.

2.4 Related Work

These days, due to slow-down speed of hardware technology improvement,

software is playing a more important role to keep computing technology improving.

Making applications more efficient in all aspects, leads us to the need of performance

measurement. So scientists and experts are trying to design tools for measuring and

quantifying performance to some understandable format.

Almost all of the tools are based on traces of events on source code or executable

code. They are trying to instrument and measure some metrics/events and then trying to

11

work on the collected data and analyze them. Paradyn [1] was the first tool in automatic

performance analysis of HPC dynamic instrumentation to efficiently obtain performance

profiles of unmodified executables.

KOJAK [2], Scalasca [3] [13] and Vampir [4] are trace-based tools which support

MPI, OpenMP and hybrid platforms. KOJAK automatically deduces the performance

properties from the trace files and diagnoses sources of inefficient runtime behavior on a

high-level abstraction.

Scalasca [3] [13] is highly scalable and based on wait states that occur in the code

(For example, identifying result of unevenly distributed workloads). It uses TAU`s rich

instrumentation capabilities [7] (TAU`s API) and processes the performance/trace data in

parallel using as many cores as have been used for the target application. Also it scores

and summarizes the trace report and shows it on a strong GUI profiler.

Vampir [4] is also a trace-based performance tool for MPI and/or thread/parallel

cores. It instruments the source code and because of that has measurement overhead.

VampirTrace [5] supports event queue method with a library wrapping approach for

CUDA and OpenCL and has been used for GPU performance measurement.

Periscope [6] evaluates performance while the application is still running and

searches for previously specified performance problems or properties. It is MPI-based on

more focused on efficient communication between cores/processors. Periscope

summarizes the measurement phase output and uses summary information instead of

tracing.

TAU [7] is a portable tool for performance instrumentation, measurement,

analysis and visualization of large scale parallel applications. It has different layer for

12

easier mapping to all parallel architecture and because of that and also the general model

for both software and hardware, many other tools use TAU`s API or different layer`s

outputs in their approaches. TAU is optimized itself according to platform available

features and customizable for different blocks of code. It has 3 major features, source

instrumentation, compiler instrumentation and library wrapping. Using the library

wrapping benefit of TAU, TAUCuda [8] is created for GPU performance. It has no

modification on the source code or binary code.

Recently released tool Score-P [9] is a portable measurement infrastructure for

performance measurement tools of HPC. Each of above tools has different measurement

output format. For example output format of measurement layer Vampir [4] is OTF and

output format of measurement layer of Scalsca [3] [13] is EPILOG/CUBE. Score-P tries

to integrate all of these tools into a unified measurement infrastructure. It is compatible

with TAU [7], Scalasca [3] [13], Vampir [4] and Periscope [6]. It also covers CUDA. It

has flexible measurement without re-compilation, basic and advanced profile generation,

event trace recording and online access to profiling data are some of the benefits of

Score-P. It supports MPI, OpenMP, and hybrid parallelism (and serial). Also it has

enhanced functionality for OpenMP 3.0, CUDA and highly scalable I/O.

HPCToolkit [10] [17] generates statistical profiles using Interval timers and

hardware counter overview interrupts and evaluate both application binary and source

code.

CUDA Performance Tools Interface (CUPTI) [11] is NVIDIA`s product

particularly for CUDA-GPU. A strong library for measuring CUDA code performance

according to the device features. It has Callback API which allows you to interject tool

13

code at the entry and exit to each CUDA runtime and driver API call. Also it has Event

API which allows the tool to query, configure, start, stop and read event counters on a

CUDA enabled device. The PAPI CUDA [12] Component is a hardware performance

counter measurement technology for the NVIDIA CUDA platform which provides access

to the hardware counters inside the GPU. PAPI CUDA is based on CUPTI support in the

NVIDIA driver library. In any environment where the CUPTI-enabled driver is installed,

the PAPI CUDA Component can provide detailed performance counter information

regarding the execution of GPU kernels.

NVIDIA Visual Profiler [14] is compatible with all CUDA-enabled devices. It

finds all bottlenecks with accurate statistics in detail using binary file of CUDA for

analysis. Command prompt access to the profiler, remote access and showing all details

about time and memory usage by CPU functions and GPU kernels at the same time are

some of its features. User can add more hardware metrics for measurement and analysis

in case of need of more accurate statistics. After each round of analysis, it shows a brief

explanation for each encountered bottleneck. NVIDIA Nsight [15] uses it as profiler tool

in Eclipse or Visual Studio. Nsight profiles the code directly from source code and shows

the exact line of code which encountered as bottleneck.

eeClust [16] determine relationships between the behavior of parallel programs

and the energy consumption of their execution on a compute cluster. It uses Vampir [4]

and Scalasca [3] [13] software tools to also record energy-related metrics. The users can

then insert energy control calls into their applications which will allow the operating

system and the cluster job scheduler to control the cluster hardware in an energy-efficient

way. The effectiveness will be evaluated with the help of a small cluster testbed with

14

special energy measurement and control components and synthetic and realistic

benchmarks.

Virtual Institute - High Productivity Supercomputing (VI-HPS) [18] is the

collaboration of eleven partner institutions for improving the quality and accelerating the

development process of complex simulation codes in science and engineering that are

being designed to run on highly-parallel computer systems. Most of known tools for

parallel performance and measurement such as TAU [7], Scalasca [3][13] and Vampir

[4], designed and created by the partners of this big project. They also have couple of

ongoing and completed projects in the field of productivity and performance to improve

their previous products. POINT, Score-P, SILC, HOPSA, PRIMA and LMAC are tools

for integrating and improving the functionality of performance and measurement tools

such as TAU [7] and Vampir [4]. For instance, LMAC adds the functionality of

automatically examining performance dynamic for irregular behavior of parallel

simulation codes to the established performance analysis tools Vampir [4], Scalasca [3]

[13] and Periscope [6].

OpenSpeedshop [19] is performance analysis toolset using program counter (pc)

sampling, callstack sampling analysis, hardware performance counters, MPI profiling and

tracing, I/O profiling and tracing and floating point exception analysis. It supports MPI,

Pthreads, OpenMP and hybrid platforms.

Intel VTune Amplifier XE 2013 [20] is the premier profiler for C, C++, C#,

FORTRAN, Assembly and Java. It optimizes serial and parallel performance and locates

and analyses the bottlenecks of the code, bandwidth, memory accesses and branches with

low overhead and high resolution using on-chip hardware. Analyzing hybrid applications

15

using MPI and OpenMP, supporting cluster computing, remote command line access and

perfect GUI are some of its more important features. VTune also tune OpenCL and

collect GPU metrics.

A few such systems are still in their infancy and not yet in wide use. Our

approach is unique among all of above tools. The focus is on irregular GPU kernels,

which are more difficult to make efficient. The main advantage of the proposed tool over

other similar tools is the suggestion feature. After analyzing, quantifying and measuring

performance metrics, the tool recommends to the user some optimization hint such as

using different optimization flags, which make the GPU code more optimized. Also we

use Machine Learning approaches to make our suggestions more and to automate as

much as possible. Also using machine learning in this tool gives us the ability of

extending/modifying the suggestion database and simplifies porting the tool to new

systems.

16

CHAPTER 3

Design

3.1 Overview

To provide an automated optimization suggestion tool for irregular GPU kernels,

we first need to measure how optimized a kernel already is. Our approach to measuring

this is to quantify different performance characteristics of each kernel. We use the

NVIDIA Visual Profiler [27] for this purpose. It is a profiling tool that can measure a

large number of different performance metrics based on hardware performance counters.

The performance quantification results in a large number of features (individual

measurements) such as instruction counts, number of cycles, cache hits/misses at

different layers, etc. of the kernel code. These feature vectors are input into Machine

Learning (ML) methods to classify or rank optimizations. I profiled codes with different

sets of optimizations included to train the ML algorithms to hopefully recognize whether

an optimization is already present or not and, if not, how much speedup it might provide.

In other words, the goal is to predict by how much each of the trained

optimizations (or combination thereof) will improve or hurt the performance of a given

CUDA code based on the trained ML model. Based on these predictions, the tool can

select which, if any, optimizations to suggest to the user.

3.2 N-Body Problem

In physics, n-body simulation is used to compute the motion of

individual celestial objects that interact with each other gravitationally [28]. Solving this

http://en.wikipedia.org/wiki/Physics
http://en.wikipedia.org/wiki/Astronomical_object
http://en.wikipedia.org/wiki/Gravitation

17

problem has been motivated by the need to understand the motion of the sun, planets, and

the visible stars [29].

Figure 3.1 Simple n-body algorithm

The goal of each step in an n-body simulation is to determine the new position of

all the bodies by calculating the sum of the forces exerted on each body from all other

bodies. For large numbers of bodies, such as in a star cluster, this simulation can be very

slow, making parallelization essential. The n-body problem is simple to parallelize by

dividing the dataset into equal blocks and assigning them to each processor to calculate

the force and new position of each body in its block. Fig 3.1 shows a simple parallel

algorithm for n-body problem that has a complexity of O(n
2
). Due to its quadratic time

complexity, this algorithm is very slow for large numbers of bodies, even when run in

parallel.

18

To remedy this situation, the Barnes-Hut (BH) n-body algorithm has been

developed, which has a complexity of O(n log n). However, this algorithm repeatedly

builds and traverses an unbalanced tree data structures, resulting in complex and data-

dependent program behavior, i.e., irregular control flow and memory-access patterns.

This algorithm is difficult to parallelize in general and specifically for GPUs.

3.3 Barnes-Hut Algorithm

The Barnes-Hut algorithm (by Josh Barnes and Piet Hut) recursively divides the

volume around the bodies into cubic cells. The resulting hierarchical decomposition is

recorded in an octree (the three-dimensional equivalent of a binary tree). This allows

bodies from nearby cells to be treated individually while treating bodies in distant cells

together as a single large body centered at the cell’s center of mass (or as a low-

order multi-pole expansion). This dramatically reduces the number of force calculations

that must be computed [30]. The resulting error should be small since the force decreases

with the square of distance and the algorithm only uses an approximation for far-away

bodies.

I took the BH code from the LonestarGPU suite [35] and modified it, as well as

our NB implementation, to include all possible combinations of six source-code

optimizations. The GPU implementation of the Barnes-Hut algorithm encompasses the

six steps shown in Figure 3.3, each of which is implemented using one or multiple

kernels. Since this implementation is very irregular, it represents a useful case study for

testing the ML tool.

http://en.wikipedia.org/w/index.php?title=Josh_Barnes&action=edit&redlink=1
http://en.wikipedia.org/wiki/Piet_Hut
http://en.wikipedia.org/wiki/Octree
http://en.wikipedia.org/wiki/Center_of_mass
http://en.wikipedia.org/wiki/Multipole_expansion

19

Figure 3.2 Pseudocode of Barnes-Hut algorithm

Figure 3.3 GPU-implementation of BH algorithm

20

3.4 Profiling

In computer science, the term profiling refers to a form of dynamic program

analysis that measures, for example, the usage of particular instructions or the frequency

and duration of function calls. Most commonly, profiling information serves to aid

program optimization [32]. I use nvprof, the NVIDIA Visual Profiler [27], to collect

supported events and metrics from CUDA kernels [31].

3.5 Speedup

Speedup is a metric for capturing the relative performance improvement when

executing a task. The speedup is calculated as the ratio of the runtime before applying an

optimization over the runtime after applying the optimization. A speedup above 1.0

means that the optimization resulted in an improvement in performance, i.e., a reduction

in runtime.

3.6 Machine Learning

Generally speaking, machine learning is a subfield of computer science and

statistics that deals with the construction and study of systems that can learn from data,

rather than follow only programmed instructions [34]. Usually, machine learning

methods are used for problems that require prediction and/or classification. In my project,

I need to predict how much speedup we can achieve by applying an optimization to an

irregular GPU kernel.

21

All machine learning approaches have one thing in common: they all use data

attributes as features to perform classification/prediction. Each data entry can be viewed

as a data point in an N-dimensional space, where N is the number of attributes each data

item has. Assume we have 20,000 data entries for training. By assigning them to data

points in the N-dimensional space, we can uniquely represent each data item. This model

makes it possible to place any new data point into this space so that it can be classified

based on its similarity to other nearby data points.

In this project, the target irregular GPU kernel would be profiled (quantified into

numbers) and the ML tool will use its trained model to predict the expected speedup.

3.7 Machine Learning Algorithms

In this section, I briefly explain three popular machine leaning algorithms that I

have used in my experiments.

Regression is concerned with modelling the relationship between variables that is

iteratively refined using a measure of error in the predictions made by the model.

Regression methods are important in statistics and have been cooped into statistical

machine learning.

The instance-based learning model is a decision problem with instances or

examples of training data that are deemed important or required to the model. Such

methods typically build up a database of example data and compare new data to the

database using a similarity measure to find the best match and make a prediction. The

focus is on representation of the stored instances and similarity measures used between

instances.

22

Decision tree methods construct a model of decisions made based on the values of

the attributes in the data. Decisions fork at each level in the tree until a leaf node is

reached, where a prediction decision is made based on the training cases that reached the

same leaf node. Decision trees are trained on data for classification and regression

problems [36].

23

CHAPTER 4

Experiments

4.1 Overview

The goal of my experiments is to compare the actual speedup of using different

optimization and the speedup predicted by the machine learning tool. If the predicted

speedup is reasonably close to the actual speedup then it means that by accurate

prediction of our tool we can suggest the user which optimization or any combination of

them can be used to get higher speedup. In this project, all needed experiments had been

divided to three major phases, i) profiling, ii) machine learning (training the model) and

iii) analyzing outputs. In profiling phase, I had profiled the BH [35] and NB [35] code

with different number of inputs with/without using optimizations to have some numbers

as performance indicator. These numbers help us studying the manner and relevance of

different optimizations and how much they affect the performance. Different machine

learning models can be made out of the data produced in profiling phase. Then by

running different codes as test instances and letting the machine learning tool predict the

speedup of that test instance based on different models, I became able to compare the

actual speedup and expected speedup to see how much accurate our tool is.

I used NVCC V6.0.1 to compile CUDA codes on NVIDIA Tesla K20 GPU

device. I wrote all of needed script for running the experiments, parsing and formatting

output files using Python 2.6.6. Also for drawing charts I used R-tool V3.0.2.

24

4.2 Profiling

Using nvprof of NVIDIA Visual Profiler V6.5, BH and NB codes have to be

profiled and I chose them because BH is highly irregular and could be a good candidate

to represent all type of irregularity in the GPU code and NB is the same problem but with

complete regular implementation. Profiling these two codes would show us the difference

of performance characteristics of each code. Their profiling data is my main dataset that I

perform the experiments and evaluate the power of the proposed tool. During the

experiments, I wanted to collect different information about the kernels. The more

information I have, the better model I can create based on that information. Using a

command from nvprof, I found 250 metrics or events that can be calculated and

supported by this tool. Although it takes a while to measure all available attributes, I

decided to measure them because I did not know exactly which events/metrics are useful

in next phase and could be a feature in the machine learning process. Once I figured out

which features are playing more important role in prediction tool for making decision, I

can narrow down the list of events/metrics to the ones that help us more for better

prediction.

4.3 Optimizations

The two programs had been modified in a way that makes it possible

to individually enable or disable specific optimizations. For NB, we chose the following

six code optimizations:

25

1. FTZ is a compiler flag that allows the GPU to flush denormal numbers to zero when

executing floating-point operations, which results in faster computations.

While strictly speaking not a code optimization, the same effect can be achieved by

using appropriate intrinsic functions in the source code.

2. RSQRT uses the CUDA intrinsic “rsqrtf()” to quickly compute one over square root

instead of using the slower but slightly more precise “1.0f / sqrtf()” expression.

3. CONST copies immutable kernel parameters once into the GPU’s constant memory

rather than passing them every time a kernel is called, i.e., it lowers the calling

overhead.

4. PEEL separates the innermost loop of the force calculation into two consecutive loops,

one of which has a known iteration count and can therefore presumably be better

optimized by the compiler. The second loop performs the remaining iterations.

5. SHMEM employs blocking, i.e., it preloads chunks of data into the shared memory,

operates exclusively on this data, then moves on to the next chunk. This drastically

reduces the number of global memory accesses.

6. UNROLL uses a pragma to request unrolling of the innermost loop(s). Unrolling often

allows the compiler to schedule instructions better and to eliminate redundancies, thus

improving performance.

For BH, we selected the following six source-code optimizations.

1. VOTE employs thread voting instead of a shared-memory-based code sequence to

perform a 32-element reduction.

26

2. WARP switches from a thread-based to a warp-based implementation that is much

more efficient because it does not suffer from branch divergence and uses less

memory as it records certain information on a per warp instead of a per thread basis.

3. SORT approximately sorts the bodies by spatial distance to minimize the tree prefix

that needs to be traversed during the force calculation.

4. RSQRT is identical to its NB counterpart.

5. FTZ is also identical to the corresponding NB optimization.

6. VOLA strategically copies some volatile variables into non-volatile variables and

uses those in code regions where it is known (due to lockstep execution of threads in

a warp) that no other thread can have updated the value. This optimization reduces

memory accesses.

4.4 Naming

I compiled each of NB/BH code with different combination of optimizations,

different inputs (different number of bodies and different number of time-steps). Also in

my experiments I used replication methods to ensure consistency and improve reliability.

Any unexpected event or interruption on the device that I was running the experiments on

could affect the results and makes them less precise. Because of that, I profiled each of

the executables 3 times to make sure that I would get accurate results.

First of all for ease of reading and finding desired file, I converted the

presence/absence of each of six optimizations for each code into a bit-string of 0s and 1s

with length of 6. The order of different optimizations for different codes are shown in

Table 4.1

27

Code Bit 5
Most Significant Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

least Significant

BH VOTE WARP SORT RSQRT FTZ VOLA

NB FTZ RSQRT CONST PEEL SHMEM UNROLL

Table 4.1 Order of optimizations in bit-string

For example, the bit-string 000101 for BH code shows that the optimizations

RSQRT and VOLA had been used.

For BH and NB, I used different number of bodies and time-steps as shown in

Table 4.2. I tried to choose meaningful and scalable size of inputs in order to make the

code use enough resources to keep our analysis more accurate and complete. For BH

code which is an irregular GPU code, I profiled the code with 3 different numbers of

bodies and also with half of them to see how much decreasing inputs to half, affects the

results.

NB BH

Body Time-step Body Time-step

50,000 2 125,000 2

100,000 2 250,000 2

100,000 5 250,000 5

200,000 5 500,000 5

- - 500,000 10

- - 1,000,000 10

Table 4.2 Inputs for profiling BH and NB codes

For each set of inputs, I had profiled the code with different combination of six

optimizations (64 different combinations in total).

The profiling information contains values such as number of cache hits/misses or

amount of data transfer (bits) which are highly dependent to the size of input. In order to

28

make the profiling information comparable to each other regardless of input sizes, the

dataset need to be normalized. Normalizing data adjusts values measured on different

scales to a notionally common scale. For normalizing profiled data, I used Vn = Vo/A * C

where Vo is the value of each attribute before normalization, Vn is the value of

corresponding attribute after normalization, A is the number of active cycles and C is a

constant. Using this equation, the values are input size-independent and all data would be

measured on same scale.

Once I got all the results from profiling phase, I can train and create models based

on the profiling data (training dataset) and predict the speedup of any test instance

(testing dataset). But before testing unknown test instances on the training model, we

need to make sure that our model is valid. Cross validation is one of the techniques helps

us validate the model.

4.5 Cross Validation

Cross-validation is a model validation technique for assessing how the results of

a statistical analysis will generalize to an independent data set. It is mainly used in

systems where the goal is prediction, and one wants to estimate how accurately a

predictive model will perform in practice. The goal of cross validation is to define a

dataset to "test" the model in the training phase give an insight on how the model will

generalize to an independent data set.

One round of cross-validation involves partitioning a sample of data into

complementary subsets, performing the analysis on one subset (called the training set),

and validating the analysis on the other subset (called the validation set or testing set). To

http://en.wikipedia.org/wiki/Model_validation
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Accuracy
http://en.wikipedia.org/wiki/Complement_(set_theory)

29

reduce variability, multiple rounds of cross-validation are performed using different

partitions, and the validation results are averaged over the rounds.

In my experiments I tried to train and test on different datasets to see how

accurate our model is. As I mentioned above, for each set of inputs I did each profiling

experiment 3 times. Also for each set of inputs, I profiled the codes for all possible

combination of six optimizations (64 combinations). So I have 192 total number of files

after profiling for each input size. Shown in Table 4.3, different experiments for

evaluating the tool have been set up for BH and NB code.

Experiment
Training

Dataset

Dataset

Entries

Testing

Dataset

Dataset

Entries

Tests

includes

Trainings

Train and

test on same

input

1 BH 64 BH 192 Yes Yes

2 BH 64 BH 128 No Yes

3 BH 128 BH 64 No Yes

4 BH 192 BH 64 No No

5 BH 192 NB 192 No No

6 NB 192 BH 192 No No

Table 4.3 Different experiments for evaluating the tool

Our machine learning method leverages the algorithms implemented in Weka, a

tool for performing data mining tasks [37]. I applied this method to the dataset that had

been produced in profiling phase. This tool predicts the speedup that we expect to get

applying different optimization flags. For each test instance, this tool using four different

prediction methods (Regression, IBK, M5P and Odds Ratio) and predict the speedup of

using each of 6 different optimization flags. Afterwards, the expected speedup could be

compared to the actual speedup.

http://en.wikipedia.org/wiki/Variance

30

4.6 Analyzing Output

As mentioned above, the ML tool predicts speedup for each test instance in case

of using different flags. The generated output by the ML tool tells us how much speedup

we should get if we use those flags. For instance, if the generated value for the flag

WARP is 1.73, it means that if we enable the flag WARP and compile the BH code then

run it with 125000 bodies and 2 time-steps, we expect the runtime to be 1.73 times faster

than doing the same thing but with disabled WARP flag. Then by comparing the

predicted value 1.73 with the real speedup, we can measure the accuracy of the ML tool.

If the prediction is relatively close to the real speedup then we can suggest to the user to

use the mentioned flag in order to get optimized results.

31

CHAPTER 5

Evaluation, Results, and Analysis

5.1 Overview

This chapter presents the results of the experiments I performed to evaluate the

prediction accuracy of the proposed approach. As discussed previously, the output of the

tool I wrote are predictions of the speedups we expect to obtain when using different

source-code optimizations. To validate the results, I compared the predicted with the

actual speedup in many scenarios.

The experiments include different experiments of cross validation. In experiments

1 through 4, I trained and tested the model based on the BH code. In experiments 5 and 6,

the model is trained on BH/NB and tested on NB/BH. The number of data entries in each

training/testing dataset are multiples of 64 because I opted to include all 64 combinations

of the investigated optimizations in each dataset. The following subsections provide more

detail about the different experiments and strategies.

Each tuple < n, t > corresponds to 64 data-file entries where n is the input size and

t is number of the run. The strategy that I chose for evaluating and comparing the results

is the following. For each specific optimization and tuple < n, t >, I removed all entries

that included this optimization, which always leaves 32 entries that do not include the

optimization. Testing on the trained model generates 6 different predicted speedups, one

for each of the studied optimizations. The predicted speedup values are then compared to

the actual (measured) speedup when actually including this optimization in the code.

32

Calculating the ratio of the actual speedup (AC) over the expected speedup (EX)

shows how close the prediction is to the real speedup. If the predictions are accurate, the

ML tool can use them to rank the different optimization, that is, suggest the most

promising optimizations (if any) to the user based on the expected speedup.

I show the results in form of strip charts. A strip chart plots the data along a line

with each data point represented by a star. It is often used for showing the density and

distribution of data. For each training model, the resulting strip chart shows 32 data

points that represent the ratio of the actual speedup over the expected (predicted)

speedup. Note that the speedup predictions do not have to be 100% accurate for the tool

to work well. As long as the speedups are approximately correct, the tool will recommend

the appropriate source-code optimizations, if any.

5.2 Experiment 1

For each set of inputs, I performed three runs, i.e., I profiled the BH code three

times. In the first experiment, I trained the model based on the 64 data-files from a single

run and tested all 192 files, including the training data, on the resulting ML model. As I

trained and tested on the same dataset, I expected the predictions to be accurate. Each

machine learning method used in the prediction tool typically yields a different predicted

speedup. To improve readability, I only show the results from the one or two best-

performing ML models.

The Y axis of the result charts is the ratio of the Actual Speedup (AC) over the

Expected Speedup (EX). The closer the data-points are to 1.0 the more accurate the

33

prediction is. The X axis represents the tuples < Tr, Ts > where Tr is the training model

and Ts is testing dataset.

Figure 5.1 shows the results of experiment 1 for the six optimizations using the

IBK method. As expected, the predictions are very close to the actual speedup.

Figure 5.1: Ratios (AC/EX), Experiment 1, IBK method

Most of the data points are above the red line, which means the ratio of the actual

speedup over the predicted speedup is greater than 1.0. In fact, almost 95% of the

predictions made by the IBK method are less than the actual speedup and are, therefore,

underestimated. Nevertheless, all of the data-points fall into the range (0.8, 1.2), which

b) WARP a) VOTE c) FTZ

f) VOLA e) RSQRT d) SORT

34

shows that the predictions are close to the actual speedup in all cases. This is expected

since the test instances include the training dataset.

Sometimes, using certain optimizations might hurt performance, leading to a

slowdown. I compared the actual speedup with the predicted speedup for each

optimization to see if they both increase (PP) or decrease (NN) the performance. If both

the predicted and the actual speedup are greater than one, it is correct for the

recommendation tool to predict a performance gain and thus to recommend the

optimization. Similarly, if both the predicted and the actual speedup are less than 1.0,

using that optimization would hurt performance and not recommending the

corresponding optimization by the tool is the correct behavior. Table 5.1 shows how

often the expected speedup and the actual speedup are either both above 1.0 or both

below 1.0. Using this metric and the IBK method, on average over 97% of the predictions

match the actual behavior. The PN and NP columns in this table show how often the

expected speedup and the actual speedup are opposite (i.e., false positives and false

negatives).

 PP PN NP NN Accuracy

VOTE 75.0 0.0 0.0 25.0 100.0

WARP 100.0 0.0 0.0 0.0 100.0

SORT 85.4 0.0 0.0 14.6 100.0

RSQRT 90.3 4.9 0.7 4.2 94.4

FTZ 52.3 7.3 3.6 36.8 89.1

VOLA 100.0 0.0 0.0 0.0 100.0

Total 97.3

Table 5.1: Accuracy of predicted behavior, Experiment 1, IBK method

35

Figure 5.2 shows the results when using the M5P method for making the

predictions. Comparing with the IBK results above, it seems that IBK performs better.

For example, the range of the ratios for VOTE is (0.99, 1.03) using IBK and (0.4, 1.5)

using M5P. Unlike IBK, which makes mostly underestimated predictions, the ratios of

M5P are about evenly distributed below and above 1.0.

Figure 5.2: Ratios (AC/EX), Experiment 1, M5P method

The accuracy of the predicted behavior is also better in IBK compared to M5P.

Table 5.2 shows the percentage of accurate predictions for each optimization. Only 57%

of the FTZ behavior is correctly predicted, which severely hurts the overall accuracy.

Note that FTZ does not typically help or hurt performance, much making it hard to

predict its behavior correctly.

a) VOTE b) WARP c) FTZ

d) SORT e) RSQRT f) VOLA

36

 PP PN NP NN Accuracy

VOTE 69.8 5.2 0.7 24.3 94.1

WARP 94.1 5.9 0.0 0.0 94.1

SORT 80.6 4.9 11.1 3.5 84.0

RSQRT 85.4 9.7 1.4 3.5 88.9

FTZ 17.4 42.2 0.7 39.8 57.1

VOLA 100.0 0.0 0.0 0.0 100.0

Total 86.4

Table 5.2: Accuracy of predicted behavior, Experiment 1, M5P method

The remaining ML methods, Linear Regression and Odds Ratio, result in worse

performance and are not interesting enough to be shown here.

5.3 Experiment 2

In this experiment, I trained the model on the 64 data-files of a single run and

tested the other 128 files obtained from the two other runs. Although the training data is

not included in the testing data, the results are expected to be accurate because all files

stem from the same program running the same inputs multiple times. Figure 5.3 and

Table 5.3 show the results for the six optimizations using the IBK method for experiment

2.

The results are almost identical to experiment 1 with just a slight decrease in

accuracy due to excluding the training data from the testing dataset. The results for the

M5P method are also very similar to those of experiment 1. The M5P method uses just a

few features so excluding the training data from the testing dataset does not affect the

results significantly.

37

 PP PN NP NN Accuracy

VOTE 75.0 0.0 0.0 25.0 100.0

WARP 100.0 0.0 0.0 0.0 100.0

SORT 85.4 0.0 0.0 14.6 100.0

RSQRT 89.1 6.1 1.6 3.3 92.4

FTZ 49.7 9.8 6.3 34.1 83.9

VOLA 100.0 0.0 0.0 0.0 100.0

Total 96.0

Table 5.3: Accuracy of predicted behavior, Experiment 2, IBK method

c) FTZ a) VOTE b) WARP

d) SORT e) RSQRT f) VOLA

Figure 5.3: Ratios (AC/EX), Experiment 2, IBK method

38

5.4 Experiment 3

In experiment 3, I trained the model on 128 files and tested on other 64

(experiment 2 used the opposite approach). The hope is that using more training data will

improve the resulting model. Figure 5.4 and Table 5.4 show the results for the six

optimizations using the IBK method for experiment 3.

These results are comparable to the results from the previous experiments in terms

of underestimating the speedup and the prediction accuracies. In all cases, the range of

the ratios is (0.95, 1.05). If the few outliers in WARP (Figure 5.4.b) are ignored, the

a) VOTE b) WARP c) FTZ

d) SORT e) RSQRT f) VOLA

Figure 5.4: Ratios (AC/EX), Experiment 3, IBK method

39

results reveal that adding 64 more data-files to the training dataset does not have a

significant impact on IBK’s predictions. The same is true for the M5P method.

 PP PN NP NN Accuracy

VOTE 75.0 0.0 0.0 25.0 100.0

WARP 100.0 0.0 0.0 0.0 100.0

SORT 85.4 0.0 0.0 14.6 100.0

RSQRT 89.2 5.9 1.0 3.8 93.1

FTZ 48.6 10.9 4.5 35.9 84.5

VOLA 100.0 0.0 0.0 0.0 100.0

Total 96.3

Table 5.4: Accuracy of predicted behavior, Experiment 2, IBK method

Obtaining about 96% accuracy in the first 3 experiments is expected because

training and testing on almost identical data makes the results accurate. In the following

experiments, the training dataset is different from the testing dataset in both the program

inputs and the programs themselves.

5.5 Experiment 4

In experiment 4, I trained the model with all 192 data-files from one program

input and tested on 64 files from each of the other program inputs. Figure 5.5 shows the

results of the VOTE optimization with the IBK method. Most of the ratios are around 1.0,

meaning that the predicted speedups are close to the actual speedup when adding the

VOTE optimization. Unlike in the 3 previous experiments, where most of the IBK ratios

were above 1.0, in this experiment the ratios are distributed quite evenly above and below

the line. This is also true for the other optimizations (Figure 5.6 and Figure 5.7). The few

40

outliers in Figure 5.5 stem from test cases using the smallest input size, which apparently

result in sufficiently different performance metrics to throw off IBK.

Figure 5.5: Ratios (AC/EX) of VOTE, Experiment 4, IBK method

Figure 5.6: Ratios (AC/EX) of WARP, SORT, and VOLA, Experiment 4, IBK method

For the optimizations WARP, SORT, and VOLA, the predictions on smaller

inputs are also less accurate than using larger inputs. The plotted ratios are denser close to

the 1.0 line for all 3 optimizations in Figure 5.6 because of the higher accuracy with

larger inputs. Nevertheless, the results are promising because the range of the ratios in all

a) WARP b) SORT c) VOLA

41

of these cases is (0.1, 2), which means the tool’s prediction speedups are reasonably close

to the actual speedups.

Figure 5.7 shows the ratios for FTZ and RSQRT using IBK. The range of the

ratios is (0.98, 1.04) and quite evenly distributed regardless of the input size and test

cases.

Figure 5.7: Ratios (AC/EX) of FTZ and RSQRT, Experiment 4, IBK method

Table 5.4 shows that the accuracy of positive/negative speedup is still 92% on

average. Clearly, training the model on data from one input and testing on data from a

different input does not hurt the model’s performance substantially.

Figure 5.8 shows the ratios of the predicted speedup over the actual speedup using

the M5P method. The ratios are more densely clustered around the 1.0 line than they are

for the IBK method. Moreover, the range of ratios has a tighter bound (0.5, 1.5).

a) FTZ b) RSQRT

42

 PP PN NP NN Accuracy

VOTE 72.3 2.7 0.0 25.0 97.3

WARP 100.0 0.0 0.0 0.0 100.0

SORT 81.7 3.8 1.3 13.3 95.0

RSQRT 87.6 7.7 3.2 1.5 89.1

FTZ 44.3 15.1 14.1 26.6 70.8

VOLA 100.0 0.0 0.0 0.0 100.0

Total 92.0

Table 5.5: Accuracy of predicted behavior, Experiment 4, IBK method

Figure 5.8: Ratios (AC/EX), Experiment 4, M5P method

However, as it is shown in Table 5.4, the accuracy of the prediction behavior is

lower than IBK’s. This difference between ratios and behavior prediction accuracy shows

that the ratio of the actual speedup over the predicted speedup can be close to 1.0 yet the

a) VOTE b) WARP
c) SORT

d) FTZ e) RSQRT f) VOLA

43

predicted speedup lies on the “other” side of the 1.0 line than the actual speedup.

Fortunately, such cases are easily avoided in the recommendation tool by not suggesting

optimizations that only result in a small speedup above 1.0.

 PP PN NP NN Accuracy

VOTE 59.8 15.2 11.7 13.3 73.1

WARP 96.0 4.0 0.0 0.0 96.0

SORT 80.0 5.4 12.1 2.5 82.5

RSQRT 80.8 14.5 2.3 2.4 83.2

FTZ 16.9 42.5 3.0 37.6 54.5

VOLA 100.0 0.0 0.0 0.0 100.0

Total 81.6

Table 5.6: Accuracy of predicted behavior, Experiment 4, M5P method

5.6 Experiment 5

Training the model on a set of programs and testing it on a different program is

the ultimate test of my approach. In this experiment, I trained the model on different

versions of the BH code and used various versions of the NB code as test cases. This

experiment shows much of the results change when I train the model based on data from

an irregular GPU code and test it on a regular GPU code. Note that the FTZ and RSQRT

optimizations are common to both BH and NB. Hence, I only compare the predicted and

actual speedups of these two optimizations as I do not know the actual speedups of the

remaining four optimizations when they are applied to NB.

Figure 5.9 shows the results of this experiment using IBK. Almost half of the

ratios are below the 1.0 line. The range of the ratios for FTZ is (0.2, 1.7), which shows

that the prediction accuracy of the speedup is not as close as it was in the previous

44

experiments (Figure 5.9.a). For RSQRT, the range of the speedups is (0, 3.5), which

means there is a significant difference between the actual and the predicted speedup in

many cases. As before, the prediction results for test cases with larger input sizes tends to

be better. For each model, I tested all 64 data-files of each set of four inputs on the NB

code. As GPU codes generally have better performance on large inputs, getting better

results for training and testing the model on larger inputs is beneficial.

Considering that I am training and testing on two totally different codes, the

results are still promising. As shown in Table 5.5, the accuracy of the predictions for

these two optimizations is almost 84%. This means that the tool’s suggestions on these

optimizations to the user are correct 84% of the time.

Figure 5.9 Ratios (AC/EX), Experiment 5, IBK method

Figure 5.9: Ratios (AC/EX) of FTZ and RSQRT, Experiment 5, IBK method

The accuracy of the M5P method in this experiment for FTZ and RSQRT is only

33%. The reason of this low accuracy is that M5P uses very few features for making

decisions. When the training and testing dataset are from different programs, the

possibility of accurate predictions based on just a few features is relatively low.

a) FTZ b) RSQRT

45

 PP PN NP NN Accuracy

FTZ 85.9 0.0 14.1 0.0 85.9

RSQRT 81.3 0.0 18.8 0.0 81.3

Total 83.6

Table 5.7: Accuracy of predicted behavior, Experiment 5, IBK method

5.7 Experiment 6

This final experiment is identical to experiment 5 except I switched the training

and testing datasets. Hence, I trained the model on data from the regular NB code and

tested it on data from the irregular BH code.

Interestingly, all of the predicted speedups for FTZ using the IBK method are

lower than the actual speedups of using FTZ on the BH code because all of the ratios are

in the range (0, 0.7) as shown Figure 5.10.a. Moreover, RSQRT has better predicted

values in this experiment rather than the previous one (Figure 5.10.b). The range of

values of ratios is (0.78, 1.45) and most of the ratios are close to line 1.0. For smaller size

of input of training and testing dataset the prediction tool overestimated the speedups.

Table 5.5 shows the accuracy of the predicted values. Comparing the results of

the IBK method of this experiment with the corresponding results from the previous

experiment, I find that more accurate predictions are made by the tool when the model is

trained on irregular code and tested on regular code, which makes sense as irregular

codes tend to be more complex.

46

Figure 5.10: Ratios (AC/EX), Experiment 6, IBK method

 PP PN NP NN Accuracy

RSQRT 51 46.7 0.6 1.8 52.7

FTZ 58.6 0 41.4 0 58.6

Total 55.7

Table 5.8: Accuracy of predicted behavior, Experiment 6, IBK method

There is another important difference between this experiment and all previous

experiments. In the first five experiments, the prediction accuracy of IBK is better than

that of M5P. However, as shown in Table 5.6, in experiment 6 the overall accuracy of

M5P is better than IBK. Hence, there is no one ML model that is always better for my

tool. M5P yields better performance because it narrows the features down to a few

metrics, which are significant for both irregular and regular codes.

a) FTZ b) RSQRT

47

 PP PN NP NN Accuracy

RSQRT 74.8 22.9 1.4 1 75.8

FTZ 7.6 51 4.7 36.7 44.3

Total 60.1

Table 5.9: Accuracy of predicted behavior, Experiment 6, M5P method

In almost all of experiments, the IBK method of the prediction tool generated

better expected speedup than other methods. The reason is IBK method is an instance-

based model which builds the model at testing time based on the test instance attributes in

addition to the training data attributes. Also as it is shown in almost all of strip charts, the

dense of data-points (AC/EX) is more around line 1.0 for larger input sizes.

48

CHAPTER 6

Summary and Conclusion

6.1 Summary

In this thesis, I designed a tool to suggest optimization hints to the user in order to

improve the efficiency of GPU code with an emphasis on irregular codes. The tool needs

to be trained on performance data from different programs that do and do not include

certain source-code optimizations. During this training, the tool builds machine-learning

models for each optimization so that it can later estimate the speedup for each

optimization when presented with performance data from other programs. To measure

and quantify the performance, I profile different GPU codes with/without certain

optimizations and with multiple inputs to gather a large set of performance data. The tool

is able to rank the optimizations based on their predicted speedup and suggests the top

optimizations to the user if their predicted speedup is above a given threshold. To

evaluate the accuracy of the predicted speedups, I compared them to the actual speedups

obtained when adding the various source-code optimizations to the code. I performed six

different performance evaluation experiments of training models and predicting

speedups. In first four experiments, I trained and tested the model on the BH code and

obtained up to 97% prediction accuracy. In the remaining two experiments, where I train

the model on BH/NB and test it on NB/BH, the tool delivers up to 82% of accuracy.

49

6.2 Conclusion

Based on the results shown in Chapter 5, the predictions of the machine learning

tool are more precise when I trained the model on data-files obtained with larger program

input sizes. This makes sense as larger inputs result in more profiling data and more

stable-state utilization of the GPU. Expectedly, training the model with more data yields

better predictions.

When training the model on code that is different from the tested code, I found

that model training based on irregular codes and testing on regular codes results in better

predictions than training on regular code and testing on irregular codes. This is likely a

combination of two factors. First, regular codes are less complex, making them easier to

predict in general. Second, the higher complexity of irregular codes probably provides

more diverse training data, which results in better trained ML models.

I studied four different machine learning methods for making the predictions. My

results show that there is no such thing as one clear winner. Nevertheless, IBK generally

performs very well when predicting the likely speedup of source-code optimizations.

6.3 Future Work

In this thesis, I used differently optimized Barnes-Hut implementations of the n-

body problem as a representative irregular GPU code. Of course, using additional

(irregular) codes for training would be better. Also, I studied six source-code

optimizations as a proof of concept. Large numbers of optimizations can and should be

50

used to better test the capabilities of the tool and to validate the approach. Finally, I used

six different inputs. Especially on irregular codes, which can be input sensitive, profiling

with more diverse inputs might be beneficial to see how much the inputs affect the

accuracy of the predictions.

For the machine learning phase, I investigated four different methods. Other types

of machine learning methods could, of course, be employed for predicting the speedups.

51

LITERATURE CITED

 [1] B. P. Miller and J. K. Hollingworth and M. D. Callaghan, The Paradyn Performance

Tools and PVM, Proceedings of the Second Workshop on Environments and Tools

for Parallel Scientific Computing: Townsend, TN, USA, 25–27 May 1994, pp. 201-

210, Society for Industrial and Applied Mathematics, 1994.

[2] Bernd Mohr and Felix Wolf, KOJAK - a tool set for automatic performance

analysis of parallel programs, Springer-Verlag, 2003.

[3] Zoltán Szebenyi, Brian J. N. Wylie, Felix Wolf: SCALASCA Parallel Performance

Analyses of SPEC MPI2007 Applications. In Proc. of the 1st SPEC International

Performance Evaluation Workshop (SIPEW), Darmstadt, Germany, volume 5119 of

Lecture Notes in Computer Science, pages 99-123, Springer, June 2008.

[4] W. E. Nagel and A. Arnold and M. Weber and H.-Ch. Hoppe and K. Solchenbach,

VAMPIR: Visualization and Analysis of MPI Resources, 1996.

[5] Matthias S. Müller and Andreas Knüpfer and Matthias Jurenz and Matthias

Lieber and Holger Brunst and Hartmut Mixand Wolfgang E. Nagel, Developing

Scalable Applications with Vampir, VampirServer and VampirTrace, PARCO,

Advances in Parallel Computing, Vol. 15, pp. 637-644, IOS Press, 2007.

[6] Michael Gerndt and Karl Fürlinger and Edmond Kereku, Periscope: Advanced

Techniques for Performance Analysis, PARCO, John von Neumann Institute for

Computing Series, Vol. 33, pp. 15-26, Central Institute for Applied Mathematics,

Jülich, Germany, 2005.

[7] S. Shende and A. D. Malony, “The TAU Parallel Performance System,”

International Journal of High Performance Computing Applications, SAGE

Publications, 20(2):287-331, Summer 2006

[8] Allen D. Malony, Scott Biersdorff, Wyatt Spear, and Shangkar Mayanglambam.

2010. An experimental approach to performance measurement of heterogeneous

parallel applications using CUDA. In Proceedings of the 24th ACM International

Conference on Supercomputing (ICS ‘10). ACM, New York, NY, USA, 127-136.

DOI=10.1145/1810085.1810105 http://doi.acm.org/10.1145/1810085.1810105

[9] http://www.vi-hps.org/projects/score-p/

http://liinwww.ira.uka.de/csbib?query=%2Bau:MillerBP*+%2Bau:Miller&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:HollingworthJK*+%2Bau:Hollingworth&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:CallaghanMD*+%2Bau:Callaghan&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:MohrB*+%2Bau:Mohr&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:WolfF*+%2Bau:Wolf&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:NagelWE*+%2Bau:Nagel&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:ArnoldA*+%2Bau:Arnold&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:WeberM*+%2Bau:Weber&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:HoppeHC*+%2Bau:Hoppe&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:SolchenbachK*+%2Bau:Solchenbach&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:MullerMS*+%2Bau:Muller&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:KnupferA*+%2Bau:Knupfer&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:JurenzM*+%2Bau:Jurenz&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:LieberM*+%2Bau:Lieber&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:LieberM*+%2Bau:Lieber&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:BrunstH*+%2Bau:Brunst&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:MixH*+%2Bau:Mix&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:NagelWE*+%2Bau:Nagel&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:GerndtM*+%2Bau:Gerndt&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:FurlingerK*+%2Bau:Furlinger&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:KerekuE*+%2Bau:Kereku&maxnum=200&sort=year
http://doi.acm.org/10.1145/1810085.1810105
http://www.vi-hps.org/projects/score-p/

52

[10] Laksono Adhianto and Sinchan Banerjee and Michael Fagan and Mark

Krentel and Gabriel Marin and John Mellor-Crummey and Nathan Tallent,

HPCToolkit: Performance tools for parallel scientific computing, SC’08 USB Key,

ACM/IEEE, November 2008.

[11] https://developer.nvidia.com/cuda-profiling-tools-interface

[12] Browne, S., Deane, C., Ho, G., Mucci, P. “PAPI: A Portable Interface to Hardware

Performance Counters,” Proceedings of Department of Defense HPCMP Users

Group Conference, June, 1999.

[13] Markus Geimer, Felix Wolf, Brian J. N. Wylie, Erika Ábrahám, Daniel Becker,

Bernd Mohr: The SCALASCA Performance Toolset Architecture. In Proc. of the

International Workshop on Scalable Tools for High-End Computing (STHEC), Kos,

Greece, pages 51–65, June 2008.

[14] https://developer.nvidia.com/nvidia-visual-profiler

[15] http://www.nvidia.com/object/nsight.html

[16] Michael Knobloch and Timo Minartz and Daniel Molka and Stephan

Krempel and Thomas Ludwig 0002 andBernd Mohr, Electronic poster: eeclust:

energy-efficient cluster computing, SC Companion, pp. 99-100, ACM, 2011.

[17] http://www.hpctoolkit.org

[18] http://www.vi-hps.org/projects/

[19] Martin Schulz, Jim Galarowicz, Don Maghrak, William Hachfeld, David Montoya

and Scott Cranford, Analyzing the Performance of Scientific Applications with

Open|SpeedShop, Parallel Computational Fluid Dynamics:, to be North-Holland, (

November) May 2009.

[20] http://software.intel.com/en-us/intel-vtune-amplifier-xe

[21] https://computing.llnl.gov/tutorials/parallel_comp/#Who

[22] http://en.wikipedia.org/wiki/Graphics_processing_unit

[23] http://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-

a-gpu/

[24] Martin Burtscher, Rupesh Nasre, and Keshav Pingali. A Quantitative Study of

Irregular Programs on GPUs. In Proceedings of the 2012 IEEE International

Symposium on Workload Characterization, pages 141-151, 2012.

http://liinwww.ira.uka.de/csbib?query=%2Bau:AdhiantoL*+%2Bau:Adhianto&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:BanerjeeS*+%2Bau:Banerjee&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:FaganM*+%2Bau:Fagan&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:KrentelM*+%2Bau:Krentel&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:KrentelM*+%2Bau:Krentel&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:MarinG*+%2Bau:Marin&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:%28%2bMellor%20%2bCrummeyJ%2a%29+%2Bau:Mellor-Crummey&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:TallentN*+%2Bau:Tallent&maxnum=200&sort=year
https://developer.nvidia.com/cuda-profiling-tools-interface
https://developer.nvidia.com/nvidia-visual-profiler
http://www.nvidia.com/object/nsight.html
http://liinwww.ira.uka.de/csbib?query=%2Bau:KnoblochM*+%2Bau:Knobloch&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:MinartzT*+%2Bau:Minartz&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:MolkaD*+%2Bau:Molka&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:KrempelS*+%2Bau:Krempel&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:KrempelS*+%2Bau:Krempel&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:LudwigT*+%2Bau:Ludwig&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:MohrB*+%2Bau:Mohr&maxnum=200&sort=year
http://www.hpctoolkit.org/
http://www.vi-hps.org/projects/
http://software.intel.com/en-us/intel-vtune-amplifier-xe
https://computing.llnl.gov/tutorials/parallel_comp/#Who
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
http://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/

53

[25] http://www.hpcwire.com/2014/01/09/future-accelerator-programming/

[26] CS 4378T / CS 5351 Spring 2013 Lecture, Martin Burtscher, Texas State

University

[27] https://developer.nvidia.com/nvidia-visual-profiler

[28] http://en.wikipedia.org/wiki/N-body_problem

[29] https://www.princeton.edu/~achaney/tmve/wiki100k/docs/N-body_problem.html

[30] http://en.wikipedia.org/wiki/Barnes%E2%80%93Hut_simulation

[31] http://docs.nvidia.com/cuda/profiler-users-guide/#nvprof-overview

[32] http://en.wikipedia.org/wiki/Profiling_(computer_programming)

[33] http://home.wlu.edu/~whaleyt/classes/parallel/topics/amdahl.html

[34] http://en.wikipedia.org/wiki/Machine_learning

[35] http://iss.ices.utexas.edu/?p=projects/galois/lonestargpu

[36] http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/

[37] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,

Ian H. Witten (2009); The WEKA Data Mining Software: An Update; SIGKDD

Explorations, Volume 11, Issue 1.

http://www.hpcwire.com/2014/01/09/future-accelerator-programming/
https://developer.nvidia.com/nvidia-visual-profiler
http://en.wikipedia.org/wiki/N-body_problem
https://www.princeton.edu/~achaney/tmve/wiki100k/docs/N-body_problem.html
http://en.wikipedia.org/wiki/Barnes%E2%80%93Hut_simulation
http://docs.nvidia.com/cuda/profiler-users-guide/#nvprof-overview
http://en.wikipedia.org/wiki/Profiling_(computer_programming)
http://en.wikipedia.org/wiki/Machine_learning
http://iss.ices.utexas.edu/?p=projects/galois/lonestargpu
http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/

