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ABSTRACT 

Databases are the backbone of the digital age and empower the storage and 

processing of massive amounts of data. As private and public data grows at an 

astonishing rate, the technologies that drive data processing must adapt or be discarded. 

Conventional database engines struggle to provide responsiveness at the level required of 

them when faced with ever-expanding datasets and more demanding use cases. With the 

recent surge in public adoption of hardware parallelism and co-processor offloading, we 

have explored the concept of employing new parallel processing techniques and 

technologies to a database management system (DBMS) to achieve higher query 

processing performance. 

 

In this paper, we demonstrate a custom-designed, modular DBMS targeted at parallel 

platforms including the Intel Many Integrated Core architecture and an Nvidia CUDA 

platform. Our Heterogeneously Accelerated SQL Transaction Engine (HASTE) uses a 

novel query parsing methodology to create a hardware agnostic query definition which 

can be processed by adaptable modules written for new and existing hardware and 

software platforms and executed on one more such modules simultaneously. This paper 

demonstrates these modules designed for a modern CPU, Xeon Phi 5110 co-processor 

from Intel, and Tesla K20 GPGPU from Nvidia, but can also be extended to run on 

virtually any technology that interfaces with the HASTE host kernel. Through 
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experimenting on both synthetic and real-world data, we achieve a speedup of up to 2000 

percent with the Xeon Phi and 6700 percent with the Tesla hardware. 
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I. INTRODUCTION 

a. Need for Faster Database Processing 

Databases are undisputedly one of the most critical facets of the Information Age for 

businesses, governments, and individuals alike, with the number of database 

administrators growing by over 15% per year (Bureau of Labor Statistics, US Department 

of Labor, 2014). Databases can be utilized to store financial transactions, asset 

inventories, personal records, and serve purposes big and small in all corners of modern 

life (Gartner, 2013). Today, the amount of information stored by the largest of 

organizations easily exceeds many petabytes in size, and in 2009 the estimated 

information storage capacity of the world was estimated at 297 exabytes 

(297,000,000,000 gigabytes) (Hilbert & Lopez, 2011). Utilizing data stores of such 

massive sizes requires much advancement in large-scale processing of databases. 

Efficiency in data retrieval is of paramount importance for large-scale organizations to 

support continued information growth – Facebook’s HADOOP database, for example, 

grew by 10 petabytes from 2010 to 2011 (Thusoo, et al., 2010). 

 

Current research and industry advancements in the area of database acceleration have 

employed hardware parallelization techniques to achieve higher throughput of data 

processing utilizing a range of computing devices. The HASTE project (a 

Heterogeneously Accelerated SQL Transaction Engine) focuses on employing two 

emerging hardware platforms: general purpose graphics processing units (GPGPUs) and 

many integrated core (MIC) processors, along with traditional CPU parallelization 

techniques. GPUs have been used for high performance computing for many years and 
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have been shown to provide an improvement of over 5,000% compared to single-

threaded code on a CPU (Bakkum & Skadron, 2010). Unlike GPUs, MIC coprocessors 

are a far more recent entry into the hardware market, with the first commercial 

implementation – Intel’s Xeon Phi – released in 2012. Both GPU and MIC devices have 

the potential for highly scalable performance, thanks to the presence of several thousand 

low-powered thread processors within GPUs and up to 60 traditional processing cores on 

the Xeon Phi. 

 

b. Overview of HASTE 

HASTE is a modular database engine supporting hardware-agnostic execution modules, 

based upon the GPU-centric design of the Virginian project published by the University 

of Virginia (Bakkum & Skadron, 2010). HASTE consists of a host thread acting as a 

front-end interface to the user and a back-end controller for data transfer and query 

preparation. Our database engine behaves in a manner consistent with standard popular 

databases, receiving a SQL statement following generally accepted syntax and returning 

to the user a table consisting of selected rows and columns from the source database 

which match the provided query. We implement a query translation system that enables 

our use of interchangeable execution modules by creating an intermediary state for the 

SQL transaction. Specifically, the user‘s query is transformed into a set of opcodes which 

can be interpreted on all HASTE execution modules, which is similar to the intermediary 

bytecode used by the Java virtual machine. Database contents are stored in a proprietary 

format which compartmentalizes data into small segments which we refer to as ‘tablets’. 

The practice of subdividing data is seen in large-scale scientific and commercial use of 
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Google’s MapReduce programming model and allows data transfer to take place in small 

chunks so that processing may take place simultaneously and reduce the delay associated 

with the data transfer. 

 

c. Experimental Environment and Results 

We design multiple experiments to evaluate HASTE’s performance in varied situations. 

Both a synthetic dataset and a real-world dataset are created for querying. Our synthetic 

data set consists of a one million row and an eight million row database with three integer 

columns and three floating point columns, filled with randomly generated values. We 

have supplemented the synthetic database with a real-world dataset of almost five million 

rows of values representing user queries of satellite imagery provided by the United 

States Geologic Survey (USGS) Earth Resources and Observation System (EROS). A 

total of four queries are created for the synthetic datasets, two for the one million row 

dataset and two for the eight million row dataset which measure performance of simple 

and complex queries, along with two experiments for the EROS datasets which results in 

a total of six experiments. These experiments are evaluated on six combination of 

execution modules that we have designed: CPU, GPU, MIC, CPU+GPU, CPU+MIC, and 

GPU+MIC. We observe the largest speedup over single-thread CPU code from the GPU 

module, with a difference in response time of up to nearly 7x when using optimal data 

transfer methods. The Xeon Phi exhibits its weakness in data transfer with a total 

execution time 7,500% slower than the 32 thread CPU module. However, we discover 

that the Xeon Phi’s processing capabilities begin to rival those of the Tesla K20 GPU 
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when examining time spent preforming computation and excluding memory transfer 

timings. 

 

d. Major Contributions of this Thesis 

During our course of research, we have created the first ever DBMS designed for 

parallelized computing that utilizes CPU, GPU, and MIC architectures within a single 

software package. HASTE is designed from the ground up to be a modular, 

interchangeable environment to support easily implementable parallel functionality for 

database processing on current and future platforms. We explore the capabilities of 

Intel’s first entry into the small-scale hardware coprocessor market, the Xeon Phi, 

observing the performance of first-generation hardware as a competitor to GPUs’ long 

standing monopoly on the market. With the DBMS framework provided by HASTE and 

the low-cost hardware from Nvidia and Intel, the processing of big data and large scale 

databases becomes available to individuals, researchers, and corporations, without the 

need for large capital investments or access to supercomputers. 

 

e. Description of Remaining Chapters 

The remainder of this thesis is organized as follows. Chapter 2 provides details on other 

related work in the field of database acceleration, focusing on generalized database 

acceleration, use of GPUs, and other parallelization and optimization techniques. Chapter 

3 details the design of the HASTE engine, the execution modules, and the 

interconnections between the varied HASTE components. Chapter 4 contains the results 

of our experiments on varied combinations of execution modules, data sets, and SQL 
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queries. Finally, Chapter 5 concludes this thesis with a summary of our work and 

discusses the interpretation of our findings from chapter 4, as well as briefly outlining our 

ideas for future improvements to the HASTE project, areas of further interest, and a 

summary of the benefits provided by our current research. 
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II. RELATED WORK 

a. Database Acceleration 

Database acceleration is a field that has been pursued for many years by researchers 

targeting a great number of possible solutions. Amongst the most publicized, topics focus 

upon: improving the underlying structure of database queries and processing techniques, 

utilizing CPU-based parallelism (including cluster and shared-memory machines), and 

recently, using GPGPUs for co-processor based parallelism (DeWitt & Gray, 1990). 

Early research, such as that by Schneider and DeWitt, suggest that efficiency may be 

achieved by decomposing complex queries and then utilizing varied techniques to 

combine results to form true results, however this would not benefit simple queries 

performed on large datasets (Schneider & DeWitt, 1990). Chiu et al. proposes a novel 

concept of utilizing clustering algorithms as used in machine learning which would 

enable faster searching in a large database environment (Chiu, Fang, Chen, Wang, & 

Jeris, 2001). Graefe suggests that growing database sizes will have an adverse impact on 

the underlying query-processing algorithms in DBMS and that proper query evaluation 

techniques and more prudent data models will support more efficient growth (Graefe, 

Query Evaluation Techniques for Large Databases, 1993). In the course of our research, 

we find that data transfer proves to be a sizable difficulty for certain environments, to 

which Graefe proposes the solution of data compression not only for storage and transit, 

but manipulation and querying as well (Graefe, Data Compression and Database 

Performance, 1991). Despite being an edge case, Li et al. demonstrates that caching yield 

substantial gains for very large scale database-driven web applications with repetitive 

access of high-use datasets (Li, et al., 2003). 
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b. Parallelized DBMS 

Parallelism via CPU-centric techniques has a long publication history compared to 

GPGPU and other technologies thanks to their relative age. Rognes and Deeberg take 

advantage of the MMX and SSE extensions provided by consumer x86 architectures to 

enhance targeted algorithms for bioinformatics searches (Rognes, 2000). Bellatreche 

improves querying heterogeneous databases utilizing a scatter-gather methodology 

tailored for data warehouses (Bellatreche, Benkrid, Crolotte, Cuzzocrea, & Ghazal, 2012). 

A more holistic approach is suggested by Rahman, who designs a custom DBMS in order 

to tune resource usage and form a stronger architectural foundation for parallel systems 

(Rahman, 2013). Chaiken et al. employs an approach similar to the structure we utilize 

for HASTE query parsing by introducing a new scripting language which can be 

decomposed by the execution engine for faster, more efficient processing of user queries 

on massive data sets (Chaiken, et al., 2008). Exploitation of superscalar processor design 

to enable simultaneous multithreading of queries, as demonstrated by Lo et al., 

exemplifies the value to be gained from knowledge of hardware strengths and the 

developing of code to suit the execution environment (Lo, et al., 1998).  

 

c. Hardware-Accelerated DBMS 

Once GPU-based computing was shown to have the potential for sizable performance 

gains, there is continued research and publication with the aim to employ this technology 

for the improvement of databases on big data. Govindaraju et al. focuses on the 

techniques possible to enhance memory bandwidth when using GPUs as coprocessors in 

managing large databases (Govindaraju, Gray, Kumar, & Manocha, 2006). Deriving 
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primitive operations from SQL statements and forming GPU kernels for computing 

database queries is explored by Wu et al. and results in performance jumps in both 

computation and memory transfer (Wu, Diamos, Cadambi, & Yalamanchii, 2012). The 

basis for our work in HASTE was provided by Bakkum and Skadron as they 

implemented SQLite-derived opcodes for use on CUDA platforms to obtain substantial 

performance gains (Bakkum & Skadron, 2010). Comingling of GPU and CPU platforms 

have received attention from the research community as well, with Breb et al. proposing 

context-switching to form a hybrid model wherein a query would be evaluated to 

determine which environment would provide greater performance (Breß, Schallehn, & 

Geist, 2013). Similarly, Milloy et al. design a methodology in which result matching 

takes place on CPU and indexing takes place on GPU, making use of the strengths of 

each (Milloy, Fanerty, & Gerber, 2012). Query length is used to determine which 

hardware should execute a query in a publication by Zidan et al (Zidan, Bonny, & Salama, 

2011).  

 

d. Intel MIC 

To the best of our knowledge, no research has yet been published which utilized MIC 

architecture to recreate an entire DBMS, owing to the recency of the MIC's availability 

for research. However, several features of DBMS have been presented independently to 

lay the groundwork for future work in this field. Full-table scans of column-store 

databases have been implemented on Xeon Phi hardware to achieve performance gains 

(Willhalm, Oukid, & Miller, 2013). Sorting operations were studied on an early 

implementation of MIC hardware to achieve 2.2x the performance of CPU-based sorts 
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(Satish, et al., 2010). Additionally, the mapping stage of MapReduce has been designed 

to utilize the vectorization gains through MIC hardware to obtain significant performance 

improvement (Dean & Ghemawat, 2008).  

 

e. Additional Acceleration Techniques 

Standing apart from techniques to utilize parallelism, distributed processing is a frequent 

subject of note in research surrounding database performance. MapReduce, an algorithm 

developed by Google and notably distributed by Apache with Hadoop, is a distributed 

framework designed for data-intensive applications. HASTE is inspired by the 

MapReduce algorithm's methodology of breaking a complex problem into simpler 

subproblems, distributing the workload, and them collecting result data to form a 

complete solution. HASTE draws on this concept by enabling queries of arbitrary size to 

be executed on any number of execution modules and seamlessly combined to create a 

result set covering the entire data source. 
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III. ENGINE AND MODULE DESIGN 

a. Introduction and Purpose  

We began the HASTE project with the purpose of designing a database engine built from 

the ground up for rapid processing of database queries by taking advantage of modern 

parallelism techniques. We have identified two primary areas of influence on 

performance that we need to optimize: data transfer of the target tables to the processing 

device and parallelism in the execution model of the SQL query. Each parallelized 

component requires different code design to utilize its unique abilities, but the result of a 

query and the processing of user input remains the same, so we have implemented a 

modular design of the execution engine alongside a single set of engine components to 

prepare query for execution. Rather than modify an existing database engine to operate 

on GPU and MIC hardware, a complete database engine is designed from scratch for 

maximum flexibility and compatibility. HASTE is compartmentalized into several 

modules that build upon one another to transform a user’s raw SQL query into the 

appropriate result set. 

 

b. Component Overview 

HASTE consists of a set of support components responsible for query parsing and 

execution, unified by a main thread residing on the host device which holds the database 

files locally and has access to the parallel hardware (in our case, the CPU and MIC are 

attached to the host via the PCI Express bus). Error! Not a valid bookmark self-

reference. provides an overview of this architecture. A single database file system and 

instruction set form the framework of the HASTE system. These components are 
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designed to enable hardware agnosticism and support the addition of new processing 

modules for future work on other parallelized systems by creating an intermediary phase 

in the query execution flow which can be utilized by differing execution models. Behind 

the HASTE support components resides a modular set of processing components which 

have been designed to operate independently or cooperatively. We have developed 

modules that execute on the CPU, GPU, and Xeon Phi hardware, with the opportunity for 

additional modules to be developed for other parallel systems. 

 

 

The main HASTE thread runs on a host machine and receives a SQL query from user 

input, parsing the query into a list of operations for use in one or more execution modules. 

Figure 1 - Overview of the HASTE architecture 
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Once compiled, the list of SQL operations is passed to a processing module along with a 

segment of the database, and the module interprets the SQL operations to execute the 

user’s query, returning valid results back to the main HASTE thread. 

 

c. Database 

i. Purpose 

We designed a simple flat file database system to serve as the storage mechanism for the 

HASTE system. Enhancements in storage efficiency and compression are not objectives 

for this project, so a flat file system was the most logical method for supporting offline 

database storage. Due to the modular nature of execution modules allowing for differing 

hardware possibilities, the simplest database is optimal over more complex options which 

would be found in modern database systems.  

 

ii. File Structure 

The HASTE database file is a single file residing on the hard disk of the host machine. 

Within the database are size-delimited blocks of data which we refer to as tablets, 

designed to facilitate transfer of data to execution modules. Each tablet is a fixed size, 

specified at the time that the database is created, with additional tablets automatically 

instantiated and appended to the end of the database file as new rows are added. Three 

distinct areas are contained within each tablet: metadata, primary keys, and the database 

contents themselves.  

Figure 2 below provides an example of how tablets constitute the database structure. 

  



 

13 
 

 

Figure 2 - Example file structure of a database in HASTE 

 

Tablet metadata houses a description of the overall database structure, information on the 

file structure on the disk, description of the database contents and datatypes, and pointers 

to the preceding and subsequent tablets in the file structure (when applicable). Metadata 

is a fixed-width portion of the tablet and comprises the first set of bytes within the tablet. 

The primary key area within the tablet contains the primary keys associated with the 

values contained within the tablet, with the size of the segment varying based upon the 

number of rows contained and the type of the primary key. The database contents are 

stored in column-major format, which is selected to improve search speed within a query 

by ensuring that values within a single column will be loaded into memory alongside one 

another. Typically, a column-major database will contain a primary key associated with 

each column, however our implementation contains the primary key in a separate area of 

each data segment, eliminating the need for this data overhead. The size of the data 

segment occupies the remainder of the tablet and contains a fixed-size and variable-size 

area. Fixed-size elements such as integers and floats are stored within the former segment, 

while the latter area is intended for strings, arrays, and blobs with varying sizes across 

rows. The number of rows contained within the data segment is a function of the overall 

tablet size, the number of columns in the database, and the number of fixed- and variable-
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sized elements stored within.  

 

d. Instruction set 

i. Purpose 

In order to service the modular design ideals of HASTE, we needed to design a system of 

executing a SQL query on any of a number of hardware components. An opcode system 

is selected as the optimal way of achieving this functionality. Similar to the opcode 

system utilized in hardware design, we have implemented a set of operations that will act 

as an intermediary between SQL statements and the underlying code needed to execute 

them. These instructions will have varying implementation methodologies which can be 

defined within each of the execution modules.  

 

ii. Design 

We have designed an instruction set following the methodology used by the Virginian 

GPU accelerated database, which in turn is a derivation of the SQLite instruction set. The 

HASTE implementation of this instruction set consists of twenty-six operations which are 

required for basic database operations, arithmetic, control flow, and data manipulation. 

Currently, only the SELECT SQL operation is supported, but the modularity of the 

HASTE code allows for the addition of additional opcodes to expand the functionality of 

the SQL engine. Each opcode has room for up to four arguments, supporting passing 

values including locations, datatypes, operands, and other necessary parameters.  
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iii. Use 

The HASTE bytecode is designed to achieve modularity across differing execution 

modules by parameterizing instructions and implementing operations as abstract 

functions which may be redefined as required at a deeper level. When transforming a 

SQL statement into HASTE code, a PARALLEL instruction and CONVERGE 

instruction surround the code block which contains the core operations for executing the 

query. Upon reaching the PARALLEL instruction, the host HASTE thread invokes the 

specified execution module, which is responsible for the series of opcodes until the 

CONVERGE instruction is reached. The execution module will contain definitions for 

each opcode which are designed in a manner that will leverage the hardware used in the 

respective module. By allowing each module to contain its own code for executing an 

opcode, the instructions can be optimized for multiple differing parallel environments 

while maintaining the same neutral intermediary step of translation from SQL statements 

to the HASTE instruction set. In addition, the process enables the use of multiple 

execution modules simultaneously for the same SQL query. 

 

e. Query compiler 

i. Purpose 

HASTE’s query compiler was designed to enable the hardware-agnostic translation of 

SQL statements into the intermediary opcodes described in chapter 3. A SQL statement is 

received from the user upon invocation of the HASTE main thread. Before the query is 

executed it is first translated into opcodes by the query compiler. The translated opcodes 

are then passed on to the execution module to generate the results. Conversion of the 
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SQL statement to opcodes is a two-step process. First, an abstract syntax tree is generated 

by parsing keywords and parameters to create a logical path for the query to follow. Then, 

the AST is traversed and each node is converted into an instruction keyword and placed 

in a queue which represents the requisite steps to obtain the result of the SQL query from 

the execution modules. 

 

ii. AST Creation 

Upon submission of a SQL query, the constituent operators and operands are separated 

and run through a translation matrix. Internally, the pairing of Flex and Bison provide the 

background functions for building an abstract syntax tree containing the opcodes to 

execute the query. Flex utilizes a provided Lex file to generate a lexical analyzer which 

tokenizes the SQL query and provides an input for Bison. The tokens from Flex are 

matched with the grammar provided to Bison to generate AST nodes. Each AST node is 

representative of one of the twenty-six opcodes defined in the HASTE grammar. Once 

the AST is finalized, the final step of the pre-execution process is to traverse the AST and 

generate a linked list that contains the series of operations required to obtain a result from 

the database.  

 

iii. Instruction Set Creation 

The HASTE instruction set’s 26 instructions provide the minimum actions needed to 

support the basic SELECT operation. A translated query will contain a central chapter of 

arithmetic and logical steps to derive a result from input data and is surrounded by a 

generic set of wrapper instructions to prepare the query and data for execution. Wrapper 
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instructions will define the table and columns to be operated upon and contain the trigger 

instructions to invoke and terminate an execution module. As an example, given a table 

TEST with one integer column INT1 and a primary key of ID, consider the following 

query:  

 

this query will be translated as below in Figure 3.  

 

Figure 3 - Translation of SQL query into Opcodes 

 

In the example in Figure 3, the first instruction sets up the table TEST, residing in this 

particular database in table slot 0. The next two set up the result columns, giving them 

their appropriate names and assigning to each the type int. Between the Parallel/Converge 
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instructions (the former of which specifies that the interpreter should jump to instruction 

11 on completion of the latter), each instruction is performed on each row of input. 

 

The column INT1 is processed by loading the value in column 0 (INT1) into register 2; 

loading a literal zero into register 0; and then comparing the values. If the comparison is 

successful (i.e., INT1 >= 0), then the primary key is processed. Otherwise, the row is 

invalidated, and execution falls through instructions 8 and 9, effectively treating them as 

no-ops. 

 

To process the primary key, its value is loaded by the Rowid instruction into register 1. 

No further computation is necessary at this point, and so the results are emitted. This is 

done by the Result instruction, which fills the columns defined earlier by ResultColumn 

with the values in the two registers starting with register 1, i.e. ID and INT1. Thus, if 

INT1 >= 0 for some particular row, ID and INT1 are emitted as values in the result tablet. 

Otherwise, evaluation is short-circuited using data flow (as opposed to using such a 

control flow construct as, say, Jump 10) and no results are emitted for that row. 

 

f. Execution Modules 

i. Overview 

The execution modules enable the modularity and heterogeneous execution of SQL 

queries within the HASTE system. An instruction interpreter is written for each hardware 

and software component to be leveraged for parallel execution within HASTE. Each 

interpreter supports the opcodes representing a SQL statement by providing the ability to 
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utilize the unique utilities available to the supported hardware or software. Three modules 

have been written to demonstrate the functionality of the HASTE system: a CPU module 

using pthreads, a GPU module using CUDA, and a Xeon Phi module using OpenMP. 

 

An instruction interpreter will contain two components: a host module and a target 

module. The host module is generally a small segment of code responsible for the 

invocation of the target module, handle data transfer from the host to the target device, 

and to provide an endpoint for data transfer back to the host upon completion of 

execution.  

 

ii. Data Transfer 

Enabling execution modules to access the HASTE database is a two-step process. First, 

the database must be moved from the hard disk of the host system into the host’s main 

memory. After loading into memory, data can be transferred to the resident memory of 

the device which will execute the query. Transfer from disk to main memory takes place 

before the execution module is invoked and query execution begins, at which time the 

tablets that contain the target database will be loaded in their entirety into main memory 

of the host. Once the query has completed execution on the target device, result values 

will be transferred back from the execution module to the host device and then written 

back to disk. Write-after-write data races are avoided as a result of the flagging of valid 

entries during execution. As input data is evaluated, values which pass the query criteria 

are marked as valid and are not written until execution of all rows in the tablet are 

complete, at which point they are linearly inserted into the result tablet. 
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iii. CPU Module 

The CPU execution module is the simplest design of the three modules we have 

implemented in HASTE. Parallelism is achieved within the CPU module via POSIX 

threads surrounding the primary execution segment of the module. After the PARALLEL 

instruction is encountered, the pthread fork is invoked upon the action method as needed 

to occupy all available virtual cores on the CPU. Within the action method is a lookup 

function that maps instructions within the linked list of opcodes to definition blocks that 

preform the requisite action. A copy of the instruction list is created within each thread 

and traversed independently of the other threads.  

 

Accessing the target database does not have additional overhead as we will observe in the 

other execution modules, as the CPU directly accesses main memory of the host machine 

where the database resides. When the CPU module begins execution, the database tablets 

are immediately available for processing. Data within the tablets are accessed by the CPU 

threads in contiguous blocks that evenly distribute the available rows amongst the total 

count of threads in use. When a thread discovers a value that matches the query criteria, a 

VALID flag is set within the tablet. Once the query has completed within all threads and 

the threads have joined, the main thread iterates through the data tablet to find valid flags 

and copies the appropriate values to a result tablet, which is then written to disk and the 

CONVERGE instruction is encountered, returning control back to the HASTE thread on 

the host system. 
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iv. GPU Module 

The GPU execution module utilizes the large amount of execution units available within 

the GPU to process data at a large scale. Similar to the CPU module, each CUDA core is 

provided with an individual copy of the instruction list. Once the PARALLEL instruction 

is encountered and the GPU module invoked, the CUDA host thread launches the 

HASTE GPU kernel and the threads are allowed to diverge as they process the database.  

 

As the GPU lacks direct access to main memory, we must rely on efficient data transfer 

techniques to reduce the large overhead experienced when moving data on and off the 

device. Transferring data to the GPU is accomplished via the use of pinned, mapped 

memory. Host memory containing the target database is pinned in place to ensure that it 

cannot be swapped to disk and will not change its virtual address. The pinned segment of 

memory is mapped to the GPU so that virtual addresses on the host can be directly 

addressed by the CUDA kernel and transferred to the device as needed alongside 

execution of the SQL statement. 

 

Mapped memory is also utilized to write data back to the host device in full duplex 

alongside reads, thus allowing up to double the data throughput. Once a valid result is 

identified, it is immediately transferred back to the host’s main memory and placed 

within a result tablet. When all data is processed, the CUDA main thread returns control 

to the HASTE host thread and the filled result tablet is written to disk. By using pinned 

mapped memory we greatly reduce the need to cease processing data in order to transfer 

to and from the GPU.  



 

22 
 

 

v. MIC Module 

Intel’s Xeon Phi does not support software-specialized parallel operations like what is 

available with CUDA. Parallelism requires the use of OpenMP pragmas to offload C++ 

code to the MIC (MPI is also a supported technology). #pragma offload statements 

surround an execution function which processes the linked list of opcodes. Within the 

offload pragma, a #pragma omp parallel block executes the SQL statement independently 

across the available Xeon PHI cores which independently process the target database. 

 

Data transfer to the Xeon Phi takes place within the #pragma offload statement. Data 

tablets are moved to the memory of the MIC en masse at the point that the offload 

pragma is encountered, up to one half the available memory on the device. The remaining 

half of the memory is used to house the result tablet buffer as it is filled during execution. 

While the processing function is executing on the MIC cores, when a valid row is 

encountered it is copied to the next available location within the result tablet. Once the 

query has executed on all rows currently located within MIC memory, the execution 

function ends and the result tablet is transferred back to the host memory. If any 

additional tablets remain to be processed, the process will repeat and new tablets will be 

sent to the MIC to have the query run upon them. When no more tablets remain 

unprocessed, control is returned to the HASTE host thread and the result tablet are 

merged and written to disk. 
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IV. RESULTS 

a. Overview 

We have designed a suite of experiments for the HASTE system that examines 

performance of execution units and multiple datasets and queries. Two datasets are used 

for experimenting – one large synthetic dataset comprised of random values and one 

smaller dataset created from real-world data representing user data queries for satellite 

imagery. Each dataset has two queries preformed upon it to evaluate the performance of 

running both simple and complex operations. These queries are executed on several 

hardware configurations: CPU with variable cores, GPU with pinned/mapped and 

standard memory allocation, MIC with variable thread use, and tandem use of CPU+MIC, 

CPU+GPU, and MIC+GPU.  

 

b. Data Setup 

i. Synthetic Data 

Our synthetic dataset allowed for experimenting of large block databases containing a 

variety of data types. A generation function was written to allow the creation of HASTE 

formatted databases of arbitrary size and content. The synthetic database contains six data 

columns composed of three integer and three floating point columns, along with a 

seventh integer column for storing the sequential ID of the column, which is also utilized 

as the primary key. Contents of each cell are generated at random using a Gaussian 

distribution for values between -1,000,000 and 1,000,000, with two decimal places 

allowed for the floating point values. Two different sized databases are created, 

containing 1,000,000 and 8,000,000 records and resulting in on-disk sizes of 138 MB and 
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1.13 GB.  

 

Two queries are employed to test the performance of both simple and complex SQL 

queries. The simple query operates upon only a single data column, along with the index, 

intended to measure minimal processing time for one comparison operation and data 

transfer. This query is input as:  

 

This will return approximately one half of the input database as the result (500,000 and 

4,000,000 rows). A more complex query with boolean logic and multiple evaluations 

evaluates the performance of six comparison operations and five boolean operations. Our 

complex query is entered as:  

 

Which results in a result set of approximately 56.25% of the input size, or 562,500 and 

4,500,000 rows for 1 million and 8 million source rows. 

 

ii. Real-World Data  

For more realistic performance measurements, we have employed a real-world dataset. 

The data was supplied by the United States Geologic Survey Earth Resources 

Observation and Sciences Center and represents several years of logs they provide. 
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EROS provides satellite imagery of the Earth’s landmasses to users worldwide for 

research and private purposes. Requests are stored with the requested image (in X/Y 

coordinate format with a time value), ID of the requesting user, and a timestamp for the 

request, along with an integer ID acting as the primary key. All columns store integer 

values. USGS supplied 4,882,305 rows of usable requests spanning a 3 year period from 

2008-2011. We processed and modified the source data to convert it into supported data 

formats. The original data received from EROS was 1,670 KB, and after the required 

modifications and trimming, the database was reduced to 1,536 KB. Data modifications 

are performed with an external utility and required negligible overhead time outside of 

the initial time to design a new format. 

 

As with the synthetic database, two queries are designed to test performance under 

multiple use cases both simple and complex. A simple query was crafted to select all 

images requested by a single user, input as  

 Which results in a small result set for the user whose ID is 75032, yielding seven records 

(.00014% of input rows). A larger query was also designed, which searches for all 

requests submitted in a one year period from 12:00 AM on January 1, 2009 to 11:59 PM 

December 31, 2009. This query is input as: 
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which results in 1,402,198 result rows (28.72% of input values). 
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c. Execution environment 

We have assembled a unified environment for executing the experiments of the HASTE 

system. The database files are located within a 250 GB SSD connected to the host 

through a SATA III connection, with 1.1 GB uncached sequential reads transferring at an 

average of 474 MB/s. The HASTE testbed has 64 GB of synchronous main memory in a 

dual-channel 8x 8GB configuration at 1600 MHz. Two eight-core Intel Xeon ES-2650 

CPUs with hyper-threading power the host system, providing a total of 32 virtual cores. 

Each physical CPU contains 20 MB of L3 cache, 2 MB of L2 cache, and 512 KB of L1 

cache. 

 

Our GPU module executes on an Nvidia Tesla K20m GPGPU with 2,496 706 MHz cuda 

cores and 5 GB of shared GDDR5 memory, connected to the host over a PCI Express 2.0 

x16 interface. The MIC module executes on an Intel Xeon Phi 5110p. The Xeon Phi 

architecture provides 60 physical cores (240 logical) operating at 1.053 GHz, 8 GB of 

onboard GDDR5 memory, and connects via PCI Express 2.0 x16. 

 

Source code is compiled for the CPU execution module and the HASTE host program 

using GCC 4.8, CUDA 5.0 is used to compile the GPU portion of HASTE, and MIC 

components are compiled with Intel C++ Compiler 13.1.3. 

 

d. Experimental Results 

When evaluating the performance of HASTE, it becomes apparent that the total 

execution time was not an appropriate metric for comparison. The total execution times 
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are overwhelmingly high for the Xeon Phi in all experiments. In Figure 4 we can observe 

that even the best Xeon Phi execution time is 15% slower than a single threaded CPU 

experiment. In contrast to the Xeon Phi, the K20 GPU presents response times are 

comparable to the multi-threaded CPU execution and is the fastest device to process the 

simple query. For all results in this chapter, response times are measured from the point 

that the HASTE main thread invokes one or more execution engines to the point where 

control is returned back to the main thread. No time spent preforming program startup, 

syntax parsing, database creation, or presentation of results to the user are included in any 

measurement herein. 

 

 

Figure 4 - Comparison of execution times for simple and complex queries on 1 million 

rows of data 

 

If we compare the two graphs in Figure 4 we see that the addition of more data to the 

table has opposite effects on the total execution time of the GPU and MIC architectures 

against the baseline CPU result. In Figure 5, we see that both pinned and unpinned GPU 

response times are equal to or slightly faster than the 32 thread CPU results (using all 

cores plus hyperthreading). In contrast, the move from one million to eight million rows 
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of data has a detrimental impact on the Xeon Phi response times, with results taking up to 

twice as long over a single thread.  

 

Figure 5 - Comparison of execution times for simple and complex queries on 8 million 

rows of data 

 

The total execution time proves to be misleading when comparing the processing power 

of the CPU, GPU, and MIC components of HASTE. By decomposing the total execution 

time into the constituent metrics of computation time and the time for memory transfer + 

overhead, we see a much clearer picture of the strengths and weaknesses of the respective 

architectures. Figures 6-9 below illustrate the key differences between our experiments, 

namely the ability to transfer source data and results, as well as the speed in which 

computation is performed. 

 

In the below figures, compute time is defined as the amount of time (as reported by the 

system) that processor cycles are spent executing the code on each device. Memory + 

overhead and compute time is the remainder after subtracting compute time from the total 

measured execution time, which represents the time it takes for the devices to become 

ready, copy and initialize code, and to transfer data to and from main memory (and 
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device memory, in the cases of the Xeon Phi and K20). As we would expect, the CPU 

experiments has the lowest memory transfer and overhead time, as it has the least amount 

of overhead and direct access to the system main memory.  

 

CUDA architecture allows for the use of ‘pinned’ memory, which causes system memory 

to become unable to be swapped to disk and ensures that the virtual addresses for 

memory within the pinned blocks will never change. This results in the ability to pass 

pointers from the host device to the GPU so that the GPU has direct access to system 

memory and can transfer as much as needed on an ad-hoc basis. The GPU pinned 

memory experiments showed an approximate 30% reduction in wait time for memory 

transfer over unpinned memory as a result of the ability to access system memory via 

pointer and transfer data to the device asynchronously.  

 

The Xeon Phi experiments reveal that up to 98% of the total execution time is spent on 

handling the memory transfers and overhead. If we choose to examine only computation 

time, our findings give much more weight to the potential of co-processor accelerated 

performance gains over simple CPU execution. For 8 million rows of data, the 240 thread 

Xeon Phi experiment preforms 1.7x as quickly as the 32 thread CPU experiment, and the 

K20 completes its query 5.7x as fast as the same CPU experiment. 
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Figure 6 - Compute and memory + overhead times for 1 million row simple query 

 

 

Figure 7 - Compute and memory + overhead times for 1 million row complex query 
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Figure 8 - Compute and memory + overhead times for 8 million row simple query 

  

Figure 9 - Compute and memory + overhead times for 8 million row simple query 

  

The best performing experiments from each HASTE module are summarized below in 

figures 10 and 11, divided into compute times and memory + overhead times. We can see 

in the Figure 10 the compute times have a much smoother curve and are tightly aligned 
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with the other points in each series. The GPU curve has almost no variance across all 

experiments, emphasizing its mature feature set and tendency towards numerical 

processing. Of all the experiments, the Xeon Phi does show a much larger gap in its 

compute times, attributable to its nascence and more generalized set of applications. This 

gap is emphasized even further in the figure 11 wherein the Xeon Phi exhibits a massive 

jump to almost 30 seconds in memory transfer + overhead time while the CPU and K20 

take on the order of 3.5 seconds. In our development of the Xeon Phi module for HASTE, 

we noted a lack of refinement around memory transfer capabilities and limitations on the 

way in which data may be moved into and out of the Xeon Phi. Basically, every call to 

offload computation to the Xeon Phi must complete the transfer of all required data to the 

device memory before any code can be executed and similarly all result data must be 

transferred back to the host memory before control can be returned to the CPU. 

Compounding this issue, the Xeon Phi does not offer the same memory transfer 

functionality as supported by the K20. 
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Figure 10 - Comparison of compute times for the best executions of each HASTE module 

 

Figure 11 - Comparison of memory + overhead times for the best executions of each 

HASTE module 

 

Results of our real-world experiments on the EROS data validate the accuracy of our 

synthetic benchmarks and exhibit the same strengths and weakness as the previous 

experiments have indicated. When examining pure execution time as in figure 12 we 
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once again see that the Xeon Phi appears to be far inferior to all other HASTE modules 

and the GPU module provides the fastest execution time of all EROS experiments. 

However, when decomposed in figure 13 we see the same crippling memory transfer 

bottleneck that reduces the Xeon Phi’s effectiveness and masks the potential gains of its 

heightened response time. Although the K20 does have the fastest compute time of up to 

7.25x the fastest CPU time, the Xeon Phi still provides a 3.6x improvement over CPU 

compute times.  

 

 

Figure 12 - Total execution time for each query on real-world data from EROS 
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Figure 13 - Breakdown of compute and memory + overhead times for experiments on 

real-world data from EROS 
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V. CONCLUSION AND FUTURE WORK 

Differences in hardware capabilities mean that a 1:1 comparison would be biased towards 

devices which lack refinement in certain areas. Two areas emerged which must be 

measured separately to understand device performance: computation capabilities and 

memory transfer / overhead. The Intel Xeon Phi’s computation capabilities provide 

sizable gains of up to 3.6x a 32-thread CPU experiment, but are ultimately hindered by its 

reliance on slow memory transfers both to and from the device. Nvidia’s Tesla K20 is 

shown to realize the most substantial gains in both total execution time and computation 

time over the fastest CPU-based experiment. At its best, the K20 outperformed the 32 

thread CPU experiment by 725% in computation time and 178% in total execution time.  

  

Each suite of experiments in the previous chapter includes a series of combinations of 

CPU+GPU, CPU+Xeon Phi, and MIC+GPU to demonstrate HASTE’s ability to diversify 

execution across multiple execution modules. As the single-module experiments revealed, 

there are clear distinctions in performance between the various modules and thus the 

combined experiments do not outperform the best single-module experiment. However, 

we do note that there is virtually zero overhead in the HASTE engine from diversifying 

execution across two or more modules. This is a core component of the HASTE design 

and provides the foundation to scale to much larger execution environments with access 

to a wider array of components which may be utilized to further improve the performance 

on a larger dataset. 

 

We have seen that both the K20 and Xeon Phi can provide a considerable performance 
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improvement over typical CPU based execution. With future hardware revisions and 

additional refinement of the Xeon Phi hardware and software, many of the limitations 

exposed over the course of this research may be resolved. The goal of the HASTE project 

is to accelerate database performance through parallel programming in order to provide 

more responsive queries on large datasets. Our research has shown that the K20 is 

capable of scaling performance as the size of the dataset grows and enables it to be a 

viable prospect for high performance database acceleration. The Xeon Phi, while superior 

to CPU in query responsiveness, has displayed its inability to scale with large datasets 

due to its large memory transfer bottleneck and, as such, is not yet ready to be utilized as 

a reasonable means to achieve high performance database processing. 

 

HASTE is a framework which is designed to be extensible and support the development 

of new execution modules for additional hardware and software platforms not yet 

experimented in the scope of this research. Currently there are a great number of parallel 

technologies that we have not been able to experiment HASTE on, such as cluster 

computing environments using MPI, multiprocessor platforms using OpenMP, 

reconfigurable FPGAs, custom designed ASICs, and many more, including technologies 

still in research or not yet available for experimenting. Any hardware that can 

communicate with the HASTE core module running on a host system may be utilized for 

database processing through the HASTE architecture. In order to become a more viable 

DBMS, HASTE must be provided with a more complete query parser and opcodes to 

support the full functionality of SQL statements in use today. Additionally, refinements 

could be made to the HASTE system wherein more complex queries could be analyzed to 
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determine which of the available execution environments would be suitable for a given 

component of a user’s search, enabling the heterogeneous nature of HASTE to support 

choosing ideal processing methodologies. 

 

In conclusion, the ability to gain more performance on database queries over ever 

growing datasets is most certainly a reality that can be achieved through hardware 

accelerated parallelism. There are many hardware platforms in existence that may be 

employed to realize such gains, and this project has only utilized three such devices. With 

the HASTE project, newer execution modules may be easily created for many more 

parallel computing platforms and work in unison to bring us closer to the processing 

power needed to support the vast growth of data we see today.  
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