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Abstract

An efficient implementation of the perturb-then-diagonalize non-orthogonal con-

figuration interaction method with second order Møller-Plesset perturbation theory

(NOCI-MP2) is presented. Relative to other low scaling multireference perturbation

theories, NOCI-MP2 often requires a much smaller active space because of the use

of non-orthogonal reference configurations. Reworking the NOCI-MP2 equations with

the resolution of the identity (RI) approximation enables the method to have the same

memory requirements and computational scaling as single reference RI-MP2. The

working equations are extended to include single substitutions as required when the

reference determinants do not satisfy the Hartree-Fock equations. A detailed compu-

tational algorithm is presented along with timings to establish the performance of the
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implementation. NOCI-MP2 is applied to the binding energy and charge resonance

energy in dication and monocation π dimers, as well as di-diamantane ethane, and

hexaphenyl ethane. A well-defined set of non-orthogonal determinants are obtained us-

ing absolutely localized molecular orbitals (ALMOs), as solutions to the self-consistent

field for molecular interactions (SCF-MI) equations corresponding to covalent and ionic

determinants. Agreement with experimental information where available, and other

multi-reference methods, is satisfactory, with the use of an 0.3 a.u. level shift to guard

against large MP2 amplitudes. For di-diamantane ethane and hexaphenyl ethane, large

dispersion forces help stabilize the molecules despite the steric repulsion. By contrast,

in the case of hexaphenyl ethane, the energy penalty from the geometric distortion of

the fragments significantly weakens the bond.

Introduction

Standard electronic structure methods, such as Kohn-Sham density functional theory (DFT)

are able to treat most energy differences associated with non-covalent interactions, isomer-

ization energies, atomization energies, and barrier heights in molecules with increasing ac-

curacy.1–5 However, striking degradation occurs for some classes of problems.6 In fact, only

high levels of wavefunction-based electronic structure theory can accurately describe chemi-

cal problems such as bond breaking,7–9 avoided crossings,10–12 antiferromagnetically coupled

metal centers,13–15 and polyradical systems.16–18 In these cases, a single Hartree-Fock (HF)

(or Kohn-Sham) determinant is not able to properly describe the electronic wavefunction

because the mean field approximation is not adequate to describe a set of strongly corre-

lated electrons. The exact full configuration interaction (FCI) method captures both strong

correlation and weak correlations by composing the electronic wavefunction as a linear com-

bination of all possible single determinants. However, FCI scales exponentially with the

number of electrons when computed exactly. Therefore there is much research activity on

methods that approximate FCI, such as the density matrix renormalization group,19–21 FCI
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quantum Monte-Carlo,22–24 and related adaptive CI methods.25–27

Alternatively, approximate multireference (MR) electronic structure theories28 are de-

signed to enable the inclusion of just the essential configurations in the reference itself,

which can therefore be dramatically more compact than either FCI or any accurate approx-

imation. For instance, in lithium fluoride, a single reference description works well in the

bonded region where the ionic configuration is dominant. Likewise, a covalent spin-polarized

single configuration of two neutral atoms is adequate at dissociation. But at intermedi-

ate separations, the wavefunction has essential contributions (> 25%) from both the ionic

and covalent configurations, and is multireference in character. In an approximate MR the-

ory the total wavefunction is then just a linear combination of these more dominant single

reference wavefunctions. The most common method of this type is complete active space

self-consistent field (CASSCF).29,30 In CASSCF one defines a set of occupied and unoccupied

orbitals as the active space, and the total wavefunction is then defined as a small FCI wave-

function in that active space. CASSCF computational costs increase exponentially with the

size of the active space, which can be reduced by approximations that truncate the number

of determinants,31,32 in addition to the FCI approximations mentioned above.

While CASSCF is most widely used, there are other treatments of strong correlation

worth mentioning. Spin-flip CAS (SF-CAS) methods is one alternative that has attracted

recent interest.33–35 Valence bond (VB) methods are another approach that captures essen-

tial electron correlations within a very compact pairing wavefunction. VB methods range

from classical valence bond approaches36,37 to exponential-scaling spin-coupled VB,38 to its

low scaling coupled cluster valence bond approximation,8,39 to breathing orbital VB wave-

functions40,41 that mix together two or more VB wavefunctions to capture resonance effects.

Alternatively, a very general approach to strong correlation is to variationally combine a

set of determinants that are individually energy optimized. One early example are ionization

energies corresponding to valence oxygen hole states in the tetrahedral CrO2
4− ion,42 where

HF breaks spatial symmetry to localize the hole on a single O atom. Non-orthogonal CI
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(NOCI) between the 4 symmetry broken solutions is a compact and natural description of

such states.42,43 The same authors explored a similar NOCI approach for describing mag-

netic interactions between localized spin centers, to obtain the coupling constants that enter

the Heisenberg model Hamiltonian.44 In general, NOCI can be performed45,46 on as many

SCF solutions as one can identify,47 although typically the higher determinants are not true

minima in Hilbert space. Alternatively, approaches can be developed to define those deter-

minants that contribute to essential correlation (e.g. ionic and covalent determinants).48 In

all these approaches, since each determinant undergoes orbital relaxation, the final set of

HF determinants are non-orthogonal because they do not share the same set of molecular

orbitals. NOCI is the reference of interest in this work.

Beyond the strong or essential correlation is the remaining weak or dynamic correlation.

For simple problems, dynamic correlation is efficiently captured by well-established single

reference methods such as coupled cluster (CC) theory49 and Møller-Plesset (MP) perturba-

tion theory.50 From a CASSCF reference, there are many different methods that correct for

the effects of weak correlation using either coupled cluster theory51,52 or perturbation the-

ory53,54 corrections to a multireference wavefunction problem. MRCC methods are capable

of obtaining highly accurate results but the computational cost scales at least as the number

of determinants in the MR wavefunction multiplied by the scaling of the coupled cluster

approximation. Beginning from a classical VB starting point,36 VBPT2 has been developed

as a correction for dynamical correlation55,56 that plays a role akin to CASPT2 corrections

to CASSCF.

MRPT can be formulated as either a non-degenerate (diagonalize-then-perturb) or a

quasi-degenerate (perturb-then-diagonalize) fashion. Diagonalize-then-perturb methods in-

clude the commonly used CASPT2 method57 in which the PT expansion involves iterative

N5 steps to obtain the final energy. CASPT2 combines low computational cost with nearly

quantitative accuracy. However, it requires expertise to select an appropriate active space

and a suitable level shift for the PT2 correction.58 For avoided crossings and conical intersec-
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tions, one needs to use the multi-state CASPT2 approach, which involves M2N5 computa-

tional effort, where M is the number of state-averaged CAS states.59 The n-electron valence

states for multireference perturbation theory (NEVPT)60,61 also uses the CASSCF reference

wavefunction with a different definition of the zeroth order Hamiltonian, and has similar

computational cost (it can even be lower when internally contracted). The state specific

MRPT theory by Mukherjee and co-workers51,62 uses a different perturbation expansion to

avoid the need for an orbital level shift and is formally size extensive. However, the increased

robustness comes with increased computational cost. Perturb-then-diagonalize approaches

include methods like the generalized van Vleck perturbation theory (GVVPT2),63,64 the ef-

fective valence shell Hamiltonian,53 and the intermediate Hamiltonian method.65 GVVPT2

is a more accurate and stable method, but more computationally expensive than the other

perturb-then-diagonalize approaches.

Beginning from a NOCI reference rather than CASSCF, one perturb-then-diagonalize

method that was introduced years ago66 but not fully realized until recently is NOCI-

MP2.67,68 Note that only the most recently reported formulation of NOCI-MP2 is size-

consistent.68 In NOCI-MP2, each NOCI determinant is expanded to first order correction in

Møller-Plesset perturbation theory. Both Hamiltonian and overlap matrix elements of the

NOCI problem are corrected via MP theory before diagonalizing. The advantage of using

the non-orthogonal approach is that orbital relaxation introduces some of the missing weak

electronic correlation. This has been shown in both the NOCI45,46 and breathing orbital

valence bond approach41,69 to yield improved results over their strictly orthogonal counter-

parts. Both NOCI and NOCI-MP2 methods can often use significantly smaller active space

sizes46,67,68 than conventional active space methods.

A main objective of this paper is to report the first efficient implementation of the NOCI-

MP2 method with the inclusion of singles excitations, which therefore opens the way for large-

scale testing and applications. The computational cost of NOCI-MP2 scales as N2
oN

3
v with a

memory demand that scales as N2
oN

2
v . The memory requirement is associated with storage
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of the full set of two-electron integrals, and it can be reduced by employing the resolution

of the identity (RI) approximation in the PT2 correction.70,71 The RI approximation does

not introduce significant errors with an appropriately chosen basis set, but can reduce the

memory cost to NvNaux. The methodological part of this paper will summarize the working

equations of NOCI-MP2, which are extended to include contributions from single excitations.

This permits use of non-Hartree-Fock determinants (i.e. which do not satisfy the Brillouin

condition) within the NOCI reference. We next focus on introducing the RI approximation

within the NOCI-MP2 framework and present the algorithms used to evaluate the steps that

are important for efficient evaluation. Finally, we discuss how the computation of the off

diagonal matrix elements scale with basis set size when compared to the RI-MP2 method.

The results presented in this paper have three separate components. The first part in-

volves assessment of the observed computational cost of the NOCI-MP2 implementation

as a function of molecular size, relative to single reference RI-MP2. The second part is a

short study of antiferromagnetically coupled dimer dications and radical monocation dimers.

These species are examples of multicenter long-bond complexes (about 3.7 Å for TCNE−•-

TCNE−•) that are attracting interest in the context of both novel chemical bonding and

possible relevance to organic materials.72,73 The third part is a NOCI-MP2 study of the un-

usually long C-C single bond in the sterically crowded di-diamantane ethane and hexaphenyl

ethane molecules. While alkanes normally have C-C single bond lengths of roughly 1.54 Å,

the di-diamantane molecule was synthesized and characterized by crystallography as having

a C-C single bond that is 1.65 Å. Chemical bonding in these compounds can be viewed as

a tradeoff between Pauli repulsion between the bulky side groups (which forces lengthening

and destabilization of the bond), and attractive London dispersion which provides compen-

sating stabilization. However, this interpretation has been recently challenged,74 with an

alternative explanation in terms of small radical stabilization energy. Regardless of the de-

tails of interpretation, di-diamantane and hexaphenyl ethane can be viewed as models for

how these effects play out in more complex supramolecular systems.75
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Theory

Here we present the equations and algorithms for the RI approximation within the size

consistent version of NOCI-MP2. The notation we use is described in Table 1. For simplicity,

we use spin orbitals in the equations and algorithms, but of course the implementation is

accomplished in terms of (unrestricted) spatial orbitals.

Table 1: Summary of index conventions.

Notation Description
i, j, k, l occupied spin orbital
a, b, c, d virtual spin orbital
p, q, r, s any spin orbital

ĩ, j̃, k̃, l̃ occupied corresponding spin orbital
P,Q auxiliary basis function
superscript A,B NOCI state
N number of basis functions
No number of occupied spin orbitals
Nv number of virtual spin orbitals
Naux number of auxiliary basis functions
Sp̃q̃ 〈Aψp̃|Bψq̃〉

NOCI-MP2 Ansatz

We refer the reader to previous work on the NOCI-MP2 method for the derivation of the

size consistent formulation.68 In this work we present what was previously called version 2

of the NOCI-MP2 method outlined in ref. 68, because this version includes the contribution

of the MP2 overlap in the final set of equations. There is no significant computational cost

difference between the two different size consistent variations of NOCI-MP2, because the

MP2 overlap is freely obtained during the computation of the Hamiltonian. Version 1, also

size-consistent, is obtained simply by removing some terms from version 2, and thus is a

special case of the theory presented below. 68

In this paper we will introduce extra terms in the expansion of the wavefunction cor-

responding to singles amplitudes, which are non-zero only if the occupied-virtual block of
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the Fock matrix is non-zero. In earlier work 66–68 the different NOCI determinants are all

chosen to be solutions to the HF equation. Each NOCI state is made up of a set of canonical

orbitals that fully diagonalize the Fock matrix. In the results section below, we will use other

computational tools to find solutions to modified HF equations that do not fully diagonalize

the Fock matrix. It is important to consider singles excitations for these cases because they

are no longer strictly zero. Of course, if a NOCI determinant does fully diagonalize its Fock

matrix, then all of the single excitation terms can be ignored in the NOCI-MP2 computation.

Given a set of NOCI determinants, {|AΨ〉}, that are expanded out to their first order

correction in MP perturbation theory, |AΨ〉 = |AΨ(0)〉 + |AΨ(1)〉, then the size consistent

NOCI-MP2 ansatz is:

〈AΨ|Ĥ|BΨ〉 = 〈AΨ(0)|Ĥ|BΨ(0)〉+
1

2

(
〈AΨ(0)|Ĥ|BΨ(1)〉+ 〈AΨ(1)|Ĥ|BΨ(0)〉

)
(1)

〈AΨ|BΨ〉 = 〈AΨ(0)|BΨ(0)〉+
1

2

(
〈AΨ(0)|BΨ(1)〉+ 〈AΨ(1)|BΨ(0)〉

)
(2)

The first order overlap term and the second order Hamiltonian term are defined as

〈AΨ(0)|Ĥ|BΨ(1)〉 =
1

4
tabij
(
EA
HF + EA

MP2

)
〈AΨ(0)|BΨab

ij 〉+
1

4
F c
k t
ab
ij 〈AΨc

k|BΨab
ij 〉+

1

16
〈kl‖cd〉tabij 〈AΨcd

kl |BΨab
ij 〉

+ tai
(
EA
HF + EA

MP2

)
〈AΨ(0)|BΨa

i 〉+ F c
k t
a
i 〈AΨc

k|BΨa
i 〉+

1

4
〈kl||cd〉tai 〈AΨcd

kl |BΨa
i 〉

(3)

〈AΨ(0)|BΨ(1)〉 =
1

4
tabij 〈AΨ(0)|BΨab

ij 〉+ tai 〈AΨ(0)|BΨa
i 〉 (4)

In the above equations, and henceforth, the t-amplitudes (and orbital energies) refer to the

first order expansion of determinant B: |BΨ(1)〉 =
∑

ia t
a
i |BΨa

i 〉+
∑

ijab t
ab
ij |BΨab

ij 〉; we suppress

the state labels because only one determinant is referred to, although each NOCI determinant

has its own first order amplitudes.

To evaluate the overlap terms between the molecular wavefunctions we rotate the occu-

pied orbitals into the biorthogonal corresponding orbital basis.76 The corresponding orbital
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basis is formed by performing a singular value decomposition, SVD, on the occupied block

of the overlap matrix

OMO = (CA
MO)TOAOC

B
MO (5)

CX
MO and OAO are the molecular orbital (MO) coefficients for state X and the atomic orbital

(AO) overlap matrix, respectively. SVD of the occupied-occupied block of the MO overlap

matrix Oocc yields

Oocc = UsV (6)

The singular values, Sj̃, obtained from the SVD are the individual overlaps between the

corresponding j̃th occupied orbitals in state A and B. Only the occupied block of the

molecular orbitals needs to be biorthogonalized to evaluate the NOCI-MP2 matrix elements.

The overlap between the two determinants is then just a product of these overlaps, OHF =

〈AΨ(0)|BΨ(0)〉 =
∏

ĩ Sĩ. From the unitary matrices U and V we obtain the corresponding

molecular orbitals

C̃A
σĩ

=
∑
j

CA
σjUjĩ

C̃B
σĩ

=
∑
j

CB
σjVjĩ (7)

Using the corresponding MOs we define the overlap quantities, Sp̃q̃, that are used to solve

〈A|Bab
ij 〉 and 〈Acdkl |Bab

ij 〉 and are given in the bottom of Table 1. We use the accented indices

only for the occupied corresponding orbitals. Within the corresponding orbital basis we can

rewrite Eqs (3) and (4) as

〈AΨ(0)|Ĥ|BΨ(1)〉 = Hsing +
∑
ĩj̃ab

1

2
tab
ĩj̃

(
EA

HF + EA
MP2

) SĩaSj̃b
SĩSj̃

OHF

+
∑
ĩj̃ab

∑
k̃c

1

4
F c
k̃
tab
ĩj̃
〈AΨc

k̃
|BΨab

ĩj̃
〉+

∑
ĩj̃ab

∑
k̃l̃cd

1

16
〈k̃l̃||cd〉tab

ĩj̃
〈AΨcd

k̃l̃
|BΨab

ĩj̃
〉 (8)
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Hsing =
∑
ĩa

ta
ĩ

(
EA

HF + EA
MP2

) Sĩa
Sĩ
OHF +

ĩ6=k̃∑
ĩk̃ac

F c
k̃
ta
ĩ

SĩaSck̃
SĩSk̃

OHF +
∑
ĩac

F c
ĩ
ta
ĩ

S ĩab
Sĩ
OHF

+
∑
k̃l̃cd

ĩ6=k̃,l̃∑
ĩa

1

4
〈k̃l̃||cd〉ta

ĩ

SĩaSl̃dSck̃
SĩSl̃Sk̃

OHF +
∑
ĩl̃cd

∑
a

1

2
〈̃il̃||cd〉ta

ĩ

Sl̃dS
ĩ
ac

Sl̃Sĩ
OHF (9)

〈AΨ(0)|BΨ(1)〉 =
∑
ĩj̃ab

1

2
tab
ĩj̃

SĩaSj̃b
SĩSj̃

OHF +
∑
ĩa

ta
ĩ

Sĩa
Sĩ
OHF (10)

The singles terms from Eq. (9) are computed in a straight forward manner. The singles

amplitude, ta
ĩ
, can be stored on disk, unlike the doubles amplitude, tab

ĩj̃
. Likewise, all of the

rotated matrix elements in the corresponding orbital basis are formed and stored on disk.

The overall computation of Eq. (9) is on the order of N2
vNo. The rest of this section will be

focused on the computation of the last two terms in Eq. (8). The overlap matrix elements

with excitations in state A and state B depend on how many of the occupied orbital indices

in state A and state B are the same. When there are two excitations in both states the the

three different cases are

Case 1:̃i 6= l̃/k̃, j̃ 6= l̃/k̃

∑
ĩj̃ab

∑
k̃l̃cd

〈k̃l̃||cd〉Sck̃Sdl̃tabĩj̃ SĩaSj̃bOHF

4Sk̃Sl̃SĩSj̃
−
∑
ĩj̃ab

∑
l̃cd

〈̃il̃||cd〉Sc̃iSdl̃tabĩj̃ SĩaSj̃bOHF

4SĩSl̃SĩSj̃

+
∑
ĩj̃ab

∑
cd

〈̃ij̃||cd〉Sc̃iSdj̃tabĩj̃ SĩaSj̃bOHF

4SĩSj̃SĩSj̃
(11)

Case 2:̃i = k̃, j̃ 6= l̃/k̃

∑
ĩj̃ab

∑
l̃cd

〈̃il̃||cd〉Sdl̃tabĩj̃ Sj̃bS
ĩ
caOHF

4Sl̃Sj̃Sĩ
−
∑
ĩj̃ab

∑
cd

〈̃ij̃||cd〉Sdj̃tabĩj̃ Sj̃bS
ĩ
caOHF

4Sj̃Sj̃Sĩ
(12)
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Case 3:̃i = k̃, j̃ = l̃

∑
ĩj̃ab

∑
cd

〈̃ij̃||cd〉S ĩj̃acS
ĩj̃
bdt

ab
ĩj̃
OHF

4SĩSj̃
(13)

The extra terms for Cases 1 and 2 are due to the sums not being restricted over situations

like j̃ = l̃. While not restricting the sums introduces extra terms that need to be computed,

we will show that the low computational scaling can only be achieved by unrestricting the

sums. The projected overlap terms in Cases 2 and 3 are defined as

S ĩac = Sac −
∑
k̃ 6=ĩ

Sak̃Sk̃c
Sk̃

(14)

S ĩj̃ac = Sac −
∑
k̃ 6=ĩ,j̃

Sak̃Sk̃c
Sk̃

(15)

Equations (8)-(13) define the specifics of the NOCI-MP2 off-diagonal Hamiltonian and over-

lap matrix elements. The diagonal matrix elements are just the MP2 energy for the Hamil-

tonian and 1.0 for the overlap. All of these equations assume that the SVD of Oocc does not

include any zero singular values, i.e. Sk̃ 6= 0. We will not give the specific equations for the

cases when Sk̃ = 0 or is near 0. These equations require expanding the sum over occupied

indices into a sum over occupied orbitals with a non-zero Sk̃ and a sum over Sk̃ less than

a threshold value. We use 10−4 as the threshold because dividing by numbers smaller than

(10−4)4 can yield numerically unstable results.

The extra term,
∑

ĩj̃ab

∑
k̃c

1
4
F c
k̃
tab
ĩj̃
〈AΨc

k̃
|BΨab

ĩj̃
〉, that is needed for cases when the Fock

matrix is not diagonal is rewritten as

∑
ĩj̃ab

∑
k̃c

1

4
F c
k̃
tab
ĩj̃

SĩaSj̃bSck̃
SĩSj̃Sk̃

OHF −
∑
ĩj̃ab

∑
kc

1

2
F c
ĩ
tab
ĩj̃

SĩaSj̃bSc̃i
SĩSj̃Sĩ

OHF

+
∑
ĩj̃ab

∑
c

1

2
F c
ĩ
tab
ĩj̃

Sj̃bS
ĩ
ac

Sj̃Sĩ
OHF (16)
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These two terms are computed in the same way as Eqs. (11) and (12). The specifics of

which will be outlined bellow.

Finally we need to define the two-electron integrals within the RI approximation. The

main advantage of the RI approximation is that it greatly reduces the memory demand,

and slightly reduces the computational cost. Within the RI approximation a two-electron

integral becomes

〈ij|ab〉 ≈
∑
PQ

(ia|P )(Q|jb)
(P |Q)

=
∑
Q

BQ
iaB

Q
jb (17)

BQ
pq =

∑
P

(pq|P )(P |Q)−
1
2 (18)

So instead of storing the four index two-electron integral on disk or in memory the three

index B amplitudes defined in Eq. (18) can be stored on disk or in memory. We will show

later that use of the RI approximation requires only NvNaux elements of the B tensor to be

stored in memory. Due to use of the corresponding orbitals, the two electron integrals need

to be rotated into the corresponding orbital basis. The t amplitudes in Eqs. (8)-(10) then

become:

tab
ĩj̃

=
∑
ij

Vĩit
ab
ij Vjj̃ =

∑
ij

VĩiB
Q
iaB

Q
jbVjj̃ − VĩiB

Q
ibB

Q
jaVjj̃

εi + εj − εa − εb
(19)

ta
ĩ

=
∑
i

VĩiFia
εi − εa

(20)

In the next section we will present the final set of RI equations through combining Eqs. (8)-

(13) with Eq. (19) for a low scaling algorithm. First we will mention that if the t amplitudes

correspond to the ket state then the two-electron integrals in Eq. (8) correspond to the bra

state, or vice versa. This means that the NOCI-MP2 equations require at least twice the

number of B tensors as normal RI-MP2. The NOCI-MP2 algorithm can still scale similarly

to RI-MP2, but will in general have a larger prefactor.
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NOCI-MP2 Algorithm

This section focuses on the equations and algorithm used for the fast NOCI-MP2 algorithm

within the RI approximation. The first step is to combine Eq. (10) with Eq. (19). The

resulting equation is also used for the first term in Eq. (8), with the difference that it is

multiplied by (EA
HF + EA

MP2). Using the RI approximation the MP2 overlap becomes

∑
ijab

∑
ĩj̃

SĩaSj̃bVĩit
ab
ij Vjj̃OHF

2SĩSj̃
=
∑
ijab

1

2
RiaRjbt

ab
ijOHF (21)

Ria =
∑
ĩ

VĩiSĩa
Sĩ

(22)

By pre-summing over the corresponding orbital indices (Eq. (22)) Eq. (21) scales as an

RI-MP2 calculation with the slowest step being the formation of the t amplitudes. As we

will see, with some reworking of the equations we can achieve the same scaling for all of

the other terms in Eqs. (11)-(13). We can rewrite Eq. (11) using the same property of

associativity in the summation indices to obtain the final set of equations for Case 1

OHF

4

∑
klcd

〈kl||cd〉QckQdl

∑
ijab

tabijRiaRjb −OHF

∑
ĩ

(
∑
kc

UkĩSc̃i
Sĩ

(W1)kc)(
∑
ia

VĩiSĩa
Sĩ

(Z1)ia)

+
OHF

2

∑
ĩj̃

(X1)ĩj̃(Y 1)ĩj̃ (23)

where

Qai =
∑
ĩ

UĩiSãi
Sĩ

(24)

and

(W1)ic =
∑
ld

〈il||cd〉Qdl; (Z1)ia =
∑
jb

tabijRjb (25)

and

(X1)ĩj̃ =
∑
klcd

Ukĩ〈kl||cd〉Ulj̃Sc̃iSdj̃
SĩSj̃

; (Y 1)ĩj̃ =
∑
ijab

Vĩit
ab
ij Vjj̃SĩaSj̃b
SĩSj̃

(26)
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The second and third terms in Eq. (23) correct for the unrestricted summations over k and

l. These summations should be restricted to not include i or j, but the calculation greatly

benefits from being able to separate the summations. Specifically, if the first term in Eq.

(11) has restricted sums, then that term scales at best as N4
oN

2
v . So even though extra terms

with similar computational cost are added in, the overall cost is substantially reduced by

unrestricting the sums. Similarly, Case 2 becomes

OHF

∑
ĩac

S ĩca
Sĩ

(
∑
k

(W1)kcUkĩ)(
∑
i

(Z1)iaVĩi)−OHF

∑
ĩj̃ac

S ĩca(I2)c
ĩj̃

(L2)a
ĩj̃

Sĩ
(27)

where

(I2)c
ĩj̃

=
∑
kld

Ukĩ〈k̃l||cd〉Ulj̃Sdj̃
Sj̃

; (L2)a
ĩj̃

=
∑
ijb

Vĩit
ab
ij Vjj̃Sj̃b
Sj̃

(28)

For this case we need to form an intermediate three index quantity. This means that we will

have cubic storage, though with a small prefactor since it scales as N2
oNv. The size of these

three index tensors are sometimes smaller than the largest two index tensors that are stored

in memory due to the typically small size of No compared to Nv and Naux.

In the case when the Fock matrix is not diagonal the terms, given in Eq. (16), need to

be computed. The resulting terms when combining Eq. (16) and (19) are

OHF

2

∑
k̃c

F c
k̃
Sck̃
Sk̃

∑
ijab

tabijRiaRjb −OHF

∑
ĩ

(
∑
c

F c
ĩ
Sĩc
Sĩ

)(
∑
ia

VĩiSĩa
Sĩ

(Z1)ia)

+OHF

∑
ĩac

S ĩcaF
c
ĩ

Sĩ
(
∑
i

(Z1)iaVĩi) (29)

These contributions to the off-diagonal NOCI Hamiltonian scale by at least a factor of N

less than their counterparts in Eqs. (23) and (27). Just like the additional terms in Eq.

(9), all of the contributions from singles excitations are relatively cheap compared to the

doubles excitations and are not the dominant factors in determining the overall time and

computational scaling of the NOCI-MP2 method.
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In computing the final term, Eq. (13), we cannot use Eq. (15) in the given compact form

because it does not allow the terms to be refactored into a lower scaling form like in Eqs.

(23) and (27). In order to reduce the number of coupled indices in Eq. (15) we define

SacProj = Sac −
∑
k

Sak̃Sk̃c
Sk̃

(30)

Using this, Eq. (15) can be written as

S ĩj̃ab = SacProj +
SãiSĩb
Sĩ

+
Saj̃Sj̃b
Sj̃

(31)

Now no more than two indices that are strictly coupled. Substituting this into Eq. 13 and

expanding, we get four unique terms and the final set of equations

OHF

4

∑
ijab

¯〈ij||ab〉tabij +OHF

∑
ĩj̃a

(I3)a
ĩj̃

(L3)a
ĩj̃

SĩS
2
j̃

+
OHF

4

∑
ĩj̃

(X3)ĩj̃(Y 3)ĩj̃
S2
ĩ
S2
j̃

+
OHF

2

∑
ĩj̃

(W3)ĩj̃(Z3)ĩj̃
S3
ĩ
Sj̃

(32)

where

(I3)a
ĩj̃

=
∑
klcd

Ukĩ〈kl||cd〉Ulj̃SacProjSdj̃; (L3)a
ĩj̃

=
∑
ijb

Vĩit
ab
ij Vjj̃Sj̃b (33)

and

(X3)ĩj̃ =
∑
klcd

Ukĩ〈kl||cd〉Ulj̃Sc̃iSdj̃; (Y 3)ĩj̃ =
∑
ijab

Vĩit
ab
ij Vjj̃SĩaSj̃b (34)

and

(W3)ĩj̃ =
∑
klcd

Ukĩ〈kl||cd〉Ulj̃Sc̃iSd̃i; (Z3)ĩj̃ =
∑
ijab

Vĩit
ab
ij Vjj̃SĩaSĩb (35)

and

¯〈ij||ab〉 =
∑
Q

(AB̄Q
ia
AB̄Q

jb −
AB̄Q

ja
AB̄Q

ib) (36)
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where

AB̄Q
ia =

∑
kc

ABQ
kcS

ac
Proj

∑
i

UĩiVkĩ
Sĩ

(37)

We have defined a rotated two electron integral in Eq. (36), where the integral for state

A is essentially rotated into the state B basis. Equations (21), (23), (27), and (32) are

the set of working equations that need to be computed for the MP2 correction to the off

diagonal matrix elements. All of these equations assume that the occupied-occupied and

virtual-virtual blocks of the Fock matrix are diagonal.

Now that the working equations are defined, we present a sketch of the NOCI-MP2

algorithm within the RI approximation. The matrix elements we are looking for are between

the zeroth order wavefunction of basis determinant A and the first order wavefunction of

determinant B. The algorithm is broken up into three major steps: first the formation of

Eqs. (18) and (37), followed by computing the contributions from Case 1, 2, and then 3.

In the first part of the algorithm, given in Figure 1, we create BQ
ia in the same way as the

RI-MP2 method,77,78 the details of which we will not give here. The next step is to create

and store Eq. (37) on disk. This step just involves rotating the virtual and occupied orbitals

into the basis of the ket determinant. This scales as N4 because we are rotating the three

index quantity BQ
ia.

Figure 1: Sketch for the formation of the B matrices used in the RI expansion to form the
two-electron integrals.

CPU Disk

Form ABQ
ia,

BBQ
ia N2NvNaux NoNvNaux

Loop over k

Read BBQ
kc

BB̃Q
kc =

∑
c
BBQ

kcS
ac
Proj NoN

2
vNaux

Loop over i
BB̄Q

ia+ = (
∑

ĩ
UĩiVkĩ
Sĩ

)BB̃Q
ka N2

oNvNaux +N3
o NoNvNaux

Next we compute Eqs. (10), (23), (27), and (29) using the algorithm sketched in Fig-

ure 2. The slowest scaling part of this step is the formation of the two-electron integrals

(N2
oN

2
vNaux), which is the same as the slowest scaling part in the RI-MP2 method.78 There
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is another step that has fifth order scaling, but it scales as N3
oN

2
v .

As mentioned, one of the intermediate terms formed is a three index tensor. The price

of storing these quantities on disk would be an excessive number of reads from disk. The

number of seeks would scale as N4
o , and the total data transfer would be N5

oNv. Since

this third rank tensor is also relatively small (N2
oNv) we choose to store it in memory. For

moderately large basis sets where Nv >> No these three index tensors are not the most

memory intensive terms. In the systems studied in this paper, over 600 basis functions,

these tensors require less than 300 hundred megabytes of memory.

Figure 2: Sketch for the formation of the Hamiltonian contributions for Case 1 and Case 2,
as well as the MP2 overlap term.

CPU Memory
Loop over i

Read ABQ
ia,

BBQ
ic

Loop over j

Read ABQ
jd,

BBQ
jb

Form tabij ,〈ij||cd〉 N2
oN

2
vNaux N2

v

OMP2 =
∑

ab t
ab
ijRiaRjbOHF N2

oN
2
v

C1+ = OMP2

HMP2+ = OMP2 ∗ (EHF + EMP2)
C2+ =

∑
cd〈ij||cd〉QicQjd N2

oN
2
v

Form (W1)ic,(Z1)ia N2
oN

2
v NoNv

Form (X1)ĩj̃,(Y 1)ĩj̃ N2
oNv +N3

oN
2
v NoNv +N2

oNv

Form (I2)c
ĩj̃
,(L2)a

ĩj̃
N2
oNv +N3

o N2
o +N2

oNv

HMP2+ = C1(
C2

4
+
∑

k̃c

F c
k̃
Sk̃c

2Sk̃
)

HMP2− = OHF

∑
ĩ(
∑

kc
UkĩScĩ(W1)kc

Sĩ
+
∑

c

F c
ĩ
Sĩc

Sĩ
)(
∑

ia
VĩiSĩa(Z1)ia

Sĩ
) N2

oNv

HMP2+ =
∑

ĩj̃

(X1)̃ij̃(Y 1)̃ij̃OHF

2
N2
o

HMP2+ =
∑

ĩac

OHFS
ĩ
ca(F

c
ĩ
+
∑

k(W1)kcUkĩ)(
∑

i(Z1)iaVĩi)

Sĩ
NoN

2
v +N2

oNv

HMP2− =
∑

ĩj̃ac

S ĩ
ca(I2)

c
ĩj̃
(L2)a

ĩj̃

Sĩ
N2
oN

2
v

Finally we compute the last contribution to the Hamiltonian, Eq. (32) using the steps

outlined in Figure 3. Despite the simple form in the original NOCI-MP2 method in Eq. (13)

the new form required to optimally use the RI approximation takes just as long, if not longer,

than the computation of Eqs. (23) and (27). This part of the matrix element is the most
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computational expensive because there are three different two-electron integrals needed. In

addition, the formation of Eq. 33 scales as N2
oN

3
v . The size of Nv and Naux are typically

similar, which is why these terms typically take the longest time to compute. Eq. (32) is

almost always the largest contributor to the Hamiltonian matrix element due to the fact

that the overlap between virtual orbitals in the bra and ket determinants, Sac, are typically

much larger than the occupied-virtual overlap, Sĩa.

Figure 3: Sketch for the formation of Case 3 in the Hamiltonian.

CPU Memory
Loop over i

Read ABQ
ia,

BBQ
ic ,

BB̄Q
ia

Loop over j

Read ABQ
jd,

BBQ
jb,

BB̄Q
jb

Form tabij ,〈ij||cd〉, ¯〈ij||cd〉 N2
oN

2
vNaux N2

v

Form (I3)a
ĩj̃

N2
oN

3
v +N3

oN
2
v N2

oNv

Form (L3)a
ĩj̃

N3
oN

2
v N2

oNv

Form (X3)ĩj̃,(Y 3)ĩj̃,(W3)ĩj̃,(Z3)ĩj̃ N3
oN

2
v +N3

oNv N2
o

HMP2+ =
∑

ab
¯〈ij||ab〉tabij OHF

4
N2
oN

2
v

HMP2+ =
∑

ĩj̃a

(I3)a
ĩj̃
(L3)a

ĩj̃
OHF

SĩS
2
j̃

N2
oNv

HMP2+ =
∑

ĩj̃

(X3)̃ij̃(Y 3)a
ĩj̃
OHF

4S2
ĩ
S2
j̃

+
∑

ĩj̃

(W3)̃ij̃(Z3)
a
ĩj̃
OHF

2S3
ĩ
Sj̃

N2
o

We conclude this section by mentioning a few things about the implementation of the

presented algorithm. As mentioned previously, we have assumed that all singular values,

Sĩ, are greater than a threshold to avoid numerical instability problems. In practice the

algorithm is modified by splitting up the sum into two different terms, one with Sĩ greater

than some threshold value and one term with Sĩ smaller than that threshold value. This does

not create any more computation, but does mean that there are a few more B̄Q
ia matrices

that must be stored on disk. In general, as the number of below-threshold singular values

grows, the cost of the NOCI-MP2 method decreases because the sum over the corresponding

orbitals becomes just a sum over one or two indices since the sum over Sĩ greater than the

threshold becomes zero. Therefore, what is presented here represents the worst case (largest

possible amount of computation) for the NOCI-MP2 method.
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To further increase the speed, we integrate out the spin, which creates a total of five

unique non-zero cases for Eqs. (23)-(32). The reason there are five potential unique terms

rather than three is because we have two different two-electron integrals multiplied together.

Out of the five non-zero integrals only some contribute to all the cases; for example, if there

are all alpha spins for one two-electron integral and all beta spins for the other two electron

integral then only the first term in Eq. (23) is nonzero because the overlap integrals are zero

for all other cases.

It is also worth mentioning that this method is easily parallelized over multiple CPUs.

The computation of each Hamiltonian matrix element is independent of each other. Since

the corresponding orbitals are also unique for a given bra-ket pair, it is only the atomic

orbital two-center one-electron integrals from the RI expansion that are shared across all

matrix elements (i.e. all processors). The code can then be easily parallelized over multiple

processors based on the number of Hamiltonian matrix elements that need to be computed.

We have also implemented the frozen core approximation within the NOCI-MP2 method.

The computational speed up is not as large as in the case of RI-MP2 because only the tabij

amplitudes use the frozen core approximation. The other two-electron integral is not a part of

the MP2 expansion, but instead arises because of the insertion of the identity used to solve the

NOCI-MP2 Hamiltonian. We do not apply the frozen core approximation to this resolution

of the identity because it introduces a larger error than the frozen core approximation in the

MP2 method.

Results and Discussion

In this section, we discuss some timing comparisons against conventional RI-MP2, and two

chemical applications of NOCI-MP2, including examples of larger molecules than was possi-

ble previously. The RI algorithm for the NOCI-MP2 method is implemented within a devel-

opment version of the Q-Chem 5 quantum chemistry package79 with OpenMP parallization.
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All calculations were performed using a threshold value for Sĩ of 0.001 and NOCI-MP2 v168

(i.e. neglecting the correction to the off-diagonal overlap matrix element that defined ver-

sion 2). We then examine a number of singlet biradicaloid systems that require an electronic

structure method capable of handling strong correlation.

The results for the biradicaloid systems use a damping or level shift term for t amplitudes

based on the difference between the occupied and virtual orbital energies. We use this to

guard against cases where the energy denominator in the t amplitudes approaches zero,

which potentially leads to divergent amplitudes and second order energies. The parameter

used for this damping is 0.3 Hartree, similar to the parameter that was determined to be

optimal for regularized orbital optimized MP2.80 In the sections below, we will discuss why

this is used and the impact it has on the results.

Scaling

The timing of NOCI-MP2 with the RI approximation is compared to the corresponding RI-

MP2 algorithm78 within Q-Chem on a set of planar conjugated molecules, shown in Figure

4. We choose this test set to keep the density matrix denser than in the more standard

test case of a set of linear alkanes, as well as to yield lower sparsity in AO basis matrix

elements. The timing recorded for RI-NOCI-MP2 is for the computation of a single off-

diagonal Hamiltonian matrix element. Because this is a perturb-then-diagonalize method all

of the computational cost comes in forming the Hamiltonian and overlap in the NOCI basis.

The timing of the overlap terms itself is not needed because they are obtained freely by just

dividing the first term in Eq (8) by the total energy of the bra state.

In Figure 5 we plot the timing of a single off-diagonal Hamiltonian matrix element for

RI-NOCI-MP2 and the timing to compute the RI-MP2 energy with respect to the basis set

size. We use the aug-cc-pvdz basis set, which for our test set means we go from 192 to 770

basis functions. The slope for both of these methods does not quite reach 5 (asymptotically

N2
oN

2
vNaux) on the log-log plot in Figure 5 reflecting two possible factors. First is the fact
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Figure 4: The set of molecules used for timing calculations for RI-NOCI-MP2 and RI-MP2.

that the linear algebra associated with the rate-determining 5th order steps executes faster

as the problem size increases (approaching peak performance), and second is the fact that

cubic and quartic scaling steps also make contributions to the timings. Both RI-MP2 and

RI-NOCI-MP2 show similar scaling with respect to the size of the problem indicating that

similar considerations apply to both algorithms. Similarly Figure 6 shows that RI-NOCI-

MP2 and RI-MP2 display similar speed up over multiple processors. RI-NOCI-MP2 gains a

little more than RI-MP2 with the increase in number of processors because RI-NOCI-MP2

has a larger ratio of computational vs. read/write time.

The prefactor associated with RI-NOCI-MP2 scaling ends up being roughly 10 times

larger than RI-MP2. Part of this is due to the formation of the intermediates in Eqs. (33)

and (36). Unrestricted RI-MP2 requires the formation of 3 different types of two-electron

integrals; two same spin terms and the opposite spin term. For NOCI-MP2 there are those
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Figure 5: Log-Log plot of the RI-NOCI-MP2 and RI-MP2 timings for the molecules shown
in Figure 4 with respect to the number of basis functions. The RI-MP2 and RI-NOCI-MP2
scale a little lower than 5 because the asymptotic regime has not quite been reached for
these problem sizes. Both calculations are executed presuming unrestricted orbitals, and
were recorded on a 64 core node based on AMD Opteron 6134 processors running at a clock
speed of 3.2 GHz. Both calculations were performed on a single processor.
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three cases for both of the spin integrated two-electron integrals 〈kl||cd〉 and tabij in Eq. (8).

All of these extra terms add up to give roughly a factor of 10 times a conventional RI-MP2

calculation. In practice there are a number of ways to reduce the cost of a given matrix

element by avoiding the computation of nearly zero terms based on the resulting overlap

integrals, Sĩa, and singular values, Sĩ, from the SVD in Eq. (5). These are utilized in the

rest of the calculations presented in this paper, but Figures 5 and 6 use the slowest case

scenario.

The other critical factor, so far ignored, in determining the computational cost of the

NOCI-MP2 calculation is the rank of the NOCI matrix. The case of 4 determinants corre-

sponds to the NOCI analog of a single spin-flip calculation and is appropriate for biradicaloids

and single bond-breaking as treated in the following subsections. With the use of the sym-
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Figure 6: Ratio of timing using N cores vs. one core for OpenMP parallized RI-MP2 and
RI-NOCI-MP2. The black curve is a perfect parallization speedup. Both calculations are
executed presuming unrestricted orbitals, and were recorded on a 64 core node based on
AMD Opteron 6134 processors running at a clock speed of 3.2 GHz.
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metry in the NOCI-MP2 Hamiltonian there are 3 diagonal and 8 off-diagonal elements to

consider. The timing is therefore approximately 8.3 times longer than the single matrix

element tests reported above. This common case then involves approximately 83 times more

computation for the NOCI-MP2 correction than the RI-MP2 correction. Since we have ex-

cluded the SCF times, the overall computational cost increase for the complete NOCI-MP2

calculation versus RI-MP2 can be considerably less than this estimate. For example, a cal-

culation with 692 basis functions on one processor the RI-NOCI-MP2 correction is 70 times

longer than the RI-MP2 expansion. With the SCF time, the total RI-NOCI-MP2 calculation

is 25 times longer than a RI-MP2 calculation.

Charged dimers

The recoupling of two π aromatic radicals, such as two ethene radical cations, can lead to

a stacking complex with non-bonded contact distances that are shorter than a normal van
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der Waals complex, yet much longer than a normal chemical bond. The resulting complex

is biradicaloid in character, with a long, weak multicenter bond that reflects competition

between stabilization due to recoupling of the two radical electrons, as well as dispersion in-

teractions, countered by non-bonded contacts between other doubly occupied orbitals. If the

radicals are charged, there is also significant electrostatic repulsion, which will typically ren-

der the complex meta-stable with respect to dissociation in the gas phase. Either way, these

long, weak multicenter bonds require an electronic structure treatment capable of describ-

ing strong correlations because of their significant biradicaloid character.81–83 Additionally

dispersion interactions play a key role, and therefore a suitable electronic structure method

must also include dynamic correlation.

To explore the performance of NOCI-MP2 for treating multi-center bonds in dication

dimers, we must first specify the determinants that will be included in the reference NOCI

calculation. One well-defined choice that seems appropriate is to obtain the covalent (radical)

and ionic (closed shell) NOCI states using the absolutely localized molecular orbital (ALMO)

method.84–86 In the ALMO model, the MOs are constrained to be fragment block-diagonal

such that AOs from one fragment cannot contribute to the MOs of any other fragment.

This enables the optimization of constrained determinants, which correspond to well-defined

covalent and ionic diabatic states. Due to the constraints, an ALMO determinant has non-

zero occupied-virtual Fock matrix elements, and therefore requires inclusion of the single

excitations in the MP2 treatment, as given in the theory section. Using the ALMO method

we create 2 covalent (Monomer+•-Monomer+•) and 2 ionic (Monomer-Monomer2+) determi-

nants where the radical electrons are fragment localized into (nonorthogonal) orbitals on one

monomer or the other. We pseudo-canonicalize the occupied-occupied and virtual-virtual

block of the final MOs from the ALMO calculation in order to compute the MP2 correc-

tion to each of the 4 resulting determinants. This does not change the NOCI energies, but

simplifies evaluation of the first order MP expansion of the wavefunction.

We first start with a simple model system of di-ethylene di-cation, plotted in Figure 7.
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Figure 7: Dissociation curve in D2h symmetry for ethylene dimer di-cation in the cc-pVTZ
basis. There is a metastable minimum corresponding to weak 4-center inter-fragment bond-
ing, although this minimum is unbound with respect to dissociation.
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The D2h geometry of di-ethylene dication is optimized using the ωB97X-D functional87 with

the cc-pVTZ basis set, and is given in the supporting information. The coordinates for each

point on the curve shown in in Figure 7 are generated by rigidly pulling apart the ethylene

cation radicals. We compute the ground state with SF-EOM-CCSD, NOCI, and NOCI-MP2

using the cc-pVTZ basis set. The SF-EOM-CCSD and NOCI-MP2 curves are corrected for

basis set superposition error, while there is no basis set superposition error at the NOCI

level because the molecular orbitals are restricted to one of the two monomers. To compute

the basis set superposition error for NOCI-MP2 we use the basis set superposition error for

single reference MP2 and remove the HF basis set superposition error.

Compared to SF-EOM-CCSD, NOCI-MP2 underbinds by about 3 kcal/mol, and shows

very good qualitative agreement in the potential curves, by contrast with the NOCI method,

which greatly underbinds the local minimum. A major reason for the good agreement be-

tween SF-EOM-CCSD and NOCI-MP2 is the inclusion of the singles amplitudes in the

NOCI-MP2 perturbation theory expansion. Without singles, NOCI-MP2 underbinds by 15

kcal/mol and overestimates the bond distance by 0.3 Å.

One technical comment is in order. As mentioned above, there is an 0.3 a.u. damping or
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level shift added to the energy denominators of the t amplitudes. This is most significant for

short contacts i.e. equilibrium or shorter). The largest the HOMO and LUMO gap is over

the entire curve is 0.2 Hartree and reaches values as small as 0.06 Hartree. Without damping,

NOCI-MP2 overbinds by 12 kcal/mol, while it underbinds by 3 kcal/mol by adopting the level

shift that has proved useful in OO-MP2. The character of the ground state also significantly

changes without damping: the dominant ALMO NOCI states are the two radical ALMO

states that spin-couple together to form the weak covalent bond, but for NOCI-MP2 without

damping, the dominant ALMO NOCI states are the ionic states. Since the damped and

undamped NOCI-MP2 results straddle the reference SF-EOM-CCSD results, one might infer

that an optimal damping parameter (for this problem) would be slightly smaller than 0.3

a.u. However, we will not consider tuning the damping parameter or modifying its functional

form here, as the present unbiased choice appears adequate.

Using the ALMO NOCI basis states makes it possible to further analyze the long multi-

center bond that is formed. Assuming a simple covalent bond would imply that the two

radical states are all that is needed to form the bond. However, if one uses just those two

states then the NOCI-MP2 minimum is reduced by 18 kcal/mol. The barrier also decreases

from 12 kcal/mol to 1 kcal/mol without the ionic states. This bonding may be viewed as

an extreme case of the charge-shift bonding that has been identified in other molecules such

as F2 that have some diradicaloid character.88,89 Other biradicaloid dimers with long inter-

monomer separations will very likely exhibit the same character. Such systems have more

typically been treated by CAS(2,2) wavefunctions which typically give delocalized active

orbitals.

To compare with other multi-reference perturbation theory methods, like CASPT2, we

model the tetracyano ethylene (TCNE) dimer di-anion, also in D2h symmetry. In Table

2 we give the NOCI-MP2 results and the CASPT2 and RASPT2 results from reference

82. All of the values are computed with the 6-31+G* basis and corrected for basis set

superposition error. NOCI-MP2 values are computed with geometries optimized using the
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ωB97X-D functional and the 6-31+G* basis set. At each point along the potential energy

scan the geometry is optimized while constraining the intermolecular separation distance.

The geometries used as well as the raw data for NOCI-MP2 with and without the damping

is given in the supporting information. For NOCI and NOCI-MP2 the 4 ALMO NOCI basis

states are again used.

Due to lack of dispersion interactions, the di-anion dimer is completely unbound by the

NOCI method and has no metastable state. The minimum for NOCI-MP2, given in Table

2, is 0.05Åless bound than RASPT2, which is significantly better than CASPT2 based on

the similar sized active space CAS(2,2) results. However, NOCI-MP2 with the damped t

amplitudes is less bound than by CASPT2 and RASPT2 methods. By contrast, without

damping, the minimum is overbound (30 kcal/mol vs dissociation) with a barrier that is

significantly too large (14 kcal/mol). The barrier and the minimum shift by roughly similar

amounts (18 and 12 kcal/mol) because the damping has less impact on the barrier height

and a larger impact on the minimum, because the singles amplitudes are the largest near the

bonded region. The HOMO to LUMO energy difference is between 1.3-0.07 Hartree for the

bonded region of the di-anion TCNE dimer. Overall, these results are broadly similar to the

case of ethene dimer dication: without damping we over correlate, and the optimal result

is somewhere between the damped and undamped results. Like the ethene dimer dication

case, these results also suggest that there is scope for further investigation and optimization

of the strategy for damping in the future.

Table 2: Meta-stable minimum and energy barriers for the di-anion TCNE dimer in the
6-31+G* basis for a variety of multi-reference perturbation theory methods. The CAS and
RAS results are taken from reference 82. All energies are given in kcal/mol. Bond distances
are given in Å

NOCI-MP2 CAS(2,2) CAS(6,4) RAS(22,2,2;10,2,8) RAS(22,2,2;8,4,8)
Minimum 48.4 34.8 37.9 37.3 36.7
Energy Barrier 2.28 9.43 7.02 5.31 6.14
Bond Distance 2.75 2.5 2.5 2.7 2.7

Just like in inorganic semiconductors, organic semiconductors exhibit increased conduc-
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tance by doping with a small fraction of ionized molecules (i.e. holes). In these materi-

als, the radical cation can form a dimer with a neutral molecule to delocalize the positive

charge, and it is this monocation dimer that causes a significant increase in the charge mo-

bility in the material.90–92 To explore the use of NOCI-MP2 for aromatic dimer cations, we

looked at the binding energy and the charge resonance energy for 4 examples (aniline, naph-

thalene, anthracene, and phenalenyl), and compare to gas phase experimental data where

available.93–95 Using the ALMO strategy for these species suggests that two diabatic config-

urations are natural: (Monomer+•-Monomer and Monomer-Monomer+•. These will give rise

to two NOCI states associated with constructive and destructive interference between these

localized charge diabatic determinants.

Since there is no long-range coulomb repulsion between the two monomers, the mono-

cation dimers are bound with respect to dissociation in the gas phase: they represent a long

multicenter interaction that is formally a half-bond. The ground state is not typically strong

correlated (it is the delocalization of the odd electron or hole between the two monomers) and

so single reference methods can do a good job at obtaining the binding energies (although

hybrid functionals are essential in DFT to keep delocalization errors from being too large).

Using the four state ALMO basis, the charge resonance energy (i.e. the excitation energy

difference between the ψ± = 1√
2

(|A+A〉 ± |AA+〉) states) is freely obtained.

In table 3 we give the NOCI, NOCI-MP2, MP2, and DFT (using the accurate ωB97X-

V hybrid96) calculations, and experimental binding energies and charge resonance energies.

All of the computational values are corrected for basis set superposition error, and use the

cc-pVTZ basis set. All of the geometries used for the dimers are given in the supporting

information. As expected normal MP2 overbinds the π-stacked dimers compared to the

DFT or experimental values: MP2 is known to overbind π stacking systems, as indicated

by the benzene dimer,97 DNA stacking complexes,98 and related systems.99 The difference

between MP2 and the DFT results increases with the number of π electrons. This overbinding

tendency will be directly reflected in the diagonal elements of the NOCI-MP2 method, which
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would lead to overbinding in the absence of damping.

The binding of the cation-dimers can be viewed as having two main origins. One is the

electrostatic/dispersion interactions, and the other is the splitting of the plus/minus combi-

nation of the localized ionic states given by the charge resonance energy. With the ALMO

NOCI basis, the diagonal elements can tell us the impact of the electrostatic/dispersion

interaction and the off-diagonal element determines the charge resonance energy. For ex-

ample, the localized cation state (|A+A〉) in naphthalene is bound by 6.45 kcal/mol at the

MP2 level. This part of the binding is dominated by dispersion since without any dispersion,

(the NOCI result), the state is unbound by 8 kcal/mol. The rest of the 10 kcal/mol binding

energy is due to the weak one-electron bond formed in the ψ+ state.

The damped NOCI-MP2 results in Table 3 are generally in quite good agreement with

the ωB97X-V binding energy calculations, as well as the available experimental binding

energies, with no deviation larger than 2 kcal/mol. The charge resonance energies predicted

by damped NOCI-MP2 match up very well with the available experimental values, which also

suggests that the off-diagonal matrix elements are quite accurate. One interesting subtlety

is that in contrast to the experimental results, none of the dispersion including methods

find that anthracene is less bound than naphthalene. Only with the NOCI method, where

there are no dispersion interactions, is anthracene more bound. Comparing to experiments,

it would seem that all methods (apart from NOCI, of course) over-estimate the importance

of the dispersion interactions.

Long C-C bonds in di-diamantane ethane and hexaphenyl ethane

A normal alkane C-C bond is 1.54 Å long, but through the use of steric crowding in combi-

nation with favorable dispersion interactions, different stable alkanes with a C-C bond over

0.2 Å longer have been synthesized.100–103 Despite appearing to have a partly broken C-C

bond, some of these species are stable at room temperature. We first look at di-diamantane

ethane,100 shown in Figure 8, which is stable at room temperature with a bond distance of
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Table 3: Binding energy and charge resonance states for a variety of mono-cation dimers.
Experimental data is provided when available. The binding energy is in kcal/mol and the
Charge Resonance energy is in eV.

Binding energy Charge Resonance
molecule NOCI NOCI-MP2 MP2 ωB97x-V Exp. NOCI NOCI-MP2 Exp.
aniline 3.3 14.7 16.1 14.02 1.17 1.02 1.12a

naphthalene 2.4 16.8 24.0 16.4 17.8b 1.12 1.00 1.05c

anthracene -1.3 18.3 25.9 20.5 16.4b 1.05 0.92
phenalenyl -2.0 25.7 36.6 25.1 1.43 1.27

a Values taken from reference 93
b Values taken from reference 94
c Values taken from reference 95

1.65 Å. This system has attracted considerable interest.104–107

Figure 8: A visualization of di-diamantane ethane at its equilibrium geometry, and the
dissociation curve at the NOCI, red, and NOCI-MP2 level, blue.
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As one stretches the ethane C-C bond, the molecular wavefunction changes from being

closed shell single reference to open-shell multireference where the two fragments contain a

lone radical electron each. For both molecules we use the two radical and two ionic ALMO

NOCI states, as employed in the previous subsection for the ethene dimer dication, and
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TCNE dimer dianion. We use the same 6-31G(d,p) basis set that was used in reference

100 for di-diamantane ethane, and all geometry optimizations are done with the B97-D

functional. At each point on the potential energy surface the geometry is optimized while

constraining the central C-C bond distance. These geometries are given in the supporting

information. The plot of the dissociation curve for di-diamantane ethane is in Figure 8.

The NOCI and NOCI-MP2 binding energies, after correcting for basis set superposition

error (BSSE), are 23 and 56 kcal/mol, respectively. The NOCI-MP2 value is underbound

by about 10 kcal/mol when compared to the dispersion corrected B3LYP-D results of 70.7

kcal/mol.,100 or the ωB97M-V value of 65 kcal/mol.105 Considering that neither of the DFT

calculations were BSSE-corrected, and also that closer approach to the complete basis set

limit would increase the NOCI-MP2 binding more significantly than the DFT binding (due

to slower algebraic convergence of the wavefunction method with cardinal number of the

basis,108 we view this result as quite promising. By contrast, without damping the t ampli-

tudes, the NOCI-MP2 binding energy is approximately 80 kcal/mol, which is significantly

overbound compared to the DFT results, and would be further overbound upon improvement

of the basis.

At the NOCI level (i.e. without dispersion interactions) di-diamantane ethane is still

bound, which indicates that despite the steric repulsion of the bulky side groups, the electrons

involved in the C-C single bond still strongly couple to each other. However, with the

dispersion interactions included in NOCI-MP2 the molecule is significantly more bound.

The attractive dispersion interactions outweigh the repulsive steric crowding for this system.

However, the bond is still signficantly weaker than the roughly 90 kcal/mol value for the

ethane C-C bond.

From equilibrium to dissociation, roughly 30 kcal/mol of relaxation energy occurs in the

side groups of di-diamantane ethane. This side-group distortion associated with binding is

why, in the NOCI case, the relaxed binding curve goes above 0.0 at 3.6 Å. If there was no side-

group distortion due to steric hindrance during the bonding process the molecule would be
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bound by almost 100 kcal/mol, larger than the roughly 90 kcal/mol bond dissociation energy

of ethane. Other studies on di-diamantane ethane have pointed to the minimal geometry

distortion in the diamantane side group upon formation of the C-C bond as the source of

its stability.74 The NOCI-MP2 calculations suggest that there is competition between steric

repulsions that increase as the CC distance shortens, and attractive dispersion interactions

that strengthen as the CC distance shortens. The result of this competition, in concert

with the energetic cost of stretching the bonds (due to poorer electron pairing via spin

coupling109–111) causes the optimal geometry of di-diamantane ethane to be 0.1 Å longer

than the bond distance in ethane.

Figure 9: A model of hexaphenyl ethane, and the dissociation curve at the NOCI, red, and
NOCI-MP2 level, blue.
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For hexaphenyl ethane, shown in Figure 9, we use the def2-TZVP basis set for all atoms

except the two C atoms in the ethane C-C bond, for which we use the aug-cc-pVTZ basis

set. This mixed basis description yields a total basis set size of 1388 functions. The quality

of the ALMO NOCI determinants depend strongly on the quality of the basis set on the

two C atoms involved in the bond that is being formed/broken. The accuracy of the ALMO

determinants greatly improves with an increased basis set for the bonded atoms, and is less
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important for the other atoms involved.

Unlike di-diamantane ethane, hexaphenyl ethane does not show a typical dissociation

curve: as shown in Figure 9, the NOCI dissociation curve is unbound. Without the singles

correction to the ALMO states, due to the non-Brillouin orbitals (i.e. they are not fully

relaxed at the SCF level due to the ALMO constraint), the NOCI state doesn’t even show an

unstable minimum at the bonding distance. The shape of the NOCI curve shows the impact

of steric hindrance and the relaxation energy gained in the triphenyl methyl radicals as they

are pulled apart. At the bonded minimum, the bonded carbon atoms have slightly distorted

tetrahedral geometry, with the distortion reflecting steric repulsions. Upon dissociation,

the central radical carbon atom adopts a trigonal planar geometry, where, due to steric

repulsion between phenyl groups, they twist out of the plane in a propeller-like structure.

In this geometry the radical electron is able to couple better with the phenyl π electrons,

which stabilizes the radical fragment.

With the inclusion of dispersion interactions via the NOCI-MP2 method, a weakly bound

molecule is obtained. NOCI-MP2 is bound, with only by 1 kcal/mol of net binding at 1.69

Å. There is a more strongly bound second minimum (a bond stretch isomer) that appears

around 4 Å. This isomer is calculated to be bound by 7.5 kcal/mol, and exhibits a much

broader minimum. The relative heights of these two minima can change with the extent of

damping of the small energy denominator t amplitudes. As we have seen in the previous

examples, the chosen damping parameter, which is not optimized for this work, appears to

lead to a slight underestimation of the dispersion energy.

The second minimum at 4 Åis strictly due to the dispersion interactions between the

phenyl groups on the different methyl fragments: it is a broken bond that is stabilized

by dispersion. A plot of the phenyl-phenyl distance between phenyl groups on the top

and bottom methyl fragments, given in the Supporting Information, shows that the closest

contact distance between them doesn’t significantly change until after 4 Å. At this point,

there starts to be a linear relationship between the central C-C bond distance and the closest
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contact distance on the phenyl rings.

Based on these results, it is not surprising that hexaphenyl ethane has not been exper-

imentally observed, since in this case the energy penalty required to distort the triphenyl

methyl fragments in order to form the ethane bond is too large, and there is not enough

compensating dispersion interaction to obtain a reasonably stable bond. In solution, the

triphenyl methyl radical binds to a carbon atom in a phenyl ring over the formation of the

ethane bond. The stability of the t-butyl version of hexaphenyl ethane in reference 100

appears to be due to two factors: the steric repulsions cause a C-phenyl interaction to be

more difficult, and the increased dispersion interactions stabilize formation of the C-C bond.

Conclusion

Non-orthogonal configuration interaction with a second order perturbation correction (NOCI-

MP2) is a flexible method that can describe some types of strong correlation with exception-

ally compact wavefunctions. In this paper, we have presented working equations that enable

an efficient NOCI-MP2 implementation, using the resolution of the identity (RI) approxi-

mation to the two-electron integrals. No individual term requires more computational time

than RI-MP2, though there are multiple terms that do scale as RI-MP2 giving NOCI-MP2

a much larger prefactor. Using a set of conjugated organic molecules, we show that this

prefactor no larger than 10 per off-diagonal element. In practice, the prefactor is smaller

because in many cases some of the occupied orbital overlaps between different NOCI states

are near zero. Overall, this implementation makes NOCI-MP2 comparable to low scaling

multireference perturbation theory methods like CASPT2. The advantage of NOCI-MP2 is

that a much smaller active space can often be used.

NOCI-MP2 is applied to a number of mono- and di-cation aromatic dimers. In these

cases, we show that NOCI-MP2 can be combined with the absolutely localized MO (ALMO)

method to create the set of NOCI determinants that rather directly represent covalent and
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ionic diabatic states. We further show that the use of a singles correction to the MP2 energy

brings yields relative energies that are in line with other multi-reference correlation theory

methods like SF-EOM-CCSD and CASPT2. Inspection of the results shows that the coupling

between the radical electrons, one on each monomer, is not enough to accurately describe the

binding in the di-cation species. It is only after the addition of the ionic states, which account

for 70% of the binding energy, that we get results which agree well with other theory and

experiments. This illustrates that NOCI-MP2 has interpretative, as well as computational

value when applied to molecules where the bonding is not already well-understood.

For aromatic mono-cation dimers (i.e. having a delocalized multi-center one-electron

bond, rather than a two-electron bond), NOCI-MP2 shows itself to be capable of obtaining

accurate charge resonance energies, using just two ALMO reference determinants. Currently

we are limited to gas phase studies, but it is very promising that the results agree with avail-

able experimental results to about 2 kcal/mol. However, we note that this good agreement

was only obtained after addressing the challenge of overbinding in NOCI-MP2, whose origin

(small denominators) is the same as the cause of the well-known tendencies of MP2 to signif-

icantly overbind π-stack dimers between closed shell monomers. To damp the effects of small

orbital differences, we apply a denominator level shift of 0.3 Hartree, taken from previous

work on regularized orbital optimized MP2.80 Inspecting our results suggests that slightly

better accuracy might be possible by optimizing the damping parameter to a slightly smaller

value. Systematic exploration of this optimization problem may be useful in the future.

We also presented NOCI-MP2 calculations for two bulky ethane derivatives: di-diamantane

ethane and hexaphenyl ethane. Due to the minimal geometric relaxation in di-diamantane

ethane, the dissociation curve is representative of a typical single bond, with or without

the dispersion interactions. Upon inclusion of dispersion interactions via NOCI-MP2, the

binding energy is only 30 kcal/mol less stable than the ethane C-C bond. This relatively

strong bond results from the strong dispersion interactions combined with relatively small

geometric distortion in the diamantane side groups upon formation of a C-C bond that is
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only stretched by 0.1 Å relative to ethane. For hexaphenyl ethane the geometric distortion

is much more significant, such that at the NOCI level the system is unbound.

The work presented here shows the promise of the NOCI-MP2 method for applications

to large molecular systems. The largest calculations employed 1388 basis functions, and

were successful in treating systems that show strong correlation. The NOCI-MP2 method

is especially useful in cases where the set of non-aufbau configurations (i.e. diabatic states)

used in the non-orthogonal CI is well defined. This was accomplished here using covalent and

ionic ALMO determinants. All of the potential energy surfaces presented here were done

with either rigid monomers or using a different method to perform constrained geometry

optimization. In the future it would be greatly beneficial (though also quite non-trivial) to

implement analytical gradients for NOCI-MP2.
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(32) Malmqvist, P. Å.; Rendell, A.; Roos, B. O. The Restricted Active Space Self-

Consistent-Field Method, Implemented with a Split Graph Unitary Group Approach.

J. Phys. Chem. 1990, 94, 5477–5482.

40

Page 40 of 57

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(33) Casanova, D.; Head-Gordon, M. Restricted Active Space Spin-Flip Configuration

Interaction Approach: Theory, Implementation and Examples. Phys. Chem. Chem.

Phys. 2009, 11, 9779–9790.

(34) Zimmerman, P. M.; Bell, F.; Goldey, M.; Bell, A. T.; Head-Gordon, M. Restricted

Active Space Spin-Flip Configuration Interaction: Theory and Examples for Multiple

Spin Flips with Odd Numbers of Electrons. J. Chem. Phys. 2012, 137, 164110.

(35) Mayhall, N. J.; Head-Gordon, M. Increasing Spin-flips and Decreasing Cost: Pertur-

bative Corrections for External Singles to the Complete Active Space Spin Flip Model

for Low-Lying Excited States and Strong Correlation. J. Chem. Phys. 2014, 141,

044112.

(36) Wu, W.; Su, P.; Shaik, S.; Hiberty, P. C. Classical Valence Bond Approach by Modern

Methods. Chem. Rev. 2011, 111, 7557–7593.

(37) Su, P.; Wu, W. Ab initio nonorthogonal valence bond methods. WIREs Comput. Mol.

Sci. 2013, 3, 56–68.

(38) Gerratt, J.; Cooper, D. L.; Karadakov, P. B.; Raimondi, M. Modern Valence Bond

Theory. Chem. Soc. Rev. 1997, 26, 87–100.

(39) Small, D. W.; Lawler, K. V.; Head-Gordon, M. Coupled Cluster Valence Bond Method:

Efficient Computer Implementation and Application to Multiple Bond Dissociations

and Strong Correlations in the Acenes. J. Chem. Theor. Comput. 2014, 10, 2027–2040.

(40) Hiberty, P. C.; Humbel, S.; Byrman, C. P.; van Lenthe, J. H. Compact Valence Bond

Functions with Breathing Orbitals: Application to the Bond Dissociation Energies of

F2 and FH. J. Chem. Phys. 1994, 101, 5969–5976.

(41) Hiberty, P. C.; Shaik, S. Breathing-Orbital Valence Bond Method–A Modern Valence

41

Page 41 of 57

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Bond Method That Includes Dynamic Correlation. Theor. Chem. Acc. 2002, 108,

255–272.

(42) Broer, R.; Nieuwpoort, W. Broken orbital symmetry and the description of valence

hole states in the tetrahedral CRO4(2-) ANION. Theor. Chim. Acta 1988, 73, 405–

418.

(43) Broer, R.; Nieuwpoort, W. Hole localization and symmetry breaking. J. Mol. Struct.

Theochem 1999, 458, 19–25.

(44) Broer, R.; Hozoi, L.; Nieuwpoort, W. Non-orthogonal approaches to the study of

magnetic interactions. Mol. Phys. 2003, 101, 233–240.

(45) Thom, A. J.; Head-Gordon, M. Hartree-Fock Solutions As a Quasidiabatic Basis for

Nonorthogonal Configuration Interaction. J. Chem. Phys. 2009, 131, 124113.

(46) Sundstrom, E. J.; Head-Gordon, M. Non-Orthogonal Configuration Interaction for the

Calculation of Multielectron Excited States. J. Chem. Phys. 2014, 140, 114103.

(47) Thom, A.; Head-Gordon, M. Locating Multiple Self-Consistent Field Solutions: An

Approach Inspired by Metadynamics. Phys. Rev. Lett. 2008, 101, 193001.

(48) Mayhall, N. J.; Horn, P. R.; Sundstrom, E. J.; Head-Gordon, M. Spin-Flip Non-

Orthogonal Configuration Interaction: A Variational and Almost Black-Box Method

for Describing Strongly Correlated Molecules. Phys. Chem. Chem. Phys. 2014, 16,

22694–22705.

(49) Bartlett, R. J.; Musia l, M. Coupled-Cluster Theory in Quantum Chemistry. Rev. Mod.

Phys. 2007, 79, 291.

(50) Møller, C.; Plesset, M. S. Note on an Approximation Treatment for Many-Electron

Systems. Phys. Rev. 1934, 46, 618.

42

Page 42 of 57

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(51) Mahapatra, U. S.; Datta, B.; Mukherjee, D. Molecular Applications of a Size-

Consistent State-Specific Multireference Perturbation Theory with Relaxed Model-

Space Coefficients. J. Phys. Chem. A 1999, 103, 1822–1830.

(52) Mahapatra, U. S.; Datta, B.; Mukherjee, D. A state-specific multi-reference coupled

cluster formalism with molecular applications. Mol. Phys. 1998, 94, 157–171.

(53) Chaudhuri, R. K.; Freed, K. F.; Hose, G.; Piecuch, P.; Kowalski, K.; W loch, M.;

Chattopadhyay, S.; Mukherjee, D.; Rolik, Z.; Szabados, Á.; Tóth, G.; Surján, P. R.
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